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Abstract

The need for fast and strong image cryptosystems motivates researchers to develop new techniques to apply traditional
cryptographic primitives in order to exploit the intrinsicfeatures of digital images. One of the most popular and
mature technique is the use of complex dynamic phenomena, including chaotic orbits and quantum walks, to generate
the required key stream. In this paper, under the assumptionof plaintext attacks we investigate the security of a classic
diffusion mechanism (and of its variants) used as the core cryptographic primitive in some image cryptosystems based
on the aforementioned complex dynamic phenomena. We have theoretically found that regardless of the key schedule
process, the data complexity for recovering each element ofthe equivalent secret key from these diffusion mechanisms
is only O(1). The proposed analysis is validated by means of numerical examples. Some additional cryptographic
applications of our work are also discussed.
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1. Introduction

The recent years increase in the popularity of the internet and multimedia communication has resulted in the fast
development of information exchange and consumer electronics applications. However, it has also led to an increase
in the demand of secure and real-time transmission of these data. The easiest way to cope with this is to consider
the multimedia stream as a standard bit stream and apply traditional cryptographic approaches like 3DES [1] and
AES [2] with proper mode of operation. Yet, the desire for cryptosystems more efficient and specifically designed for
multimedia stream has drawn increasing research attentionin the past decade [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18]. A particular field of interest in this area is the development of strong and fast image cryptosystems.

Two major approaches can be identified in the literature for the design of image encryption algorithms. The first
one exploits some complex dynamic phenomena, such as chaotic behavior and quantum walks, as the image encryp-
tion algorithm core. Many schemes belonging to this approach are based on the permutation-diffusion architecture
depicted in Fig. 1, which was first proposed by Fridrich in [10]. The encryption process is based on the iteration of
permutation (i.e., image element transposition) and diffusion (i.e., value modification) operations. Almost all works
proposing an extension of Fridrich’s work can be categorized into the following two classes:

1. Developing novel permutation techniques. In Fridrich’soriginal design, permutation is implemented by iter-
ating a 2D discretized chaotic map like Baker or Cat map. Chenet al. suggested using 3D chaotic map to
de-correlate the relationship among pixels in a more efficient way [11, 12]. In [19], Wonget al. proposed an
“add-and-then-shift” strategy to include certain amount of diffusion effect into permutation, thus reducing the
overall number of iteration rounds, and improving the efficiency. For the same purpose, Zhuet al. suggested
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carrying out permutation to bit-level instead of pixel-level [18, 17]. It is also worth mentioning that there are
permutation techniques based on general Gray code [20, 21],which can be considered as permutation carried
out at an arbitrary bit length.

2. Developing novel diffusion techniques. As illustrated by Fridrich in [10], the diffusion operation aims to spread
the information of plaintext to the whole ciphertext. This process can be formulated as

c(l) = p(l) ∔ G(c(l − 1), k(l)),

where∔ denotes the modulo addition,p(l), c(l) andk(l) denote thel-th plaintext element, ciphertext element
and element derived from the secret key, respectively. For security and efficiency considerations, the function
G should be both simple and nonlinear, a typical example is a chaos-based look-up table [22]. By taking
advantage of the low complexity and non-commutable properties between the bitwise exclusive or and the
modulo addition operation, which are popular in traditional crytosystems like IDEA and RC6, Chenet al. in
[11] suggested implementing diffusion according to the following formula

c(l) = (p(l) ∔ k(l)) ⊕ k(l) ⊕ c(l − 1),

where⊕ stands for bitwise exclusive or. Many other works adopt similar (or even the same) diffusion mech-
anisms, see [23, 24, 17, 16, 25, 14, 15, 26, 27, 28] for examples. It is not surprising that the computational
efficient modulo multiplication can also be incorporated into the diffusion stage [23, 29]. Moreover, recent
works suggested using real number arithmetic to enhance thesecurity level of the diffusion stage [15, 16] at the
cost of a reduced computational efficiency due to the employment of complicated arithmetic operations.

Figure 1: Schematic diagram of Fridrich’s permutation-diffusion architecture.

The second major approach in the design of image cryptosystem is based on optical technology schemes, which
are supposed to benefit from the intrinsic property of optic systems to process high dimensional complex data in
parallel. The most classic image cryptosystem based on optical technology is the double random phase encoding
(DRPE) method developed by Réfrégier and Javidi in [30]. Acomprehensive review on this topic can be found in [31].
Though the DRPE technique has several advantages, like highspeed, multidimensional processing and robustness,
the underlying arithmetic operation, which is matrix multiplication, is linear. From the cryptanalysis point of view,
linearity leads to a low security level. Thus the DRPE methodis vulnerable under various kinds of attack [32, 33, 34]
and the adoption of image cryptosystem based on optical technology for real application should be cautious.

In this paper we take into account the first approach only, i.e., that exploiting complex dynamic phenomena. In
particular, we investigate on some security-related aspects of these systems. Note that in any image cryptosytem,
security is a critical issue. In fact, due to the particular structure of digital image files (such as, for example, hori-
zontal/vertical correlation) many statistical analysis based methods may reduce the security. Typical statistical tests
include histogram analysis, correlation analysis, entropy analysis [35], sensitivity analysis [11] and randomness anal-
ysis [36].

