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Optimizing Evaluation Metrics for Multi-Task
Learning via the Alternating Direction Method of

Multipliers
Ge-Yang Ke, Yan Pan, Jian Yin, Chang-Qin Huang

Abstract—Multi-task learning (MTL) aims to improve the generalization performance of multiple tasks by exploiting the shared factors
among them. Various metrics (e.g., F-score, Area Under the ROC Curve) are used to evaluate the performances of MTL methods. Most
existing MTL methods try to minimize either the misclassified errors for classification or the mean squared errors for regression. In this
paper, we propose a method to directly optimize the evaluation metrics for a large family of MTL problems. The formulation of MTL
that directly optimizes evaluation metrics is the combination of two parts: (1) a regularizer defined on the weight matrix over all tasks,
in order to capture the relatedness of these tasks; (2) a sum of multiple structured hinge losses, each corresponding to a surrogate of
some evaluation metric on one task. This formulation is challenging in optimization because both of its parts are non-smooth. To tackle
this issue, we propose a novel optimization procedure based on the alternating direction scheme of multipliers, where we decompose
the whole optimization problem into a sub-problem corresponding to the regularizer and another sub-problem corresponding to the
structured hinge losses. For a large family of MTL problems, the first sub-problem has closed-form solutions. To solve the second
sub-problem, we propose an efficient primal-dual algorithm via coordinate ascent. Extensive evaluation results demonstrate that, in a
large family of MTL problems, the proposed MTL method of directly optimization evaluation metrics has superior performance gains
against the corresponding baseline methods.

Index Terms—Multi-Task Learning, Evaluation Metrics, Structured Outputs, Coordinate Ascent, Alternating Direction Method of
Multipliers.
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1 INTRODUCTION

Recently, considerable research has been devoted to
Multi-Task Learning (MTL), a problem of improving the
generalization performance of multiple tasks by utilizing
the shared information among them. MTL has been
widely-used in various applications, such as natural
language processing [1], handwritten character recog-
nition [30], [34], scene recognition [29] and medical
diagnosis [3]. Many MTL methods have been proposed
in the literature [8], [11], [49], [51], [13], [21], [28], [30],
[53], [1], [9], [10], [33], [29], [15], [46], [18], [52], [26].

In this paper, we consider MTL for classification or
regression problems. Note that either a multi-class classi-
fication problem or a multi-label learning problem can be
regarded as an MTL problem1. Most of the existing MTL
methods focus on minimizing either a convex surrogate
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1. As an illustrative example, we consider a multi-label classification
problem with instances {x1, x2, x3, x4, x5} that x1 belongs to classes
a and b, x2 belongs to classes b and c, x3 belongs to class c, x4
belongs to class a, x5 belongs to classes a, b and c. This problem can
be regarded as an MTL problem with three tasks, where the training
sets for each of these tasks are:

(x1, 1), (x2, 0), (x3, 0), (x4, 1), (x5, 1)

(x1, 1), (x2, 1), (x3, 0), (x4, 0), (x5, 1)

(x1, 0), (x2, 1), (x3, 1), (x4, 0), (x5, 1)

(e.g. the hinge loss or the logistic loss) of the 0-1 errors
for multi-task classification, or the mean squared errors
for multi-task regression. On the other hand, in practice,
several evaluation metrics other than misclassified errors
or mean squared errors are used the evaluation of MTL
methods, e.g., F-score, Precision, Recall, Area Under
the ROC Curve (AUC), Mean Average Precision. For
example, in the cases of MTL on imbalanced data (e.g., in
a task, the number of negative samples is much larger
than that of the positive samples), cost-sensitive MTL
or MTL for ranking, these metrics are more effective in
performance evaluation than the standard misclassified
errors or the mean squared errors. However, due to the
computational difficulties, few learning techniques have
been developed to directly optimize these evaluation
metrics in MTL.

In this paper, we propose an approach to directly
optimizing the evaluation metrics in MTL, which can be
applied to a large family of MTL problems. Specifically,
for an MTL problem with m tasks (the ith task is asso-
ciated with a training set {(x(i)

j ,y
(i)
j )}nij=1, i = 1, 2, ...,m,

ni represents the number of training samples for the ith

The first/second/third task is a binary classification problem of an
instance belonging to class a/ b/c or not. Hence, a multi-label learning
problem is a special case of an MTL problem. Similarly, we can verify
that a multi-class classification problem can also be regarded as an
MTL problem.

ar
X

iv
:2

21
0.

05
93

5v
1 

 [
cs

.L
G

] 
 1

2 
O

ct
 2

02
2



IEEE TRANSACTIONS ON CYBERNETICS, VOL. , NO. , 2017 2

task), we consider a generic formulation in the following:

min
W

Ω(W) + λ

m∑
i=1

L(W.i; {(x(i)
j ,y

(i)
j )}nij=1), (1)

where W is the weight matrix with m columns W.1,
W.2, ..., W.m, λ > 0 is a trade-off parameter. This for-
mulation is the linear combination of two parts. The first
part is a regularizer Ω(W) defined on the weight matrix
W over all tasks, in order to leverage the relatedness of
these tasks. Examples of this kind of regularizer include
the trace-norm, the `1,1-norm or the `2,1-norm on W.
The second part in the formulation is a sum of multiple
loss functions, each corresponds to one task. In order to
directly optimize a specific evaluation metric, we con-
sider the hinge loss functions for structured outputs [39],
[20], [50], [48], [47], which are surrogates of a specific
evaluation metric.

Such a formulation in (1) includes a large family of
MTL problems. Since the two parts in (1) are usually
non-smooth, the optimization problem (1) is difficult to
solve. To tackle this issue, we propose a novel optimiza-
tion procedure based on the alternating direction scheme
of multipliers (ADMM [6], [25]), which is widely used in
various machine learning problems (e.g., [31], [32], [33],
[44]). We decompose the whole optimization problem in
(1) into two simpler sub-problems. The first sub-problem
corresponds to the regularizer. For commonly-used regu-
larizers (e.g., the trace-norm, the `2,1-norm) in MTL, this
sub-problem can be solved by close-form solutions. The
second sub-problem corresponds to the structured hinge
losses. To solve the second sub-problem, we propose an
efficient primal-dual algorithm via coordinate ascent.

We conduct extensive experiments to evaluate the per-
formances of the proposed MTL method. Experimental
results show that the proposed method that optimizes a
specific evaluation metric outperforms the correspond-
ing MTL classification or MTL regression baseline meth-
ods by a clear margin.

2 RELATED WORK

MTL is a wide class of learning problems. Roughly
speaking, the existing MTL methods can be divided
into three main categories: parameters sharing, common
features sharing, and low-rank subspace sharing.

In the methods with parameter sharing, all tasks are
assumed to explicitly share some common parameters.
Representative methods in this category include shared
weight vectors [11], hidden units in neural network [8],
and common prior in Bayessian models [49], [51].

In the methods with common features sharing, task
relatedness is modeled by enforcing all tasks to share
a common set of features [2], [28], [22], [30], [13], [21],
[53]. Representative examples are the methods which
constrain the model parameters (i.e., a weight matrix) of
all tasks to have certain sparsity patterns, for example,
cardinality sparsity [30], group sparsity [28], [13], or
clustered structure [21], [53].

The methods in the third category assume that all
tasks lie in a shared low-rank subspace [1], [9], [10].
A common assumption in these category of methods
is that most of the tasks are relevant while (optionally)
there may exist a small number of irrelevant (outlier)
tasks. These methods pursue a low-rank weight matrix
that captures the underlying shared factors among tasks.
Trace-norm regularization is commonly-used in these
methods to encourage the low-rank structure on the
model parameters.

Most of the existing MTL methods are focused on
designing regularizers or parameter sharing patterns to
utilize the intrinsic relationships among multiple related
tasks. These MTL methods usually try to optimize the
classification errors or the mean squared errors for re-
gression. In practice, various other metrics (such as F-
score and AUC) are used in the evaluation of MTL
methods. However, little effort has been devoted to
optimize these evaluation metrics in the context of MTL
except for the work [14], in which the author proposed
a hierarchical MTL formulation for structured output
prediction in sequence segmentation. Since the regular-
izer used in [14] is decomposable, the hierarchical MTL
problem can be decomposed into multiple independent
tasks, each is a structure output learning problem with
a simple regularizer. In this paper, we seek to directly
optimize commonly-used evaluation metrics for MTL
with possibly indecomposable regularizer, resulting in a
generic approach that can be applied to a large family of
MTL problems. Our formulation can be regarded as MTL
for structure output prediction with an indecomposable
regularizer.

The proposed methods in this paper are also related to
the multi-label algorithms. There are various multi-label
algorithm proposed in the literature, e.g., the RAkEL
method that uses random k-label sets [41], the MLCSSP
method that spans the original label space by subset
of labels [4], the AdaBoostMH method based on Ad-
aBoost [37], the HOMER method based on the hierarchy
of multi-label learners [40], the binary relevance (BR) [42]
method, the label power-set (LP) [42] method, and the
ensembles of classifier chains (ECC) [35] method.

The proposed approach in this paper is to optimize
the evaluation metrics in MTL. We refer the readers to
Section 4 for the detailed introduction to the evaluation
metrics related to the proposed approach.

3 NOTATIONS

We first introduce the notations to be used throughout
this paper. We use bold upper-case characters (e.g., M,
X, W) to represent matrices, and bold lower-case char-
acters (e.g., x, y) to represent vectors, respectively. For a
matrix M ∈ Rd×m, we denote Mij as the the element at
the cross of the ith row and jth column in M. We denote
Mi· ∈ R1×m as the ith row of M, and M·j ∈ Rd×1 as the
j-th column of M, respectively.
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We denote ||M||F as the Frobenius norm of M

that ‖M‖F =
√∑d

i=1

∑m
j=1(Mij)2. Let ‖M‖1,1 =∑d

i=1

∑m
j=1 |Mij | be the `1,1-norm of M, where |Mij | is

the absolute value of Mij . Let ‖M‖2,1 =
∑d
i=1 ||Mi.||2

be the `2,1-norm of M, where ||Mi. ||2 =
√∑m

j=1 M2
ij

is the `2-norm of Mi. . Let ||M||∞ = max
i,j
|Mij | be the

infinity norm of M. The trace-norm of M is defined
by ‖M‖∗ =

∑rank(M)
k=1 σk(M), where {σk(M)}rank(M)

k=1 are
the non-zero singular values of M and rank(M) is the
rank of M. We denote MT as the transpose of M. For a
vector x, ||x||2 represent the `2-norm.

In the context of MTL, we assume we are given m
learning tasks. The ith (i = 1, . . . ,m) task is associated
with a training set (X(i),y(i)), where X(i) ∈ Rni×d
denotes the data matrix with each row being a sample,
y(i) ∈ {−1,+1}ni denotes the target labels on X(i), d
is the feature dimensionality, and ni is the number of
samples for the ith task. For i = 1, 2, ...,m, we define
Ei = {−1,+1}ni as the set of all possible ni-dimension
vector, each of whose elements is either −1 or 1. To
simplify presentation, we assume Ei = {y1,y2, ...,yp}
where p = 2ni and yj is one of the possible vectors that
belong to {−1, 1}ni .

