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Abstract—This paper is concerned with the distributed H∞
filtering problem for a class of discrete time-varying stochastic
parameter systems with error variance constraints over a sensor
network where the sensor outputs are subject to successive miss-
ing measurements. The phenomenon of the successive missing
measurements for each sensor is modeled via a sequence of
mutually independent random variables obeying the Bernoulli
binary distribution law. To reduce the frequency of unnecessary
data transmission and alleviate the communication burden, an
event-triggered mechanism is introduced for the sensor node
such that only some vitally important data is transmitted to
its neighboring sensors when specific events occur. The objective
of the problem addressed is to design a time-varying filter such
that both the H∞ requirements and the variance constraints
are guaranteed over a given finite-horizon against the random
parameter matrices, successive missing measurements and s-
tochastic noises. By recurring to stochastic analysis techniques,
sufficient conditions are established to ensure the existence of
the time-varying filters whose gain matrices are then explicitly
characterized in term of the solutions to a series of recursive
matrix inequalities. A numerical simulation example is provided
to illustrate the effectiveness of the developed event-triggered
distributed filter design strategy.

Index Terms—Distributed H∞ filtering, error variance con-
straints, event-triggered mechanism, random parameter matri-
ces, successive missing measurements, recursive matrix inequal-
ities.

I. INTRODUCTION

In the past few decades, the stochastic parameter systems
have found applications in a variety of engineering domains
such as digital control of chemical processes, radar control,
missile track estimation and economic systems, see e.g. [3],
[5], [7], [25], [37], [41]. On the other hand, the problem
of filtering or state estimation for has long been a focus of
research due to its engineering insights in many branches
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such as target tracking, orbit determination, image processing,
fault diagnosis and biomedicine, see e.g. [2], [12], [42].
Many filter design approaches have been available in the
literature such as [9], [10], [21], [23], [33], [35], [39], [40],
among which the renowned Kalman filter and the H∞ filter
have proven to be most effective in dealing with Gaussian
noises and energy-bounded noises, respectively. In systems
with additive Gaussian noises, it is quite common that the
performance requirements are described as the upper bounds
on the filtering error variances, where the estimation error
variance is no longer required to be the minimum as long
as the engineering requirements are met [26]. In this case,
the variance-constrained filters offer much design freedom
that would facilitate the multi-objective design in order to
reconcile between the performances of steady-state and tran-
sient behaviors, accuracy, robustness and disturbance rejection
attenuation, etc.

Recent years have seen the widespread deployment of
wireless sensor networks (WSNs) as a new generation of
distributed embedded systems with a broad range of real-
time applications [1], [13], [16], [29], [32], [36]. In the
context of filtering or state estimation through a WSN, the
measurement outputs are often collected through a network
of smart sensing components installed in a spatial region of
interest, where the individual sensor node can share the local
information with its neighbors in the WSN. As one of the
central issues in WSNs, the distributed filters aim to fuse the
information not only from the individual sensor but also from
its neighboring ones according to the given topology. So far, a
number of distributed filtering algorithms have been proposed
under various conditions on the target plant and the network
topology, see e.g. [8], [27], [31], where most reported results
have been concerned with time-invariant systems with fully
available measurements. However, virtually almost all real-
world systems are time-varying and, for in networked systems,
the measurement signals may be missing during the network
transmission resulting mainly from the limited bandwidth [19],
[34], [44]. It is noted that the distributed filtering problem for
time-varying systems with successive missing measurements
has not received adequate attention yet despite its engineering
importance.

For WSNs, the bandwidth of the wireless channels is
typically limited and the capability of persistent power supply
of each individual sensor is quite restrictive. As such, the
scarcity of resources for WSNs has become a major con-
cern and much attention has been devoted for the energy
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saving purposes. It has been revealed that frequent data
communications inevitably lead to a substantial proportion
of energy consumption and, as compared to the traditional
time-triggered communication protocols, the so-called event-
triggered communication strategy would offer the possibility to
avoid unnecessary waste of limited recourses [6], [11], [14],
[18], [28], [45], [46]. The main idea of the event-triggered
strategy is to transmit vitally important information only when
certain event triggering condition is violated. Recently, a
growing number of research results have been reported in
the literature concerning event-triggered transmission schemes
that have been applied in a variety of engineering systems, see
e.g. [18], [30].

Summarizing the above discussions, a seemingly natural
idea is to investigate the event-triggered distributed filter
design problem for time-varying systems with mixed H∞ and
variance constraints subject to stochastic parameters and miss-
ing measurements. This appears to be a new yet challenging
task because of the essential difficulties in 1) dealing with
the asynchronous triggering of each individual sensor under
a unified framework because each sensor is equipped with an
event generator with separated triggering rate; 2) developing
appropriate techniques to examine the impacts from the ran-
dom parameter matrices onto the desired H∞ performance
requirement and the filtering error variance constraint; and 3)
designing a set of easy-to-implement distributed filters that
are insensitive to the randomly occurring successive missing
measurements. We endeavor to handle the three identified
difficulties in the present research.

In this paper, our research efforts are devoted to the problem
of event-triggered distributed H∞ filtering for a class of
stochastic parameter systems with error variance constraints
over a sensor network, where the underlying system is subject
to successive missing measurements. The main contributions
of this paper are highlighted as follows: 1) the system model
under consideration is quite general that covers time-varying
parameters, random parameter perturbations and successive
missing measurements, hence reflecting the reality more close-
ly; 2) an event-triggering communication protocol is proposed
to alleviate the network burden caused by the limited network
bandwidth; 3) the mixed H∞ performance index and error
variance constraints are investigated, for the first time, for
a class of time-varying systems; and 4) a novel filtering ap-
proach is developed in the form of recursive matrix inequalities
that are suitable for online applications.

The rest of this paper is organized as follows. In Section II,
the target plant described by a discrete time-varying stochastic
system with a network of N sensors is introduced and the
problem under consideration is formulated. In Section III, the
analysis and synthesis for the addressed event-based distribut-
ed filtering problem are investigated and a simulation example
is given in IV to demonstrate the effectiveness of the main
results. Finally, we conclude the paper in Section V.

