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Abstract

The need for fast and strong image cryptosystems motivasesirchers to develop new techniques to apply traditional
cryptographic primitives in order to exploit the intrindigatures of digital images. One of the most popular and
mature technique is the use of complex dynamic phenometiading chaotic orbits and quantum walks, to generate
the required key stream. In this paper, under the assumgtiglaintext attacks we investigate the security of a ctassi
diffusion mechanism (and of its variants) used as the core @sagthic primitive in some image cryptosystems based
on the aforementioned complex dynamic phenomena. We hawestically found that regardless of the key schedule
process, the data complexity for recovering each elemeheaquivalent secret key from thes&asion mechanisms

is only O(1). The proposed analysis is validated by means of numerieanples. Some additional cryptographic
applications of our work are also discussed.
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1. Introduction

The recent years increase in the popularity of the intemeétraultimedia communication has resulted in the fast
development of information exchange and consumer eldcs@pplications. However, it has also led to an increase
in the demand of secure and real-time transmission of thate dhe easiest way to cope with this is to consider
the multimedia stream as a standard bit stream and appliiorzal cryptographic approaches like 3DES [1] and
AES [2] with proper mode of operation. Yet, the desire forptosystems morefiecient and specifically designed for
multimedia stream has drawn increasing research atteintibwe past decadel[3,4,!5,6,7/ 8, 9,/10,(11,12, 113, 14, 15,
16,17/ 18]. A particular field of interest in this area is tlevelopment of strong and fast image cryptosystems.

Two major approaches can be identified in the literatureHerdesign of image encryption algorithms. The first
one exploits some complex dynamic phenomena, such as ctadtavior and quantum walks, as the image encryp-
tion algorithm core. Many schemes belonging to this apgr@ae based on the permutatiorffdsion architecture
depicted in FiglIl, which was first proposed by FridrichLin][10he encryption process is based on the iteration of
permutation (i.e., image element transposition) arifligiion (i.e., value modification) operations. Almost all ker
proposing an extension of Fridrich’s work can be categdrinéo the following two classes:

1. Developing novel permutation techniques. In Fridriabriginal design, permutation is implemented by iter-
ating a 2D discretized chaotic map like Baker or Cat map. Gitesl. suggested using 3D chaotic map to
de-correlate the relationship among pixels in a mdfieient way [11/ 12]. In[[19], Wonget al. proposed an
“add-and-then-shift” strategy to include certain amoundiffusion dfect into permutation, thus reducing the
overall number of iteration rounds, and improving tigogency. For the same purpose, Zbtal. suggested
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carrying out permutation to bit-level instead of pixel4éy18,/17]. It is also worth mentioning that there are
permutation techniques based on general Gray code [20wRidh can be considered as permutation carried
out at an arbitrary bit length.

2. Developing novel diusion techniques. As illustrated by Fridrichin[[10], th&aéion operation aims to spread
the information of plaintext to the whole ciphertext. Thi®pess can be formulated as

c(l) = p(1) + G(c(l - 1). k(1))

where+ denotes the modulo additiop(l), c(l) andk(l) denote thd-th plaintext element, ciphertext element
and element derived from the secret key, respectively. Eourity and #iciency considerations, the function
G should be both simple and nonlinear, a typical example isanslibased look-up table [22]. By taking
advantage of the low complexity and non-commutable prigsetietween the bitwise exclusive or and the
modulo addition operation, which are popular in traditiocrgtosystems like IDEA and RC6, Cheat al. in
[11] suggested implementingftlision according to the following formula

c(l) = (p() + kM) e k() @ c(l - 1),

where® stands for bitwise exclusive or. Many other works adopt lsim(or even the same) filiision mech-
anisms, see [23, 24,117,116, 25/ 14} 15,(26,/27, 28] for exaanptds not surprising that the computational
efficient modulo multiplication can also be incorporated irfte tifusion stage [23, 29]. Moreover, recent
works suggested using real number arithmetic to enhanceetheity level of the dfusion stage [15, 16] at the
cost of a reduced computationdlieiency due to the employment of complicated arithmetic afiens.
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Figure 1: Schematic diagram of Fridrich’s permutatiofitdiion architecture.

The second major approach in the design of image cryptanyistbased on optical technology schemes, which
are supposed to benefit from the intrinsic property of opfi&teams to process high dimensional complex data in
parallel. The most classic image cryptosystem based owabpchnology is the double random phase encoding
(DRPE) method developed by Réfrégier and Javidi in [30¢ofmprehensive review on this topic can be found.in [31].
Though the DRPE technigue has several advantages, likespiggd, multidimensional processing and robustness,
the underlying arithmetic operation, which is matrix mplitation, is linear. From the cryptanalysis point of view,
linearity leads to a low security level. Thus the DRPE metisodiinerable under various kinds of attacki[32,/33, 34]
and the adoption of image cryptosystem based on opticahtéaby for real application should be cautious.

In this paper we take into account the first approach only, that exploiting complex dynamic phenomena. In
particular, we investigate on some security-related aspafcthese systems. Note that in any image cryptosytem,
security is a critical issue. In fact, due to the particuklancture of digital image files (such as, for example, hori-
zontalvertical correlation) many statistical analysis basedhod$ may reduce the security. Typical statistical tests
include histogram analysis, correlation analysis, entaomalysis|[35], sensitivity analysis [11] and randomnesd-a
ysis [36].

