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Abstract—Balancing exploration and exploitation according to
evolutionary states is crucial to meta-heuristic search (M-HS)
algorithms. Owing to its simplicity in theory and effectiveness
in global optimization, gravitational search algorithm (GSA)
has attracted increasing attention in recent years. However,
the trade-off between exploration and exploitation in GSA is
achieved mainly by adjusting the size of an archive, named Kiyest,
which stores those superior agents after fitness sorting in each
iteration. Since the global property of Ki,.s; remains unchanged
in the whole evolutionary process, GSA emphasizes exploitation
over exploration and suffers from rapid loss of diversity and
premature convergence. To address these problems, in this paper,
we propose a dynamic neighborhood learning (DNL) strategy
to replace the K.t model and thereby present a DNL-based
GSA, namely DNLGSA. The method incorporates the local and
global neighborhood topologies for enhancing the exploration and
obtaining adaptive balance between exploration and exploitation.
The local neighborhoods are dynamically formed based on
evolutionary states. To delineate the evolutionary states, two
convergence criteria named limit value and population diversity,
are introduced. Moreover, a mutation operator is designed for
escaping from the local optima on the basis of evolutionary
states. The proposed algorithm was evaluated on 27 benchmark
problems with different characteristic and various difficulties.
The results reveal that DNLGSA exhibits competitive perfor-
mances when compared with a variety of state-of-the-art M-HS
algorithms. Moreover, the incorporation of local neighborhood
topology reduces the numbers of calculations of gravitational
force and thus alleviates the high computational cost of GSA.

Index Terms—Gravitational search algorithm (GSA), dy-
namic neighborhood, convergence criterion, topology, evolution-
ary states.

I. INTRODUCTION

Finding the global optimum is a common and challenging
task in the development of meta-heuristic search (M-HS)
algorithms [1], for which a M-HS algorithm should provide
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an effective way to balance exploration and exploitation [2].
Exploration is the ability to explore broad regions of the search
space, whereas exploitation is the capability of concentrating
the search around a promising area to refine a candidate
solution. The trade-off between exploration and exploitation
greatly affects the convergence accuracy and speed of M-
HS algorithms [3]. To speed up convergence and alleviate
premature convergence, particles should perform extensive
exploration in the early stages and execute refined exploitation
in the latter stages. However, how to achieve a fine balance
between these two remains an unsolved challenge [4].

Over the past decades, a number of methods have been
developed for balancing exploration and exploitation. Typical
examples include control of the optimization parameters [5, 6]
and neighborhood topology based approach [7-9]. Among
these techniques, the neighborhood topology is one of the
popular methods due to its effects on the dissemination of
search information during the evolutionary process [10]. To
this end, various types of neighborhood topologies have been
proposed [11-14]. According to the scope of interaction
among particles, these topologies can be roughly grouped into
two categories, i.e. global neighborhood topology and local
neighborhood topology. In global neighborhood topology, all
particles are connected to each other and attracted to the global
best particle of the whole population, i.e. gbest. Its main
merits include rapid convergence and the ability of exploitation
around gbest [7]. However, the population is more likely to
be confined at a local optimum, as the gbest found early in
the search can be a poor leader [7]. On the contrary, in local
neighborhood topology, each particle connects only to several
other particles in its neighborhood and is attracted by the best
position of the neighborhood, lbest [11]. This kind of topology
enables particles to search diverse regions of the problem
space and puts more emphasis on exploration [15]. Previous
research has indicated that the local neighborhood topology
is more suitable for complex problems [16]. Despite the
exploration ability, the local neighborhood topology, however,
slows the convergence speed down because of the delay of
information spread among particles. In other words, both local
and global neighborhood topologies have their cons and pros.
In considering their supplementary role to each other, it has
attracted increasing attention to the combination of both in an
improved M-HS solution [17].

The gravitational search algorithm (GSA) is one of the
recent M-HS algorithms inspired by the law of gravity [18].
In GSA, a particle is guided by the sum of gravitational force
exerted on it by all the particles stored in Kpest [18], where



the movement of a particle is propelled in many different
directions. That is, each particle can learn more from all the
particles stored in K5t instead of only one best particle as in
the canonical particle swarm optimization (PSO) model. This
provides GSA a unique property, i.e. diverse search directions.
In addition, the size of Ky is a function of time, with the
initial value KO = N at the beginning and decreases with
time. Therefore, by the lapse of time, the exploration fades
out and the exploitation turns to fade in. By adjusting the size
of Kjest, the balance between exploration and exploitation can
be approved for GSA [18].

However, in spite of the limited balance effects of the K egt
model, GSA does have some weaknesses. On one hand, due to
the repetitive calculation of gravitational force for all particles,
GSA apparently suffers from high computational complexity,
especially in the early stages where the size of K. is large
[19]. On the other hand, at the later stages, each particle
can only learn from very few elite particles, which inevitably
causes quick loss of search diversity and fast convergence. In
this case, the population might be trapped in a local optimum.
The major problem associated with GSA is that the Ki,est
model is actually equivalent to a global neighborhood [20],
in which all particles learn from the same elites all the time.
This kind of learning strategy usually causes rapid information
exchange between particles and finally results in premature
convergence [3].

To address the aforementioned shortcomings of GSA, many
GSA variants have been developed [3, 8, 21-25] in recent
years. A few new operators have been introduced, including a
disruption operator to explore and exploit the search space in
[3], opposition-based learning to improve exploitation ability
of GSA [21], and the application of the Black Hole theory to
prevent premature convergence and improve the exploration
and exploitation abilities of GSA [26]. Combining other state-
of-the-art M-HS algorithms with GSA has also developed to
enhance GSA. Combining other state-of-the-art M-HS algo-
rithms with GSA is another way to enhance GSA. For exam-
ple, Li et al. [8] integrated Differential Evolution (DE) with
GSA to overcome the premature convergence encountered
in unconstrained optimization. Mirjalili et al. introduced the
social thinking of PSO into GSA to accelerate convergence in
the last iterations and improve the search ability [27-29]. In
these algorithms, the global memories are utilized to direct the
search path of particles. Especially in [29], researchers have
attempted to adaptively balance exploration and exploitation
to further improve the performance of GSA. Zhang et al. [24]
presented a hybrid genetic algorithm (GA) and GSA (GAGSA)
to overcome the problem of premature convergence. In im-
proved GSA [23], both the chaotic perturbation operator and
the memory of the position of each particle were utilized. The
chaotic operator enhances the global convergence to escape
from the local optima, and the memory strategy provides a
faster convergence.

While these efforts ameliorate the performance of GSA,
few studies have addressed the problems resulted from the
Kpest model where the global property of Kjest remains
unchanged in the evolutionary process. In [27-29], although
gbest is utilized to speed the convergence in the later stages,

simultaneously utilization of the gbest and Kj,.s; model further
strength the global property of GSA. These GSA variants still
emphasize exploitation over exploration as GSA does, thus
resulting in a rapid loss of diversity and premature conver-
gence. Specifically, the Kj,.s¢ model gives rise to the following
problems: (1) High computational complexity, especially in the
early stages where the size of K, is large; (2) Exploitation
bounded only by a few elite particles at the later stages with
slow convergence and lack of recovery; and (3) Rapid loss of
population diversity and potential premature convergence.