Notation. The notations are quite standard. Throughout this
paper, Z+, Rn and Rn×m denote, respectively, the positive
integer space, the n-dimensional Euclidean space and the set of
all n×m real matrices. AT represents the transpose of A. The
notation X ≥ Y (respectively, X > Y ) where X and Y are

symmetric matrices, means that X−Y is positive semi-definite
(respectively, positive definite). diagN{Ai} stands for the
block-diagonal matrix diag{A1, A2 , · · ·, AN}, and vecN{xi}
denotes [x1 x2 · · · xN ]. In is the n-order identity matrix.
E{x} stands for the expectation of stochastic variable x, and
Cov{x, y} indicates the covariance of stochastic variables
x and y. ∥x∥ describes the Euclidean norm of a vector x,
and λmax(A) (λmin(A)) refers to the maximum eigenvalue
(minimum eigenvalue) of matrix A.

II. PROBLEM FORMULATION

For the WSN under consideration in this paper, the sensor
nodes are distributed in space according to a fixed network
topology represented by a directed graph G = (V ,E ,A ) of
order N with the set of nodes (sensors) V = {1, 2, . . . N}, set
of edges E ⊆ V ×V , and an adjacency matrix A = [aij ]N×N

with nonnegative adjacency elements aij . The edge (i, j) ∈ E ,
if and only if, aij > 0, which represents that the ith node can
receive the information from the jth node, otherwise, aij = 0.
Furthermore, self-loops are not allowed here, i.e., aii = 0, for
i = 1, 2, · · · , N . The set of neighbors of node i is denoted by
Ni = {j ∈ V |(i, j) ∈ E }.

Consider the target plant described by the following discrete
time-varying system:{

xk+1 = Akxk +Bkωk,

zk = Mkxk

(1)

where xk ∈ Rn is the state vector of the target plant which
is not directly available, zk is the signal to be estimated, and
ωk ∈ Rp denotes a zero mean Gaussian white noise sequence
with covariance Sk > 0. Ak ∈ Rn×n is the random parameter
matrix to be defined later, and Bk, Mk are known time-varying
matrices with appropriate dimensions.

The measurement output from the ith sensor is given by

yik = γi
k(C

i
kxk +Di

kωk) + (1− γi
k)y

i
k−1 (2)

where yik ∈ Rm is the measurement output of the ith sensor
node. The random variable sequence γi

k characterizes the
probability nature of the occurrence of successive missing
measurements for each sensor and obeys the Bernoulli dis-
tribution with mathematical expectation ᾱi and variance σ2

i .
Ci

k ∈ Rm×n is a random parameter matrix and Di
k is a known

time-varying matrix with appropriate dimensions.
As in [7], the mutually independent random matrices Ak,

Ci
k, which are also uncorrected with γi

k, have the following
statistical properties:

E{Ak} = Āk, Cov{akjr, akls} = Tak
jra

k
ls
,

E{Ci
k} = C̄i

k, Cov{ci,kjr , c
i,k
ls } = Tci,kjr ci,kls

(3)

where Tak
jra

k
ls

and Tci,kjr ci,kls
are known scalars. akjr and ci,kjr are

the (j, r)-th entries of matrices Ak and Ci
k, which can also be

denoted as [Ak][j,r] and [Ci
k][j,r], respectively.

Remark 1: With the increasing complexity of real-time
systems especially in process engineering, it is generally
acknowledged that certain system parameters are subject to
unavoidable perturbations that might result from changes in
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the interconnections of subsystems and modification of the
operating point of a linearized model of a nonlinear system.
In a networked environment, it is quite common that such
parameter perturbations occur in a random manner due prob-
ably to random fluctuations of the network loads, random
failures and repairs of the components as well as sudden
environment changes, where the statistical properties of such
random parameter perturbations could be acquired through
statistical tests. This kind of systems is often referred to as the
stochastic parameter systems as modeled in (1)-(2), where the
probabilistic successive missing measurements are also taken
into account. Both the stochastic parameters and the missing
measurements, whose probability distribution laws could be
obtained through statistical tests, are mainly caused by abrupt
environmental changes in many engineering applications such
as networked control systems, digital control of chemical
processes as well as mobile robot localization systems.

For presentation convenience, we denote the estimation of
xk as x̂i

k for sensor i. As discussed previously, for a sensor
node i, the aim of the distributed filtering technique is to fuse
the useful information not only from the local sensor i itself
but also from its neighbors. In order to mitigate unnecessary
data transmissions between the adjacent sensor nodes, an
event-triggered communication mechanism is employed to
determine whether the current estimated states need to be
delivered to its neighbors or not. To this end, we define the
event generator functions as follows:

φ(x̂i
k, x̂

i
kt
i
, θik) , (x̂i

k − x̂i
kt
i
)T (x̂i

k − x̂i
kt
i
)− θikx̂

iT
k x̂i

k ≤ 0.

(4)
Here, kti denotes the latest triggering instant for sensor i,
the term x̂i

k − x̂i
kt
i

is the difference of the ith sensor’s
estimation between the latest triggering instant and current
sampling instant, and θik is a positive adjustable threshold.
The event generators are triggered as long as the condition
(4) is violated. Therefore, the sequence of event triggering
instants k0i = 0 < k1i < k2i < · · · < kti < kt+1

i < · · · can be
iteratively computed by

kt+1
i = min{k ∈ N|k > kti , φ(x̂

i
k, x̂

j
kt
i
, θik) > 0}. (5)

For system (1), the following distributed filter is adopted:


x̂i
k+1 = Ākx̂

i
k +Ki

k(y
i
k − ᾱiC̄i

kx̂
i
k)

+
∑
j∈Ni

hij(x̂
j
kt
j
− x̂i

kt
i
),

ẑik = Mkx̂
i
k

(6)

where ẑik ∈ Rm is the estimated output of the ith filter and
Ki

k is the filter parameter to be determined.
Define ρik , x̂i

k−x̂i
kt
i
, C̃i

γk
, γi

kC
i
k−ᾱiC̄i

k and the coupling
configuration matrix H , [hij ]N×N with hij = aij (for
i ̸= j) and hii = −

∑N
i=1,i ̸=j aij . Let the filtering error and

the output error be eik , xk−x̂i
k and z̃ik , zik−ẑik, respectively.