We define a weight matrix W = [W·1, . . . ,W·m] ∈
Rd×m on all of the m tasks. The goal of (linear)
MTL is to simultaneously learn m (linear) predictors
W·i (i = 1, . . . ,m) to minimize some loss function
L(W·i; X

(i),y(i)) (e.g. the least square loss ||y(i) −
X(i)W·i||22), where W·i ∈ Rd is in the form of a col-
umn vector. Note that for each task, we have X(i) =
[x

(i)
1 ,x

(i)
2 , · · · ,x(i)

ni ]T and y(i) = [y
(i)
1 ,y

(i)
2 , · · · ,y(i)

ni ]T .

4 PROBLEM FORMULATIONS

The linear MTL problem can be formulated as the
generic form in (1). The objective functions in many
existing MTL methods are special cases of such a for-
mulation. The following are two examples:
• With the regularizer Ω(W) being the `2,1-norm
||W||2,1 and each loss function L(W·i; X

(i),y(i))
being the mean squared loss 1

2 ||y
(i) − X(i)W.i||22,

the problem in (1) is the same as the objective used
in [28].

• If the regularizer Ω(W) is set to be the trace-
norm ||W||∗ and each loss function L(W·i; X

(i),y(i))
is smooth (e.g., the mean squared loss 1

2 ||y
(i) −

X(i)W.i||22), the problem in (1) becomes the objective
used in [17].

The existing MTL methods mainly focus on the design
of good regularizers (i.e., Ω(W)) to catch the shared
factors among multiple related tasks. The loss functions
used in these methods are either to minimize the mis-
classified errors (for classification) or the mean squared
errors (for regression). On the other hand, in practice,
several evaluation metrics other than misclassified errors
or mean squared errors are used the evaluation of MTL

methods, such as F-score and AUC. Particularly, in the
cases of MTL on imbalanced data (e.g., in a task, the
number of negative samples is much larger than that of
the positive samples), these metrics are more effective in
performance evaluation than the standard misclassified
errors or the mean squared errors.

Learning techniques of directly optimizing evaluation
metrics, as known as learning with structured outputs,
have been developed for many (single-task) problems,
e.g., classification [39], [20], ranking [50]. However, de-
spite the acknowledged importance of the metrics like
F-score or AUC, little effort has been made to design
MTL methods that directly optimize these evaluation
metrics. The main reason is that MTL of optimizing
the evaluation metrics usually results in a non-smooth
objective function which is difficult to solve.

In this paper, we focus on MTL with structured
outputs and propose a generic optimization procedure
based on ADMM. This optimization procedure can be
applied to solving a large family of MTL problems that
directly optimize some evaluation metric (e.g., F-score,
AUC). We call the proposed method Structured MTL
(SMTL for short).

The formulation of SMTL is also a special case of (1).
In order to optimize some evaluation metric, we define
the loss function for each task as the structured hinge
loss:

L(W.i; X
(i),y(i))

= max
yj∈Ei

[∆(y(i),yj)−WT
.iX

(i)T (y(i) − yj)],

where yj represents any possible label assignment on
X(i). ∆(y(i),yj) represents an evaluation metric to mea-
sure the distance between the true labels y(i) and the
other labels yj . For example, ∆(., .) can be 1-F-score or
1-AUC.

The formulation of SMTL is defined as:
min
W

Ω(W)

+ λ

m∑
i=1

max
yj∈Ei

[∆(y(i),yj)−WT
.iX

(i)T (y(i) − yj)].
(2)

In this paper, we only focus on the MTL problems in
the form of (2) that satisfy the following conditions:
• Condition 1: With respect to Ω (W), there is a close-

form solution for the following sub-problem

min
W

Ω(W) +
µ

2
‖W −M‖2F (3)

where M ∈ Rd×m and µ is a positive constant.
• Condition 2: For the evaluation metric ∆(y(i),yj),

the following sub-problem can be solve in polyno-
mial time.

argmax
yj∈Ei

[∆(y(i),yj)−WT
.iX

(i)T (y(i) − yj)] (4)

The first condition is to restrict the regularizer Ω(W)
and the second one is to restrict the evaluation metric
function ∆(y(i),yj). Even under these conditions, the
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formulation in (2) includes a large family of MTL prob-
lems. On the one hand, for the regularizer Ω(W), the
following norms that are commonly-used in MTL satisfy
Condition 1:
• `1,1-norm For the MTL problems with Ω(W) =
||W||1,1, the sub-problem in (3) is known to have
the close-form solution

W = S 1
µ

(M), (5)

where Sδ(M) = max(M− δ, 0) + min(M+ δ, 0) is the
shrinkage operator [25].

• `2,1-norm For the MTL problems with Ω(W) =
||W||2,1, the sub-problem in (3) is also known to
have close-form solutions:

Wj. =

{
||Mj.||2− 1

µ

||Mj.||2 Mj. if 1
µ < ||Mj.||2,

0 otherwise,
(6)

• Trace-norm For the MTL problems with Ω(W) =
||W||∗, the sub-problem in (3) is also have the
close-form solution by the Singular Value Threshold
method [7]. Specifically, by assuming UΣV be the
SVD form of M, the close-form solution is given by:

W = US1/µ(Σ)VT . (7)

On the other hand, many commonly-used metric func-
tions satisfy the second condition. The following are two
examples which we will consider in this paper:
• MTL by directly optimizing F-Score F-Score is a

typical performance metric for binary classification,
particularly in learning tasks on imbalanced data.
F-Score is a trade-off between Precision and Recall.
Specifically, given y(i) and yj , we define the preci-
sion as:

Precision =

∑ni
k=1 I(y

(i)
k = 1 and (yj)k = 1)∑ni
k=1 I(y

(i)
k = 1)

,

and the recall as:

Recall =

∑ni
k=1 I(y

(i)
k = 1 and (yj)k = 1)∑ni
k=1 I((yj)k = 1)

,

where I(condition) represents the indicator function
that I(condition) = 1 if condition is true, otherwise
I(condition) = 0. Then the F-score on y(i) and yj is
defined as:

Fβ =
(1 + β)× Precision×Recall

Precision+ βRecall
, (8)

where β is a trade-off parameter. Hereafter, we
simply set β = 1. Finally, the metric function ∆(., .)
with respect to the F-score is defined by:

∆(y(i),yj) = 1− Fβ . (9)

With such a form of ∆(y(i),yj), the sub-problem in
(4) can be solved in polynomial time [20].

• MTL by directly optimizing AUC AUC is also a
popular performance metric for binary classifica-
tion, particularly in imbalanced learning. Given y(i)

and yj , the AUC metric can be calculated by :

AUC = 1− Swapped

Pos×Neg (10)

where Swapped represents the number of “inverted”
pairs in y(i) compared to yj :

Swapped =

ni∑
l=1

ni∑
k=1

I(y
(i)
l = 1 and y

(i)
k = −1)

× I((yj)l = −1 and (yj)k = 1).

Pos/Neg represents the number of posi-
tive/negative samples in the ith task:

Pos =

ni∑
k=1

I(y
(i)
k = 1),

Neg =

ni∑
k=1

I(y
(i)
k = −1).

The corresponding ∆(., .) can be defined as:

∆(y(i),yj) = 1−AUC. (11)

With such a form of ∆(y(i),yj), there also ex-
ists polynomial-time algorithms to solve the sub-
problem in (4) [20].

Note that here the Precision, Recall, F-Score and AUC
are defined for a particular task.

5 PROPOSED OPTIMIZATION PROCEDURE

5.1 Overview

In this section, we present the proposed optimization
procedure to solve the problem (2). Our procedure is
based on the scheme of ADMM.

For ease of presentation, we define

Gi(W.i) = max
yj

[∆(y(i),yj)−WT
.iX

(i)T (y(i) − yj)],

and

G(W) =

m∑
i=1

Gi(W.i).

Then, the problem in (2) can be re-formulated to its
equivalent form in the following:

min
S,W

Ω(S) + λG(W)

s.t W − S = 0,
(12)

where S ∈ Rd×m is an auxiliary variable.
The corresponding augmented Lagrangian function

with respect to (12) is:

A(W,S,Z)
= Ω(S) + λG(W) + 〈Z,W − S〉+ µ

2 ||W − S||2F
(13)
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where Z is the Lagrangian multiplier, 〈·, ·〉 represents the
inner product of two matrices (i.e., given matrices A and
B, we have 〈A,B〉 = Tr(ATB), where Tr(M) is the trace
of the matrix M), µ > 0 is an adaptive penalty parameter.

Based on the ADMM scheme, the sketch of the pro-
posed optimization procedure is shown in Algorithm 1,
where in each iteration we alternatively update W, S
and Z by minimizing the Lagrangian function in (13)
with other variables fixed. The update rules for W, S
and Z are in the following:

S{t+1} ← argmin
S
A(W{t},S,Z{t});

W{t+1} ← argmin
W

A(W,S{t+1},Z{t});

Z{t+1} ← Z{t} + µ(W{t+1} − S{t+1}).

Note that hereafter we use M{t} to represent the the
value of variable M in the t-th iteration.

Next, we will present the details of solving the sub-
problems with respect to S or W, respectively, with other
variables being fixed.

Algorithm 1 The proposed ADMM procedure for
the structured MTL problem (2)
Input: training set {(X(i),y(i))}mi=1, desired tolerant error ε,

maximal iteration number T .
Output: Weight matrix W = [W.1, · · · ,W.m]
1. Initialize: Z = S = W← 0d×m, t← 0.
2. Repeat:
3. Update

S{t+1} ← argmin
S

Ω(S) + µ
2
||S−W{t} − Z{t}/µ||2F

by solving (15), (17) or (18) accordingly.
4. For i = 1 to m
5. Update W

{t+1}
.i ←

argmin
W.i

λGi(W.i) + µ
2
||W.i − S

{t+1}
.i +

Z
{t}
.i
µ
||22

by Algorithm 2.
6. End For
7. Update Z{t+1} ← Z{t} + µ(W{t+1} − S{t+1}).
8. Until ||S −W ||∞ ≤ ε or t = T .

5.2 Solving the Sub-Problem for S

In the t-th iteration (in the outer loop) of Algorithm 1, the
sub-problem for S with respect to (13) can be simplified
as:

S{t+1} ← argmin
S
A(W{t},S,Z{t})

= argmin
S

Ω(S) + µ
2

∥∥W{t} − S + Z{t}/µ
∥∥2
F

(14)

For different regularizer Ω(S), the solution to (14) is
different.
• Case 1: the `1,1-norm With Ω(S) being ||S||1,1, by

applying (5) to (14), we have:

argminS||S||1,1 + µ
2

∥∥W{t} − S + Z{t}/µ
∥∥2
F

= max(0,W{t} + Z{t}/µ− 1/µ)
+ min(0,W{t} + Z{t}/µ+ 1/µ).