In recent years, a lot of image ciphers employing complexadyic phenomena and fulfilling all the aforemen-
tioned statistical tests requirements, have been propasedfterwards found to be insecure under various attack
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models|[37, 38, 39, 40, 41,129,/142]. For example, the equivddey stream used for permutation of Fridrich’s design
can be retrieved in chosen-plaintext (CP) attack scend#ipgnd a chaos-based image cipher with Feistel structure is
insecure with respect toflierential attack when the round number is smaller than 5 [M8}e that in the literature,
the cryptanalysis of these image ciphers is usually perdroase-by-case, since any cryptanalytic method is usually
effective only on a particular image cipher. Conversely, dedpéing more useful from a theoretical point of view,
only a few works provide security evaluation of some genemngbtographic components. In [44], et al. presented

a general quantitative study of permutation-only encoptalgorithms against plaintext attacks. Their result was
further improved inl[45] with respect to data and computatomplexity. In [46, 47, 48], Cheat al. studied the
period distribution of the generalized discrete Cat mapchvis a fundamental building block in many permutation
schemes.

In this paper we want to make a step further in the evaluatfageaeric cryptographic components for image
cryptosystem by studying the security of th@eliential equation of modulo addition (DEA) in the form-{ k) & (6 -+
k) = y. This analysis is not completely new. In[38], it was repdtigat 3 pairs of chosen queries () are sifficient
to reveal the unknowhk of the formula ¢ + k) @ (8 + k) = y. Itis further reduced to 2 pairs of choseng) in [39].

As far as we know, these works must be considered as indepeawialyses of particular image ciphers|[26, 25]. In
our previous worki[41], it was reported that théfdsion mechanism suggested by Cle¢al. [11] can be cast to the
form (e + k)@ (8+k) = y under CP attack and the similar method can be also used tgzar@ther DEA that includes
modulo multiplication operation.

In more detail, we take into account the three image crytesys proposed in [14], in [15] and in [16] as case
studies, all of them adopting Fridrich’s permutatiofffaiion scheme, and we study the resistance against plain-
text attack of the adoptedftlision mechanisms by exploiting security results achiewethe aforementioned DEA
equation analysis. Specifically, we evaluate the data cexitgl(i.e., required number of pairs at,(3)) for solving
(e + k)@ (B + k) = y and its extension in a known-plaintext (KP) attack scendFiee main diference between this
work and previous ones is that we assume thanhdgs cannot be freely chosen, as for examplelin |38, 39]. This
allows us to apply obtained results to the security analyisise three aforementioned cryptosystem schemes. A full
analytic result is presented to derive d®uent condition for solving the equatioa (- k) ® (8 + k) = y; furthermore,
some design weakness of its variants are pointed out. Noalaimulation results are then provided to support our
analyses.

The innovative contribution of this paper is three-fold:sEiwe analyze the relationship between a class of popular
diffusion mechanisms and the DEA { k) @ (8 + k) = y by studying three example image ciphers [14, 15, 16]. Itis
also worth mentioning that the similar DEA can be found in ynather designs [23, 24, 17,16, 25| 14},(15,126, 277, 28]
so the application of our analyses is not limited to the thoase studies. Second, we analytically investigate the
sufficient condition to solved + k) @ (8 + k) = y and we also experimentally present a simple KP attack toiantar
of this DEA. The conclusion drawn from our result is that s@gus substantially lower than the desired one. Third,
we study the three encryption schemes [14/) 15, 16] which @oestihe investigated flusion mechanism and secret
random permutation. Their security is evaluated in detail.

The rest of this paper is organized as follows. Sedfion 2thices the notations that is used in this paper and
the assumptions we work on. The three image cryptosysteenstadies are reviewed in S&¢. 3 and thedéntial
equations of modulo addition are derived in $éc. 4. Se€lipreSents security analyses and numerical results of the
equations derived above against KP attack. The applicatdmour results are discussed in 9ec. 6 and conclusion
remarks are drawn in the last section.

2. Notationsand main assumptions

In the following, we will use the notatiofp(i, j)}in'\l'f’j=l and{p(k)}k:l to represent the 2D and 1D format of a plain-

image of sizel = H x W (Heightx Width). The 2D and 1D representations of the cipher-imagee{c(i, j)}"

i=1,j=1
and{c(k)}kzl, respectively. We usg to denote the-th bit of ann-bit integera (a € ZJ) and @n-1 - - - a)2 to denote the
binary form ofa. The default value ofi is 8 unless otherwise specified. The symbeéis* ~',*®’, * A’ and ‘|| denote

modulo2" addition modulo2" subtraction bitwise exclusive of{XOR), bitwise andand bitwise or, respectively.
We will useab to represena A b and|x] ([X]) to represent the largest (smallest) integer not greatss)lthan the
real numbeix. The cardinality of a se is denoted by & With the termKS we will refer to all the key schedule
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operations of a specific algorithm, and Us8(S eedl to indicate the process generating all necessary keynsgrea
given a secref eedoy theKS.

In order to correctly evaluate the security level of &usion mechanism either in known- or chosen-plaintext
attack scenario, we clarify here the power of the adversarnthe KP attack model, the adversary has access to
some plaintexts and their corresponding ciphertexts.érCR attack model, we assume that the adversary can obtain
ciphertexts from any plaintext of his choice. In both sc@srthe goal of the attack is either to collect information
on the secret ke eedor, equivalently, on the key stream(§5(S eed generated frons eed Hereinafter, we will
consider only the problem of recoverif@(S eed.

3. Image cryptosystemsreview

In this section, we briefly review the three cryptosystemdiftage encryption proposed in [14], in [15], and in
[16]. A detailed description of the three schemes can bedadnrthe original work3. Here, we want to highlight
that, though the key schedule process of these schemediarewti from the each other, all of the schemes share a
very similar ditusion mechanism in the encryption process. In the nextseatie will exploit this to cast the three
diffusion mechanisms into the same general form and evaluatetigtographic strength.

A. Parvin’s cryptosystem. The key schedule operation of the cipher proposed_ in [14]Jagset on two chaotic
functions and the encryption process is composed by #wodwmn circular permutation and a sequential pixel
diffusion.