Since incorporating the local and global neighborhood
topologies is an effective way for balancing exploitation-
exploration [17], this paper presents a dynamic neighborhood
learning-based GSA (DNLGSA) to improve the performance
of GSA.The Kj,st model is replaced in the proposed method.
Specifically, the novelties of DNLGSA are summarized below:

(1) A new learning strategy is presented which combines the
local neighborhood with global topology. Through the new
learning strategy, each particle can learn search information
from i) all the particles in its neighborhood and ii) the his-
torically best experience of the whole population (gbest). The
local neighborhood is helpful to decrease the computational
complexity and keep search diversity while the global model
is beneficial to accelerate the convergence speed.

(2) A new mechanism for constructing local neighborhoods
dynamically is proposed based on evolutionary state. Two
convergence criteria, limit value and population diversity are
designed to depict the evolutionary states. The former is used
to judge if the gbest is trapped while the latter is applied to
determine whether the local neighborhoods should be dynam-
ically reformulated and to control the scale of mutation. This
new operation is critical for preserving population diversity
and escaping from local optimum.

The remainder of this paper is organized as follows. Section
IT briefly describes the frameworks of GSA. In Section III,
a detailed introduction of the proposed DNLGSA is given.
The experimental setting and simulation results are presented
in Section IV. Finally, Section V concludes the proposed
algorithm. To make the paper focus on the methodology,
more details on the algorithm implementation and parameter
selection are provided in the supplementary document.

II. BASIC GRAVITATIONAL SEARCH ALGORITHM (GSA)

The GSA is a stochastic optimization algorithm inspired
by the Newton’s law of gravity and mass interactions [18].
This algorithm provides an iterative method that simulates
the mass interactions in a D-dimensional space following the

Newtonian gravity and the laws of motion. In a basic GSA, a
particle z; = [z}, 22, ...,xP] moves through the search space
with the velocity v; = [v},v7, ..., vP] which is determined by
the gravitational forces exerted by its neighbors. The force
between any two particles is directly proportional to their
masses and inversely proportional to their distance. So each
particle moves towards those particles that have heavier masses
[18, 30]. The mass of particle ¢ in generation ¢, denoted by

Mass;(t), is calculated as follows:
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where fit! represents the fitness value of particle ¢ at time
t. For a minimization problem, the best(t) and worst(t) are
defined as follows:

best(t) = ; :I{1’121}M’N] fit;(t) 3)

Elj
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In an optimization problem, the force acted on the lparticle

1 from the particle j at a specific time ¢ can be calculated as
follows:

Mass;(t) x Mass;(t)

R0 = G — 520

(z4(t) — 2 (t)) )

where G(t) is the gravitational constant in generation t;
Mass;(t) and Mass;(t) are the gravitational mass of the
particles ¢ and j, respectively; R;;(t) is the distance between
particles ¢ and j; € is a small positive constant; xf(t) and
x;i(t) represent the position of the particle 7 and 5 in the d-th
dimension, respectively. o

To give a stochastic characteristic to the GSA, the total
force acted on the particle ¢ in the d-th dimension is set to be
a randomly weighted sum of d-th components of the forces
exerted from its neighbors stored in the elite archive, Kiest,
as shown in Eq. (6) as follows:

Mass;(t) x Mass;(t)
Rij(t) +e
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where rand is a uniform random variable in the interval [O,

1], Gy is the initial value of gravitational constant, 3 is the

coefficient of decrease, and 1},,, is the maximum number of
iterations.

Afterwards, the acceleration a?(t) of the particle 7 in the

%

d-th dimension can be calculated as follows:

__F®
af(t) = Mass;(t) @

Hence, the particle ¢ adjust its velocity and position accord-
ing to Eq. (8) and Eq. (9) as follows:

vt + 1) = rand - v¥(t) + ad(2) 8)

23t +1) = 2¢@) + vt +1) )

III. DYNAMIC NEIGHBORHOOD LEARNING BASED-GSA
(DNLGSA)

A. Dynamic neighborhood learning strategy

Let X=[x1,xs,...,xy] denote a GSA population, where
x; = [z}, 22,...,2P], i=1,2,...,N represents a particle in a
D-dimensional search space. In the dynamic neighborhood
learning strategy, we first randomly divide the whole popula-
tion into M non-overlapping local neighborhoods, DN={DN,
DN, ..., DN} of an equal number of particles. Now, for
a particle x; which belongs to the j-th local neighborhood
DN, its neighbors consist of all the other particles in DN,
as illustrated in Fig. 1. Note that the M neighborhoods are dy-
namically generated based on two convergence criteria which

X

Fig. 1: Non-overlapping local neighborhoods in DNLGSA
where N=12 and M=4.

are used to delineate the evolutionary stages (as described in
Section III-B).

In a local neighborhood, the particles connect with each
other through the gravitational forces. Consequently, for the
particle ¢ in the j-t% local neighborhood at time ¢ (denoted as
DN;(t)), its velocity Lvd(t + 1) is given as follow:

Lofe+1)= 3 rand-G(t)g/[LSp(t)(xg(t) —23()) (10)
x, EDN; (1), ip(t) +e
TpFET;

where rand is is a uniform random variable in the interval

, 1].

Additionally, the particle ¢ also learns from the best experi-
ence of the whole population has been found so far, denoted by
ghest=[g', g2, ..., g”]. Apparently, the ghest model is a global
neighborhood topology [11]. The attraction of the gbest exerts
on the particle ¢ is defined as follow:

God(t +1) = rand - (g%(t) — z¢(t)) n

where Gvé(t+ 1) is the new global velocity produced by the

gbhest.

Now we combine the velocity created by the local and
ﬁlobal neighborhood topologies using two acceleration coef-
fclients, c1 and ¢, to update the velocity of the particle ¢ as
ollow:

vt +1) =rand - vd(t) + c1 - Lot 4+ 1) + 2 - Gud(t+1) (12

where c; and ¢, are arbitrary nonnegative numbers. Clearly, if
c1 is bigger than cs, the search process tends to perform explo-
ration, while if ¢y is bigger than ¢y, the search process tends to
execute exploitation. Since there is no clear border between the
exploration and exploitation phases, the adaptive adjustment
method provides a practical option to offer a gradual transition
between these two phases. Inspired by the adjustment method
proposed in GGSA [29], we set ¢c; = 0.5 — 0.5t1/6/Tnl@/a6I and
ey = 1.5t1/6 /TS,

Thereby the particle ¢ updates its position according to Eq.
(13) as follow:

3t 4+1) = 28(t) + vt + 1) (13)

Remark 1. Different from conventional local neighborhood-
based algorithms where a particle learns only from the best
particle in the neighborhood, the new local neighborhood
learning strategy inherits the merit of GSA that enables
each particle to learn from all of its neighbors. This clearly
preserves the diverse search property of GSA.

Remark 2. The K model in GSA is a kind of global
neighborhood topology while the DN; in DNLGSA is a



dynamic local neighborhood topology which is compatible
with the evolutionary states. This makes the algorithm can
explore the feasible search space more thoroughly.

Remark 3. The guidance of gbest exhibits as a global
neighborhood topology which helps speed up the convergence
process. The combination of local and global neighborhood
topologies is taken to boost the balance between exploration
and exploitation.

B. Dynamic neighborhood forming and gbest mutation based
on convergence criteria

Most of the conventional local neighborhood topologies,
such as a ring [16] and a square [31], are static neighborhood
topologies that remains unchanged during the evolutionary
process [32, 33]. If particles are trapped in local optima, it
is hard for them to escape due to no information exchange
among them. To overcome this problem, in this paper, we
propose a dynamic neighborhood generation scheme and a
gbest mutation operation which are compatible with the evo-
lutionary states, where the evolutionary states are depicted by
two convergence criteria: limit value and population diversity.