(15)

• Case 2: the `2,1-norm When Ω(S) = ||S||2,1, (14) can
be rewritten as:

argminS||S||2,1 + µ
2

∥∥W{t} − S + Z{t}/µ
∥∥2
F
. (16)

By applying (6) to (16), we obtain the following
close-form solution:

Sj. =

{
||Mj.||2− 1

µ

||Mj.||2 Mj. if 1
µ < ||Mj.||2,

0 otherwise,
(17)

where M = W{t} + Z{t}/µ.
• Case 3: the trace-norm When Ω(S) = ||S||∗, we can

apply (7) to (14) and obtain the following close-form
solution:

argminS||S||∗ + µ
2

∥∥W{t} − S + Z{t}/µ
∥∥2
F
.

= U(max(0,Σ− 1/µ) + min(0,Σ + 1/µ))VT ,
(18)

where UΣVT is the SVD form of W{t} + Z{t}/µ.

5.3 Solving the Sub-Problem for W

5.3.1 Formulation
In the t-th outer iteration in Algorithm 1, the sub-
problem for W with respect to (13) can be reformulated
as:

W{t+1} ← argmin
W

A(W,S{t+1},Z{t})

= argmin
W

λG(W) + µ
2

∥∥W − S{t+1} + Z{t}/µ
∥∥2
F

= argmin
W

∑m
i=1 λGi(W.i) + µ

2

∥∥∥W.i − S
{t+1}
.i + Z

{t}
.i /µ

∥∥∥2
F

(19)

To simplify presentation, we denote bi = S
{t+1}
.i −

Z
{t}
.i /µ. Then, the problem in (19) can be separated into

m independent sub-tasks:

min
W.i

λGi(W.i) + µ
2 ‖W.i − bi‖2F , i = 1, ...,m. (20)

For j = 1, 2, ..., p, we define K = [K.1,K.2, ...,K.p]

with K.j = X(i)T (y(i)−yj)+ µ
λbi, ∆ = (∆1,∆2, ...,∆p)

T

with ∆j = ∆(y(i),yj). Then, the problem in (20) can be
simplified as:

min
W.i

λGi(W.i) + µ
2 ‖W.i − bi‖2F

= min
W.i

µ
2 (||W.i||2F + ||bi||2F − 2WT

.ibi)

+λ max
yj∈Ei

[∆(y(i),yj)−WT
.iX

(i)T (y(i) − yj)].

(21)

By re-scaling the objective (21) by µ and drop the terms
independent of W.i and yj , we have:

min
W.i

1
2 ||W.i||22 + λ

µ max
j

[∆j − (WT
.iK)j ] (22)

The existence of the max operator on exponential
number of elements makes it difficult to optimize the
objective in (22). To tackle this issue, in the next two
subsection, we derive the Fenchel dual [36] form of (22)
and develop a coordinate ascent algorithm to solve this
dual form.
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5.3.2 Fenchel Dual Form of (22)
In this subsection, we derive the Fenchel dual [36] form
of (22). To simplify presentation, we use w to represent
W.i. Then we re-formulate the primal form in (22) as:

min
w
P(w) =M(w) +N (−wTK)

=
1

2
||w||22 +

λ

µ
max
j

(∆T −wTK)j ,
(23)

where we define M(w) = 1
2 ||w||

2
2 and N (−wTK) =

λ
µ maxj(∆

T −wTK)j .
Before deriving the dual form of (23), we first intro-

duce the definition (Definition 1) and the main properties
(Theorem 1 and 2) of Fenchel duality.

Definition 1. The Fenchel conjugate of function f(x) is
defined as f∗(θ) = maxx∈dom(f)(〈θ,x〉 − f(x)).

Theorem 1. (Fenchel-Young inequality: [5], Proposition
3.3.4) Any points θ in the domain of function f∗ and x in
the domain of function f satisfy the inequality:

f(x) + f∗(θ) ≥ 〈θ,x〉 (24)

The equality holds if and only if θ ∈ ∂f(x).

Theorem 2. (Fenchel Duality inequality, see e.g.,Theorem
3.3.5 in [5]) Let M : Rd → (−∞,+∞] and N : Rp →
(−∞,+∞] be two closed and convex functions, and K be a
Rd×p matrix. Then we have

sup
α
−M∗(Kα)−N ∗(α) ≤ inf

w
M(w)+N (−wTK), (25)

where α ∈ Rp and w ∈ Rd. The equality holds if and only if
0 ∈ (dom(N )−KT dom(M)).

Note that the right hand side of the inequality in (25)
is called the primal form and the left hand side of (25)
is the corresponding dual form.

With Definition 1, it is known (see, e.g., [38], Ap-
pendix B) that the Fenchel dual norm (i.e., the Fenchel
conjugate) of the `2-norm f(x) = 1

2 ||x||
2
2 is also the `2-

norm f∗(θ) = 1
2 ||θ||

2
2. Hence, the Fenchel conjugate of

M(w) = 1
2 ||w||

2
2 is

M∗(−Kα) =
1

2
||−Kα||22 (26)

It is known ( [38], Appendix B) that the Fenchel con-
jugate of f(x+y) is f∗(θ)−〈θ,y〉, the Fenchel conjugate
of cf(x) (c > 0) is cf∗(θ/c). Then we can derive that the
Fenchel conjugate of cf(x + y) is

cf∗(θ/c)− 〈θ,y〉. (27)

In addition, the Fenchel conjugate of f(x) = maxj(xj)
is Iθi≥0,

∑
i θi=1(θ) with Icondition(.) being the indicator

function that Icondition(θ) = 0 if condition is true and
otherwise Icondition(θ) = +∞ (see [38], Appendix B).
For convenience, we denote Q(x) = maxj(xj). It is easy
to verify that N (−wTK) = λ

µ maxj(∆
T − wTK)j =

λ
µQ(∆T − wTK). Hence, by using (27), the Fenchel
conjugate of N (−wTK) is:

N ∗(α) =
λ

µ
Q∗((α)/(

λ

µ
))− 〈α,∆〉

=

 −∆Tα,
p∑
k=1

αk = λ
µ and αk ≥ 0, k = 1, · · · , p;

+∞, otherwise.
(28)

With (26), (28) and (25), we have that the dual form
of (23) is:

max
α
D(α)

= max
α
−M∗(Kα)−N ∗(α)

= max
α
−1

2
αTKTKα+ ∆Tα

s.t.

p∑
k=1

αk =
λ

µ
and αk ≥ 0, k = 1, · · · , p

(29)

The dual form in (29) is a smooth quadratic function
with linear constraints, which is easier to be optimized
compared to its primal form in (23).

5.3.3 Primal-Dual Algorithm via Coordinate Ascent
In this subsection, we develop a coordinate ascent al-
gorithm to optimize the objective in (29), where we use
the primal-dual gap P(w)−D(α) as the early stopping
criterion. Coordinate ascent is a widely-used method in
various machine learning problems (e.g., [12], [38], [23],
[45]).

Algorithm 2 Primal-dual algorithm via coordinate ascent
Input: bi, εF , λ, µ, maximal iteration number TF
Output: w
1. Initialize: v ← 0, ŵ← 0
2. Repeat:
3. Find the largest element (gα)j in the gradient vector

gα = ∇D(α) by solving (30) via Algorithm 3 for F-score
(or Algorithm 4 for AUC).

4. ∆j ← ∆(y(i),yj)

5. K.j ← X(i)T (y(i) − yj) + µ
λ

bi
6. Calculate γ by (37).
7. Update ŵ by (35).
8. Update v by (36)
9. Until ŵT ŵ + maxj(gα)j ≤ εF or iteration number reaches TF
10. w← ŵ

The proposed coordinate ascent algorithm is shown
in Algorithm 2. Next, we sketch the main steps the
proposed algorithm in the following:

Repeat
• Select an index j with the j-th element (∇αD(α))j

in the gradient vector ∇αD(α) having the largest
element.

• Update αj with other αk (k 6= j) fixed, in a manner
of greedily increasing the value of D(α).

Until the early stopping criterion P(w) − D(α) ≤ εF is
satisfied.

In each iteration, the proposed algorithm has three
main building blocks:
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The First Step is to select an index j that the j-th
element is the largest element in the gradient vector for
the dual objective D(α). Specifically, the gradient vector
with respect to α for D(α) is:

gα = ∇αD(α) = −KTKα+ ∆,

and the largest element in ∇αD(α) is:

(gα)j = (∇αD(α))j = max
j

∆j − (Kα)TK.j .

We denote ŵ = Kα. Then, with the definition of ∆j and
K.j , we have:

(∇αD(α))j = max
j

∆(y(i),yj)− ŵTX(i)T (y(i) − yj).

(30)

Interestingly, the problem in (30) is essentially the
same as the problems of “finding the most violated
constraint” in Structured-SVMs (e.g., the problem (7)
in [20]). For several commonly-used evaluation met-
rics ∆(., .), efficient algorithm in polynomial-time were
proposed to solve the problems of “finding the most
violated constraint”. One can directly use these inference
algorithms to solve (30) of selecting the largest element
from the gradient vector ∇αD(α). For example, when
∆(., .) corresponds to F-score, one can use Algorithm 2
in [20] to solve (30); when ∆(., .) corresponds to AUC,
one can use Algorithm 3 in [20] to solve (30). For self-
containness, we shown these two algorithms with our
notations in Algorithm 3 and 4. Note that Algorithm 3
and 4 have the time complexity in O(n2i ) and O(ni log ni),
respectively.

Algorithm 3 Algorithm to solve (30) with loss function
defined on F-score
Input: n = ni,X

(i) = (x
(i)
1 , . . . ,x

(i)
n )T ,

y(i) = (y
(i)
1 , . . . ,y

(i)
n )T , w

Output: yj

1. Initialize: (kp1 , . . . , k
p
Pos)← sort{k : y

(i)
k = 1} by wTx

(i)
k

(kn1 , . . . , k
n
Neg)← sort{k : y

(i)
k = −1} by wTx

(i)
k

2. For a ∈ [0, . . . , Pos] do:
3. c← Pos− a
4. Set lkp1 , . . . , lk

p
a

to 1 and set lkpa+1
, . . . , lkp

Pos
to −1

5. For d ∈ [0, . . . , Neg] do:
6. b← Neg − d
7. Set lkn1 , . . . , lknb to 1 and set lkn

b+1
, . . . , lkn

Neg
to −1

8. v ← ∆(y(i), (l1, . . . , ln)T ) + wT
n∑
k=1

lkx
(i)
k ,

where ∆(·, ·) is defined by (11)
9. If v is the largest so far, then:
10. yj ← (l1, . . . , ln)T

11. End if
12. End for
13. End for

The Second Step is to update αj by fixing other variable
αk(k 6= j), given the selected index j.