1 Initialization: Generate three key streatds= {u(i)},, vV = {v(i)}}¥,; andK = {k(i)}i, from KS(S eed, where
U, V andK are composed of random integers in intervaMd, [1, H] and [Q, 255], respectively.

2 PermutationsCarry out row circular permutation to the plain-imagesing

p'(i, (j + u(i)) modW) = p(i, j), 1)
and denote the result By. Then permuté’ further using the circular column permutation as follows
S((i + v(j)) modH, j) = p'(i, ). (2)

3 Diffusion StretchStoa 1D sequenqes(l)}lel and calculate the pixel values of the cipher-image by tHeviohg
diffusion equation
c(l) = s(l) @ (c(l - 1)+ k(1)) @ k(I), 3)
wherel € [1,2,---, L] andc(0) = k(0). Rearrangt{ac(l)}lL:l to a matrix of sizeH x W to get the cipher-image.
B. Norouzi'scryptosystem. The key schedule suggestedlin/[15] is based on the hypeticlsgstem introduced in

[49]. The encryption process is composed by a singleision process, which can be viewed as the generalized
version of the previous ffusion scheme.

1 Initialization: Produce a key streak = {k(i)}iL=0 by runningK S(S eed, wherek(i) is 8-bit integer in [0255].

2 Diffusion Calculate the pixel values of the cipher-image sequéntisl the following bidirectional dfusion
equation
c(l) = p(h) & (c(I - 1)+ k(1)) & f(P. k1)), 4)

wherel €[1,2,---, L], ¢(0) = k(0) and
f(P.k(l)) = L(ZiL:nl p(@i)) - k(l) - 10°/256'| mod 256 (5)

Rearrangéc(l)}, to a matrix of sizeH x W and denote it a€.

1For the sake of both clarity and uniformity, some notationg/@a some operations may have been changed withedting the security level
of the schemes.
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C. Yang's cryptosystem. The key schedule of the image cryptosystem proposed In El@gfived from the one-
dimensional two-particle discrete-time quantum randortksyavhich is totally dfferent from those suggested in
[14,/15]. However, the encryption process, which is compade difusion stage and a permutation stage, is an
extension of Norouzi's work [15].

1 Initialization: Obtain the key streamt$ = {k(i)}-,, U = {u(i)}¥, andV = {v(i)}/*; by running the key schedule
KS(S eed, whereK is composed of 8-bit integers in the interva] 285] andU andV are permutation of the
set{1,2,--- ,W}and{L,2,---,H}, respectively.

2 Digiusion Run the bidirectional diusion technique characterized by Eq. (4) to the plain-inpaxggs as follows

P =pl)e (p'(l-1)+ kb)) & f(P.k(N), (6)
wherel € [1,2,---, L], p’(0) = k(0) andf (P, k(1)) is defined by EqL{5). Rearrangpf(l)}}:l to a matrix of size
H x W and denote it aB”.

3 Permutations Permute the intermediate res&t using the key streamd andV and get the cipher-imade,
ie.,

(i, u(j))
c(v(i), j)

{(9) (7)
s(i, 1) (8)

wherei € [1,H]and j € [1, W].

4. Problem formulation

The cryptosystems shown in the previous section are bateg ein a single round permutationfidision archi-
tecture (Parvin's and Yang’s cipher) or on a bidirectionéiiusion stage (Norouzi's cipher). In this paper, we focus
our attention on the security of the considereffiudion schemes in a plaintext attack. To this aim, we will aegt
this moment all the féects of the permutation schemeslin/[14, 115, 16], that will tvesadered in Se€l 6 only, along
with the security of the whole cryptosystems. Mathemdlijcale assume that all elements of the key streahend
V used for permutation in Parvin’s cryptosystem are zerastlaatU andV in Yang’s cryptosystem are both given by
the identity permutation. Note that a similar approachhwwigeneral quantitative plaintext attack on permutatioly-o
ciphers can be found in_[44].

In the difusion mechanism proposed by Parvin we will show that thelprolof finding the key stread used in
the difusion scheme with a KP attack is equivalent to solve the DA k) ® (8 + k) = y, wherea, 8,y are known
parameters anld is unknown. Note that the same DEA, under the assumptionattaatd8 can be freely chosen,
have already been analyzed by other works, that are alsiytmegiewed. We will also show that also the problem of
retrieving the key stream for filusion in Norouzi and Yang'’s design under CP attack scenagguivalent to solve
this DEA. In addition, we will also investigate the seculligyel of the difusion approach proposed by Norouzi and
Yang with respect to a KP attack.

4.1. Parvin's difusion scheme

In Parvin’s scheme, we assume that two plain-imaBesndP-, and their corresponding cipher-imag€s,and
C,, are available. Referring to EqJ(3), we have

{Cl(l) = p() & (cal - 1)+ k() @ k(1)
ca(l) = pa(1) @ (c2(1 - 1) + k(1)) @ k(1),

wherel € [1, L]. Their difference can be calculated as

(€l = 1)+ k() & (co(l = 1) + k(1)) = ca(l) @ ca(l) ® pa(l) & p2(l). 9)
More generally, we can recast this expression by obsertagfor any value of we have
(@e+Ke@B+K =Y. (20)
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In the present context, the problem of finding the key strﬂe(h)\}lL:l of Parvin’s cryptosystem is turned into solving
Eqg. (Z0) under some pairs of known parameterg(y). Note thatk(0), and so the full strenK, can be easily
calculated according to Ed.](3) aft{d::n(l)},L:l are revealed.

Itis already known that, under the assumption thahdg can be chosen freellg,can be determined by only two
groups of chosen queries by referring to the following

Theorem 1. [39, Proposition 3 and Corallary 3.1] Supposeg. k,y € ZJ and n> 2, two groups of chosen queries
(a, B) and their corresponding y are gicient to determine k of the following equation

(@e+ko@B+K=y
in terms of modul@™*. Specifically the two chosen queries car(®g) = (£]"g"(00)- 4)), 21" ~(10), - 41) and
(@.8) = ("7 (10 - 4, 2V (01) - 4)).