In recent years, a lot of image ciphers employing complex dynamic phenomena and fulfilling all the aforemen-
tioned statistical tests requirements, have been proposedbut afterwards found to be insecure under various attack
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models [37, 38, 39, 40, 41, 29, 42]. For example, the equivalent key stream used for permutation of Fridrich’s design
can be retrieved in chosen-plaintext (CP) attack scenario [42] and a chaos-based image cipher with Feistel structure is
insecure with respect to differential attack when the round number is smaller than 5 [43].Note that in the literature,
the cryptanalysis of these image ciphers is usually performed case-by-case, since any cryptanalytic method is usually
effective only on a particular image cipher. Conversely, despite being more useful from a theoretical point of view,
only a few works provide security evaluation of some generalcryptographic components. In [44], Liet al. presented
a general quantitative study of permutation-only encryption algorithms against plaintext attacks. Their result was
further improved in [45] with respect to data and computation complexity. In [46, 47, 48], Chenet al. studied the
period distribution of the generalized discrete Cat map, which is a fundamental building block in many permutation
schemes.

In this paper we want to make a step further in the evaluation of generic cryptographic components for image
cryptosystem by studying the security of the differential equation of modulo addition (DEA) in the form (α∔k)⊕ (β∔
k) = y. This analysis is not completely new. In [38], it was reported that 3 pairs of chosen queries (α, β) are sufficient
to reveal the unknownk of the formula (α∔ k) ⊕ (β∔ k) = y. It is further reduced to 2 pairs of chosen (α, β) in [39].
As far as we know, these works must be considered as independent analyses of particular image ciphers [26, 25]. In
our previous work [41], it was reported that the diffusion mechanism suggested by Chenet al. [11] can be cast to the
form (α∔k)⊕ (β∔k) = y under CP attack and the similar method can be also used to analyze other DEA that includes
modulo multiplication operation.

In more detail, we take into account the three image cryptosystems proposed in [14], in [15] and in [16] as case
studies, all of them adopting Fridrich’s permutation-diffusion scheme, and we study the resistance against plain-
text attack of the adopted diffusion mechanisms by exploiting security results achieved by the aforementioned DEA
equation analysis. Specifically, we evaluate the data complexity (i.e., required number of pairs of (α, β)) for solving
(α∔ k) ⊕ (β ∔ k) = y and its extension in a known-plaintext (KP) attack scenario. The main difference between this
work and previous ones is that we assume thatα andβ cannot be freely chosen, as for example in [38, 39]. This
allows us to apply obtained results to the security analysisof the three aforementioned cryptosystem schemes. A full
analytic result is presented to derive a sufficient condition for solving the equation (α∔ k) ⊕ (β∔ k) = y; furthermore,
some design weakness of its variants are pointed out. Numerical simulation results are then provided to support our
analyses.

The innovative contribution of this paper is three-fold. First, we analyze the relationship between a class of popular
diffusion mechanisms and the DEA (α∔ k) ⊕ (β∔ k) = y by studying three example image ciphers [14, 15, 16]. It is
also worth mentioning that the similar DEA can be found in many other designs [23, 24, 17, 16, 25, 14, 15, 26, 27, 28]
so the application of our analyses is not limited to the threecase studies. Second, we analytically investigate the
sufficient condition to solve (α∔ k) ⊕ (β∔ k) = y and we also experimentally present a simple KP attack to a variant
of this DEA. The conclusion drawn from our result is that security is substantially lower than the desired one. Third,
we study the three encryption schemes [14, 15, 16] which combines the investigated diffusion mechanism and secret
random permutation. Their security is evaluated in detail.

The rest of this paper is organized as follows. Section 2 introduces the notations that is used in this paper and
the assumptions we work on. The three image cryptosystem case studies are reviewed in Sec. 3 and the differential
equations of modulo addition are derived in Sec. 4. Section 5presents security analyses and numerical results of the
equations derived above against KP attack. The applications of our results are discussed in Sec. 6 and conclusion
remarks are drawn in the last section.

2. Notations and main assumptions

In the following, we will use the notation{p(i, j)}H,Wi=1, j=1 and{p(k)}Lk=1 to represent the 2D and 1D format of a plain-

image of sizeL = H ×W (Height×Width). The 2D and 1D representations of the cipher-imageC are{c(i, j)}H,Wi=1, j=1

and{c(k)}Lk=1, respectively. We useai to denote thei-th bit of ann-bit integera (a ∈ Zn
2) and (an−1 · · ·a0)2 to denote the

binary form ofa. The default value ofn is 8 unless otherwise specified. The symbols ‘∔’, ‘ .
−’,‘ ⊕’, ‘ ∧’ and ‘‖’ denote

modulo2n addition, modulo2n subtraction, bitwise exclusive or(XOR), bitwise andandbitwise or, respectively.
We will useab to representa ∧ b and⌊x⌋ (⌈x⌉) to represent the largest (smallest) integer not greater (less) than the
real numberx. The cardinality of a setA is denoted by #A. With the termKS we will refer to all the key schedule
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operations of a specific algorithm, and useKS(S eed) to indicate the process generating all necessary key streams
given a secretS eedby theKS.

In order to correctly evaluate the security level of a diffusion mechanism either in known- or chosen-plaintext
attack scenario, we clarify here the power of the adversary.In the KP attack model, the adversary has access to
some plaintexts and their corresponding ciphertexts. In the CP attack model, we assume that the adversary can obtain
ciphertexts from any plaintext of his choice. In both scenarios, the goal of the attack is either to collect information
on the secret keyS eedor, equivalently, on the key stream(s)KS(S eed) generated fromS eed. Hereinafter, we will
consider only the problem of recoveringKS(S eed).