1) Limit value: The gbest plays an important role in DNL-
GSA for it exerts directly attraction to other particles. If the
gbest cannot improve self-solution after a certain number of
sequential iterations, the other particles gradually get close to
the gbest. Especially in the early iterations, the gbest is likely
to be a local optimum and leads to population stagnation. To
estimate the evolutionary states, we set a counter cnm for
the ghest as an indicator. Initially cnm is set to 0, and it is
incremented by 1 if the gbest cannot improve self-solution
at the end of current iteration. It is obvious that the gbest is
more likely to be trapped as cnm increases. Here we set a limit
value gm for the cnm and if cnm exceeds gm, we recognize the
algorithm faces big risks of falling into stagnation. To prevent
this trend, further operations should be carried out, including
dynamic reformulation of local neighbors and mutation of
gbest, which will be decided based on the following population
diversity (PD) indicator.

Generally, the value of gm should be neither too large
nor too small. A large gm value tends to consume more
computation resources due to excessive perturbation on gbest,
while a small value slows the convergence speed because
particles will take a long time to search around the local
optimum. In this study, gm = 5 is selected following the
sensitivity analysis in Section IV-D.

2) P(){Julation diversity: As discussed above, to prevent the
potential risks of stagnation when cnm exceeds gm, we need
to calculate the PD to determine the operations of the next
step. For a population consisting of M non-overlapping local
neighborhoods, the geographical clustering center of each non-
overlapping local neighborhood at time ¢ can be calculated by:

sz eDN;(t) Tj

CDN;(t) = A

(14)

where DN, (t) is the i-th non-overlapping local neighborhood
in time t which consists of k particles. Then we define the

distribution diversity of the centers as below:

M D
PD(t) = % > J > (CDN{(t) - CDN(t))2
i=1 \ d=1 (15)
_ il CDN{(1)

where CDN(t)
M

where CDNY(t) is the center position of the i-th non-
overlapping neighborhood in the d-th dimension at time t,
CDN¢<(t) is the average value over all the local neighbor-
hoods at d-th dimension.

Accordingly, we can use the PD to delineate the distribution
states of particles. When the gbest cannot improve self-
solution after gm iterations, the PD has often two kinds of
values, high or low, which represent two different evolutionary
states of population as indicated in Fig. 2(a) and Fig. 2(b),
respectively. Figure 2 is an experiment for STEP function
(function f3 in [18]) with D=2, N=50 to reveal the two states.
In Fig. 2, the sample points in 5 different colors represent
5 local neighborhoods and the red star represents the global
optimum. As shown in Fig. 2(a), at early iterations i.e. =19,
in which PD has a high value, the particles scatter in a wider
space and the gbest is far from the global optimum, it means
the particles should pay more attention on exploration; while at
later iterations i.e. t=211 as shown in Fig. 2(b), the population
usually has low PD values and the particles are scattering
in a limited space close to the global optimum, in this state
the algorithm should concentrate on exploitation. Therefore,
we can decide the next operations based on the PD results.
Details of this figure were provided in Section S-I of the
supplementary file.
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(b) DNLGSA: PD=0.2584, t=211, where the figure to the right
is the magnified version of the one to the left.

Figure 2: Population distribution of particles when the gbest
has not been improved after sequential gm iterations.

3) Dynamic reformulation of local neighborhoods and mu-
tation for gbest: Based on the above analysis, we can now



construct the scheme to improve the performance of DNL-
GSA. It includes two steps: (i) the tracking of the gbest and (ii)
the reformulating of local neighborhoods and gbest mutation.

Step 1: The tracking of gbest.

We first track the value of cmm at the end of current
iteration. Once cnm>gm, it indicates that the gbest has not
been improved after sequential gm iterations and we should
calculate the PD to determine the operations of Step 2.

Step 2: The reformulating of local neighborhoods and gbest
mutation.

In step 2, we first set a threshold Th for PD to distinguish
the two evolutionary states and then execute corresponding

operations:

(D Evolutionary state 1: The value of PD is larger than
Th. In this case, the particles should pay more attention to
exploration to prevent the potential risks of stagnation as
shown in Fig. 2(a). We here conduct the reformulation of the
local neighborhoods because it realizes a timely information
exchange among the non-overlapping local neighborhoods.
Moreover, to improve the opportunities of escaping from the
local optimum, the mutation of gbest with big jump steps is
also introduced. In this paper, the scale of mutation is assigned
proportional to the value of PD as follows:

newg?(t) = g¢(t) + PD -U(-1,1), if PD>Th  (16)

where U(-1, 1) returns a uniformly distributed pseudorandom
number in the interval [-1, 1]. The distribution interval of the
pseudorandom number ensures diverse directions of mutation,
thereby the gbest can fully explore the search space around

itself in a sphere with a radius r = PD.

@ Evolutionary state 2: The value of PD is not more
than Th. This state usually means that the DNLGSA should
focus on exploitation. To this end, we introduce a coefficient
RD € (0,1) to the PD based mutation operation to adjust its
step size as follow:

newg?(t) = g*(t)+ RD - PD -U(—1,1), if PD<Th (17)

Apparently, with the coefficient RD the gbest can concentrate

the search around the promising area. The sensitivity of
parameter RD is conducted and 0.4 is selected (See Section
S-1I of the supplementary file for details).

Obviously, Th determines the time to reformulate the local
neighborhoods and controls the scale of mutation and hence
has significant effects on the balance of exploration and
exploitation. The sensitively of Th is reported in Section S-
IIT in the supplementary file. Accordingly, the thresholds Th
is set to 0.5 in this study.

After steps 1-2, the cnm is set to zero. Moreover, to promote
the evolution of the algorithm to the global optimum, we
accept the new gbest if it is not worse than the previous one;
otherwise, the previous gbest is kept. The whole implementa-
tion of the DNLGSA is summarized in Algorithm 1.

To analysis the characters of the proposed method, we
conducted the convergence trajectories experiments as shown
in Section S-IV in the supplementary file. Besides, a detailed
analysis of the contribution of each of these components
(dynamic neighborhoo gbest mutation, adaptive parameters)
on various functions is given in Section S-V.

C. Complexity Analysis of DNLGSA

The computational costs of the standard GSA involve the
initialization (73,,;), evaluation (71,,,), calculation of the accel-

Algorithm 1 Dynamic neighborhood learning-based GSA
(DNLGSA)

1: /*Initialization®/

2: for i=1 to N do do

3: Randomly initilize v; and @x;;

4: Evaluate fit(x;);

5: fitg = min(fit), g is the global best particle;

6: Randomly group the population to M non-overlapping local neighborhoods;
7:

8:

end for
/*Main Loop*/

9: repeat

10: Calculate c1, ca, and Mass;

11: for i=1 to N do do

12: /*Particle Update*/

13: Update Lv; and Gw; using Eqgs. (10)-(11);
14: Update v; and x; using Egs. (12)-(13);

15: Evaluate fit(x;);

16: end for

17: fitnewg = min(fit);
18: if fitg < fit”ewg then

19: fitg = fitg:

20: cnm=cnm+1;

21: if cnm<gm then

22: continue;

23: else

24: /*Dynamic reformulation of local neighborhoods and gbest mutation™*/
25: Calculate the PD of the population;