Then, substituting (2) into (6) results in

x̂i
k+1 = Ākx̂

i
k +Ki

k

{
ᾱiC̄i

ke
i
k + C̃i

γk
eik + C̃i

γk
x̂i
k

+ ᾱiDi
kωk + (γi

k − ᾱi)Di
kωk + (1− ᾱi)yik−1

− (γi
k − ᾱi)yik−1

}
+

N∑
j=1

hij x̂
j
k −

N∑
j=1

hijρ
j
k,

ẑik = Mkx̂
i
k.

(7)
Letting Ãk , Ak − Āk, the error system can be easily

obtained from (1) and (7) as follows:

eik+1 = Āke
i
k + Ãke

i
k + Ãkx̂

i
k +Bkωk

−Ki
k

{
ᾱiC̄i

ke
i
k + C̃i

γk
eik + C̃i

γk
x̂i
k + ᾱiDi

kωk

+ (γi
k − ᾱi)Di

kωk + (1− ᾱi)yik−1

− (γi
k − ᾱi)yik−1

}
−

N∑
j=1

hij x̂
j
k +

N∑
j=1

hijρ
j
k,

z̃ik = Mke
i
k.

(8)
For notation convenience, we set

ek =vecTN{eiTk }, x̂k = vecTN{x̂iT
k }, yk = vecTN{yiTk },

zk =vecTN{ziTk }, ρk = vecTN{ρiTk }, Kk = diagN{Ki
k},

ᾱ =diagN{ᾱiIn}, Āk = IN ⊗ Āk, Ãk = IN ⊗ Ãk,

Bk =1 ⊗Bk, Mk = IN ⊗Mk, Ck = diagN{Ci
k},

C̄k =diagN{C̄i
k}, C̃k = diagN{C̃i

k} = Ck − C̄k,
Dk =vecTN{DiT

k }, θk = diagN{θikIn},
Ni =diag{0 · · · 0︸ ︷︷ ︸

i−1

Im 0 · · · 0︸ ︷︷ ︸
N−i

},

ein =vecTn{0 · · · 0︸ ︷︷ ︸
i−1

1 0 · · · 0︸ ︷︷ ︸
n−i

},

ēin =vecTN{0 · · · 0︸ ︷︷ ︸
i−1

In 0 · · · 0︸ ︷︷ ︸
N−i

}

(9)

where “1” is a column vector with each element of one.
By using the matrix Kronecker product and considering

C̃i
γk

= (γi
k − ᾱi)C̄i

k + γi
kC̃

i
k, we have the following filtering

error system directly from (8){
ek+1 = Akek + Âkx̂k + Kkyk−1 + Bkωk + H̄ ρk,

z̃k = Mkek
(10)

where

Ak = Āk + Ãk − ᾱKkC̄k −
N∑
i=1

(γi
k − ᾱi)KkNiC̄k

−
N∑
i=1

γi
kKkNiC̃k,

Âk = Ãk −
N∑
i=1

(γi
k − ᾱi)KkNiC̄k −

N∑
i=1

γi
kKkNiC̃k − H̄ ,
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Bk = Bk − ᾱKkDk −
N∑
i=1

(γi
k − ᾱi)KkNiDk,

Kk =
N∑
i=1

(γi
k − ᾱi)KkNi − (INn − ᾱ)Kk,

H̄ = H ⊗ In.

(11)

Remark 2: It is worth mentioning that a frequently used
approach to deal with the filtering issues with missing mea-
surements is to augment the system states, filter states and
measurement outputs in a compact form, see e.g. [7]. Such
an augmentation approach will inevitably lead to a high
dimension, thereby imposing extra load of computation. Here,
instead of state augmentation, we examine the error dynamics
directly and, as will be shown later, the computation cost is
reduced via a recursive algorithm.

To facilitate the further development, let us introduce a
useful lemma as follows.

Lemma 1: [38] Let Z0(s), Z1(s), · · ·, Zp(s) be quadratic
functions of s ∈ Rn and Zi(s) = sTQis (i = 0, 1, · · ·, p) with
Qi = QT

i . If there exist positive scalars ϵ1, ϵ2, · · ·, ϵp > 0 such
that

Z0(s)−
p∑

i=1

ϵiZi(s) ≤ 0, (12)

then the implication

Z1(s) ≤ 0, Z2(s) ≤ 0, · · ·, Zp(s) ≤ 0 ⇒ Z0(s) ≤ 0

holds.
The filtering error covariance matrix governed by (10) is

defined as

X̄k , E{ekeTk }. (13)

In this paper, our purpose is to design a set of event-based
distributed filters in form of (6) such that the filtering error
system (10) satisfies the following two constraints simultane-
ously over a finite horizon [0, L].

(R1) Given the disturbance attenuation level γ, matrix W >
0 and initial error e0, the H∞ performance constraint

1

N

L∑
k=0

E{∥z̃k∥2} ≤ γ2
L∑

k=0

E
{
∥ωk∥2

}
+ γ2E

{
eT0 We0

}
(14)

is satisfied in mean square subject to random parameter
matrices and successive missing measurements.

(R2) At each sampling instant k, the error covariance of the
filtering error system (10) satisfies

X̄k := E{ekeTk } ≤ Qk ∀k ∈ [0, L] (15)

where Qk is a sequence of positive definite matrices that are
prespecified according to the engineering requirements.

III. MAIN RESULTS

A. H∞ Performance Analysis

Let us start with the H∞ performance analysis for the
filtering error system (10). By using the stochastic analysis

techniques, a sufficient condition is presented in the following
theorem under which the H∞ performance index is satisfied.