3. Image cryptosystems review

In this section, we briefly review the three cryptosystems for image encryption proposed in [14], in [15], and in
[16]. A detailed description of the three schemes can be found in the original works1. Here, we want to highlight
that, though the key schedule process of these schemes are different from the each other, all of the schemes share a
very similar diffusion mechanism in the encryption process. In the next section, we will exploit this to cast the three
diffusion mechanisms into the same general form and evaluate their cryptographic strength.

A. Parvin’s cryptosystem. The key schedule operation of the cipher proposed in [14] is based on two chaotic
functions and the encryption process is composed by a row/column circular permutation and a sequential pixel
diffusion.

1 Initialization: Generate three key streamsU = {u(i)}Hi=1, V = {v(i)}Wi=1 andK = {k(i)}Li=0 from KS(S eed), where
U, V andK are composed of random integers in interval [1,W], [1,H] and [0, 255], respectively.

2 Permutations: Carry out row circular permutation to the plain-imageP using

p′(i, ( j + u(i)) modW) = p(i, j), (1)

and denote the result byP′. Then permuteP′ further using the circular column permutation as follows

s((i + v( j)) modH, j) = p′(i, j). (2)

3 Diffusion: StretchS to a 1D sequence{s(l)}Ll=1 and calculate the pixel values of the cipher-image by the following
diffusion equation

c(l) = s(l) ⊕ (c(l − 1)∔ k(l)) ⊕ k(l), (3)

wherel ∈ [1, 2, · · · , L] andc(0) = k(0). Rearrange{c(l)}Ll=1 to a matrix of sizeH ×W to get the cipher-imageC.

B. Norouzi’s cryptosystem. The key schedule suggested in [15] is based on the hyper-chaotic system introduced in
[49]. The encryption process is composed by a single diffusion process, which can be viewed as the generalized
version of the previous diffusion scheme.

1 Initialization: Produce a key streamK = {k(i)}Li=0 by runningKS(S eed), wherek(i) is 8-bit integer in [0, 255].

2 Diffusion: Calculate the pixel values of the cipher-image sequentially by the following bidirectional diffusion
equation

c(l) = p(l) ⊕ (c(l − 1)∔ k(l)) ⊕ f (P, k(l)), (4)

wherel ∈ [1, 2, · · · , L], c(0) = k(0) and

f (P, k(l)) = ⌊(
∑L

i=l+1
p(i)) · k(l) · 108/2564⌋ mod 256. (5)

Rearrange{c(l)}Ll=1 to a matrix of sizeH ×W and denote it asC.

1For the sake of both clarity and uniformity, some notations and/or some operations may have been changed without affecting the security level
of the schemes.
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C. Yang’s cryptosystem. The key schedule of the image cryptosystem proposed in [16] is derived from the one-
dimensional two-particle discrete-time quantum random walks, which is totally different from those suggested in
[14, 15]. However, the encryption process, which is composed of a diffusion stage and a permutation stage, is an
extension of Norouzi’s work [15].

1 Initialization: Obtain the key streamsK = {k(i)}Li=0, U = {u(i)}Wi=1 andV = {v(i)}Hi=1 by running the key schedule
KS(S eed), whereK is composed of 8-bit integers in the interval [0, 255] andU andV are permutation of the
set{1, 2, · · · ,W} and{1, 2, · · · ,H}, respectively.

2 Diffusion: Run the bidirectional diffusion technique characterized by Eq. (4) to the plain-imagepixels as follows

p′(l) = p(l) ⊕ (p′(l − 1)∔ k(l)) ⊕ f (P, k(l)), (6)

wherel ∈ [1, 2, · · · , L], p′(0) = k(0) and f (P, k(l)) is defined by Eq. (5). Rearrange{p′(l)}Ll=1 to a matrix of size
H ×W and denote it asP′.

3 Permutations: Permute the intermediate resultP′ using the key streamsU andV and get the cipher-imageC,
i.e.,

s(i, u( j)) = p′(i, j), (7)

c(v(i), j) = s(i, j), (8)

wherei ∈ [1,H] and j ∈ [1,W].

4. Problem formulation

The cryptosystems shown in the previous section are based either on a single round permutation-diffusion archi-
tecture (Parvin’s and Yang’s cipher) or on a bidirectional diffusion stage (Norouzi’s cipher). In this paper, we focus
our attention on the security of the considered diffusion schemes in a plaintext attack. To this aim, we will neglect at
this moment all the effects of the permutation schemes in [14, 15, 16], that will be considered in Sec. 6 only, along
with the security of the whole cryptosystems. Mathematically, we assume that all elements of the key streamsU and
V used for permutation in Parvin’s cryptosystem are zeros, and thatU andV in Yang’s cryptosystem are both given by
the identity permutation. Note that a similar approach, with a general quantitative plaintext attack on permutation-only
ciphers can be found in [44].

In the diffusion mechanism proposed by Parvin we will show that the problem of finding the key streamK used in
the diffusion scheme with a KP attack is equivalent to solve the DEA (α ∔ k) ⊕ (β∔ k) = y, whereα, β, y are known
parameters andk is unknown. Note that the same DEA, under the assumption thatα andβ can be freely chosen,
have already been analyzed by other works, that are also briefly reviewed. We will also show that also the problem of
retrieving the key stream for diffusion in Norouzi and Yang’s design under CP attack scenario is equivalent to solve
this DEA. In addition, we will also investigate the securitylevel of the diffusion approach proposed by Norouzi and
Yang with respect to a KP attack.