The proof of Theorem 1 can be found In[38, 39], and an intégbian from the computational point of view
about this theorem can be found in|[41]. Itis worth mentigntinat the most significant bit (MSB) d&f i.e., kn-1,
cannot be determined even with additional queries:oB). This is intrinsic in the fact that the carry bit generated
by the highest bit plane is discarded after the modulo ojmerfd1]. Consequently, botkandk = k® 2"* are two
equivalent solutions of the considered equation. For #éson, in the following we consider only the problem of
determining ther{ — 1) least significant bits (LSBs) d&fin Eq. (10).

Note however that, by referring to E@J (9), neither a KP noPaaftack scenario allows us to choose the value of
a andg since they represent ciphertext elements. In order getdt ssiilar to that of Theorem 1 that can be applied

to the considered cryptosystems, we systematically aa&gz[10) in Se¢. 511 under the assumption thahdg are
known to the attacker but cannot be freely chosen.

4.2. Norouzi and Yang's flusion scheme

In Norouzi's and Yang’s cryptosystems, th&dsion stage is characterized by Hq. (4), where some conigedt
intensive operations are added to the XOR and modulo addi#egardless of their computationélieiency, we are
curious whether this new filusion mechanism will improve the security of the resultagptosystem. Given a plain-
imageP; = {pl(l)},Lzl, we define the real number sequeiige= {tl(l)}lL:1 as

)= >, pi)/256" (11)
Then, the dfusion scheme characterized by Eq. (4) can be written as
c(l) = pu(l) @ (ca(l - 1) + k(1)) ® g(t2(1). k(1)), (12)

whereg(t1 (1), k(1)) = [tz(1) - (1C® - k(1)) ] mod 256. Under a CP attack scenario, an adversary can chooteaplain-
imageP,, which differs fromP; by a single pixel at locatioy. In this way the real number sequerie= {t>(1)}-,
associated t®, satisfies

to() = ta(l) ifl > lo.

Referring to Eq.[(IR), it is easy to observe that thiéedence betwee@; andC; at locationly will satisfy

c1(lo) ® c2(lo) ® pa(lo) ® p2(lo) = (Ce(lo — 1) + k(lo)) @ g(t1(lo). k(lo))
®(C2(lo — 1) + k(lo)) @ g(t2(lo). k(lo))
= (c1(lo — 1) + k(lo)) @ (c2(lo — 1) + k(lo)),

which coincides exactly with EqL(1L0). In conclusion, untlee CP attack scenario, the problem of finding the
equivalent secret key stream foffdision of Norouzi and Yang'’s designs is converted into sgh#q. [10) with some
pairs of known parametera (3, y).

Conversely, under the assumption of a KP attack scenaricanebserve from Eq_(1L1) that the calculation of
the real number sequenteis independent of the secret key (stream). Then, limitingelwes to consider the plain
imageP;, we can recast EJ. (IL2) as

(@+KogB.k =y, (13)
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whereg(3,k) = |8 - (10° - k)| mod 256 is a nonlinear function. The problem of determirkrigr Eq. (I3) from some
groups of knownd, 3, y) is considered in Selc. 5.2. Here, special attention shaaifzhiid to the fact that is no longer
8-bit integer but a non-negative real number.

5. Main results

5.1. Cryptographic strength of the equati@n+ k) @ (8 + k) =y

According to Sed. 411, both KP and CP attacks to Parvifiesion scheme are equivalent to solve [Eg] (10) under
the assumption that the value @f 8 andy are known but none of them can be chosen. In the ideal casedathe
complexity for to determink should be 2" because there arépossible combinations af andg in total. However,
we can theoretically show (and we will confirm this with sirmtibn results) that the actual complexity substantially
deviates from the ideal one.

Let us assume that an adversary successfully collects dlsebvwn triples ¢, 8, y) and denote this set by

G={(@By)y=(e+Ke@B+K)

with #G = g. The candidate solutions &fgivenG can be computed by means of a brute-force search according to
the following algorithm whose computational complexityd&"? - g).

e Step (1) Let = 1 and the solution sé& = 0.

e Step (2) Select theth element ofG and exhaustively test all thé*2 possible values ok (the MSB ofk is
ignored here) to check whether it satisfies Eq] (10). Coli#the possible values éfthat meet the requirement
and denote them d§,.

e Step (3)Set=1+1ifl < g. Goto Step (2) and update the solution seipy; = K1 N K.

This algorithm ends up with a solution g€} which contains all the possible valueskathat are consistent with
the known parameter s&. Nevertheless, it is concluded that the computational dexity is O(2"* - g) steps.
Nevertheless, this algorithm has two shortcomings: 1l)eth®mo hint on how to choose the corréctrom K if
#Ky > 2; 2) the dficiency is not satisfactory whemis large. In the case of Parvin’s cryptosystemis fixed to 8,
and this makes this algorithm working pretty well. Howevarthe scheme proposed in_[26, 25], where= 32,
this algorithm becomes ifiicient. These two questions are solved on the basis of TheBravhere the sflicient
condition to determine the bit plane bfs given.

Theorem 2. Suppose,,k,y € Z; and n> 2. Givena, 8 and y, the i least significant bif < i < n- 1) of k of the
following equation
(e+Ke@B+Kk =y
MSB—LSB
. . e
can be solely determined ify Z'j;% 2/=(0...01---17),.
i

Proof. The proof of this theorem can be foundin Appendik A. O

For a given known parameter triple,(3, y), Theorem 2 states that some least significant biksoain be confirmed
when consecutive ones are observed at the LSBs &f more surprising inference drawn from Theorem 2 is that
Eqg. (10) can be solved using only a single querys) when the adversary obtains the oracle machine outplts1p
or (2*1-1).