Theorem 1: Consider the discrete-time stochastic parameter
system (1). Let the distributed filter parameters {Ki

k}0≤k≤L,
the initial positive definite matrix W > 0 and a prescribed
disturbance attenuation level γ be given. The filtering error
system (10) achieves the H∞ performance constraint (14) for
all nonzero ωk if there exist some families of positive scalars
{λk}0≤k≤L, {δik}0≤k≤L+1, {εk}1≤k≤L+1, and positive ma-
trices {Pk}1≤k≤L+1 satisfying the following recursive matrix
inequalities:



Πk = Π0
k + L T

k Pk+1Lk + M T
k Pk+1Mk

+

N∑
i=1

(N iT
k Pk+1N

i
k + RiT

k Pk+1R
i
k) ≤ 0,(16a)

N∑
i=1

ᾱiN T
i KT

k Pk+1KkNi − δmk ≤ 0, (16b)

Pk+1 − εk+1INn ≤ 0 (16c)

for all 0 ≤ k ≤ L with initial condition

E{eT0 P0e0}+ µ0 + ν0 ≤ γ2E{eT0 We0} (17)

where

Π0
k =


Π01

k ∗ ∗ ∗ ∗
Π03

k Π02
k ∗ ∗ ∗

0 0 ν̃k ∗ ∗
0 0 0 −γ2Ip ∗
0 0 0 0 −λkINn

 ,

Lk = [0, 0, 0,Bk − ᾱKkDk, 0],

Ri
k = [0, 0, 0,−σiKkNiDk, 0],

Mk = [Āk − ᾱKkC̄k,−H̄ x̂k,−(INn − ᾱ)Kkyk−1, 0, H̄ ],

N i
k = [−σiKkNiC̄k,−σiKkNiC̄kx̂k, σiKkNiyk−1, 0, 0],

Π01
k =

1

N
MT

kMk − Pk + εk+1Θak + δnkΘck,

δnk = diagN{δikIn}, µ̃k = µk+1 − µk, ν̃k = νk+1 − νk,

Π02
k = µ̃k + λkx̂

T
k θkx̂k + εk+1x̂

T
kΘakx̂k

+ x̂T
k δnkΘckx̂k,

Π03
k = εk+1x̂

T
kΘ

T
ak + δnkx̂

T
kΘ

T
ck, Θak = IN ⊗ Θ̂ak,

Θck = diagN{Θ̂i
ck}, Θ̂ak =

n∑
i=1

Tai,k ,

Θ̂i
ck =

m∑
j=1

T i
cj,k , µk =

µ0√
k + 1

, νk =
ν0√
k + 1

(18)
with µ0 and ν0 being given positive scalars. Here, Tai,k ∈
Rn×n and T i

cj,k ∈ Rn×n are two symmetric matrices with the
(r, s)-th entries Tak

ira
k
is

and Tci,kjr ci,kjs
, respectively.

Proof: First, we define a positive real-value function Jk =
eTkPkek +µk + νk. By noticing the uncorrelatedness between
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γi
k, Ak, Ci

k and ωk, we have from (10) that

Jk , E{Jk+1 − Jk}
= E{(Akek + Âkx̂k + Kkyk−1 + Bkωk + H̄ ρk)

TPk+1

× (Akek + Âkx̂k + Kkyk−1 + Bkωk + H̄ ρk)

− eTkPkek + µ̃k + ν̃k}

= E{eTk A T
k Pk+1Akek + x̂T

k Â T
k Pk+1Âkx̂k + yTk−1K

T
k

× Pk+1Kkyk−1 + ωT
k BT

k Pk+1Bkωk

+ ρTk H̄ T
k Pk+1H̄kρk + 2eTk A T

k Pk+1Âkx̂k

+ 2eTk A T
k Pk+1Kkyk−1 + 2eTk A T

k Pk+1H̄kρk

+ 2x̂T
k Â T

k Pk+1Kkyk−1 + 2x̂T
k Â T

k Pk+1H̄kρk

+ 2yTk−1K
T
k Pk+1H̄kρk − eTkPkek + µ̃k + ν̃k}

= E{eTk [ĀT
kPk+1Āk + (ᾱKkC̄k)TPk+1(ᾱKkC̄k)

+ ΦT
1kPk+1Φ1k − 2ĀT

kPk+1ᾱKkC̄k − Pk]ek

+ x̂T
k [Φ

T
1kPk+1Φ1k + H̄ TPk+1H̄ ]x̂k + yTk−1[Φ

T
2kPk+1

× Φ2k + ((INn − ᾱ)Kk)
TPk+1(INn − ᾱ)Kk]yk−1

+ ωT
k [(Bk − ᾱKkDk)

TPk+1(Bk − ᾱKkDk)

+DT
k Φ

T
2kPk+1Φ2kDk]ωk + ρTk H̄ TPk+1H̄ ρk

+ 2eTk [−(Āk − ᾱKkC̄k)TPk+1H̄ +ΦT
1kPk+1Φ1k]x̂k

+ 2eTk [−(Āk − ᾱKkC̄k)TPk+1(INn − ᾱ)Kk

− Φ1T
1kPk+1Φ2k]yk−1 + 2eTk (Āk − ᾱKkC̄k)TPk+1H̄ ρk

+ 2x̂T
k [H̄

TPk+1(INn − ᾱ)Kk − ΦT
1kPk+1Φ2k]yk−1

− 2x̂T
k H̄ TPk+1H̄ ρk − 2yTk−1KT

k (INn − ᾱ)TPk+1H̄ ρk

+ (ek + x̂k)
T ÃT

kPk+1Ãk(ek + x̂k) + µ̃k + ν̃k}
(19)

where Φ1k = Φ1
1k+Φ2

1k, Φ2k =
∑N

i=1(γ
i
k− ᾱi)KkNi,Φ

1
1k =∑N

i=1(γ
i
k − ᾱi)KkNiC̄k, and Φ2

1k =
∑N

i=1 γ
i
kKkNiC̃k.