4.1. Parvin’s diffusion scheme

In Parvin’s scheme, we assume that two plain-images,P1 andP2, and their corresponding cipher-images,C1 and
C2, are available. Referring to Eq. (3), we have






c1(l) = p1(l) ⊕ (c1(l − 1)∔ k(l)) ⊕ k(l)

c2(l) = p2(l) ⊕ (c2(l − 1)∔ k(l)) ⊕ k(l),

wherel ∈ [1, L]. Their difference can be calculated as

(c1(l − 1)∔ k(l)) ⊕ (c2(l − 1)∔ k(l)) = c1(l) ⊕ c2(l) ⊕ p1(l) ⊕ p2(l). (9)

More generally, we can recast this expression by observing that for any value ofl we have

(α∔ k) ⊕ (β∔ k) = y. (10)
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In the present context, the problem of finding the key stream{k(l)}Ll=1 of Parvin’s cryptosystem is turned into solving
Eq. (10) under some pairs of known parameters (α, β, y). Note thatk(0), and so the full stremK, can be easily
calculated according to Eq. (3) after{k(l)}Ll=1 are revealed.

It is already known that, under the assumption thatα andβ can be chosen freely,k can be determined by only two
groups of chosen queries by referring to the following

Theorem 1. [39, Proposition 3 and Corallary 3.1] Supposeα, β, k, y ∈ Zn
2 and n> 2, two groups of chosen queries

(α, β) and their corresponding y are sufficient to determine k of the following equation

(α∔ k) ⊕ (β∔ k) = y

in terms of modulo2n−1. Specifically the two chosen queries can be(α̂, β̂) = (
∑⌈n/2⌉−1

j=0 (00)2 ·4 j),
∑⌈n/2⌉−1

j=0 (10)2 ·4 j) and

(ᾱ, β̄) = (
∑⌈n/2⌉−1

j=0 (10)2 · 4 j,
∑⌈n/2⌉−1

j=0 (01)2 · 4 j).

The proof of Theorem 1 can be found in [38, 39], and an interpretation from the computational point of view
about this theorem can be found in [41]. It is worth mentioning that the most significant bit (MSB) ofk, i.e., kn−1,
cannot be determined even with additional queries of (α, β). This is intrinsic in the fact that the carry bit generated
by the highest bit plane is discarded after the modulo operation [41]. Consequently, bothk andk̂ = k ⊕ 2n−1 are two
equivalent solutions of the considered equation. For this reason, in the following we consider only the problem of
determining the (n− 1) least significant bits (LSBs) ofk in Eq. (10).

Note however that, by referring to Eq. (9), neither a KP nor a CP attack scenario allows us to choose the value of
α andβ since they represent ciphertext elements. In order get a result similar to that of Theorem 1 that can be applied
to the considered cryptosystems, we systematically analyze Eq. (10) in Sec. 5.1 under the assumption thatα andβ are
known to the attacker but cannot be freely chosen.

4.2. Norouzi and Yang’s diffusion scheme
In Norouzi’s and Yang’s cryptosystems, the diffusion stage is characterized by Eq. (4), where some computational-

intensive operations are added to the XOR and modulo addition. Regardless of their computational efficiency, we are
curious whether this new diffusion mechanism will improve the security of the resultant cryptosystem. Given a plain-
imageP1 = {p1(l)}Ll=1, we define the real number sequenceT1 = {t1(l)}Ll=1 as

t1(l) =
∑L

i=l+1
p1(i)/2564. (11)

Then, the diffusion scheme characterized by Eq. (4) can be written as

c1(l) = p1(l) ⊕ (c1(l − 1)∔ k(l)) ⊕ g(t1(l), k(l)), (12)

whereg(t1(l), k(l)) = ⌊t1(l) · (108 · k(l))⌋ mod 256. Under a CP attack scenario, an adversary can choose another plain-
imageP2, which differs fromP1 by a single pixel at locationl0. In this way the real number sequenceT2 = {t2(l)}Ll=1
associated toP2 satisfies

t2(l) = t1(l) if l ≥ l0.

Referring to Eq. (12), it is easy to observe that the difference betweenC1 andC2 at locationl0 will satisfy

c1(l0) ⊕ c2(l0) ⊕ p1(l0) ⊕ p2(l0) = (c1(l0 − 1)∔ k(l0)) ⊕ g(t1(l0), k(l0))

⊕(c2(l0 − 1)∔ k(l0)) ⊕ g(t2(l0), k(l0))

= (c1(l0 − 1)∔ k(l0)) ⊕ (c2(l0 − 1)∔ k(l0)),

which coincides exactly with Eq. (10). In conclusion, underthe CP attack scenario, the problem of finding the
equivalent secret key stream for diffusion of Norouzi and Yang’s designs is converted into solving Eq. (10) with some
pairs of known parameters (α, β, y).

Conversely, under the assumption of a KP attack scenario, wecan observe from Eq. (11) that the calculation of
the real number sequenceT is independent of the secret key (stream). Then, limiting ourselves to consider the plain
imageP1, we can recast Eq. (12) as

(α∔ k) ⊕ g(β, k) = y, (13)
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whereg(β, k) = ⌊β · (108 · k)⌋ mod 256 is a nonlinear function. The problem of determiningk for Eq. (13) from some
groups of known (α, β, y) is considered in Sec. 5.2. Here, special attention should be paid to the fact thatβ is no longer
8-bit integer but a non-negative real number.