26: if PD<0.4 then

27: for d=1:D do

28: newg? = g% +0.4- PD -U(-1,1);
29: end for

30: else

31: Randomly regroup the non-overlapping local neighborhoods;
32: for d=1:D do

33: newgd :gd+PD~U(71,1);

34: end for

35: end if

36: The newg exert direct attraction to all the particles.
37: cnm=0;

38: end if

39: Evaluate the new particle fitycwqg=newg;

40: if fitpewg < fity then

41: g = newg ; /*The new gbest is adopt*/

42: else

43: g = g; /*The previous gbest is kept*/

44: end if

45: else

46: fitg = fitnewgq:

47: cnm=cnm;

48: end if

49: until Terminal Condition

eration (1},..) as well as velocity and position update (T%,;,q)
for each particle. Assume D is the dimensionality of the search
space and 71,4, is the maximum iterations for the algorithm
with N particle. The computational complexity of GSA is
TGSA - ﬂni"’(Teva_"Tacc"'_Tupd)'Tmaw = 2DN+(DN+
D-N?42-D-N)-Tyaw = 2:D-N+3D-N -Tp00+D-N?Tppos.
As can be seen, the time complexity of the standard GSA is
O(D - N? - Ty,42), which is proportional to D - N2.

In DNLGSA, the time complexity is determined by the com-
putational costs of the modified GSA operation (1},0q—GsA)
and the DNL operation (T py ). Similar to the standard GSA,
the computational costs of the 7},,4—Gsa involve the initial-
ization (713,;), evaluation (7T,,,), calculation of acceleration
(Twce—DNLGSA) as well as velocity and position update (T,q)
for each particle. Note that the T,..—pnrasa is different
from the T,.. as particles are only directed by their N/Num
local neighbors (Num is the number of local neighborhoods).
Following Eq. (10), we can have Ty.c-pnrgsa = D -
(N/num)? - Num. Thereby, the costs of the modified GSA
Opefation is Thnoa—csa = Tini + (Teva + Tace—-DNLGSA T+
Tupd) Trnaz = 2:D-N+3D-N Tyaz+D-N?-Tppou/Num.



The TDNL consists of the computational costs in calculating
PD (Tpp), reformation of local neighborhoods (7;.r), and
mutation for gbest (1,,,). For the worst-case, DNLGSA
performs the calculation of PD every gm iterations, then
Tpp =Tref = D-N-Tax/gm and Ty, = D-Thae/gm, ie.
Tpnr = D-(N+1)-T42/gm. Therefore, the maximum time
complexity of DNLGSA will be Tonrgsa = Tmod—GsaA +
Tpnr =2-D-N+3D-N Ty +D-(N4+1)-Thnae/gm+
D - N?%. Tyaz/Num.

As we can see, DNLGSA has an O(D - N2 - T}, /Num)
computational complexity. Note that Num = N/[15% x N1,
the computational complexity can be written as O(D - N -
[15% x N7 - Tinaz)- When the value of N is small, the
computational complexity is obviously lower than that of GSA
as will be illustrated in Table III and Table V in Section IV-B1
and Section IV-B2.

IV. EXPERIMENTAL VERIFICATION AND COMPARISONS
A. Experimental setup

To fully evaluate the performance of the proposed DNL-
GSA, 27 scalable benchmark functions with various features
were tested in this study. They are classified in two test
suites. The first test suite contains 13 (f1-f13) widely used
functions, where f1-f7 are unimodal functions and {8-f13 are
multimodal functions. The unimodal functions are usually
utilized to investigate the convergence feature of algorithms
while multimodal functions are more complex with numerous
landscapes [34, 35]. Detailed description of these functions
can be found in [18]. Optimization of these functions can
reflect the exploration ability of an algorithm. The functions,
f101-f114, form the second test suite. These functions are
shifted and rotated functions from the 2015 IEEE Congress on
Evolutionary Computation (CEC2015) test suite [36]. Among
these 14 functions, f101-f102 are unimodal functions, f103-
f105 are multimodal functions, f106-f108 are hybrid functions,
and f109-f114 are composition functions as introduced in [36].
Performances of solving these shifted and rotated functions
can reveal the capability of algorithms for solving more
difficult problems. Experimental results of DNLGSA on these
benchmark functions were compared with 5 established GSA
variants: GSA [18], PSOGSA [27], GGSA [29], FGSA [37],
and FLGSA [38].

TABLE I: Parameter settings.

Algorithm Parameter  settings

GSA Go=100, B=20, k € [N, 2]

PSOGSA Go=100, 8=20, ¢1=0.5, c2=1.5, k € [N, 2]
Go=100, =20, ¢; = 2 — 2t3/T3 |

GGSA max
e = 267/ T}, k € [N, 2]

FGSA ED € [0,1], CM € [0,1], 8 € [29,31], k € [N, 2]

FLGSA B € [0,150], k € [N, 2]

DNLGSA Go=100, 8=20, ¢; = 0.5 — 0.5¢/6/TL/S

co = 1.5¢Y/6 /TS k=10, gm=5

max’

The parameter settings for these 5 comparison algorithms
are extracted from their corresponding literatures and listed
in Table I. For a fair comparison, the population size (V)
and the maximum fitness evaluation times (Max_FEs) of all
algorithms are set to 50 and 1000 000, respectively. In the
proposed DNLGSA, the initial value of gravitational constant
(Go) and its coefficient of decrease (3) are set to 100 and 20.

The limit value and the number of neighbors of each particle
are empirically set to gm = 5 and k=10, respectively.

To alleviate stochastic errors and obtain statistical results,
each algorithm was repeated 30 times independently. We
first assessed the searching accuracy of algorithms based
on the best, mean, and standard deviation of fitness error
(best, mean, and std). Note that the fitness error is the mean
difference between the fitness value found by the algorithms
and the actual global optimum. Then, searching reliability
and convergence efficiency of DNLGSA were evaluated in
terms of the minimum desired fitness evaluation times (FEs),
the shortest desired CPU times (CPU), and successful rate
(SR%). SR% reflects the reliability of an algorithm which
stands for the percentage of the successful runs that acceptable
solutions are found [16]. Moreover, the well-known nonpara-
metric statistical hypothesis, Wilcoxon rank-sum test [39] is
also utilized to evaluate whether the differences between the
results are significant. In this paper, this test was conducted at
a significance level of 5% (i.e. a = 0.05).

B. Experimental results and comparison on Test Suite 1

1) Results on unimodal functions: Experimental results
from the unimodal functions (f1-f7) are reported in Tables II-
III. The average (mean), standard deviation (std), best (best),
and Wilcoxon test (p-val) obtained from each algorithm are
summarized in Table II for comparison. The best results
of each row are marked in bold. Moreover, at the bottom
of Table II, we summarize the overall comparison results
between DNLGSA and other algorithms with “w/t/I’ and
“#BME’. Here “w/t/l’ gives the numbers that DNLGSA
wins the particular peer in w functions, ties in ¢ functions,
and loses in [ functions, and #BME denotes the number of
best mean value achieved by each algorithm. The Wilcoxon
test results (WTRs) are summarized as “+/=/-" to denote
the number of functions that DNLGSA performs significantly
better, comparable, or significantly worse than its counterparts,
respectively. As can be seen, DNLGSA produces the best
mean results with superior exploitation in optimizing 6 out
of the 7 unimodal functions. All the 6 GSA variants could not
handle the function f5 well. The statistical hypothesis results
shown in Table II also reveal that DNLGSA significantly
outperforms other peers for most functions tested. This may
result from the cooperation of local and global neighborhoods
and the mutation scheme as well as the population diversity
of particles.