Next, by applying the property of matrix covariance, we
obtain from (3) and (16c) that

E{(ek + x̂k)
T ÃT

kPk+1Ãk(ek + x̂k)}
≤ εk+1E{(ek + x̂k)

T ÃT
k Ãk(ek + x̂k)} (20)

= εk+1(ek + x̂k)
TΘak(ek + x̂k).

On the other hand, it can infer from the definitions of Φ1(k),
Φ2(k) and (16b) that

E{ΦT
1kPk+1Φ1k}

=E{Φ1T
1kPk+1Φ

1
1k +Φ2T

1kPk+1Φ
2
1k}

=
N∑
i=1

σ2
i C̄T

k N T
i KT

k Pk+1KkNiC̄k

+ E
{ N∑

i=1

ᾱiC̃T
k N T

i KT
k Pk+1KkNiC̃k

}
≤

N∑
i=1

σ2
i C̄T

k N T
i KT

k Pk+1KkNiC̄k + δnkΘck,

(21)

E{ΦT
1kPk+1Φ2k} = E{Φ1T

1kPk+1Φ2k}

=
N∑
i=1

σ2
i C̄T

k N T
i KT

k Pk+1KkNi,
(22)

E{ΦT
2kPk+1Φ2k} =

N∑
i=1

σ2
iN T

i KT
k Pk+1KkNi. (23)

Consequently, based on (20)-(23), adding the zero term

1

N
E{∥z̃k∥2}−γ2E{∥ωk∥2}−

(
1

N
E{∥z̃k∥2} − γ2E{∥ωk∥2}

)
to the right-hand side of (19) leads to

Jk ≤ E
{
ξTk Π̄kξk

}
− E

{
1

N
∥z̃k∥2 − γ2∥ωk∥2

}
(24)

where

ξk = [eTk 1 1 ωT
k ρTk ]

T , Π̄k = Π̄0
k + Π̄1

k,

Π̄0
k = Π0

k − diag{0, λkx̂
T
k θkx̂k, 0, 0,−λkINn},

Π̄1
k = L T

k Pk+1Lk + M T
k Pk+1Mk

+
N∑
i=1

N iT
k Pk+1N

i
k +

N∑
i=1

RiT
k Pk+1R

i
k.

(25)

Meanwhile, by considering the event-triggering condition (4),
one obtains that

ρTk ρk − x̂T
k θkx̂k ≤ 0. (26)

Thus, according to Lemma 1, it can be readily seen from (24)
that

Jk ≤ E{ξTk Π̄kξk − λk(ρ
T
k ρk − x̂T

k θkx̂k)}

− E
{

1

N
∥z̃k∥2 − γ2∥ωk∥2

}
= E{ξTk Πkξk} − E

{
1

N
∥z̃k∥2 − γ2∥ωk∥2

}
.

(27)

It follows from (16a) and (27) that

E{Jk+1} − E{Jk}+ E
{

1

N
∥z̃k∥2 − γ2∥ωk∥2

}
≤ 0. (28)

Subsequently, summing up (28) from 0 to L with respect to
k yields

1

N

L∑
k=0

E{∥z̃k∥2} ≤
L∑

k=0

γ2E{∥ωk∥2}+E{eT0 P0e0}+µ0+ν0.

(29)
The H∞ performance is satisfied for (10) by substituting

(17) into (29), and the proof of this theorem is now complete.

B. Variance Analysis

Having discussed the H∞ performance analysis for the
addressed filtering error system (10), we will now focus our
attention on the variance analysis.

Theorem 2: Consider system (1) and let the filter parameter
in (6) be given. We have X̄k ≤ Qk for 1 ≤ k ≤ L+1, if there
exists a family of positive definite matrices {Qk}1≤k≤L+1

satisfying the following matrix inequalities:

Ψ(Qk) ≤ Qk+1 (30)
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with initial condition Q0 = X̄0. Here

Ψ(Qk) = 4Ok + 4Pk + 4Sk + 4Tk + 4Qk

+ 4Uk + 4Vk + 4H̄ x̂kx̂
T
k H̄ T

+ 4(INn − ᾱ)Kkyk−1y
T
k−1((INn − ᾱ)

×Kk)
T + 4Rk + Wk + 4ΞkH̄ H̄ T

(31)

where

Ok = (Āk − ᾱKkC̄k)Qk(Āk − ᾱKkC̄k)T ,

Pk =
N∑
i=1

σ2
i (KkNiC̄k)Qk(KkNiC̄k)T ,

Qk =
N∑
i=1

σ2
i (KkNiC̄k)x̂kx̂

T
k (KkNiC̄k)T ,

Rk =
N∑
i=1

σ2
i (KkNi)yk−1y

T
k−1(KkNi)

T ,

Sk = ηkKkΘ⃗ckKT
k , Vk = βkKkΘ⃗ckKT

k ,

Wk = (Bk − ᾱKkDk)Sk(Bk − ᾱKkDk)
T

+
N∑
i=1

σ2
i (KkNiDk)Sk(KkNiDk)

T ,

[Tk][r,s] = T
(r,s)
k = E{ÃkQ

(r,s)
k ÃT

k },
[Uk][r,s] = U

(r,s)
k = E{Ãk(x̂kx̂

T
k )

(r,s)ÃT
k },

[T
(r,s)
k ][l,m] =

n∑
i,j=1

Tak
li·a

k
mj

eTinē
T
rnQkēsnejn,

[U
(r,s)
k ][l,m] =

n∑
i,j=1

Tak
li·a

k
mj

eTinē
T
rnx̂kx̂

T
k ēsnejn,

Ξk = x̂T
k θkx̂k, ηk = λmax{Qk},

βk = λmax{x̂kx̂
T
k }, Θ⃗ck = diagN{ᾱiΘ⃗i

ck}

and Q
(r,s)
k (r, s = 1, · · · , N) is the (r, s)-th block element of

matrix Qk, Θ⃗i
ck =

∑n
j=1 T⃗ci,kj

. T⃗ci,kj
∈ Rm×m is a symmetric

matrix with the (s, t)-th entry Tci,ksj ci,ktj
.