5. Main results

5.1. Cryptographic strength of the equation(α∔ k) ⊕ (β∔ k) = y

According to Sec. 4.1, both KP and CP attacks to Parvins diffusion scheme are equivalent to solve Eq. (10) under
the assumption that the value ofα, β andy are known but none of them can be chosen. In the ideal case, thedata
complexity for to determinek should be 22n because there are 22n possible combinations ofα andβ in total. However,
we can theoretically show (and we will confirm this with simulation results) that the actual complexity substantially
deviates from the ideal one.

Let us assume that an adversary successfully collects a set of known triples (α, β, y) and denote this set by

G = {(α, β, y) | y = (α∔ k) ⊕ (β∔ k)}

with #G = g. The candidate solutions ofk givenG can be computed by means of a brute-force search according to
the following algorithm whose computational complexity isO(2n−1 · g).

• Step (1) Letl = 1 and the solution setKl = ∅.

• Step (2) Select thel-th element ofG and exhaustively test all the 2n−1 possible values ofk (the MSB ofk is
ignored here) to check whether it satisfies Eq. (10). Collectall the possible values ofk that meet the requirement
and denote them asKl .

• Step (3) Setl = l + 1 if l < g. Go to Step (2) and update the solution set byKl+1 = Kl+1 ∩Kl .

This algorithm ends up with a solution setKg which contains all the possible values ofk that are consistent with
the known parameter setG. Nevertheless, it is concluded that the computational complexity is O(2n−1 · g) steps.
Nevertheless, this algorithm has two shortcomings: 1) there is no hint on how to choose the correctk from Kg if
#Kg ≥ 2; 2) the efficiency is not satisfactory whenn is large. In the case of Parvin’s cryptosystem,n is fixed to 8,
and this makes this algorithm working pretty well. However,in the scheme proposed in [26, 25], wheren = 32,
this algorithm becomes inefficient. These two questions are solved on the basis of Theorem2, where the sufficient
condition to determine the bit plane ofk is given.

Theorem 2. Supposeα, β, k, y ∈ Zn
2 and n≥ 2. Givenα, β and y, the i least significant bits(0 ≤ i < n− 1) of k of the

following equation
(α∔ k) ⊕ (β∔ k) = y

can be solely determined if y=
∑i−1

j=0 2 j =

MS B←LS B
︷             ︸︸             ︷

(0 . . .0 1· · ·11
︸  ︷︷  ︸

i

) 2.

Proof. The proof of this theorem can be found in Appendix A.

For a given known parameter triple (α, β, y), Theorem 2 states that some least significant bits ofk can be confirmed
when consecutive ones are observed at the LSBs ofy. A more surprising inference drawn from Theorem 2 is that
Eq. (10) can be solved using only a single query (α, β) when the adversary obtains the oracle machine outputs (2n−1)
or (2n−1 − 1).

Furthermore, it is also easy to conclude that the result given by Theorem 1 is just a special case of that by
Theorem 2. In detail, for the two chosen queries used in Theorem 1, we have

ŷ‖ȳ = (α̂∔ k) ⊕ (β̂∔ k)‖(ᾱ∔ k) ⊕ (β̄∔ k)

= 2n − 1
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and we can also indicate other two groups of queries satisfying the requirements of Theorem 1, specifically ( ˜α, β̃) =
(
∑⌈n/2⌉−1

j=0 (10)2 · 4 j),
∑⌈n/2⌉−1

j=0 (00)2 · 4 j) and (α̌, β̌) = (
∑⌈n/2⌉−1

j=0 (00)2 · 4 j,
∑⌈n/2⌉−1

j=0 (01)2 · 4 j). Based on Theorem 2, we
propose the following efficient algorithm to get a candidate solution ofk from the known parameters setG, with
#G = g.

• Step (1) Generate parameter setsG j ⊆ G using the following rule

G j = {(α, β, y) | y = (α∔ k) ⊕ (β∔ k), y j = 1},

where j = 0 ∼ n− 2.

• Step (2) Leti = 0, c0 = 0 and set the default value ofk to a random number in [0, 2n − 1].

• Step (3) Refresh thei-th bit ki by look up Table 1 if #Gi , 0 and then calculateci+1 by Eq. (A.2).

• Step (4) Ifi < n− 2, increasei by 1. Go to Step (3) if #Gi , 0.

• Step (5) Calculatek using the equationk =
∑n−1

i=0 ki · 2i .

Table 1: The values ofki corresponding to the values ofαi , βi , ci , yi, andỹi+1.

(yi , ỹi+1)
(αi , βi , ci)

(0, 0, 0) (1, 0, 0) (0, 1, 0) (0, 0, 1) (1, 1, 0) (1, 0, 1) (0, 1, 1) (1, 1, 1)

(0, 0) 0, 1 0, 1 - 0, 1 0, 1 - 0, 1 0, 1
(0, 1) - - 0, 1 - - 0, 1 - -

(1, 0) 0 0 0 0 1 1 1 1
(1, 1) 1 1 1 1 0 0 0 0

The complexity of the above steps is mainly introduced by Step (1), which involves the exploration of all the first
(n− 1) bit planes ofy in G to obtainG j . It can be inferred that the computational complexity is only O((n− 1) · g),
which is much smaller than the complexity of the previous algorithm O(2n−1 · g). Besides, this algorithm generates
only a single possible candidatek, thus avoiding the problem of selectingk from its candidate set2 Kg. Without loss of
generality, assume that all the known parametersα, β andy are uniformly distributed in the interval [0, 2n−1]. Finally,
the probability that the firsti (0 ≤ i < n− 1) LSBs can be confirmed byG, denoted as Prob(k0∼i | G), is given as

Prob(k0∼i | G) =

(

1−

(

1
2

)g)i+1

.