Furthermore, it is also easy to conclude that the resultnglwe Theorem 1 is just a special case of that by
Theorem 2. In detail, for the two chosen queries used in Téradr, we have

Jy=(@+Ke@+Kl@+ke@+kK
=2"-1



and we can also indicate other two groups of queries satfyie requirements of Theorem 1, specificallyf) =
(2105 H(10), - 4)), 252@31—1(00)2 -4)) and @.p) = (zg';/;]jl(ook -4, Y501, - 41). Based on Theorem 2, we
propose the following ficient algorithm to get a candidate solutionlofrom the known parameters sét, with
#G =g.
e Step (1) Generate parameter sgtsc G using the following rule
Gj={(@py)y=(e+Ke@B+k)y =1}

wherej =0~ n-2.

Step (2) Let = 0, ¢y = 0 and set the default value bto a random number in [@" — 1].

Step (3) Refresh thieth bitk; by look up Tablé1l if #&; # 0 and then calculatg.1 by Eq. [A2).

Step (4) Ifi < n- 2, increase by 1. Go to Step (3) if &; # O.

Step (5) Calculat& using the equatiok = Zi”;ol ki-2.

Table 1: The values d§ corresponding to the values @f, 3, ¢i, i, andyi, .

Vi, §ie1) (@i, B, )

Y-¥+1) 7670,0) (L0,0) (0.L0) (001 (LLO) (L0,) ©OLI) @LLL
(0, 0) 0,1 0,1 - 0,1 0,1 - 0,1 0,1
0, 1) - - 0,1 ) ; 0,1 i i
(1,0) 0 0 0 0 1 1 1 1
(1, 1) 1 1 1 1 0 0 0 0

The complexity of the above steps is mainly introduced by $1¢, which involves the exploration of all the first
(n— 1) bit planes ofy in G to obtainG;. It can be inferred that the computational complexity isyo@{(n — 1) - g),
which is much smaller than the complexity of the previousdthm O(2"* - g). Besides, this algorithm generates
only a single possible candiddtethus avoiding the problem of selectikdrom its candidate sigﬂ{g. Without loss of
generality, assume that all the known parametegsandy are uniformly distributed in the interval [@"1]. Finally,
the probability that the firgt(0 < i < n— 1) LSBs can be confirmed ldy, denoted as Prok{.; | G), is given as

Probko.i | G) = (1 - (%)g)ﬂl‘

Assumingn = 8 as in the three image cryptosystems studied in[Sec. 3, wetdef-ig.[d this probability with
respect to dferent values of). As we can observe from this figure, the probability is relatigh for smali when
g equals 3. This result is further verified by carrying out ekpents to Parvin’s cryptosystem under the assumption
that the key streamK is generated using the key schedule described in [14, Seehi® we artificially setU and
V to zeros to fit our model proposed in Sec]4.1. Then, we use 2 &ndwn plain-images and their corresponding
cipher-images, i.q = 1 andg = 3, to recover the key streak using the algorithm described above. The recovered
key stream is used to decrypt the cipher-image of “Baboos’steown in Fig[Bb), and the deciphered results are
shown respectively in Fi§] 3c) and Fig. 3d).

2In fact, every element iy contains the same number of correct bitkaf average.
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Figure 3: Numerical tests on simplified Parvin’s cryptoeyst a) Plain-image “Baboon” of size 5%512; b) Encryp-
tion result of FigBa) using the modified Parvin's cryptosyst c) Recovery result using 2 pairs of known plain-images

and their corresponding cipher-images; d) Recovery resitig 4 pairs of known plain-images and their correspond-
ing cipher-images.

5.2. Cryptographic strength of the equati@n+ k) @ g(8,k) =y

Accordingly to the results obtained in the previous segtiba difusion mechanism characterized by EqJ (10) is
weak with respect to both CP and KP attacks. Specifically,gmaips of chosen parameters are enough to uniquely
determinek, while a few groups of known parameters ardfisient to determind with overwhelming probability.
The bidirectional diusion scheme introduced iEllS] and E][lG], and defined by, #)sand [[(5), is suggested as a
workaround. The idea of the new design is that all the pixatated after the current one are used in tHiusdion
process, with an avalanchffect (and so, an improvement) in the encryption of plain-iesag

In the context of a CP attack scenario, thanks to the resudiais in Sec[}4, the birectionalftlision scheme is
immediately proven to be weak, since Hg. (4) can be convéotéide form of Eq.[(I0). Considering that there are
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L pixels in an image, the data complexity (i.e., required nends plain-images and cipher-images) for breaking the
cipher in [15] is onlyO(L).

Furthermore, we can show that in the context of a KP attackes@®, the data complexity for breaking the cipher
in [15] is the same as above. Let us consider the equation

(@ +KegB.k =y.

whereg(3,k) = | 8- (10° - K)| mod 256, Y, k € [0, 255] andg is a non-negative real number. Under the assumptions
of a KP attack, i.e., that, 8 andy are known to the adversary, we can show that the data corypferrevealing k is
only O(1). In other words, the irfcient bidirectional diusion scheme actually does not improve the security level
of Eq. (10) with respect to KP attack.

We start our analysis from the trivial cag8e= 0. Under this assumption, E.{13) is simplified to

y=a+k

sinceg(8,k) = |8 - (1% - k)] mod 256= 0. Thus,k can be calculated ds= y = a. For the general cage > 0,

it is easy to observe that the valuegif, k) is sensitive to the changes kf In other words, givem, 8 andy, the

result of @ + k) @ g(B, k) will be different fromy with an overwhelming probability even kf slightly deviates from
its true value. For convenience, [Bt= {(a,8,y) | Y = (@ + k) ® g(8, k)} and assume@ = g = O(1). The following
procedures describe a method to deternkifrem G by using this observation.

e Step (1) Let = 1 and the solution sé = 0.

e Step (2) Select theth element ofG and exhaustively test all thé possible values of to check whether it
satisfies Eq[{13). Collect all the possible valuek tfat meet the requirement and denote thei{as

e Step (3) Go to Step (5) ifl& = 1.
e Step (4) Set=1+1ifl < g. Go to Step (2) and update the solution sefpy; = K1 N K.
e Step (5) Print the value of the single elemenkofif #K, = 1. Otherwise outputl,.