Proof: Noticing the filtering error system (10), the corre-
sponding evolution of X̄k is governed by

X̄k+1 = E{ek+1e
T
k+1}

= E{(Akek + Âkx̂k + Kkyk−1 + Bkωk + H̄ ρk)

× (Akek + Âkx̂k + Kkyk−1 + Bkωk + H̄ ρk)
T }

=E{Akeke
T
k A T

k + Âkx̂kx̂
T
k Â T

k + Kkyk−1y
T
k−1K

T
k

+ BkSkB
T
k + H̄ ρkρ

T
k H̄ T + Akekx̂

T
k Â T

k

+ Âkx̂ke
T
k A T

k + Akeky
T
k−1K

T
k + Kkyk−1e

T
k A T

k

+ Akekρ
T
k H̄ T + H̄ ρke

T
k A T

k + Âkx̂ky
T
k−1K

T
k

+ Kkyk−1x̂
T
k Â T

k + Âkx̂kρ
T
k H̄ T + H̄ ρkx̂

T
k Â T

k

+ Kkyk−1ρ
T
k H̄ T + H̄ ρky

T
k−1K

T
k }.

(32)
Then, substituting (11) into (32) and applying the property of
conditional expectation as well as the elementary inequality,

one has

X̄k+1 ≤ E{Akeke
T
k A T

k + Âkx̂kx̂
T
k Â T

k + Kkyk−1y
T
k−1K

T
k

+ BkSkB
T
k + H̄ ρkρ

T
k H̄ T + Âkx̂kx̂

T
k Â T

k

+ Akeke
T
k A T

k + Kkyk−1y
T
k−1K

T
k + Akeke

T
k A T

k

+ H̄ ρkρ
T
k H̄ T + Akeke

T
k A T

k + Âkx̂kx̂
T
k A T

k

+ Kkyk−1y
T
k−1K

T
k + Âkx̂kx̂

T
k Â T

k + H̄ ρkρ
T
k H̄ T

+ Kkyk−1y
T
k−1K

T
k + H̄ ρkρ

T
k H̄ T }

= E{4Akeke
T
k A T

k + 4Âkx̂kx̂
T
k Â T

k + 4Kkyk−1y
T
k−1

× K T
k + BkSkB

T
k + 4H̄ ρkρ

T
k H̄ T }

= 4Õk + 4P̃k + 4E{S̄k}+ 4E{T̄k}+ 4Qk

+ 4E{Ūk}+ 4E{V̄k}+ 4H̄ x̂kx̂
T
k H̄ T + 4Rk

+ 4(INn − ᾱ)Kkyk−1y
T
k−1((INn − ᾱ)Kk)

T

+ Wk + 4H̄ ρkρ
T
k H̄ T

(33)
where

Õk = (Āk − ᾱKkC̄k)X̄k(Āk − ᾱKkC̄k)T ,

P̃k =

N∑
i=1

σ2
i (KkNiC̄k)X̄k(KkNiC̄k)T ,

S̄k =
N∑
i=1

ᾱi(KkNiC̃k)X̄k(KkNiC̃k)T ,

T̄k = ÃkX̄kÃT
k , Ūk = Ãkx̂kx̂

T
k ÃT

k ,

V̄k =
N∑
i=1

ᾱi(KkNiC̃k)x̂kx̂
T
k (KkNiC̃k)T .

(34)

Furthermore, by some straightforward computations, it follows
from the statistical properties of the random matrices in (3)
that

E{T̄k} = T̃k, [T̃k][r,s] = T̃
(r,s)
k = E{ÃX̄(r,s)

k ÃT },

[T̃
(r,s)
k ][l,m] =

n∑
i,j=1

Tak
li·a

k
mj

eTinē
T
rnX̄kēsnejn,

E{Ūk} = Uk, [Uk][r,s] = U
(r,s)
k = E{Ã(x̂kx̂

T
k )

(r,s)ÃT },

[U
(r,s)
k ][l,m] =

n∑
i,j=1

Tak
li·a

k
mj

eTinē
T
rn(x̂kx̂

T
k )ēsnejn.

(35)
On the other hand, by using the properties of matrix

operations, one can infer from the inequality (26) that the
following inequality can always be guaranteed:

ρkρ
T
k ≤ ΞkINn (36)

where Ξk = x̂T
k θkx̂k.

Based on the above discussions, it can be found from (33)-
(36) that

X̄k+1 ≤ 4Õk + 4P̃k + 4E{S̄k}+ 4T̃k + 4Qk

+ 4Uk + 4E{V̄k}+ 4H̄ x̂kx̂
T
k H̄ T

+ 4(INn − ᾱ)Kkyk−1y
T
k−1((INn − ᾱ)Kk)

T

+ 4Rk + Wk + 4ΞkH̄ H̄ T

= Ψ̄(X̄k).

(37)
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Now we are ready to deal with the rest of the proof by
induction. First, it is obvious that X̄0 ≤ Q0. Then, assuming
X̄k ≤ Qk, it is not difficult to show that

E{S̄k} = E
{ N∑

i=1

ᾱi(KkNiC̃k)X̄k(KkNiC̃k)T
}

≤ E
{ N∑

i=1

ᾱi(KkNiC̃k)Qk(KkNiC̃k)T
}

≤ ηkE
{ N∑

i=1

ᾱi(KkNiC̃k)(KkNiC̃k)T
}

=Sk,

(38)

E{V̄k} = E
{ N∑

i=1

ᾱi(KkNiC̃k)x̂kx̂
T
k (KkNiC̃k)T

}

≤ βkE
{ N∑

i=1

ᾱi(KkNiC̃k)(KkNiC̃k)T
}

=Vk.