We define the update rules for α as:

α← (1− γ)α+
γλ

µ
ej , (31)

Algorithm 4 Algorithm to solve (30) with loss function
defined on AUC
Input: n = ni,X

(i) = (x
(i)
1 , . . . ,x

(i)
n )T ,

y(i) = (y
(i)
1 , . . . ,y

(i)
n )T , w

Output: yj

1. Initialize: for k ∈ {k : y
(i)
k = 1} do qk ← −0.25 + wTx

(i)
k

for k ∈ {k : y
(i)
k = −1} do qk ← 0.25 + wTx

(i)
k

2. (r1, . . . , rn)← sort {1, . . . , n} by qk
3. qPos ← Pos, qNeg ← 0
4. For k ∈ [1, . . . , n] do:
5. If y

(i)
rk > 0, then:

6. lrk ← (Neg − 2qn)
7. qPos ← qPos − 1
8. else
9. lrk ← (−Pos+ 2qPos)
10. qNeg ← qNeg + 1
11. End if
12. End for
13. Convert (l1, . . . , ln) to yj according to some

threshold value.

where 0 ≤ γ ≤ 1 and ej denotes the ni-dimension vector
with the j-th element being one and other elements
being zeros. It is worth noting that, given αj ≥ 0 and∑
j αj = λ/µ before updating, and 0 ≤ γ ≤ 1, this form

of rules in (31) guarantees that αj ≥ 0 and
∑
j αj = λ/µ

still hold after updating.
By substituting (31) into (29), we obtain the corre-

sponding optimization problem with respect to γ:

max
γ
− 1

2 [(1− γ)α+ γλ
µ ej ]

TKTK[(1− γ)α+ γλ
µ ej ]

+[(1− γ)α+ γλ
µ ej ]

T∆

(32)

Intuitively, our goal is to find γ ∈ [0, 1] to increase the
dual objective D(α) as much as possible. By setting the
gradient of (32) with respect to γ to zero, we have

||K(ejλ/µ− α)||22γ + (ejλ/µ− α)TKTKα
−(ejλ/µ− α)T∆ = 0

By simple algebra, we have

γ = − (ejλ/µ−α)T (KTKα−∆)

||K(ejλ/µ−α)||22
(33)

To ensure that 0 ≤ γ ≤ 1, we make further restriction on
γ:

γ = max(min(− (ejλ/µ− α)
T

(KTKα−∆)

||K(ejλ/µ− α)||22
, 1), 0) (34)

The calculation of γ in (34) depends on the calculation
of Kα and αT∆. However, since K ∈ Rd×p, ∆, α ∈ Rp
and p = 2ni , the time of directly calculating either
Kα or αT∆ depends exponentially on ni, which may
often unaffordable. In order to improve efficiency, we
maintain auxiliary variable to reduce the computation
cost. Remind that we have defined ŵ = Kα. We also
define v = αT∆. We maintain ŵ and v during the
iterations.
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With the update rule (31) for α, we can easily derive
the corresponding update rules for ŵ and v, respec-
tively:

ŵ← (1− γ)ŵ +
γλ

µ
K.j , (35)

v ← (1− γ)v +
γλ

µ
∆j . (36)

Obviously, the update rule for ŵ (or v) has the time
complexity O(d) (or O(1)).

With the maintained ŵ and v, the update rule in (34)
can be simplified to:

γ ← max(min(−
λ
µ (KT

j.ŵ −∆j)− ŵT ŵ + v

||λµK.j − ŵ)||22
, 1), 0), (37)

where the time complexity of update γ in (37) is reduced
to O(d).

The early stopping criterion is defined based on the
primal-dual gap P(w)−D(α) ≤ εF where the parameter
εF is the pre-defined tolerance. Assume P(w?) is the
optimal value of the primal objective (23). According to
Theorem 2, we have:

P(w)− P(w?) ≤ P(w)−D(α) ≤ εF .

It is worth noting that, by using the update rule (31)
with 0 ≤ γ ≤ 1, Algorithm 2 guarantees that α satisfies
the constraints αk ≥ 0 and

∑
k αk = λ/µ in all of the

iterations. In order words, we have N ∗(α) <∞ in all of
the iterations. Hence, with (23) and (29), we have:

P(w)−D(α)

=M(w) +M∗(Kα) +N (−wTK) +N ∗(α)
(38)

With Theorem 1, we have M(w) + M∗(Kα) ≥
〈w,Kα〉, where the equality holds when w = Kα = ŵ.
In order to greedily upper-bounded the gap D(α?) −
D(α), we set w = Kα = ŵ in (38) and obtain:

P(w)−D(α)

= 〈ŵ,Kα〉+N (ŵTK) +N ∗(α)

= ŵT ŵ + max
j

(gα)j − v
(39)

Consequently, the early stopping criterion is set to be
ŵT ŵ + maxj(gα)j − v ≤ εF , which can be calculated in
time O(d).

5.4 Convergence Analysis
For the sub-problem w. r. t. W (see Section 5.3), the
proposed coordinate ascent method is similar to those
in [38], [23]. By using similar proof techniques to those
of [38], [23] (e.g., see the proofs of Theorem 1 in [23]), we
can derive that, after T iteration in Algorithm 2, we have
D(α?) − D(α) ≤ P(w) − D(α) ≤ εF = O( 1

T ). Note that
D(α?) = P(w?), where D(α?) and P(w?) are the optimal
solution of (29) and (23) respectively. Ideally, for all the
tasks, if we set the iteration number T to be sufficient

large, we can solve the sub-problem w,r.t. W exactly (by
ignoring the small numerical errors).

In addition, as discussed in Section 5.2, the sub-
problems w. r. t. S can be solved exactly by closed-form
solutions. Hence, the objective (12) is convex subject to
linear constraints, and both of its subproblems can be
solved exactly. Based on existing theoretical results [6],
[16], we have that Algorithm 1 converges to global
optima with a O(1/ε) convergence rate.

6 EXPERIMENTS

6.1 Overview

In this section, we evaluate and compare the perfor-
mance of the proposed SMTL method on several bench-
mark datasets. For the regularizer Ω(S) in (12), we
consider ||S||1,1, ||S||2,1 and ||S||∗, respectively. For the
evaluation metric ∆(., .) used in G(W) in (12), we con-
sider F1-score (with β = 1) and AUC. These settings lead
to six variants of SMTL.

Here we focus on MTL for classification. Given a spe-
cific regularizer (i.e., ||S||1,1, ||S||2,1 or ||S||∗), we choose
these methods as baselines: (1) single-task structured
SVM that directly optimizes AUC (StructSVM) [20], we
train it on each of the individual tasks and average
the results. (2) MTL with hinge loss for classification
(MTL-CLS). (3) MTL with least squares loss for regres-
sion (MTL-REG). (4) RAkEL, a meta algorithm using
random k-label sets [41]. (5) MLCSSP, a method span-
ning the original label space by subset of labels [4]. (6)
AdaBoostMH, a method based on AdaBoost [37]. (7)
HOMER, a method based on the hierarchy of multi-label
learners [40]. (8) BR, the binary relevance method [42].
(9) LP, the label power-set method [42]. (10) ECC, the
ensembles of classifier chains method (ECC) [35]. Note
that the classification problem can be regarded as a
regression problem2.

The proposed methods, the baselines MTL-CLS and
MTL-REG were implemented with Python 2.7. For MTL-
REG, our implementations are based on the algorithms
in [28] (for the `2,1 norm) and [17] (for the trace norm).
According to Theorem 3 in [20], the problem of MTL-
CLS is equivalent to a special form of SMTL in (2) (with
∆(y(i), y) = 2×t, where t represents the number of index
k that satisfies y(i)k 6= yk). Hence, our implementation of
MTL-CLS is based on the framework of Algorithm 1. For
StructSVM, we use the open-source implementation of
SVM-Perf [20]. All the experiments were conducted on
a Dell PowerEdge R320 server with 16G memory and
1.9Ghz E5-2420 CPU.

2. For a dataset for binary classification that each positive example
has a label +1 and each negative example has a label −1, one can
regard these labels as real numbers (i.e., 1.0 for each of the positive
examples and −1.0 for each of the negative examples). Then, this
dataset can be used in a MTL method for regression to learn a regressor.
After obtaining the regressor, for a test example x, if the predicted label
of x (by the regressor) is larger than 0, one can regard x as a positive
example. On the other hand, if the predicted label of x is smaller than
0, then one can regard x as a negative example.
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We report the experimental results on 9 real-world
datasets. The statistics of these datasets are summarized
in Table 1. In the Emotions dataset, the labels are 6 kinds
of emotions, and the features are rhythmic and timbre
extracted from music wave files. In the Yeast dataset, the
labels are localization sites of protein, and the features
are protein properties. In the Flags dataset, the labels are
religions of countries and the features are extracted from
flag images. In the Cal500 dataset, the labels are seman-
tically meaning of popular songs and the features are
extracted from audio data. In the Segmentation dataset,
the labels are content of image region, and the features
are pixels’ properties of image regions. In the Optdigits
dataset, the labels are handwritten digits 0 to 9, and the
features are pixels. In the MediaMill dataset, the labels
are semantic concepts of each video and the features are
extracted from videos. In the TMC2007 dataset, the labels
are the document topics, and the features are discrete
attributes about terms. In the Scene dataset, the labels are
scene types, and the features are spatial color moments
in LUV space. All of these datasets are normalized.

TABLE 1: Statistics of 9 datasets

Type Features Samples Tasks

Emotions music 72 593 6

Yeast gene 103 2417 14

Flags image 19 194 7

Cal500 songs 68 502 174

Segmentation image 19 2310 7

Optdigits image 64 5620 10

MediaMill multimedia 120 10000 12

TMC2007 test 500 10000 6

Scene image 294 2407 6

Following the settings in [9], to evaluate the perfor-
mance, we use AUC, Macro F1-score, and Micro F1-
score as the evaluation metrics (the details about the
computation of AUC and F1

3 can be found in Section
4).

For each dataset, we firstly generate 10 60%:40% par-
titions. In each partition, the “60%” part is used as the
training set and the “40%” part is used as the test set.
Then, we run each of the methods (the baselines and the
proposed methods) on these 10 partitions, and reported
the averaged results on these 10 trials. Note that, for a
fair comparison, in a dataset, each method uses the same
ten partitions to produce its results. After the training set
is determined, we conduct 10-fold cross validation on the

3. In MTL, the Macro F1 is calculated by firstly calculating the F1

score of each individual task, and then average these F1 scores over
all tasks. The Micro F1 in MTL is calculated by 2×P×R

P+R
, where

P =

∑m
i=1

∑ni
k=1 I(y

(i)
k = 1 and (yj)k = 1)∑m

i=1

∑ni
k=1 I(y

(i)
k = 1)

,

R =

∑m
i=1

∑ni
k=1 I(y

(i)
k = 1 and (yj)k = 1)∑m

i=1

∑ni
k=1 I((yj)k = 1)

.

TABLE 2: Comparison results on Cal500, Segmentation and Optdigits.