Assumingn = 8 as in the three image cryptosystems studied in Sec. 3, we depict in Fig. 2 this probability with
respect to different values ofg. As we can observe from this figure, the probability is relative high for smalli when
g equals 3. This result is further verified by carrying out experiments to Parvin’s cryptosystem under the assumption
that the key streamsK is generated using the key schedule described in [14, Sec. 2]while we artificially setU and
V to zeros to fit our model proposed in Sec. 4.1. Then, we use 2 and4 known plain-images and their corresponding
cipher-images, i.e,g = 1 andg = 3, to recover the key streamK using the algorithm described above. The recovered
key stream is used to decrypt the cipher-image of “Baboon”, as shown in Fig. 3b), and the deciphered results are
shown respectively in Fig. 3c) and Fig. 3d).

2In fact, every element inKg contains the same number of correct bits ofk in average.
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Figure 2: The probability that the firsti LSBs ofk can be confirmed with respect to differentg.

a) b) c)

d)

Figure 3: Numerical tests on simplified Parvin’s cryptosystem: a) Plain-image “Baboon” of size 512×512; b) Encryp-
tion result of Fig 3a) using the modified Parvin’s cryptosystem; c) Recovery result using 2 pairs of known plain-images
and their corresponding cipher-images; d) Recovery resultusing 4 pairs of known plain-images and their correspond-
ing cipher-images.

5.2. Cryptographic strength of the equation(α∔ k) ⊕ g(β, k) = y

Accordingly to the results obtained in the previous section, the diffusion mechanism characterized by Eq. (10) is
weak with respect to both CP and KP attacks. Specifically, twogroups of chosen parameters are enough to uniquely
determinek, while a few groups of known parameters are sufficient to determinek with overwhelming probability.
The bidirectional diffusion scheme introduced in [15] and in [16], and defined by Eqs. (4) and (5), is suggested as a
workaround. The idea of the new design is that all the pixels located after the current one are used in the diffusion
process, with an avalanche effect (and so, an improvement) in the encryption of plain-images.

In the context of a CP attack scenario, thanks to the results shown in Sec. 4, the birectional diffusion scheme is
immediately proven to be weak, since Eq. (4) can be convertedto the form of Eq. (10). Considering that there are
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L pixels in an image, the data complexity (i.e., required number of plain-images and cipher-images) for breaking the
cipher in [15] is onlyO(L).

Furthermore, we can show that in the context of a KP attack scenario, the data complexity for breaking the cipher
in [15] is the same as above. Let us consider the equation

(α∔ k) ⊕ g(β, k) = y,

whereg(β, k) = ⌊β · (108 · k)⌋ mod 256,α, y, k ∈ [0, 255] andβ is a non-negative real number. Under the assumptions
of a KP attack, i.e., thatα, β andy are known to the adversary, we can show that the data complexity for revealing k is
only O(1). In other words, the inefficient bidirectional diffusion scheme actually does not improve the security level
of Eq. (10) with respect to KP attack.

We start our analysis from the trivial caseβ ≡ 0. Under this assumption, Eq. (13) is simplified to

y = α∔ k

sinceg(β, k) = ⌊β · (108 · k)⌋ mod 256≡ 0. Thus,k can be calculated ask = y .
− α. For the general caseβ > 0,

it is easy to observe that the value ofg(β, k) is sensitive to the changes ofk. In other words, givenα, β andy, the
result of (α ∔ k) ⊕ g(β, k) will be different fromy with an overwhelming probability even ifk slightly deviates from
its true value. For convenience, letG = {(α, β, y) | y = (α ∔ k) ⊕ g(β, k)} and assume #G = g = O(1). The following
procedures describe a method to determinek fromG by using this observation.

• Step (1) Letl = 1 and the solution setKl = ∅.

• Step (2) Select thel-th element ofG and exhaustively test all the 28 possible values ofk to check whether it
satisfies Eq. (13). Collect all the possible values ofk that meet the requirement and denote them asKl .

• Step (3) Go to Step (5) if #Kl = 1.

• Step (4) Setl = l + 1 if l < g. Go to Step (2) and update the solution set byKl+1 = Kl+1 ∩Kl .

• Step (5) Print the value of the single element ofKl if #Kl = 1. Otherwise output #Kl .

We verify the validity of this algorithm by carrying out experiments to Norouzi’s cryptosystem (that can be viewed
as the simplified version of Yang’s design). Three 512× 512 known plain-images with different statistical character-
istics are employed as our test images (Fig. 4a)-c)). These images are encrypted using Norouzi’s cryptosystem under
the secret key that was adopted in [15, Sec. 3]. Using the techniques illustrated in Sec. 4, we cast the relationship
between the plaintext pixels and ciphertext pixels to the form of Eq. (13). Then, we respectively use 1, 2 and 3 pairs
of plain-images and their corresponding cipher-images to retrieve the equivalent secret key streamK by the above
algorithm. The averagerecovery ratesof the proposed KP attack using different numbers of known plain-images are

a) b) c)

Figure 4: Three test images for recovering the equivalent key stream of Norouzi’s cryptosystem: a) “Lena”; b) CT
image; c) Mosaic image.
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Table 2: Average recovery rate using different numbers of known plain-images.