The search speed and reliability of the 6 algorithms are
compared in Table III. Similar to Table III, the best results
of each row are marked in bold. As we can see, with respect
to the minimum desired FEs, DNLGSA shows the highest
convergence efficiency. This may benefits from the direct
attraction of the gbest. Moreover, in terms of the CPU times,
DNLGSA also stands out for fast convergence. This confirms
that the proposed neighborhood learning strategy can reduce
the computational complexity of GSA. It is also obvious that
DNLGSA yields the highest average successful rate on all the
tested unimodal functions.



TABLE II: Statistical results on functions f1-f7.

Function GSA PSOGSA GGSA FGSA FLGSA DNLGSA
mean  6.33E-18 9.50E-20 1.51E-18 1.90E+00  2.11E-02 1.53E-27
il best 9.88E-18 3.02E+02 3.63E-18 2.34E+00  8.33E-02 2.14E-27
std 3.51E-19 1.56E+00 349E-18  4.06E+00  7.21E-02 5.11E-26
p-val 0.00+ 0.00+ 0.00+ 0.00+ 0.00+
mean 1.32E-08 2.53E-09 4.22E-09 5.60E+00  5.67E-01 1.66E-14
0 best 3.84E-08 1.50E+01 1.01E-08 7.99E+00  7.65E-01 2.07E-14
std 1.74E-09 1.13E+01 3.93E-09 3.88E+00  6.27E-01 5.06E-14
p-val 0.00+ 0.00+ 0.00+ 0.00+ 0.00+
mean  1.25E+00  4.67E+05 6.06E-17 1.76E-08 1.37E-10 1.83E-26
3 best 2.04E+00  2.01E+04  5.35E+04 1.57E-09 8.37E-11 3.05E-26
std 4.39E-01 2.67E+03  5.27E+03 3.48E-08 5.56E-10 6.96E-26
p-val 0.00+ 0.00+ 0.00+ 0.00+ 0.00+
mean 1.32E-09 3.93E-10 8.67E-10 6.67E-01 7.71E-02 2.98E-15
" best 9.45E-10 1.64E-10 2.54E-10 3.66E-01 6.91E-02 3.82E-16
std 8.04E-09 3.22E-10 5.29E-10  9.78E+00  5.83E-02 8.39E-15
p-val 0.00+ 0.00+ 0.00+ 0.00+ 0.00+
mean  3.41E+00  5.11E+01 1.53E+01 1.I2E+03  3.16E+01 2.33E+01
5 best 2.17E+01 1.35E+01 1.36E+01 2.63E+01  2.67E+01 2.02E+01
std 6.72E+00  4.35E+00  5.41E+00  5.02E+02  1.95E+00  3.24E+01
p-val 0.01+ 0.72 0.00- 1.02 0.00+
mean 0 0 0 1 0 0
f6 best 0 0 0 1 0 0
std 0 0 0 0 0 0
p-val # # # 0.00+ #
mean 7.57E-03 7.25E+01 1.61E+01 1.92E+01 8.51E-03 1.09E-07
7 best 3.49E-02 8.19E+01 3.72E+01  2.14E+01 9.75E-03 2.49E-07
std 4.55E-03 5.19E+00  5.52E+01  3.16E+01 6.08E-03 6.38E-07
p-val 0.00+ 0.00+ 0.00+ 0.00+ 0.00+
wit/l 6/1/0 6/1/0 6/0/1 7/0/0 6/1/0
#BME 1 1 2 0 1 6
+/=/- 6/1/0 6/1/0 6/0/1 6/1/0 6/1/0

TABLE III: Search speed and reliability on functions f1-f7.

Function GSA PSOGSA GGSA FGSA  FLGSA  DNLGSA
FEs 211150 178000 228100 N/A N/A 38950
fl  CPU 30.62 27.12 34.31 N/A N/A 2.18
SR% 100 40 100 0 0 100
FEs 392000 325000 404600 N/A N/A 93900
2 cpu 57.50 52.06 60.88 N/A N/A 5.19
SR% 100 40 100 0 0 100
FEs N/A N/A 24050 1500 1500 650
3 cpu N/A N/A 4.49 0.32 0.26 0.04
SR% 0 0 25 100 100 100
FEs 273900 241200 302750 N/A N/A 39000
f4 CPU 38.31 33.88 4232 N/A N/A 1.96
SR% 100 100 100 0 0 100
FEs N/A N/A N/A N/A N/A N/A
f5 CPU N/A N/A N/A N/A N/A N/A
SR% 0 0 0 0 0 0
FEs 82950 57600 119850 N/A 33250 5550
f6 CPU 11.92 8.28 17.45 N/A 5.70 0.29
SR% 100 100 100 0 100 100
FEs 192300 N/A N/A N/A 49750 2650
7 CPU 28.94 N/A N/A N/A 9.65 0.15
SR% 50 0 0 0 100 100
Avg-SR% 64.29 40 60.71 14.29 42.86 85.71

2) Results on multimodal functions: It is found that without
strong global search ability the algorithms can be trapped
in local optima when solving multimodal problems [40]. In
this section, 6 multimodal functions (f8-f13) are utilized to
validate the exploration ability of algorithms, and the results
are given in Tables IV-V. As seen, DNLGSA can find ac-
ceptable solutions on all the multimodal functions except 8
and f13. Function {8 is a complex multimodal problem with
a significant number of local optima and none of the tested
algorithms can solve this problem [34]. Generally speaking,
DNLGSA performs the best in 4 out of the 6 multi-modal
functions in terms of solution accuracy. Although DNLGSA
has difficulty in processing the function f13, it is the only
one performs well on f9. The WRTs shown at the bottom
of Table IV also reveal that DNLGSA produces significant
superiority than the other 5 algorithms on functions f8-f11.The
superiority may come from the dynamic adjustment of the

neighborhood which diversifies the population and enhances
the global search ability. In terms of the search speed and
reliability shown in Table V, DNLGSA is the most suitable
algorithm on the tested multimodal functions. This confirms
the lower complexity of DNLGSA.

TABLE IV: Statistical results on functions f8-f13.

Function GSA PSOGSA GGSA FGSA FLGSA DNLGSA
mean 1.51E+04 1.07E+04  8.44E+03  9.26E+03  9.82E+03  6.22E+03
8 best 9.88E+03 6.22E+03  6.87E+03  9.11E+03  9.24E+03  5.23E+03
std 2.07E+03  4.72E+03  6.37E+03  8.24E+03 1.35E+04 3.92E+03
p-val 0.00+ 0.01+ 0.21 0.00+ 0.00+
mean  2.35E+01 1.31E+02 1.98E+02  3.00E+02  2.78E+01 0
9 best 1.39E+01 1.39E+01 1.01E+02 1.57E+02 1.75E+01 0
std 6.40E+01 8.42E+01 5.07E+01 491E+02  2.17E+01 0
p-val 0.00+ 0.00+ 0.00+ 0.00+ 0.00+
mean 2.19E-09 2.86E-10 8.73E-10 2.44E+00 1.29E-01 6.84E-14
£10 best 1.07E-09 2.14E-10 4.14E-10 2.05E+00 2.11E-02 5.66E-15
std 3.45E-09 6.94E-10 8.23E-10 6.08E+00 1.93E-01 5.46E-14
p-val 0.00+ 0.00+ 0.00+ 0.00+ 0.00+
mean 0 4.18E-02 3.94E-02 1.18E-01 1.20E-03 0
11 best 0 3.59E-02 2.41E-02 8.44E-02 7.99E-04 0
std 0 4.28E-02 6.52E-02 1.35E-01 4.91E-03 0
p-val # 0.00+ 0.00+ 0.00+ 0.00+
mean 5.02E-20 6.20E-22 6.44E-21 2.56E-02 3.47E-04 1.41E-05
12 best 3.18E-21 2.45E-22 2.06E-21 3.15E-03 1.96E-04 0
std 6.15E-20 7.54E-21 4.66E-21 5.73E-03 4.79E-04 3.25E-07
p-val 0.00- 0.00- 0.00- 0.00+ 0.00+
mean 3.37E-19 1.36E-20 7.56E-20 1.84E+00 7.36E-03 2.91E+00
13 best 5.67E-20 1.02E-20 3.59E-20 1.24E+00 2.54E-03 1.53E-01
N std 6.09E-19 2.38E-20 7.20E-20 2.54E+00 3.68E-03 2.73E+00
p-val 0.00- 0.00- 0.00- 0.37 0.00-
wit/l 3/172 4/0/2 4/0/2 5/0/1 6/0/0
#BME 1 2 0 0 0 4
+/=I- 3/1172 4/0/2 5/1/0 5/1/0 6/0/0