We verify the validity of this algorithm by carrying out exfiraents to Norouzi’s cryptosystem (that can be viewed
as the simplified version of Yang’s design). Three %1212 known plain-images with fferent statistical character-
istics are employed as our test images (Eig. 4a)-c)). Theages are encrypted using Norouzi's cryptosystem under
the secret key that was adoptedlin/[15, Sec. 3]. Using thenigabs illustrated in Sel 4, we cast the relationship
between the plaintext pixels and ciphertext pixels to thenfof Eq. [I3). Then, we respectively use 1, 2 and 3 pairs
of plain-images and their corresponding cipher-image&toeve the equivalent secret key stregnby the above
algorithm. The averagecovery rate®f the proposed KP attack usingldirent numbers of known plain-images are

Figure 4: Three test images for recovering the equivaleptskeeam of Norouzi's cryptosystem: a) “Lena”; b) CT
image; ¢) Mosaic image.
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Table 2: Average recovery rate usingfdrent numbers of known plain-images.

Number of known plain-images averageovery rate

1 66.6637%
2 99.8247%
3 100%

listed in Tabld 2. Here, theecovery ratds defined as

number of correctly recovered elements of Ii
- x 100%
total number of elements in K

recovery rate=

It can be observed that the averageovery rateraises as the number of known plain-images increase. Ewen th
number of known plain-images is only 1, the averaggovery rateis close to 67%. When the number of known
plain-images is 3, theecovery rategrows to 100%. Furthermore, we utilize these recoveredvatprt key streams

to decrypt an intercepted cipher-image and the result isvsho Fig.[8a)-c). From Fig]5, it is concluded that
100%recovery rateof the key stream guarantees perfect reconstruction ofiteecepted cipher-image, while a high
recovery rateof the key stream does not lead to good or acceptable visadityuThis phenomenon is attributable
to the bidirectional dfusion property of Eq[{12), where the error of a wrongly deted pixel will spread to all
successive decryption in a pseudo-random manner.

a) b) | c)

Figure 5: Recovery results: a) Deciphered result using gyeskream retrieved from Figl 4a); b) Deciphered result
using the key stream retrieved from Higj. 4a) and b); c) Demipti result using the key stream retrieved from[Hig. 4a)-

c).

6. Cryptographic applications

Exploiting the security analyses of EQ.{10) and Eq] (13Wshabove, this section presents plaintext attacks to the
full cryptosystems proposed i 14,15) 16] and briefly désas other security implications related to our analyses.

A. Cryptanalysisof Parvin'scryptosystem

As described in SeEl] 3, Parvin's cryptosystem is composeiiaflar permutations and a singlefdision stage. To
apply our analysis result presented in $ed. 5.1, we neetifirstover the equivalent key streams used for row and
column circular permutation. The underlying strategy isttaly the relationship between cipher-images produced
by some some bottom-line chosen plain-images whose elsmaeatinvariant with respect to row and column
permutations. Similar ideas are also employed to analyrr ahaos-based cryptosyste@ @L_&V 40]. Here, we

suppose that an image having fixed gray value is availabledandte it aP; = {pa(i, |) = O}iH:*‘l’Yj:l. Then, we

setpi(1, 1) = 128 and keep all the other pixels unchanged and denote thdieddchage byP, = {pafi, j)}iH:’\l’f’j:l.
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Figure[6a) and b) depict the cipher-images correspondirigy tand P,, respectively. Hereld = W = 512 is
chosen. The dierence of the two cipher-images is shown in Eig. 6¢). Finditsepixel whose value is 128 and
denote its position byi{, j1). Referring to Eqs[{1)[{2) andl(3), it can be concluded (it = ((j:—1) modH)+1
andv(l) = ((iy — 1) modW) + 1. Repeat this test for all the diagonal pixelsfaf U andV, the key streams for
row and column permutations, can be retrieved completeyni@ning with the analysis presented in Secl] 5.1,
the data complexity of the CP attack@1) + maxH, W) with an overwhelming probability.

a) b) c)

Figure 6: Example test for recovering the equivalent peatior key streams of Parvin’'s cryptosystem: a) The cipher-
image ofP1; b) The cipher-image dP,; ¢c) The diference between Fids. 6a) and b) using XOR operation.

B. Cryptanalysisof Norouzi’sand Yang'scryptosystems

Applying the analysis presented in Secl5.2, it is readilyanclude that Norouzi's cryptosystem can be compro-
mised in KP attack scenario at data complexii). For Yang's scheme, the remaining task is to recover the
remaining key streams used for permutation. By noting treatg¥s scheme is flierent from Parvin’s only by
the order of difusion and permutation in the present context, we use théssisirategy to reveal the equivalent
permutation key streams of Yang'’s cryptosystem. For exantplreveal(H) andu(W — 2), we employ three
chosen-imageB;, P, andP3 with the form

P, =[0,0,0,---,0,0,0,1],
P, =[0,0,0,---,0,0,1,0],
P;=1[0,0,0,---,0,1,0,0].

According to Egs.[(6),[{7) and(8), their corresponding eipimage<C;, C, andCj; satisfy the following two
conditions: 1) there are two distinct ciphertext elememtsvieenC; andC,, 2) there are three distinct ciphertext
elements betwee@s; andC; (or C;). ComparingCsy, C, andCs, the location ofc;(H, W — 2) can be identified.
Figure[T sketches the rules involved in this procedure. Rehes test to the last row and column Bf, the
equivalent permutation key streatdsandV can be fully recovered at the data compleﬂ('@(H + W) under CP
attack.