Number of known plain-images averagerecovery rate

1 66.6637%
2 99.8247%
3 100%

listed in Table 2. Here, therecovery rateis defined as

recovery rate=
number of correctly recovered elements of K

total number of elements in K
× 100%.

It can be observed that the averagerecovery rateraises as the number of known plain-images increase. Even the
number of known plain-images is only 1, the averagerecovery rateis close to 67%. When the number of known
plain-images is 3, therecovery rategrows to 100%. Furthermore, we utilize these recovered equivalent key streams
to decrypt an intercepted cipher-image and the result is shown in Fig. 5a)-c). From Fig. 5, it is concluded that
100%recovery rateof the key stream guarantees perfect reconstruction of the intercepted cipher-image, while a high
recovery rateof the key stream does not lead to good or acceptable visual quality. This phenomenon is attributable
to the bidirectional diffusion property of Eq. (12), where the error of a wrongly decrypted pixel will spread to all
successive decryption in a pseudo-random manner.

a) b) c)

Figure 5: Recovery results: a) Deciphered result using the key stream retrieved from Fig. 4a); b) Deciphered result
using the key stream retrieved from Fig. 4a) and b); c) Deciphered result using the key stream retrieved from Fig. 4a)-
c).

6. Cryptographic applications

Exploiting the security analyses of Eq. (10) and Eq. (13) shown above, this section presents plaintext attacks to the
full cryptosystems proposed in [14, 15, 16] and briefly discusses other security implications related to our analyses.

A. Cryptanalysis of Parvin’s cryptosystem

As described in Sec. 3, Parvin’s cryptosystem is composed ofcircular permutations and a single diffusion stage. To
apply our analysis result presented in Sec. 5.1, we need firstto recover the equivalent key streams used for row and
column circular permutation. The underlying strategy is tostudy the relationship between cipher-images produced
by some some bottom-line chosen plain-images whose elements are invariant with respect to row and column
permutations. Similar ideas are also employed to analyze other chaos-based cryptosystems [29, 37, 40]. Here, we
suppose that an image having fixed gray value is available anddenote it asP1 = {p1(i, j) ≡ 0}H,Wi=1, j=1. Then, we

setp1(1, 1) = 128 and keep all the other pixels unchanged and denote the modified image byP2 = {p2(i, j)}H,Wi=1, j=1.
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Figure 6a) and b) depict the cipher-images corresponding toP1 and P2, respectively. Here,H = W = 512 is
chosen. The difference of the two cipher-images is shown in Fig. 6c). Find thefirst pixel whose value is 128 and
denote its position by (i1, j1). Referring to Eqs. (1), (2) and (3), it can be concluded thatu(1) = (( j1−1) modH)+1
andv(1) = ((i1 − 1) modW) + 1. Repeat this test for all the diagonal pixels ofP1, U andV, the key streams for
row and column permutations, can be retrieved completely. Combining with the analysis presented in Sec. 5.1,
the data complexity of the CP attack isO(1)+max(H,W) with an overwhelming probability.

a) b) c)

Figure 6: Example test for recovering the equivalent permutation key streams of Parvin’s cryptosystem: a) The cipher-
image ofP1; b) The cipher-image ofP2; c) The difference between Figs. 6a) and b) using XOR operation.

B. Cryptanalysis of Norouzi’s and Yang’s cryptosystems

Applying the analysis presented in Sec. 5.2, it is readily toconclude that Norouzi’s cryptosystem can be compro-
mised in KP attack scenario at data complexityO(1). For Yang’s scheme, the remaining task is to recover the
remaining key streams used for permutation. By noting that Yang’s scheme is different from Parvin’s only by
the order of diffusion and permutation in the present context, we use the similar strategy to reveal the equivalent
permutation key streams of Yang’s cryptosystem. For example, to revealv(H) andu(W − 2), we employ three
chosen-imagesP1, P2 andP3 with the form

P1 = [0, 0, 0, · · · , 0, 0, 0, 1],

P2 = [0, 0, 0, · · · , 0, 0, 1, 0],

P3 = [0, 0, 0, · · · , 0, 1, 0, 0].

According to Eqs. (6), (7) and (8), their corresponding cipher-imagesC1, C2 andC3 satisfy the following two
conditions: 1) there are two distinct ciphertext elements betweenC1 andC2, 2) there are three distinct ciphertext
elements betweenC3 andC1 (or C2). ComparingC1, C2 andC3, the location ofc1(H,W − 2) can be identified.
Figure 7 sketches the rules involved in this procedure. Repeat this test to the last row and column ofP1, the
equivalent permutation key streamsU andV can be fully recovered at the data complexity3 O(H +W) under CP
attack.

C. Other cryptographic implications

Observing that the analysis with respect to the equation (α ∔ k) ⊕ g(β, k) = y involves exhaustive searching the
possible key space, an intuitive workaround for Norouzi’s and Yang’s cryptosystems is to group several pixels as
a single element to enlarge the real key space. For example, combine 15 pixels together will make the key space
grows to 2120 and frustrate the KP attack presented in Sec. 5.2. However, Norouzi’s and Yang’s cryptosystems can
be cast to the form of (α∔ k)⊕ (β∔ k) = y in CP attack scenario and cryptanalysis of this equation is regardless of
the bit length of the plaintext. It can be concluded that using composite pixel representation as a remedy is futile.

3The permutation for the last two pixels can be retrieved by brute force search.
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Figure 7: Illustration of the CP attack on Yang’s cryptosystem to recover the equivalent secret key used for permuta-
tion.