MACRO MICRO Average
METHOD F1 F1 AUC

Cal500

SMTL(`2,1+AUC) 21.722±0.456 38.452±0.610 56.505±0.511
SMTL(`2,1+F1 ) 21.495±0.232 40.127±0.173 53.690±0.293

MTL-CLS(`2,1 ) 13.157±0.449 37.357±0.180 55.764±0.820
MTL-REG(`2,1 ) 12.500±0.129 36.438±0.176 52.964±0.758

SMTL(`1,1+AUC) 21.721±0.807 35.52±0.811 56.716±0.500
SMTL(`1,1+F1 ) 21.138±0.191 38.386±0.456 53.358±0.827

MTL-CLS(`1,1 ) 12.176±0.445 37.387±0.845 56.316±0.216
MTL-REG(`1,1 ) 12.447±0.297 36.66±0.638 53.628±0.264

SMTL(TraceNorm+AUC) 21.772±0.545 35.204±0.585 56.798±0.358
SMTL(TraceNorm+F1 ) 21.768±0.333 38.559±0.394 54.987±0.823

MTL-CLS(TraceNorm) 12.884±0.353 37.402±0.501 55.635±0.511
MTL-REG(TraceNorm) 8.348±0.999 34.832±0.698 55.69±0.636

StructSVM 20.864±1.150 35.408±1.150 51.427±0.841
RAkEL 20.628±0.611 33.689±0.843 54.637±0.656

MLCSSP 21.677±0.514 27.093±0.537 52.69±0.983
AdaBoostMH 0.923±0.274 6.492±0.146 50.734±0.538

HOMER 13.850±0.163 30.332±1.313 52.461±0.937
BR 17.094±0.634 33.619±0.375 50.563±0.153
LP 15.257±0.428 32.978±0.668 52.117±0.685

ECC 9.600±0.666 34.789±0.482 52.117±0.625

Segmentation

SMTL(`2,1+AUC) 72.832±1.567 68.445±1.543 97.195±0.4549
SMTL(`2,1+F1 ) 85.61±1.304 84.149±1.684 96.967±0.647

MTL-CLS(`2,1 ) 85.114±1.946 84.228±4.508 96.93±0.560
MTL-REG(`2,1 ) 75.547±1.215 81.702±2.456 96.757±0.645

SMTL(`1,1+AUC) 73.378±1.564 68.424±1.787 97.527±0.286
SMTL(`1,1+F1 ) 85.105±1.830 83.693±1.192 96.757±0.192

MTL-CLS(`1,1 ) 83.712±3.513 82.518±4.003 96.781±0.828
MTL-REG(`1,1 ) 76.253±2.564 82.606±0.156 96.798±0.231

SMTL(TraceNorm+AUC) 72.265±1.453 67.655±1.978 97.134±0.457
SMTL(TraceNorm+F1 ) 85.356±1.092 83.462±1.805 96.863±0.322

MTL-CLS(TraceNorm) 82.703±3.865 82.150±5.439 96.705±0.612
MTL-REG(TraceNorm) 76.602±1.286 82.805±1.877 96.698±0.147

StructSVM 44.632±1.828 53.992±1.828 89.355±0.311
RAkEL 75.592±0.243 70.980±0.398 91.333±0.082

MLCSSP 79.821±8.533 78.923±14.036 93.810±0.329
AdaBoostMH 75.633±0.209 71.018±0.376 96.148±0.089

HOMER 72.920±2.505 69.969±1.651 91.225±1.543
BR 84.236±0.638 78.796±0.708 96.870±0.194
LP 84.394±0.603 83.411±0.615 96.240±0.124

ECC 84.183±0.550 82.942±0.542 96.782±0.269

Optdigits

SMTL(`2,1+AUC) 92.722±0.595 92.734±0.712 99.657±0.0528
SMTL(`2,1+F1 ) 93.963±0.164 93.964±0.235 99.589±0.054

MTL-CLS(`2,1 ) 93.701±0.403 92.773±0.440 99.206±0.044
MTL-REG(`2,1 ) 88.901±0.306 89.268±0.875 99.32±0.089

SMTL(`1,1+AUC) 92.526±0.624 92.213±0.670 99.653±0.078
SMTL(`1,1+F1 ) 93.692±0.508 94.626±0.520 99.554±0.047

MTL-CLS(`1,1 ) 92.961±0.608 94.009±0.356 98.658±0.067
MTL-REG(`1,1 ) 88.762±0.845 89.203±0.865 99.269±0.045

SMTL(TraceNorm+AUC) 92.862±0.543 92.802±0.944 99.654±0.036
SMTL(TraceNorm+F1 ) 94.206±0.202 94.139±0.266 99.566±0.027

MTL-CLS(TraceNorm) 93.701±0.435 93.773±0.267 99.182±0.065
MTL-REG(TraceNorm) 88.777±0.765 89.173±0.946 99.293±0.048

StructSVM 36.276±0.905 38.289±2.218 98.400±0.366
RAkEL 82.450±0.168 80.967±0.311 94.543±0.070

MLCSSP 75.191±2.245 82.129±3.195 88.879±0.195
AdaBoostMH 93.083±0.695 93.108±0.669 98.594±0.119

HOMER 74.869±4.151 75.713±3.663 93.391±0.964
BR 92.625±0.348 92.714±0.383 99.370±0.122
LP 88.875±0.212 88.915±0.269 94.941±0.329

ECC 93.043±0.206 94.019±0.213 99.019±0.156

training set to choose the trade-off parameter λ within
{10−3× i}10i=1∪{10−2× i}10i=1∪{10−1× i}10i=1∪{2× i}10i=1∪
{40× i}20i=1.

In Algorithm 2, we set the maximum iterations TF =
5000 and the optimization tolerance εF = 10−5.

6.2 Results on real-world datasets
The evaluation results w.r.t. Micro F1, Macro F1 and
AUC (with standard deviations) of the proposed SMTL
are shown in Table 2, 3 and 4. As can be seen, by
using the same regularizer, the proposed SMTL variants
that optimize F1-score or AUC show superior perfor-
mance gains over the baselines. In most cases, the SMTL
variant that optimizes a specific metric achieves the
best results on this metric. Here are some statistics.
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TABLE 3: Comparison results on Scene, MediaMill and TMC2007.

MACRO MICRO Average
METHOD F1 F1 AUC

Scene

SMTL(`2,1+AUC) 54.013±1.124 54.746±1.231 89.99±0.820
SMTL(`2,1+F1 ) 55.787±0.756 56.434±0.567 87.652±0.280

MTL-CLS(`2,1 ) 54.722±1.590 54.508±1.176 86.738±1.102
MTL-REG(`2,1 ) 51.157±0.343 52.810±0.345 85.194±0.712

SMTL(`1,1+AUC) 54.296±0.977 54.333±0.025 88.358±0.467
SMTL(`1,1+F1 ) 55.501±1.92 56.007±2.34 87.364±1.801

MTL-CLS(`1,1 ) 54.387±0.730 54.805±1.488 85.952±1.116
MTL-REG(`1,1 ) 50.748±0.546 51.280±0.619 85.032±0.779

SMTL(TraceNorm+AUC) 54.227±0.660 55.384±0.804 88.421±1.103
SMTL(TraceNorm+F1 ) 55.396±1.089 56.304±1.119 87.071±0.682

MTL-CLS(TraceNorm) 55.104±0.298 55.481±0.506 86.205±0.471
MTL-REG(TraceNorm) 50.832±0.226 51.236±0.264 85.275±0.852

StructSVM 49.826±0.815 49.951±0.755 82.375±0.393
RAkEL 54.592±0.613 55.719±0.565 78.981±0.535

MLCSSP 42.764±0.080 47.178±0.181 65.830±2.240
AdaBoostMH 36.506±0.404 40.681±0.449 87.617±0.470

HOMER 60.980±2.470 58.251±2.592 80.744±0.360
BR 54.579±1.813 55.019±1.843 82.888±1.164
LP 54.902±1.503 55.818±1.595 75.900±1.362

ECC 55.347±0.893 55.831±0.881 88.153±0.298

MediaMill

SMTL(`2,1+AUC) 18.030±0.294 22.058±0.257 66.068±0.426
SMTL(`2,1+F1 ) 22.851±5.093 56.424±2.761 78.705±2.280

MTL-CLS(`2,1 ) 10.613±1.733 55.441±3.647 76.216±2.474
MTL-REG(`2,1 ) 6.366±0.065 55.515±0.465 53.867±0.496

SMTL(`1,1+AUC) 18.012±0.286 22.232±0.211 65.405±0.503
SMTL(`1,1+F1 ) 22.386±5.326 56.169±2.436 78.907±1.854

MTL-CLS(`1,1 ) 8.542±1.672 55.838±2.229 74.037±1.219
MTL-REG(`1,1 ) 6.393±0.033 55.687±0.439 53.036±0.181

SMTL(TraceNorm+AUC) 18.201±0.221 22.684±0.354 66.847±1.015
SMTL(TraceNorm+F1 ) 27.973±3.006 56.031±4.924 79.730±1.850

MTL-CLS(TraceNorm) 15.800±0.589 50.098±5.569 75.968±2.144
MTL-REG(TraceNorm) 6.380±0.045 55.333±0.425 53.825±0.493

StructSVM 17.847±0.318 22.030±0.284 64.761±0.487
RAkEL 19.874±0.156 26.686±0.189 63.241±0.398

MLCSSP 15.129±0.633 20.124±0.723 52.473±1.884
AdaBoostMH 17.939±0.469 41.991±0.425 61.914±0.167

HOMER 17.939±0.469 41.991±0.425 61.914±0.167
BR 19.769±0.196 26.515±0.166 69.032±0.854
LP 24.135±0.959 50.170±0.402 60.597±0.502

ECC 24.879±0.590 56.214±0.363 78.067±0.705

TMC2007

SMTL(`2,1+AUC) 59.432±0.581 68.02±1.042 90.138±0.17
SMTL(`2,1+F1 ) 64.321±0.955 74.159±0.255 90.561±0.669

MTL-CLS(`2,1 ) 60.517±1.363 71.284±0.387 88.382±0.398
MTL-REG(`2,1 ) 37.106±0.416 70.181±0.221 85.218±0.529

SMTL(`1,1+AUC) 60.249±0.147 67.654±0.234 90.441±0.077
SMTL(`1,1+F1 ) 65.436±1.239 73.984±0.533 90.238±0.732

MTL-CLS(`1,1 ) 62.919±0.802 72.745±0.464 89.074±0.59
MTL-REG(`1,1 ) 37.709±0.32 70.431±0.414 86.612±0.592

SMTL(TraceNorm+AUC) 58.595±0.148 68.056±0.45 88.325±0.182
SMTL(TraceNorm+F1 ) 61.867±1.014 72.588±0.350 89.328±0.815

MTL-CLS(TraceNorm) 59.752±0.951 71.863±0.628 87.933±0.428
MTL-REG(TraceNorm) 36.64±0.314 70.118±0.437 84.54±0.743

StructSVM 37.19±0.652 45.027±0.601 88.072±0.289
RAkEL 57.331±0.592 69.813±0.179 81.994±0.134

MLCSSP 56.717±0.790 60.417±1.665 75.246±1.093
AdaBoostMH 15.170±1.893 56.004±1.103 61.466±0.206

HOMER 61.144±0.238 71.429±0.104 84.998±0.589
BR 51.939±1.225 67.873±0.374 84.616±0.528
LP 52.683±0.832 62.672±0.526 73.063±0.637

ECC 58.368±0.714 68.223±0.096 86.287±0.664

On the Yeast dataset, the value of Macro F1 using
SMTL(`2,1+F1) is 44.353%, a 22.16% relative increase
compared to the best MTL baseline MTL-CLS(`2,1); the
value of Micro F1 using SMTL(`2,1+F1) is 55.451%, a
17.91% relative increase compared to the best MTL base-
line MTL-REG(`2,1); the value of averaged AUC using
SMTL(`1,1+AUC) is 62.626%, a 7.57% relative increase
compared to the best MTL baseline MTL-CLS(`1,1). On
the Emotions dataset, the proposed SMTL(`2,1+F1) per-
forms 66.244% at Macro F1, a 4.58% relative increase
compared to the best MTL baseline MTL-CLS(`2,1);
SMTL(`2,1+F1) performs 83.378% at AUC, a 2.53% rel-
ative increase compared to the best MTL baseline
MTL-CLS(`2,1); SMTL(TraceNorm+F1) performs 67.6%
at Macro F1, a 5.95% relative increase compared to the

TABLE 4: Comparison results Emotions, Yeast and Flags.