C. Other cryptographicimplications

Observing that the analysis with respect to the equatioft k) ® g(3,k) = y involves exhaustive searching the
possible key space, an intuitive workaround for Norouziid ¥ang’s cryptosystems is to group several pixels as
a single element to enlarge the real key space. For exangteyioe 15 pixels together will make the key space
grows to 220 and frustrate the KP attack presented in §eg. 5.2. Howeweausi’s and Yang’s cryptosystems can
be cast to the form of(+ k) @ (8 + k) = y in CP attack scenario and cryptanalysis of this equatioegandless of
the bit length of the plaintext. It can be concluded that ggiomposite pixel representation as a remedy is futile.

3The permutation for the last two pixels can be retrieved yéforce search.
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Figure 7: lllustration of the CP attack on Yang’s cryptosystto recover the equivalent secret key used for permuta-
tion.

Regarding the widely usage of theffdision equation[{3) [10, 24, 50, 51,/11, 12| 27, 28], our anslgs the
equation & + k) @ (8 + k) = y seems useful in evaluating security of other ciphers alsedan this kind of
diffusion mechanism. The fact that the search space of the umknowuld be reduced from?2to O(1) indicates
that a loophole exists in the corresponding crytosystentbflaat it can be used to retrieve information about the
key. Even worse, this loophole cannot be fixed by choosinggeta. With this concern, we recommend using
some relative strong fliision schemes with respect to KP and CP attacks, sudf ask) @ (ky + (ko @ 8)) = y
[52].

7. Conclusion

Considering the three cryptosystems proposed in [14, ]m< 6ase studies, we have studied the security proper-
ties of equations (i) + k) @ (8 + k) = y and (i) (@ + k) @ g(3, k) = y. The underlying theory of the key scheduling
process employed in these example crytosystems rangingdhaoti¢ghyper-chaotic function to quantum computa-
tion, which are regarded as havindgfdrent characteristics. However, our analyses reveal litheghree ciphers are
very weak upon plaintext attacks. Specifically, the eqeintkey streams used in these designs can be retrieved using
a small number of plain-images. We provide dhigient condition to determine the unknowrf equation (i) under
the KP attack scenario. The relationship of our result ard#isting ones under CP attack assumption/ [38, 39, 29] is
also investigated. The algorithms provided and the extemgimerical experiments confirm that both equation (i) and
(i) can be solved using onl@(1) known plaintexts. In this concern, it is readily to cara¢ that most image ciphers
based on a single round permutatioffuiion architecture are insecure with respect to plaintgatks. Our work
can be extended to investigatdfdsion equations involves more complex cryptographic pives, such as modulo
multiplication [41].
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Appendix A. Proof of Theorem 2
Let us consider the equivalent form of Elq.(10), i.e.,
J=(e+Ke@B+koaoap (A1)

Observe that thed ¢ 1)-th bit ofy, i.e.,yi.1, can be calculated using only the previous bit$3;, ki, ¢, &, (i € [0,n-2])
by the following three equations
Yi+1 = Cit1 @ Cis1,
Cir1 = kiai ® kiCi ® aiC;, (A.2)
Cir1 = kiBi ® ki @ BiCi,
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Table A.3: The values ofi;1 corresponding to the values @f, §i, ¥, ki andc;.

(k. ) (@i, 8, %)

6 7000) 001 ©L0) (OLL) (L00) (LoD (LLO) @LD
0,00 0 0 0 1 0 0 0 1
©0,1) 0 0 1 0 1 1 0 1
(1L,0) 0 1 1 1 1 0 0 0
(L1) 0 1 0 0 0 1 0 0

Col(l) Col(2) Col(3) Col(d) Col(5) Col(6) Col(7) Col(8)

whereg; is the carry bit at thé-th bit plane of & + k) andd = Vi @ ¢;. Table[A3 lists the values gf,; that computed
from Eq. [A.2) under all the possible values®fgi, i, ki andc;.

Table[A3 indicates thakt; can be determined ifof, i, ;) falls in {Col(2), Col(3), Col(5), Col(8) i.e.,y; =
¥ @« ® B = 1, andg; is known. Based on this observation, the theorem can be gimwenathematical induction on
i (0<i<n-2). Wefirst consider the case fioe 0. Sincecy = & = 0, the condition

Yo =Yo® ao®fo
=Co®C®aodPo
= a0 ®Bo
=1

implies
y1=c0t
= koao & kofBo
= Ko(o ® o)
= ko.

Hence the theorem is proved for the case 0. Assume that it is valid for = m (m < n - 3), i.e., all them least
significant bits ofk are confirmed wheyg = Z?l‘ol 2™ and thus all thes; and ¢ can be derived by Eq_(A.2) for all
i € [0,m+ 1]. Then, for the case= m+ 1, the conditiory,,1 = 1 implies that

Y1 = Ce1 @ Cne1 © @me1 ®Pmi1=1
holds when referring to Eqs.(A.1) arid (A.2). When computing by Eq. [A2), we have
Ymi2 = Cmi2 © Cmi2
= Kmt1@ms1 © Kmi1Bmi1 @ Kmi1Cmi1 @ Ky 1Cmi1 @ @mi1Cmit © Bmi1Cmia

= km+1((1m+l ®Pmi1 O Cre1 © ém+l) @ &m+1Cm+1 @,Bm+16m+l
= Kmi1 ® @me1Cmi1 ® B 18t

Observing thatm, 1, Bm+1 andym.2 are known parameters in our KP attack scenayi@; andcy,, 1 are the result from
the previous induction step, we conclude that

Kni1 = ¥me2 © @mi1Cmi1 @ Brme1Cmats

thus completing the mathematical induction and hence pgotie theorem.