(39)

Accordingly, it can be readily concluded that

X̄k+1 ≤ Ψ̄(X̄k) ≤ Ψ(Qk) ≤ Qk+1,

which completes the proof.
Remark 3: It should be pointed out that, from (31), we can

see that H̄ H̄ T ≥ 0 in Ψ(Qk), and therefore the upper bound
of error covariance increases as Ξk increases. In other words,
the upper bound will increase as the threshold θk increases.
In practical engineering, the event-triggering strategy reveals
that the larger triggering threshold would lead to fewer data
transmitted over the networks. Consequently, the threshold
θk serves as an important factor on the tradeoff between
the filtering performance and data transmission rate over the
networks.

After establishing the analysis results for the addressed
problem, we now proceed to present the design scheme of
the finite-horizon distributed H∞ filter for the discrete time-
varying system (1).

For later presentation convenience, here Θ∗
ak and Θ⃗∗

ck are
denoted, respectively, as the factorizations of Θak and Θ⃗ck,
i.e.

Θak = Θ∗T
akΘ

∗
ak, Θ⃗ck = Θ⃗∗T

ck Θ⃗
∗
ck.

Theorem 3: Let the disturbance attenuation level γ > 0,
initial positive definite matrix W = WT > 0 and a series of
prespecified variance upper bounds {Σk}0≤k≤L+1 be given.
The filtering error system (10) satisfies the H∞ performance
(R1) and the error variance constraint requirement (R2) si-
multaneously if there exist successions of positive definite
matrices {ℵk}1≤k≤L+1, {Qk}1≤k≤L+1, a set of matrices
{Kk}0≤k≤L = diagN{Ki

k}0≤k≤L and some families of posi-
tive scalars {λk}0≤k≤L, {ε̄k = ε−1

k }1≤k≤L+1 under the initial
condition (17) and Q0 ≤ Σ0, such that the following recursive

linear matrix inequalities (LMIs):

Π̃k =

 Π̃11 ∗ ∗
Π̃21 Π̃22 ∗
Π̃31 0 Π̃33

 ≤ 0, (40a)

Π̂k =

 Π̂11 ∗ ∗
Π̂21 Π̂22 ∗
Π̂31 0 Π̂33

 ≤ 0, (40b)

[
−δikIm ∗√
ᾱiK

i
k −ēTinℵk+1ēin

]
≤ 0, i = 1, · · ·, N,(40c)

ε̄k+1I ≤ ℵk+1, (40d)
Qk+1 − Σk+1 ≤ 0 (40e)

are satisfied for all 0 ≤ k ≤ L. Moreover, the parameters are
updated by

Pk+1 = ℵ−1
k+1 (41)

where

Π̃11 =

[
∆1

11k ∗
∆2

11k ∆3
11k

]
,

∆1
11k = diag{Π̃01

k , Π̃02
k , ν̃k,−γ2Ip,−λkINn},

∆2
11k = [G T

k L T
k M T

k ]T ,

∆3
11k = − diag{ε̄k+1INn,ℵk+1,ℵk+1},

Π̃01
k =

1

N
MT

kMk −Pk, Π̃02
k = µ̃k + λkx̂

T
k θkx̂k,

Gk = [Θ∗
ak,Θ

∗
akx̂k, 0, 0, 0], Π̃21 = [Ñ T

k R̃T
k ]

T ,

Ñk = [N̄k 0], N̄k = vecTN{N iT
k }, R̃k = [R̄k 0],

R̄k = vecTN{RTi
k }, Π̃22 = −diag{ℵ̄k+1, ℵ̄k+1},

Π̃31 = [δnkΘ
∗
ck, δnkΘ

∗
ckx̂k, 0, 0, 0], Π̃33 = −δnk,

ℵ̄k+1 = IN ⊗ ℵk+1, ℵ̃k+1 = INnm2 ⊗ ℵk+1,

Π̂11 =

[
Υ1

11k ∗
Υ2

11k Υ3
11k

]
,

Υ1
11k = −Qk+1 + 4Tk + 4Uk, Υ2

11k = [Υ21
11k · · ·Υ24

11k]
T ,

Υ3
11k = − 1

4
diag{Qk, 1, 1, INn, 4Sk, 4IN ⊗ Sk},

Υ21
11k = (Āk − ᾱKkC̄k)Qk,

Υ22
11k = [H̄ x̂k, (INn − ᾱ)Kkyk−1,

√
ΞkH̄ ],

Υ23
11k = Bk − ᾱKkDk, Υ24

11k = vecN{σiKkNiDkSk},
Π̂21 = [Υ1T

21k Υ2T
21k Υ3T

21k]
T , Υ1

21k = [Ῡ1
21k 0],

Ῡ1
21k = vecTN{σiKkNiC̄kQk}, Υ2

21k = [Ῡ2
21k 0],

Ῡ2
21k = vecTN{σiKkNiC̄kx̂k}, Υ3

21k = [Ῡ3
21k 0],

Ῡ3
21k = vecTN{σiKkNiyk−1}, Π̂22 = −1

4
diag{Qk, IN , IN},

Π̂31 = [Υ1T
31k Υ2T

31k]
T , Qk = IN ⊗Qk,

Υ1
31k = [

√
ηkΘ⃗

∗T
ck KT

k 0], Υ2
31k = [

√
βkΘ⃗

∗T
ck KT

k 0],

Π̂33 = − 1

4
diag{INm, INm}.

(42)
Proof: It follows from the Schur Complement Lemma

that (16a) can be guaranteed if (40a) is satisfied. Moreover,
we can see that inequality (40c) ensures that (16b) holds,
and (40d) is equivalent to (16c). Also, it can be easily
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concluded from (40b) that (30) is true, and the rest of the
proof follows directly from Theorem 1 and Theorem 2. To this
end, the performance constraints (R1) and (R2) are achieved
simultaneously and the proof of this theorem is complete.