MACRO MICRO Average
METHOD F1 F1 AUC

Emotions

SMTL(`2,1+AUC) 65.498±2.047 67.067±1.956 83.378±0.466
SMTL(`2,1+F1 ) 66.244±1.584 66.358±1.255 81.986±0.495

MTL-CLS(`2,1 ) 63.343±1.688 65.684±1.327 80.065±0.490
MTL-REG(`2,1 ) 62.621±1.543 63.701±1.054 81.32±0.396

SMTL(`1,1+AUC) 65.622±1.984 67.143±1.629 83.358±0.345
SMTL(`1,1+F1 ) 67.696±0.348 67.923±0.578 83.106±0.596

MTL-CLS(`1,1 ) 64.969±0.822 66.584±1.049 80.03±0.574
MTL-REG(`1,1 ) 62.976±0.547 64.404±1.535 81.811±0.587

SMTL(TraceNorm+AUC) 65.902±1.904 67.405±1.848 83.362±0.618
SMTL(TraceNorm+F1 ) 67.600±0.574 67.858±0.984 83.000±0.236

MTL-CLS(TraceNorm) 63.805±2.339 66.602±2.063 80.485±0.597
MTL-REG(TraceNorm) 63.243±1.574 64.869±2.574 82.834±0.266

StructSVM 46.367±5.531 49.902±19.032 62.908±4.361
RAkEL 64.998±1.387 65.835±1.136 75.206±0.875

MLCSSP 62.980±2.780 63.593±2.603 76.054±2.495
AdaBoostMH 4.291±1.429 7.577±2.627 55.111±0.328

HOMER 59.039±2.431 61.830±1.642 71.212±1.167
BR 61.358±2.578 62.635±2.332 79.146±1.250
LP 53.384±1.858 54.618±1.543 68.506±0.652

ECC 62.694±1.645 64.138±1.216 82.589±1.131

Yeast

SMTL(`2,1+AUC) 43.593±1.120 46.261±0.872 63.018±1.504
SMTL(`2,1+F1 ) 44.353±1.080 55.451±0.457 61.285±1.246

MTL-CLS(`2,1 ) 36.308±0.974 43.908±0.499 56.686±0.539
MTL-REG(`2,1 ) 28.187±1.544 47.029±0.645 62.757±1.745

SMTL(`1,1+AUC) 43.132±1.349 45.729±1.643 62.626±1.709
SMTL(`1,1+F1 ) 44.647±1.058 54.971±1.187 61.569±1.945

MTL-CLS(`1,1 ) 36.89±0.699 44.620±0.553 58.221±0.424
MTL-REG(`1,1 ) 33.720±1.634 54.682±1.846 50.050±1.563

SMTL(TraceNorm+AUC) 43.58±1.046 46.395±1.067 63.058±0.634
SMTL(TraceNorm+F1 ) 44.972±0.765 50.471±0.968 61.819±0.395

MTL-CLS(TraceNorm) 42.275±1.006 44.542±0.460 61.528±0.590
MTL-REG(TraceNorm) 28.178±1.043 47.046±0.126 62.920±0.326

StructSVM 42.669± 2.48 46.298±2.048 61.894±2.488
RAkEL 44.101±0.389 46.086±0.450 61.971±0.753

MLCSSP 41.511±0.837 46.200±1.272 50.756±0.451
AdaBoostMH 12.255±0.041 48.144±0.315 50.805±0.050

HOMER 40.054±1.063 53.745±0.867 62.311±1.265
BR 39.209±0.891 54.153±0.543 62.375±0.408
LP 37.029±0.584 53.059±0.514 56.616±1.394

ECC 37.523±0.310 54.632±0.325 62.105±0.627

Flags

SMTL(`2,1+AUC) 60.473±1.951 61.666±2.226 73.875±2.563
SMTL(`2,1+F1 ) 70.279±1.744 75.047±0.945 75.000±0.745

MTL-CLS(`2,1 ) 65.233±1.930 71.709±0.955 72.928±1.479
MTL-REG(`2,1 ) 66.073±0.276 73.005±1.307 71.429±1.105

SMTL(`1,1+AUC) 60.187±1.971 61.618±1.714 74.136±2.805
SMTL(`1,1+F1 ) 69.122±1.975 74.259±1.378 74.168±1.513

MTL-CLS(`1,1 ) 65.532±1.210 72.666±1.752 72.725±0.497
MTL-REG(`1,1 ) 65.256±0.739 72.246±0.928 71.299±0.998

SMTL(TraceNorm+AUC) 61.435±1.616 62.84±1.481 74.367±2.373
SMTL(TraceNorm+F1 ) 68.704±1.650 73.132±1.891 73.145±1.973

MTL-CLS(TraceNorm) 65.236±3.507 72.688±2.156 73.307±2.155
MTL-REG(TraceNorm) 65.257±2.647 72.437±1.918 71.495±0.783

StructSVM 55.683±5.777 51.957±2.048 72.178±3.604
RAkEL 60.696±5.216 64.749±4.688 61.260±3.805

MLCSSP 59.629±1.619 63.215±1.326 55.865±1.909
AdaBoostMH 56.457±4.288 71.268±1.400 69.329±2.043

HOMER 59.018±1.269 63.855±2.259 64.826±0.569
BR 59.421±2.163 67.287±1.876 66.823±2.860
LP 61.801±3.822 69.132±3.200 60.540±4.149

ECC 64.936±3.023 72.715±1.675 73.913±2.339

best MTL baseline MTL-CLS(TraceNorm). On the Cal500
dataset, SMTL(`1,1+AUC) performs 21.721% at Macro
F1, compared to 12.447% of MTL-REG(`1,1, which indi-
cates a 74.51% relative increase; SMTL(`2,1+F1) performs
40.127% at Micro F1, compared to 37.357% of MTL-
CLS(`2,1, which indicates a 7.41% relative increase.

In addition, we conduct t-tests and Wilcoxon’s signed
rank test [43] on 9 datasets to investigate whether the
improvements of SMTL methods against the baselines
are statistically significant. The p-values of t-tests are
showed in Table 5 and 6. The p-values of Wilcoxon’s tests
are showed in Table 7 and 8. As can be seen, most of the
p-values are smaller than 0.05, which indicate that the
improvements are statistically significant. These results
verify the effectiveness of directly optimizing evaluation
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Fig. 1: Comparison results on Segmentation, Emotions and Optdigits
w.r.t. AUC.

metric in MTL problems.

TABLE 5: t-test: p-values of SMTL against the baselines

Two mehtods for comparison Optdigits TMC2007 MediaMill Segmentation

Average AUC

`2,1 : SMTL(AUC) vs. MTL-CLS 4.86E-07 1.49E-13 2.12E-02 4.74E-03
`2,1 : SMTL(AUC) vs. MTL-REG 2.70E-12 1.44E-18 6.58E-01 4.30E-03
Trace: SMTL(AUC) vs. MTL-CLS 6.88E-03 5.20E-03 2.12E-02 4.74E-03
Trace: SMTL(AUC) vs. MTL-REG 3.85E-12 4.59E-11 6.61E-01 4.25E-03
`1,1 : SMTL(AUC) vs. MTL-CLS 5.71E-03 2.95E-05 5.52E-03 4.75E-03
`1,1 : SMTL(AUC) vs. MTL-REG 1.46E-12 1.92E-12 1.57E-08 4.35E-03
Trace: SMTL(AUC) vs. RAkEL 1.87E-26 1.50E-14 2.79E-13 3.27E-14
Trace: SMTL(AUC) vs. MLCSSP 6.02E-10 1.05E-14 9.63E-15 3.24E-01
Trace: SMTL(AUC) vs. AdaBoostMH 2.36E-04 5.42E-20 4.44E-08 3.05E-14
Trace: SMTL(AUC) vs. HOMER 5.23E-12 6.97E-09 4.65E-08 1.04E-12
Trace: SMTL(AUC) vs. BR 2.91E-10 1.31E-16 2.43E-13 5.14E-07
Trace: SMTL(AUC) vs. LP 6.82E-22 1.41E-20 1.44E-03 9.30E-01
Trace: SMTL(AUC) vs. ECC 8.16E-03 9.67E-19 7.52E-03 6.19E-03

Micro F1

`2,1 : SMTL(F1 ) vs. MTL-CLS 8.37E-02 8.37E-02 3.98E-10 4.89E-02
`2,1 : SMTL(F1 ) vs. MTL-REG 3.28E-20 3.28E-20 2.54E-18 1.24E-02
Trace: SMTL(F1 ) vs. MTL-CLS 4.68E-03 4.68E-03 4.00E-10 4.96E-02
Trace: SMTL(F1 ) vs. MTL-REG 3.01E-14 3.01E-14 2.30E-18 4.92E-03
`1,1 : SMTL(F1 ) vs. MTL-CLS 9.54E-03 9.54E-03 4.19E-10 4.75E-01
`1,1 : SMTL(F1 ) vs. MTL-REG 6.16E-12 6.16E-12 2.56E-18 1.03E-01
Trace: SMTL(F1 ) vs. RAkEL 7.30E-33 4.64E-25 4.93E-09 9.28E-19
Trace: SMTL(F1 ) vs. MLCSSP 2.28E-30 1.90E-18 3.28E-14 2.90E-13
Trace: SMTL(F1 ) vs. AdaBoostMH 4.53E-16 9.97E-35 9.38E-12 3.65E-06
Trace: SMTL(F1 ) vs. HOMER 5.37E-14 1.13E-12 9.68E-12 8.31E-10
Trace: SMTL(F1 ) vs. BR 1.61E-06 3.09E-14 5.20E-05 9.79E-03
Trace: SMTL(F1 ) vs. LP 3.94E-20 9.73E-24 1.06E-12 1.39E-05
Trace: SMTL(F1 ) vs. ECC 3.99E-07 2.76E-08 1.75E-16 1.45E-01