TABLE V: Search speed and reliability on functions f8-f13.

Function GSA  PSOGSA GGSA FGSA FLGSA DNLGSA
FEs N/A N/A N/A N/A N/A N/A

f8 CPU NA N/A N/A N/A N/A N/A
SR% 0 0 0 0 0 0
FEs N/A N/A N/A N/A N/A

f9 CPU N/A N/A N/A N/A N/A
SR% 0 0 0 0 0 100

FEs 306050 267800 319100 N/A  N/A 50100
f10 CPU 4461 3996 4762 NA NA 270
SR% 100 100 100 0 0 100
FEs 133000 N/A N/A  N/A 43950 48200
fl1  CcPU 2003 N/A N/A  NA 800 2.85
SR% 100 0 0 0 100 100
FEs 97100 62200 114600 N/A 38050 6700
f12 CPU 1681 1076 2000 N/A 733 0.52
SR% 100 100 100 0 100 100
FEs 161450 131950 186500 N/A 48400 N/A
f13 cpu 2776 2262 3333 NA 949 N/A
SR% 100 100 100 0 100 0
Avg-SR%  66.67 50 50 0 50 66.67

C. Experimental results and comparison on Test Suite 2

In this section, we present more experiments which were
conducted on the shifted and rotated functions selected from
CEC2015 for further performance assessment of DNLGSA.
The mean and standard deviation of fitness error produced by
DNLGSA and the eight benchmarking algorithms are given in
Table VI. Again the best value in each row is marked in bold.
It can be observed that DNLGSA is a competitive algorithm
on the second test suite as well. In the 14 tested functions,
DNLGSA is ranked the first for 8 times, and the second for
3 times in Table VI. The corresponding WTRs are shown in
Table VII, where the superiority of DNLGSA is verified on
these 14 benchmark functions in comparison to 5 state-of-the-
art algorithms.



TABLE VI: Statistical results on Test Suite 2 (mean error + standard deviation).

104

105

106

107

2.59E+02 + 4.96E+01
6.31E+01 £ 6.56E+01
3.79E+01 =+ 3.62E+01
8.09E+02 + 1.64E+02
5.04E+02 + 1.14E+02
1.53E+01 + 3.29E+01

3.95E+03 £ 7.97E+02
2.23E+03 + 2.87E+02
2.83E+03 £ 3.96E+02
4.29E+03 + 1.75E+02
2.16E+03 £ 1.34E+02
1.28E+03 + 3.00E+03

4.88E+06 £ 4.23E+06
4.14E+05 £ 9.47E+04
6.81E+05 + 5.77E+05
1.57E+03 + 3.01E+03
2.12E+05 £ 1.40E+05
4.07E+05 £ 3.09E+05

1.44E+02 £ 3.66E+02
1.10E+01 =+ 2.18E+00
6.12E+01 =+ 3.26E+01
1.67E+01 =+ 3.15E+01
6.33E+01 =+ 3.42E-01
1.00E+01 + 0.00E+00

1

1

2

1

f111

f112

f113

f114

4.72E+02 £ 9.81E+03
3.34E+02 £ 7.80E+02
2.37E+02 + 4.72E+02
4.03E+02 + 9.34E+02
3.18E+02 + 4.47E+02
1.30E+02 £ 3.66E+02

1.52E+02 £ 6.39E+02
1.06E+02 + 7.83E+02
2.00E+02 £ 5.64E+02
3.62E+02 £ 1.73E+02
1.88E+02 £ 1.53E+02
1.00E+02 £ 7.08E+01

4.20E+00 £ 3.48E+00
2.93E-02 £ 2.26E-02
9.35E-03 + 9.22E-03
4.15E+02 £ 9.43E+02
2.72E-01 + 1.21E-02
1.53E-01 £ 5.29E-01

7.49E+04 £ 9.26E+03
3.55E+04 £ 7.58E+03
8.06E+02 £ 1.00E+02
3.31E+04 + 5.89E+03
3.31E+04 £ 4.19E+03
3.12E+04 £ 6.04E+04

Function 101 £102 103

GSA 7.63E+08 + 3.02E+09 1.24E+10 £ 7.92E+09 2.01E+01 £ 1.24E-01
PSOGSA 8.63E+06 £ 2.28E+06  8.58E+07 £ 1.22E+07 2.03E+01 =+ 2.13E-02
GGSA 3.61E+05 &+ 3.94E+05  8.01E+07 £ 3.03E+08  2.00E+01 + 0.00E+00
FGSA 5.23E+06 + 2.12E+06 4.97E-14 + 1.72E-14 2.00E+01 =+ 4.24E-07
FLGSA 2.83E+05 £+ 7.09E+06  9.37E+09 =+ 3.56E+10 2.02E+01 =+ 3.65E-02
DNLGSA 1.86E+06 + 2.64E+06  6.42E+07 &+ 3.97E+07  2.00E+01 + 0.00E+00
rank- 3 5 1

DNLGSA

Function 108 109 f110

GSA 1.73E+06 + 6.28E+05 1.10E+02 £ 4.40E+02  4.09E+06 £ 6.77E+06
PSOGSA 5.42E+05 £ 7.39E+05 1.19E+02 + 2.17E+03 2.83E+03 £ 7.01E+03
GGSA 6.53E+03 &+ 1.22E+03  1.03E+02 £ 3.02E+01  7.82E+04 + 3.96E+04
FGSA 1.81E+06 + 5.68E+07  6.22E+02 + 5.23E+03  1.05E+03 + 4.70E+02
FLGSA 6.63E+03 £ 5.66E+03 1.45E+02 £ 1.33E+02  2.14E+04 + 1.45E+04
DNLGSA  1.86E+03 £ 5.62E+03 1.03E+02 + 3.12E+01 1.05E+07 £ 2.74E+07
rank- 1 1 6

DNLGSA

1

1

3

2

TABLE VII: WTRs between DNLGSA and other compared
algorithms on Test Suite 2.

Algorithm  GSA PSOGSA  GGSA  FGSA  FLGSA
Sig-Better 13 12 9 10 12
Sig-Worse 1 2 4 3 2

D. Sensitivity analysis of parameters

To analyze the impact of the parameters of DNLGSA, we
performed parameter sensitivity analysis on the limit value
(gm) and the size of neighborhood (k) in this section. Four
functions, including two unimodal functions (f1, f2) and two
multimodal functions (f10, f13) were utilized.