Remark 4: In order to cope with the difficulty arising from
the time-varying parameters for H∞ filtering/control problem-
s, some up-to-date techniques have recently been developed
in the literature that include the differential/difference linear
matrix inequality (DLMI) and recursive linear matrix inequal-
ity (RLMI) methods, see e.g. [10], [34]. In this paper, based
on the RLMI approach, both the currently estimated states
and previously obtained measurements have been exploited to
obtain the filter parameters recursively, and therefore a better
filtering performance is expected since more information is
utilized.

Notice that the inequalities (40a)-(40c) in Theorem 3 are
linear with respect to all unknown variables, which can be
solved by the existing semi-definite programming method. In
the following, according to Theorem 3, we summarize the
event-based distributed H∞ filtering algorithm as follows:

Algorithm 1: Event-Based Distributed Recursive Filter De-
sign Algorithm.
Step 1. Given the H∞ performance index γ and the positive

definite matrix W . Let the initial values be generated randomly
according to the uniform distribution over [−0.2, 0.2]. Select
the initial values for matrices and scalars {P0, Q0, µ0, ν0}
which satisfy the initial conditions (17) and Q0 ≤ Σ0, then
set k = 0.
Step 2. Obtain the values of matrices and scalars

{ℵk+1, Qk+1, µk+1, νk+1}, the desired filter parameters Ki
k

for the time step k by solving the LMIs (40a)-(40c).
Step 3. Set k = k + 1 and obtain Pk+1 according to the

parameter update formula (41).
Step 4. If k = L, then stop, else go to Step 2.
Remark 5: In Theorem 3, sufficient conditions for the exis-

tence and the derivation of the desired filters are provided,
respectively. It is observed that all the system parameters,
the information about the network topology and the statistic
characteristics of the random sources (random parameters,
random noises and random occurrence of the missing mea-
surements) are reflected in the main results. The obtained
time-varying filters are capable of, at each sampling time
instant, guaranteeing prescribed variance upper bounds and
also achieving prespecified H∞ performance requirements.
Furthermore, the proposed event-based distributed filter design
algorithm is of a recursive form that would facilitate online
applications.

IV. NUMERICAL SIMULATION

In this section, a numerical example is provided to illus-
trate the effectiveness of the developed distributed recursive
filter design algorithm for the discrete time-varying stochas-
tic systems with random parameters and successive missing
measurements through sensor networks.

We consider the target plant as the model of (1), where
ωk is a zero-mean Gaussian white sequence with covariance
Sk = 1, and the other corresponding system parameters are

given as follows:

Ak = Āk + Ãk

=

[
0.25 + 0.02sin(k) 0.4

0.38 0.3

]
+ ζk

[
0.1 0
0 0.2

]
,

Bk =

[
0.05
0.05

]
, Mk =

[
0.4
−0.6

]
where ζk is a zero-mean scalar Gaussian white sequence with
variance 1.

The topology of the sensor network is reflected by a graph
G = (V ,E ,A ) with the set of nodes V = {1, 2, 3}, set of
edges E = {(1, 2), (2, 3), (3, 1)}, the adjacency elements with
regard to the edges of the graph are aij = 0.2. The dynamics
of each sensor node subject to successive missing measure-
ments is constructed as (2) with the following parameters:

C1
k = C̄1

k + C̃1
k = [0.92 0.93] + ς1k [0.1 0], D1

k = 0.2,

C2
k = C̄2

k + C̃2
k = [0.92 0.94] + ς2k [0.1 0], D2

k = 0.2,

C3
k = C̄3

k + C̃3
k = [0.91 0.95] + ς3k [0.1 0], D3

k = 0.2

where ςik(i = 1, 2, 3) are mutually independent zero mean
Gaussian white sequences with unity variances.

In this simulation, the missing probabilities for the three
sensor nodes at every sampling constant are taken, respective-
ly, as 0.15, 0.1 and 0.15, and therefore ᾱ1 = 0.85, ᾱ2 =
0.9, ᾱ3 = 0.85. The thresholds θik(i = 1, 2, 3) are all
chosen as 0.1. The H∞ performance index, positive matrix
W and {Σk}1≤k≤L+1 are given as γ = 0.5, diag6{20} and
diag6{0.1}, respectively. The parameters’ initial values are
chosen as P0 = diag6{0.3} and µ0 = ν0 = 0.5 to satisfy
conditions (17) and Q0 ≤ Σ0. By implementing Algorithm
1 and using Matlab (with the YALMIP 3.0), the LMIs in
Theorem 3 can be solved recursively and some of the desired
filter parameters are obtained as shown in Table I.

The corresponding simulation results are displayed in
Figs. 1-5, where Figs. 1-2 show the trajectories for the actual
states and their estimations, Figs. 3-4 depict the estimation
error variances and their upper bounds for the first and
second elements of the system state, respectively. Moreover,
the estimation error zik (i = 1, 2, 3) is plotted in Fig. 5.
From the above simulation results, we can clearly see that the
designed filters have a satisfactory performance as expected
and therefore the effectiveness of the proposed distributed
filtering algorithm in this paper is well confirmed.

V. CONCLUSION

In this paper, we have dealt with the event-based distributed
H∞ filtering problem for the discrete time-varying system
over a finite-horizon, where the stochastic noises, successive
missing measurements and random parameter matrices have
all been taken into account in order to better reflect the
practical situations. The successive missing measurement phe-
nomenon has been governed by a set of Bernoulli distributed
white sequences. The event-triggered mechanism has been
introduced in the process of filter analysis and design to ease
the heavy burden on the communication channels. By utilizing
the stochastic analysis techniques, some sufficient conditions
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have been obtained to guarantee both the H∞ performance
and variance constraint requirements. Moreover, by means of
the feasibility of a series of RLMIs, the filter parameters
have been explicitly expressed. A numerical simulation has
been carried out to demonstrate the validity of the proposed
filter design strategy. Further research topics would include the
investigation on the distributed filtering problem over sensor
networks subject to network-induced quantization effects [17],
[20], [43] as well as the extension of our main results to
the state estimation problems of neural networks [22], [24],
Boolean networks [4] and genetic regulatory networks [15].
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