Macro F1

`2,1 : SMTL(F1 ) vs. MTL-CLS 4.09E-21 1.61E-10 3.98E-10 4.09E-02
`2,1 : SMTL(F1 ) vs. MTL-REG 1.47E-26 3.09E-16 2.54E-18 2.98E-12
Trace: SMTL(F1 ) vs. MTL-CLS 1.04E-21 1.82E-02 4.00E-10 4.13E-02
Trace: SMTL(F1 ) vs. MTL-REG 3.85E-19 5.87E-12 2.30E-18 3.19E-12
`1,1 : SMTL(F1 ) vs. MTL-CLS 7.04E-22 9.26E-07 4.19E-10 4.04E-02
`1,1 : SMTL(F1 ) vs. MTL-REG 1.94E-24 8.74E-14 2.56E-18 2.57E-12
Trace: SMTL(F1 ) vs. RAkEL 6.35E-29 3.99E-10 4.93E-09 3.08E-16
Trace: SMTL(F1 ) vs. MLCSSP 6.50E-16 2.29E-10 3.28E-14 4.68E-02
Trace: SMTL(F1 ) vs. AdaBoostMH 1.21E-04 2.99E-23 9.38E-12 3.17E-16
Trace: SMTL(F1 ) vs. HOMER 1.78E-11 4.33E-02 9.68E-12 2.55E-11
Trace: SMTL(F1 ) vs. BR 1.28E-08 1.12E-13 5.20E-05 1.19E-02
Trace: SMTL(F1 ) vs. LP 1.67E-19 1.52E-14 1.06E-12 7.49E-01
Trace: SMTL(F1 ) vs. ECC 2.83E-01 4.46E-08 1.75E-16 9.52E-01

6.3 Results on imbalanced data

In the scenarios of learning classifiers on imbalanced
data (e.g., the number of positive training samples is
much less than that of negative training samples), the

TABLE 6: t-test: p-values of SMTL against the baselines

Two mehtods for comparison Cal500 Yeast Emotions Scene Flags

Average AUC

`2,1 : SMTL(AUC) vs. MTL-CLS 2.62E-01 1.02E-12 2.62E-01 4.92E-02 4.30E-02
`2,1 : SMTL(AUC) vs. MTL-REG 7.48E-05 1.47E-09 7.48E-05 4.74E-11 4.21E-02
Trace: SMTL(AUC) vs. MTL-CLS 1.01E-01 8.97E-13 1.01E-01 4.48E-02 4.21E-02
Trace: SMTL(AUC) vs. MTL-REG 3.04E-03 1.53E-09 3.04E-03 5.00E-11 4.37E-02
`1,1 : SMTL(AUC) vs. MTL-CLS 2.18E-03 1.00E-12 2.18E-03 4.56E-02 4.27E-02
`1,1 : SMTL(AUC) vs. MTL-REG 2.55E-06 1.71E-09 2.55E-06 4.67E-11 4.28E-02
Trace: SMTL(AUC) vs. RAkEL 2.62E-12 1.65E-10 4.55E-04 1.48E-01 5.58E-05
Trace: SMTL(AUC) vs. MLCSSP 1.49E-21 1.05E-07 1.22E-04 1.60E-15 6.81E-11
Trace: SMTL(AUC) vs. AdaBoostMH 4.10E-33 1.03E-06 3.61E-23 3.21E-19 2.12E-02
Trace: SMTL(AUC) vs. HOMER 2.30E-13 2.54E-04 8.57E-09 4.33E-02 9.89E-09
Trace: SMTL(AUC) vs. BR 2.23E-16 7.57E-10 3.84E-06 7.92E-02 1.63E-06
Trace: SMTL(AUC) vs. LP 1.12E-14 6.42E-07 9.15E-15 4.97E-01 3.19E-03
Trace: SMTL(AUC) vs. ECC 2.00E-13 2.09E-12 6.45E-07 3.28E-01 9.78E-01

Micro F1

`2,1 : SMTL(F1 ) vs. MTL-CLS 4.09E-21 2.70E-05 2.62E-01 1.64E-05 3.14E-02
`2,1 : SMTL(F1 ) vs. MTL-REG 1.47E-26 5.00E-02 7.48E-05 1.09E-06 1.87E-03
Trace: SMTL(F1 ) vs. MTL-CLS 1.04E-21 3.45E-05 1.01E-01 1.42E-05 3.10E-02
Trace: SMTL(F1 ) vs. MTL-REG 3.85E-19 4.39E-02 3.04E-03 1.19E-06 1.76E-03
`1,1 : SMTL(F1 ) vs. MTL-CLS 7.04E-22 2.16E-05 2.18E-03 1.54E-05 3.13E-02
`1,1 : SMTL(F1 ) vs. MTL-REG 1.94E-24 4.21E-02 2.55E-06 1.35E-06 1.87E-03
Trace: SMTL(F1 ) vs. RAkEL 4.16E-08 2.54E-03 4.55E-04 3.26E-15 2.85E-08
Trace: SMTL(F1 ) vs. MLCSSP 2.82E-10 9.31E-21 1.22E-04 1.80E-16 2.01E-13
Trace: SMTL(F1 ) vs. AdaBoostMH 8.68E-17 3.36E-22 3.61E-23 4.76E-02 7.77E-05
Trace: SMTL(F1 ) vs. HOMER 5.69E-11 1.08E-01 8.57E-09 4.53E-14 3.25E-10
Trace: SMTL(F1 ) vs. BR 7.35E-21 1.08E-01 3.84E-06 2.51E-09 4.96E-06
Trace: SMTL(F1 ) vs. LP 1.64E-13 9.74E-11 9.15E-15 1.25E-14 3.39E-08
Trace: SMTL(F1 ) vs. ECC 6.21E-14 5.30E-01 6.45E-07 1.05E-02 9.09E-01

Macro F1

`2,1 : SMTL(F1 ) vs. MTL-CLS 2.43E-02 2.51E-06 7.55E-12 4.09E-02 1.12E-02
`2,1 : SMTL(F1 ) vs. MTL-REG 4.24E-10 2.71E-19 2.83E-09 1.40E-10 2.58E-03
Trace: SMTL(F1 ) vs. MTL-CLS 1.77E-05 2.34E-06 3.53E-09 4.37E-02 1.13E-02
Trace: SMTL(F1 ) vs. MTL-REG 1.43E-04 3.33E-19 2.69E-02 1.55E-10 2.67E-03
`1,1 : SMTL(F1 ) vs. MTL-CLS 3.99E-02 2.66E-06 6.38E-12 4.43E-02 1.11E-02
`1,1 : SMTL(F1 ) vs. MTL-REG 1.01E-12 2.76E-19 1.09E-06 1.32E-10 2.54E-03
Trace: SMTL(F1 ) vs. RAkEL 5.45E-05 5.52E-03 3.24E-05 5.68E-02 2.11E-04
Trace: SMTL(F1 ) vs. MLCSSP 6.64E-01 1.57E-08 6.89E-05 2.34E-18 2.75E-10
Trace: SMTL(F1 ) vs. AdaBoostMH 1.28E-29 1.36E-28 3.03E-28 5.89E-21 1.16E-07
Trace: SMTL(F1 ) vs. HOMER 3.52E-23 6.16E-10 2.60E-09 3.77E-06 1.84E-11
Trace: SMTL(F1 ) vs. BR 7.28E-14 6.97E-12 6.40E-07 2.49E-01 2.86E-09
Trace: SMTL(F1 ) vs. LP 1.42E-18 9.45E-16 7.63E-15 4.04E-01 5.68E-05
Trace: SMTL(F1 ) vs. ECC 5.69E-21 1.98E-16 5.51E-08 9.15E-01 4.96E-03

TABLE 7: Wilcoxon’s test: p-values of SMTL against the baselines

Two mehtods for comparison Optdigits TMC2007 MediaMill Segmentation

Average AUC

`2,1 : SMTL(AUC) vs. MTL-CLS 1.25E-02 1.25E-02 5.06E-03 5.75E-01
`2,1 : SMTL(AUC) vs. MTL-REG 5.06E-03 5.06E-03 4.45E-01 2.84E-02
Trace: SMTL(AUC) vs. MTL-CLS 2.84E-02 2.18E-02 2.18E-02 4.69E-02
Trace: SMTL(AUC) vs. MTL-REG 5.06E-03 5.06E-03 8.79E-01 3.86E-01
`1,1 : SMTL(AUC) vs. MTL-CLS 2.84E-02 2.84E-02 4.69E-02 2.18E-02
`1,1 : SMTL(AUC) vs. MTL-REG 5.06E-03 5.06E-03 5.75E-01 2.18E-02
Trace: SMTL(AUC) vs. RAkEL 5.06E-03 5.06E-03 5.06E-03 5.06E-03
Trace: SMTL(AUC) vs. MLCSSP 5.06E-03 5.06E-03 5.06E-03 2.85E-01
Trace: SMTL(AUC) vs. AdaBoostMH 5.06E-03 5.06E-03 5.06E-03 5.06E-03
Trace: SMTL(AUC) vs. HOMER 5.06E-03 5.06E-03 5.06E-03 5.06E-03
Trace: SMTL(AUC) vs. BR 5.06E-03 5.06E-03 5.06E-03 5.06E-03
Trace: SMTL(AUC) vs. LP 5.06E-03 5.06E-03 1.25E-02 8.79E-01
Trace: SMTL(AUC) vs. ECC 7.45E-02 5.06E-03 3.67E-02 1.66E-02

Micro F1

`2,1 : SMTL(F1 ) vs. MTL-CLS 5.06E-03 5.93E-02 5.06E-03 9.34E-03
`2,1 : SMTL(F1 ) vs. MTL-REG 5.06E-03 5.06E-03 5.06E-03 2.84E-02
Trace: SMTL(F1 ) vs. MTL-CLS 5.06E-03 1.66E-02 5.06E-03 9.26E-02
Trace: SMTL(F1 ) vs. MTL-REG 5.06E-03 5.06E-03 5.06E-03 6.91E-03
`1,1 : SMTL(F1 ) vs. MTL-CLS 5.06E-03 4.69E-02 5.06E-03 5.93E-02
`1,1 : SMTL(F1 ) vs. MTL-REG 5.06E-03 5.06E-03 5.06E-03 2.84E-02
Trace: SMTL(F1 ) vs. RAkEL 5.06E-03 5.06E-03 5.06E-03 5.06E-03
Trace: SMTL(F1 ) vs. MLCSSP 5.06E-03 5.06E-03 5.06E-03 5.06E-03
Trace: SMTL(F1 ) vs. AdaBoostMH 5.06E-03 5.06E-03 5.06E-03 5.06E-03
Trace: SMTL(F1 ) vs. HOMER 5.06E-03 5.06E-03 5.06E-03 5.06E-03
Trace: SMTL((F1 ) vs. BR 5.06E-03 5.06E-03 9.34E-03 1.69E-01
Trace: SMTL((F1 ) vs. LP 5.06E-03 5.06E-03 5.06E-03 5.06E-03
Trace: SMTL((F1 ) vs. ECC 5.06E-03 5.06E-03 5.06E-03 2.03E-01