Firstly, we conduct DNLGSA with k = [6% x N,10% x
N,...,50% x N]. The mean fitness error values obtained
from the aforementioned 4 functions are depicted in Fig. 3
for comparison. As shown, too small k£ can cause DNLGSA
excessively emphasizes on local search in the early iterations
and gets stuck in local optima. On the contrary, a large k
can lead the particles to be attracted by jumbled information
and thereby cannot perform properly exploitation in the latter
iterations. In addition, too large values of k£ would lead to
quick loss of population diversity and make DNLGSA suffer
from premature convergence. It can be observed that the proper
range of k value is [15%x N, 30% x N], where k = [15% x N|
is recommend in this paper for computational efficiency.
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Fig. 3: Effects of the size of local neighborhood.

We also conducted the sensitivity analysis for selection of
the limit value gm. The experiments were carried out with
gm=[1,2,...,10]. Fig. 4 plots the effects of different settings
of gm on the performance of DNLGSA. It shows that in
the range of gm=[1,2,3,4,5], the higher value of gm is,

the better performance can be obtained. As the parameter
gm controls whether the dynamically reformulation of local
neighborhoods and mutation for ghest are achieved, too large
gm will lead to insufficient information exchange in the early
evolutionary state and thereby weaken the performance of
DNLGSA. Accordingly, gm=5 is recommended in this paper.

s

Mean Error

gm value

Fig. 4: Effects of the limit value gm on the performance of
DNLGSA.

E. Scalability Analysis

Increase of scales often causes drastically degradation of
searching accuracy. In this section, we present scalability
analysis for the proposed DNLGSA to explore its feasibility
to high dimensional problems. Experiments were carried out
on 50-D and 100-D problems. Other parameters are kept the
same as given in Section IV-A. Experimental results, i.e. the
mean fitness error values of each function are listed in Table
VIIL

As shown in Table VIII, except for function f13, DNLGSA
performs the best on all the tested functions when D=50.
Similar to the results shown in Table IV, the DNLGSA
seems have difficulty for deal with this problem. When
D=100, DNLGSA also shows superiority on functions f1-
fl11. Although the result from DNLGSA for f12 is slightly
worse than that of GSA, it is noticeably better than other
GSA variants. This confirms the validity of DNLGSA for
solving up to 100 dimensional problems, especially for the
multimodal problems f9-f11 with many local optima. Possible
reasons contributing to its superiority include the evolutionary
states based dynamic reformulation of local neighborhoods



TABLE VIII: Results of scalability analysis on 50-D and 100-
D problems.

Function GSA PSOGSA GGSA FGSA FLGSA DNLGSA
£ 50D 2.52E-16 3.55E-10 3.14E-16 3.14E+00  5.15E-02 2.31E-25
100D 9.70E-16 4.62E-10 6.44E-15 4.39E-01 1.92E+01 5.24E-23
0 50D 7.51E-08 2.06E-08 6.39E-08 1.75E-05 2.70E+00  6.66E-14
100D 9.95E-08 2.93E+00 1.18E-06 221E+00  1.92E+00  7.18E-13
3 50D 231E+02  3.73E+04  9.97E-08 5.62E-06 2.07E-06 1.10E-22
100D 3.90E+01 3.72E+04  2.66E-03 2.11E+02 1.81E-05 2.63E-19
“ 50D 7.48E-06 3.91E-07 5.95E-03 6.25E+00  8.29E+00  7.92E-13
100D 2.53E-02 4.15E+00  5.56E-02 5.11E+01  3.41E+00  5.78E-08
£ 50D 4.13E+01  599E+01  4.91E+02  4.55E+01  2.81E+02  2.53E+01
100D 5.26E+01  4.24E+03  4.23E+02  3.16E+03 1.74E+02  3.05E+01
50D 0 1.00E+00  3.00E+00  1.00E+00  3.00E+00 0
6 100D 1.00E+00  2.12E+04  3.49E+03  3.22E+03  3.24E+03 0
7 50D I.11E+00  5.25E+01 1.18E+02  4.24E+02  1.36E+00  6.84E-05
100D 531E+00  5.92E+02  6.01E+01  5.23E+02  3.05E+00  2.56E-04
8 50D 9.12E+04  3.65E+04  1.61E+03  8.73E+03  8.50E+03  8.59E+01
100D 8.03E+04  1.69E+05 1.09E+04  8.63E+03  8.32E+03  1.38E+03
9 50D 4.31E+01 L12E+02  2.05E+02  1.04E+02  3.17E+01 0
100D 427E+02  5.40E+02  6.23E+02  3.28E+02  5.02E+01 0
10 50D 7.09E-09 3.06E-06 532E-09  4.21E+01  3.74E+00  1.77E-12
100D 1.35E-08 3.59E-04 1.33E-03 249E+01  2.89E+00  3.22E-11
11 50D 0 6.19E+01 3.25E+00  6.88E+00  5.99E+00 0
100D 0 4.22E+01  4.58E+00  1.19E+01 2.04E+01 0
12 50D 7.20E-02 5.61E+00  2.15E+00  1.56E+00  1.23E+00  3.04E-03
100D 1.79E-02  2.68E+04  549E+00  3.57E+00  3.43E+00  4.22E-02
13 50D 1.89E-17 2.57E-15 1.55E-13 5.45E-02 1.94E-01 6.84E+00
100D 6.23E-12 1.98E-03 4.14E+01  3.85E+01  3.50E+01 6.02E+00

and effective mutation for gbest. Current evolutionary states
are identified by calculating two convergence criteria: limit
value and population diversity, where the information can then
be used to guide the learning behavior of particles to diversify
the population, and thereby improve exploration ability of
DNLGSA.

F. Comparisons with other M-HS algorithms

To further evaluate the proposed DNLGSA, we compared
DNLGSA with 9 other M-HS algorithms: DE/BBO (Hy-
brid Differential Evolution with Biogeography-Based Opti-
mization) [41], DSA (Differential Search Algorithm) [42],
BSA (Backtracking Search Optimization Algorithm) [43], CS
(Cuckoo Search Algorithm) [44], CoBiDE (Differential Evolu-
tion based on Covariance Matrix Learning and Bimodal Distri-
bution Parameter Setting) [45], CMA-ES (Covariance Matrix
Adaptation Evolution Strategy) [46], PSO (Particle Swarm
Optimization) [5], ABC (Artificial Bee Colony) [47], and
(composite DE) CoDE [48]. Experiments were conducted over
the 13 traditional problems and 14 CEC2015 functions with
D=30 and N=50. For each function, we run DNLGSA and
the 10 M-HS algorithms 30 times and the stopping criterion
is Max_FEs=100000. Parameter settings of the benchmarking
M-HS algorithms are given as follows.

ABC: limit=D*N, number of employed bees=size of
colony/2 as in [47]; DE/BBO: F'=rand (0.1, 1.0), CR=0.9, mu-
tation scheme: DE/rand/1/bin as in [41]; BSA: mixrate=1.00
as in [43]; DSA: pi=ps=3*rand as in [42]; PSO: c1=c2=2,
w=0.9-0.4 as in [5]; CS: a.s=1, p,=0.25 as in [44]; CoBiDE:
pp=0.4, ps=0.5 as in [45]; CMA-ES: 0=0.25, 1 = [(4 +
(2 - log(N)])/2]. N = [(4 + [3 - log(D)]] as in [49);
CoDE: randomly combine 3 trial vector generation strategies
(rand/1/bin, rand/2/bin, current-to-rand/1) with 3 control pa-
rameter settings ([F'=1.0, C,=0.1], [F'=1.0, C,=0.9], [F'=0.8,
C,=0.2]) at each generation as in [48].