Regarding the widely usage of the diffusion equation (3) [10, 24, 50, 51, 11, 12, 27, 28], our analysis on the
equation (α ∔ k) ⊕ (β ∔ k) = y seems useful in evaluating security of other ciphers also based on this kind of
diffusion mechanism. The fact that the search space of the unknown k could be reduced from 22n to O(1) indicates
that a loophole exists in the corresponding crytosystems, and that it can be used to retrieve information about the
key. Even worse, this loophole cannot be fixed by choosing a largern. With this concern, we recommend using
some relative strong diffusion schemes with respect to KP and CP attacks, such as (k1 ∔ k2) ⊕ (k1 ∔ (k2 ⊕ β)) = y
[52].

7. Conclusion

Considering the three cryptosystems proposed in [14, 15, 16] as case studies, we have studied the security proper-
ties of equations (i) (α∔ k) ⊕ (β∔ k) = y and (ii) (α∔ k) ⊕ g(β, k) = y. The underlying theory of the key scheduling
process employed in these example crytosystems ranging from chaotic/hyper-chaotic function to quantum computa-
tion, which are regarded as having different characteristics. However, our analyses reveal that all the three ciphers are
very weak upon plaintext attacks. Specifically, the equivalent key streams used in these designs can be retrieved using
a small number of plain-images. We provide a sufficient condition to determine the unknownk of equation (i) under
the KP attack scenario. The relationship of our result and the existing ones under CP attack assumption [38, 39, 29] is
also investigated. The algorithms provided and the extensive numerical experiments confirm that both equation (i) and
(ii) can be solved using onlyO(1) known plaintexts. In this concern, it is readily to conclude that most image ciphers
based on a single round permutation-diffusion architecture are insecure with respect to plaintext attacks. Our work
can be extended to investigate diffusion equations involves more complex cryptographic primitives, such as modulo
multiplication [41].
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Appendix A. Proof of Theorem 2

Let us consider the equivalent form of Eq. (10), i.e.,

ỹ = (α∔ k) ⊕ (β∔ k) ⊕ α ⊕ β. (A.1)

Observe that the (i+1)-th bit of ỹ, i.e.,ỹi+1, can be calculated using only the previous bitsαi , βi , ki , ci , c̃i , (i ∈ [0, n−2])
by the following three equations






ỹi+1 = ci+1 ⊕ c̃i+1,

ci+1 = kiαi ⊕ kici ⊕ αici ,

c̃i+1 = kiβi ⊕ ki c̃i ⊕ βi c̃i ,

(A.2)
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Table A.3: The values of ˜yi+1 corresponding to the values ofαi , βi , ỹi, ki andci .

(ki , ci)
(αi , βi , ỹi)

(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)

(0, 0) 0 0 0 1 0 0 0 1
(0, 1) 0 0 1 0 1 1 0 1

(1, 0) 0 1 1 1 1 0 0 0
(1, 1) 0 1 0 0 0 1 0 0

Col(1) Col(2) Col(3) Col(4) Col(5) Col(6) Col(7) Col(8)

whereci is the carry bit at thei-th bit plane of (α∔ k) andc̃i = ỹi ⊕ ci . Table A.3 lists the values of ˜yi+1 that computed
from Eq. (A.2) under all the possible values ofαi , βi , ỹi , ki andci .

Table A.3 indicates thatki can be determined if (αi , βi , ỹi) falls in {Col(2), Col(3), Col(5), Col(8)}, i.e., yi =

ỹi ⊕ αi ⊕ βi = 1, andci is known. Based on this observation, the theorem can be proved by mathematical induction on
i (0 ≤ i ≤ n− 2). We first consider the case fori = 0. Sincec0 ≡ c̃0 ≡ 0, the condition

y0 = ỹ0 ⊕ α0 ⊕ β0

= c0 ⊕ c̃0 ⊕ α0 ⊕ β0

= α0 ⊕ β0

= 1

implies

ỹ1 = c1 ⊕ c̃1

= k0α0 ⊕ k0β0

= k0(α0 ⊕ β0)

= k0.

Hence the theorem is proved for the casei = 0. Assume that it is valid fori = m (m ≤ n − 3), i.e., all them least
significant bits ofk are confirmed wheny =

∑m−1
j=0 2m and thus all theci and c̃i can be derived by Eq. (A.2) for all

i ∈ [0,m+ 1]. Then, for the casei = m+ 1, the conditionym+1 = 1 implies that

ym+1 = cm+1 ⊕ c̃m+1 ⊕ αm+1 ⊕ βm+1 = 1

holds when referring to Eqs. (A.1) and (A.2). When computingym+2 by Eq. (A.2), we have

ỹm+2 = cm+2 ⊕ c̃m+2

= km+1αm+1 ⊕ km+1βm+1 ⊕ km+1cm+1 ⊕ km+1c̃m+1 ⊕ αm+1cm+1 ⊕ βm+1c̃m+1

= km+1(αm+1 ⊕ βm+1 ⊕ cm+1 ⊕ c̃m+1) ⊕ αm+1cm+1 ⊕ βm+1c̃m+1

= km+1 ⊕ αm+1cm+1 ⊕ βm+1c̃m+1.

Observing thatαm+1, βm+1 andỹm+2 are known parameters in our KP attack scenario,cm+1 andc̃m+1 are the result from
the previous induction step, we conclude that

km+1 = ỹm+2 ⊕ αm+1cm+1 ⊕ βm+1c̃m+1,

thus completing the mathematical induction and hence proving the theorem.
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