Macro F1

`2,1 : SMTL(F1 ) vs. MTL-CLS 9.34E-03 5.06E-03 5.06E-03 4.69E-02
`2,1 : SMTL(F1 ) vs. MTL-REG 5.06E-03 5.06E-03 5.06E-03 5.06E-03
Trace: SMTL(F1 ) vs. MTL-CLS 9.34E-03 5.06E-03 5.06E-03 5.93E-02
Trace: SMTL(F1 ) vs. MTL-REG 5.06E-03 5.06E-03 5.06E-03 5.06E-03
`1,1 : SMTL(F1 ) vs. MTL-CLS 9.34E-03 5.06E-03 5.06E-03 1.14E-01
`1,1 : SMTL(F1 ) vs. MTL-REG 5.06E-03 5.06E-03 5.06E-03 5.06E-03
Trace: SMTL(F1 ) vs. RAkEL 5.06E-03 5.06E-03 5.06E-03 5.06E-03
Trace: SMTL(F1 ) vs. MLCSSP 5.06E-03 5.06E-03 5.06E-03 7.45E-02
Trace: SMTL(F1 ) vs. AdaBoostMH 5.06E-03 5.06E-03 5.06E-03 5.06E-03
Trace: SMTL(F1 ) vs. HOMER 5.06E-03 3.67E-02 5.06E-03 5.06E-03
Trace: SMTL((F1 ) vs. BR 5.06E-03 5.06E-03 5.06E-03 2.84E-02
Trace: SMTL((F1 ) vs. LP 5.06E-03 5.06E-03 1.69E-01 8.79E-01
Trace: SMTL((F1 ) vs. ECC 4.69E-02 5.06E-03 1.66E-02 9.59E-01
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Fig. 2: Comparison results on Segmentation, Emotions and Optdigits
w.r.t. Macro F1 (up) and Micro F1 (down).

metrics like F-score or AUC are more effective for eval-
uation than the misclassified errors. This is one of the
reasons to motivate the proposed SMTL method in this
paper. In MTL, the imbalance can be measured by firstly
calculating the imbalance ratio in each individual task
(i.e., the number of positive instances

the number of negative instances for each task), and
then averaging these ratios.

We conduct simulated experiments on 3 datasets (Seg-
mentation, Emotions and Optdigits) to investigate the
characteristics of the proposed SMTL methods on imbal-
anced data. In each dataset, we generate an imbalanced
dataset by randomly selecting (with replacement) the
positive and negative samples from the original dataset,
with the ratio 1 : 1, 1 : 5 and 1 : 10, respectively.
As can be seen in Fig. 1 and Fig. 2, in most cases,
the proposed SMTL variants consistently outperform the
baseline method. For example, On Emotions with the

TABLE 8: Wilcoxon’s test: p-values of SMTL against the baselines

Two mehtods for comparison Cal500 Yeast Emotions Scene Flags

Average AUC

`2,1 : SMTL(AUC) vs. MTL-CLS 5.06E-03 5.06E-03 1.69E-01 1.25E-02 1.25E-02
`2,1 : SMTL(AUC) vs. MTL-REG 5.06E-03 5.06E-03 1.25E-02 5.06E-03 5.06E-03
Trace: SMTL(AUC) vs. MTL-CLS 6.91E-03 5.06E-03 1.14E-01 4.69E-02 5.08E-01
Trace: SMTL(AUC) vs. MTL-REG 5.06E-03 5.06E-03 1.25E-02 5.06E-03 3.67E-02
`1,1 : SMTL(AUC) vs. MTL-CLS 5.06E-03 5.06E-03 1.25E-02 2.84E-02 1.25E-02
`1,1 : SMTL(AUC) vs. MTL-REG 5.06E-03 5.06E-03 1.25E-02 5.06E-03 1.25E-02
Trace: SMTL(AUC) vs. RAkEL 5.06E-03 5.06E-03 1.25E-02 2.84E-02 5.06E-03
Trace: SMTL(AUC) vs. MLCSSP 5.06E-03 5.06E-03 5.06E-03 5.06E-03 5.06E-03
Trace: SMTL(AUC) vs. AdaBoostMH 5.06E-03 5.06E-03 5.06E-03 5.06E-03 1.25E-02
Trace: SMTL(AUC) vs. HOMER 5.06E-03 5.06E-03 5.06E-03 5.06E-03 5.06E-03
Trace: SMTL(AUC) vs. BR 5.06E-03 5.06E-03 5.06E-03 9.26E-02 5.06E-03
Trace: SMTL(AUC) vs. LP 5.06E-03 6.91E-03 5.06E-03 7.21E-01 9.34E-03
Trace: SMTL(AUC) vs. ECC 5.06E-03 5.06E-03 5.06E-03 1.69E-01 9.59E-01

Micro F1

`2,1 : SMTL(F1 ) vs. MTL-CLS 5.06E-03 6.91E-03 5.06E-03 5.06E-03 5.06E-03
`2,1 : SMTL(F1 ) vs. MTL-REG 9.34E-03 2.84E-02 2.84E-02 5.06E-03 1.25E-02
Trace: SMTL(F1 ) vs. MTL-CLS 5.06E-03 6.91E-03 5.06E-03 5.06E-03 4.45E-01
Trace: SMTL(F1 ) vs. MTL-REG 5.06E-03 2.84E-02 1.25E-02 5.06E-03 1.25E-02
`1,1 : SMTL(F1 ) vs. MTL-CLS 5.06E-03 5.06E-03 5.06E-03 5.06E-03 3.67E-02
`1,1 : SMTL(F1 ) vs. MTL-REG 5.06E-03 2.84E-02 3.67E-02 5.06E-03 2.84E-02
Trace: SMTL(F1 ) vs. RAkEL 5.06E-03 9.34E-03 5.06E-03 5.06E-03 5.06E-03
Trace: SMTL(F1 ) vs. MLCSSP 5.06E-03 5.06E-03 5.06E-03 5.06E-03 5.06E-03
Trace: SMTL(F1 ) vs. AdaBoostMH 5.06E-03 5.06E-03 5.06E-03 5.93E-02 5.06E-03
Trace: SMTL(F1 ) vs. HOMER 5.06E-03 2.03E-01 5.06E-03 5.06E-03 5.06E-03
Trace: SMTL((F1 ) vs. BR 5.06E-03 5.06E-03 5.06E-03 5.06E-03 5.06E-03
Trace: SMTL((F1 ) vs. LP 5.06E-03 5.06E-03 5.06E-03 5.06E-03 5.06E-03
Trace: SMTL((F1 ) vs. ECC 5.06E-03 3.86E-01 2.41E-01 4.69E-02 8.79E-01

Macro F1

`2,1 : SMTL(F1 ) vs. MTL-CLS 5.06E-03 5.06E-03 6.91E-03 3.67E-02 3.67E-02
`2,1 : SMTL(F1 ) vs. MTL-REG 5.06E-03 5.06E-03 5.06E-03 5.06E-03 6.91E-03
Trace: SMTL(F1 ) vs. MTL-CLS 5.06E-03 5.06E-03 5.06E-03 1.66E-02 5.93E-02
Trace: SMTL(F1 ) vs. MTL-REG 5.06E-03 5.06E-03 5.06E-03 5.06E-03 5.06E-03
`1,1 : SMTL(F1 ) vs. MTL-CLS 5.06E-03 5.06E-03 5.06E-03 3.33E-01 3.67E-02
`1,1 : SMTL(F1 ) vs. MTL-REG 5.06E-03 5.06E-03 5.06E-03 5.06E-03 2.84E-02
Trace: SMTL(F1 ) vs. RAkEL 5.06E-03 1.25E-02 9.34E-03 9.26E-02 5.06E-03
Trace: SMTL(F1 ) vs. MLCSSP 3.67E-02 5.06E-03 5.06E-03 5.06E-03 5.06E-03
Trace: SMTL(F1 ) vs. AdaBoostMH 5.06E-03 5.06E-03 5.06E-03 5.06E-03 5.06E-03
Trace: SMTL(F1 ) vs. HOMER 5.06E-03 5.06E-03 5.06E-03 5.06E-03 5.06E-03
Trace: SMTL((F1 ) vs. BR 5.06E-03 5.06E-03 5.06E-03 1.69E-01 5.06E-03
Trace: SMTL((F1 ) vs. LP 5.06E-03 5.06E-03 5.06E-03 5.75E-01 6.91E-03
Trace: SMTL((F1 ) vs. ECC 5.06E-03 5.06E-03 5.06E-03 7.99E-01 6.91E-03

ratio of negative samples
positive samples = 10 : 1, the proposed SMTL

indicates a relative increase of 9.7% / 12.9% / 11.1%
over the baseline w. r. t. AUC / Macro F1 / Micro F1,
respectively. In addition, with the ratio of negative samplespositive samples
increasing, the improvement of SMTL over the baseline
method also increases.

6.4 Training Time Comparison

To investigate the training speed of the proposed
method, we provide the running time comparison results
in Table 9. We can see that the training time of SMTL is
(less than 30 times) slower than the baseline methods. It
is worth noting that the training time cost is not a critical
issue in practice, because the training process is usually
off-line.

TABLE 9: Training Time Comparison

method
training time of training time of training time of

Optdigits Emotions Segmentation

SMTL(`1,1+AUC) 105.200s 30.001s 1.888s
SMTL(`1,1+F1 ) 510.900s 29.797s 2.964s
MTL-CLS(`1,1 ) 356.200s 24.674s 2.023s
MTL-REG(`1,1 ) 19.030s 7.427s 0.450s
StructSVM 17.762s 46.468s 5.015s
RAkEL 28.428s 4.117s 4.310s
AdaBoostMH 17.157s 1.024s 0.641s
MLCSSP 121.779s 1.563s 6.410s
HOMER 20.643s 1.354s 0.880s
BR 20.852s 1.859s 1.835s
LP 16.131s 22.561s 2.103s
ECC 17.852s 2.834s 1.891s
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7 CONCLUSION

In this paper, we developed Structured-MTL, a MTL
method of optimizing evaluation metrics. To solve the
optimization problem of Structured MTL, we developed
an optimization procedure based on ADMM scheme.
This optimization procedure can be applied to solving a
large family of MTL problems with structured outputs.

In the future work, we plan to investigate Structured-
MTL on problems other than classification (e.g., MTL
for ranking problems). We also plan to improve the ef-
ficiency of Structured-MTL on large-scale learning prob-
lems.
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