Because of the space limitation we only reported in Table
IX the ranks and Wilcoxon Test Results obtained from the 10

algorithms, where the detailed convergence data is presented in
Section S-VI in the Supplementary file. Ranking of the results
obtained Pairwise WTRs are also provided at the bottom of
the Table, where “+” and “-” respectively indicate DNLGSA
performs significantly better or worse than its peer. Also “="
means that DNLGSA produces comparable performance to
others. From Table IX we can conclude that for the 27 test
functions, our proposed GNLGSA approach has produced the
best results in 16 functions, followed by CMA-ES which has
yielded the best results for 11 functions. For the WTRs, as
can be seen, DNLGSA has yielded statistically better results
than most of the other M-HS algorithms on 21 out of the 27
functions through it was defeated by all the other compared
algorithms on f110. These superiorities demonstrate the great
potential of our proposed approach. Besides, according to dif-
ferent test functions, other approaches perform quite diversely
as analyzed below. For 6, all the algorithms have achieved
the global optimum except PSO, yet PSO produced the best
results on f110. Moreover, although the CMA-ES can obtain
comparable or even better performance than DNLGSA on
several functions, it is much worse on many other functions,
especially on {7, 19, £10, and f104. These experimental results
reveal that none of the meta-heuristic algorithm can obtain the
best results on all optimization problems. This on one hand
has shown the no free lunch mechanism [50]. On the other
hand, it reveals the space for further improvement of the M-
HS algorithms.

V. CONCLUSIONS

In this paper, a novel variant of GSA called DNLGSA
is presented to provide better tradeoff between exploration
and exploitation based on the evolutionary states. DNLGSA
is characterized by a dynamic neighborhood-based learning
strategy, in which the local neighborhood and global neigh-
borhood topologies are combined. Thereby in this learning
strategy, each particle learns search information from 1) all
the particles in its dynamic neighborhood and 2) the histor-
ically best experience of the population (donated by gbest).
For adaptively forming local neighborhoods according to the
evolutionary states, two convergence criteria for evaluating the
evolutionary states are presented. Additionally, an adaptive
mutation operator for the gbest is introduced on the basis
of the two convergence criteria to alleviate the problem of
premature convergence. Learning from the dynamic neigh-
borhood enables the algorithm to more sufficiently explore
the feasible search space while learning from the gbest offers
the fast convergence towards the optimum. Compared to the
Kpese model, the small size of local neighborhood used in
DNLGSA reduces the computational complexity, a major
problem in the baseline GSA. In summary, the synergy of the
two components is utilized in DNLGSA to achieve adaptive
balance between exploration and exploitation as well as to
speed up the convergence process.

For performance assessment of DNLGSA, 27 benchmark
functions with different features were tested in this paper.
In comparison to 5 GSA variants and 9 state-of-the-art M-
HS algorithms, the experimental results have demonstrated



TABLE IX: Comparisons between DNLGSA and other M-HS algorithms.

DE/BBO DSA BSA CS ABC PSO CoBiDE  CMA-ES CoDE DNLGSA
Function rank rank rank rank rank rank rank rank rank rank
(WTR) (WTR) (WTR) (WTR) (WTR) (WTR) (WTR) (WTR) (WTR) (WTR)
fl 3(+) 5(+) 4(+) 6(+) 9(+) 10(+) T(+) 1(-) 8(+) 2
2 3(+) 4(+) 5(+) 6(+) 8(+) 10(+) 7(+) 2(+) 9(+) 1
f3 1(-) 9(+) 6(-) 5(-) 2(-) 10(+) 3(¢) 8(-) 4(-) 7
f4 8(+) 6(+) 5(+) 3(+) 10(+) 9(+) 4(+) 2(+) 7(+) 1
5 8(+) 7(+) 6(+) 2(+) 10(+) 9(+) 3(+) 1(-) 5(+) 4
16 1(=) 1(=) 1(=) 1=) 1(=) 2(+) 1(=) 1(=) 1(=)
7 7(+) 5(+) 3(+) 2(+) 9(+) 8(+) 4(+) 10(+) 6(+) 1
8 7(+) 7(+) 6(+) 4(+) 9(+) 3(+) 8(+) 2(+) 5(+) 1
9 3(+) 2(+) 4(+) 7(+) 10(+) 6(+) 5(+) 9(+) 8(+) 1
f10 2(+) 4(+) 3(+) 7(+) 8(+) 9(+) 5(+) 10(+) 6(+) 1
fl1 2(+) 3(+) 4(+) 6(+) 8(+) 9(+) 5(+) 1(=) 7(+) 1
f12 2(-) 3() 4(-) 8(+) 10(+) 9(+) 5(-) 1¢-) 7(-) 6
f13 2(-) 4() 30) 6(-) 10(+) 9(+) 5() 1¢) 7¢) 8
f101 T(+) 8(+) 5(+) 9(+) 10(+) 6(+) 2(=) 1(-) 4(+) 3
102 2(-) 6(=) 4-) 9(+) 10(+) 3() 5(-) 1) 8(=) 7
f103 6(+) 2(+) 3(+) 7(+) 8(+) 5(+) 4(+) 1(=) 4(+) 1
f104 6(+) 4(+) 2(+) 8(+) 10(+) 3(+) 5(+) 9(+) 7(+) 1
f105 8(+) 3(+) 2(+) 9(+) 10(+) 5(+) T(+) 4(+) 6(+) 1
f106 6(+) 8(+) 7(+) 9(+) 10(+) 5(=) 2(-) 1(-) 3(-) 4
f107 2(+) 6(+) 3(+) 8(+) 9(+) 5(+) T(+) 4(+) 6(+) 1
f108 5(+) 7(+) 4(+) 8(+) 9(+) 6(+) 2(+) 3(+) 3(+) 1
f109 2(+) 3(+) 2(=) 6(+) 5(+) 2(=) 2(=) 1(=) 4(+) 1
110 2(-) 30) 5(-) 8(-) 9(-) 1¢) 70) 4(¢-) 6(-) 10
flll 3(+) 4(+) 9(+) 9(+) 10(+) 2(+) 8(+) 5(+) 7(+) 1
fl12 2(+) 4(+) T(+) 7(+) 8(+) 5(+) 6(+) 2(4) 5(+) 1
f113 3(-) 2(-) 4(+) 8(+) 10(+) 7(+) 1(-) 9(+) 5(-) 6
f114 4(+) 7(+) 9(+) 9(+) 10(+) 8(+) 1(-) 3(=) 5(+) 2
Rank_sum 107 127 120 177 232 166 121 97 153 75
Rank_Final 3 6 4 9 10 8 5 2 7 1
Sig_Better 20 21 21 23 24 23 16 13 19
Sig_Worse 6 4 4 3 2 2 8 9 6

significant superiority of DNLGSA in most cases. DNLGSA
generally shows more rapid convergence ability, lower compu-
tational complexity, higher convergence accuracy, and better
flexibility. In the future work, we will expand the applicability
of DNLGSA to a diverse class of optimization problems, such
as discrete, mixed, and multi-objective search spaces.
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