References

[1] W. C. Barker, E. B. Barker, NIST Special Publication 88D+evision 1: Recommendation for the triple data encrypstgorithm (TDEA)
block cipher, National Institute of Standards & Technology

14



(2]
(3]
(4
(5]

(6]
(7]

(8]

El
[20]

[11]
[12]
(23]
[14]
[15]

[16]
[17]

(18]
[19]
[20]
[21]
[22]
(23]

[24]
[25]

[26]
[27]

(28]
[29]

[30]

[31]
[32]

(33]
[34]
[35]
[36]
[37]
(38]
[39]

[40]

J. Daemen, V. Rijmen, The design of Rijndael: AES-theaambed encryption standard, Springer Science & BusinessaVi2a02.

F. Liu, H. Koenig, A survey of video encryption algoritenComputers & Security 29 (1) (2010) 3-15.

S. Lian, X. Chen, On the design of partial encryption sobdor multimedia content, Mathematical and Computer Miaateb7 (11) (2013)
2613-2624.

S. Lian, Z. Liu, Z. Ren, H. Wang, Commutative encryptiomdawvatermarking in video compression, IEEE Transaction€wouits and
Systems for Video Technology 17 (6) (2007) 774-778.

H. Cheng, X. Li, Partial encryption of compressed imaged videos, IEEE Transactions on Signal Processing 48 (®0j2439-2451.

S. Li, G. Chen, A. Cheung, B. Bhargava, K.-T. Lo, On theigeof perceptual MPEG-video encryption algorithms, IEE&rSactions on
Circuits and Systems for Video Technology 17 (2) (2007) 228~

E. Magli, M. Grangetto, G. Olmo, Transparent encryptieahniques for H. 264VC and H. 264SVC compressed video, Signal Processing
91 (5) (2011) 1103-1114.

W. Zeng, S. Lei, Hicient frequency domain selective scrambling of digitalead|EEE Transactions on Multimedia 5 (1) (2003) 118-129.
J. Fridrich, Symmetric ciphers based on two-dimenaiamaotic maps, International Journal of Bifurcation af@s 8 (06) (1998) 1259—
1284.

G. Chen, Y. Mao, C. K. Chui, A symmetric image encryptgrheme based on 3D chaotic cat maps, Chaos, Solitons & Bratté3) (2004)
749-761.

Y. Mao, G. Chen, S. Lian, A novel fast image encryptioherme based on 3D chaotic baker maps, International JourBafluncation and
Chaos 14 (10) (2004) 3613-3624.

L. Y. Zhang, X. Hu, Y. Liu, K.-W. Wong, J. Gan, A chaotic age encryption scheme owning temp-value feedback, Conuations in
Nonlinear Science and Numerical Simulation 19 (10) (20B953-3659.

Z. Parvin, H. Seyedarabi, M. Shamsi, A new secure anditemimage encryption scheme based on new substitutitmaliaotic function,
Multimedia Tools and Applications (2014) 1-18.

B. Norouzi, S. Mirzakuchaki, S. M. Seyedzadeh, M. R. lsldsA simple, sensitive and secure image encryption algorbased on hyper-
chaotic system with only one rounddision process, Multimedia Tools and Applications 71 (31#01469-1497.

Y.-G. Yang, Q.-X. Pan, S.-J. Sun, P. Xu, Novel image gpton based on quantum walks, Scientific Reports 5 (7784).

W. Zhang, K. W. Wong, H. Yu, Z.-L. Zhu, A symmetric colomage encryption algorithm using the intrinsic features ibfistributions,
Communications in Nonlinear Science and Numerical Sinarat8 (3) (2013) 584-600.

Z. L. Zhu, W. Zhang, K.-W. Wong, H. Yu, A chaos-based syatrit image encryption scheme using a bit-level permutatinformation
Sciences 181 (6) (2011) 1171-1186.

K.-W. Wong, B. S.-H. Kwok, W.-S. Law, A fast image enctign scheme based on chaotic standard map, Physics Let&f2 AL5) (2008)
2645-2652.

Y. Zhou, K. Panetta, S. Agaian, C. Chen,K, p)-Gray code for image systems, IEEE Transactions on Cybesé3 (2) (2013) 515-529.
M. Zanin, A. N. Pisarchik, Gray code permutation algfom for high-dimensional data encryption, Informatione®ies 270 (2014) 288-297.
K.-W. Wong, A fast chaotic cryptographic scheme witmeynic look-up table, Physics Letters A 298 (4) (2002) 23&-24

H. Zhu, C. Zhao, X. Zhang, L. Yang, An image encryptiohame using generalized arnold map afftha cipher, Optik-International Journal
for Light and Electron Optics 125 (22) (2014) 6672—-6677.

C. Zhu, A novel image encryption scheme based on imgttwgerchaotic sequences, Optics Communications 285 Q1R{29-37.

K. Rao, C. Gangadhar, Modified chaotic key-based algarifor image encryption and its VLSI realization, in: Predigs of the 2007 15th
International Conference on Digital Signal Processin@72@p. 439-442.

C. Gangadhar, K. D. Rao, Hyperchaos based image emanyphternational Journal of Bifurcation and Chaos 19 ((2D10) 3833-3839.
H. Liu, X. Wang, Color image encryption using spatial-level permutation and high-dimension chaotic systentj@@gCommunications
284 (16) (2011) 3895-3903.

Y. Zhou, Z. Hua, C. Pun, C. Chen, Cascade chaotic systiémapplications, to appear in IEEE Transactions on Cyh@ase

X. Wang, D. Luan, X. Bao, Cryptanalysis of an image eptign algorithm using Chebyshev generator, Digital SidPralcessing 25 (2014)
244-247.

P. Refregier, B. Javidi, Optical image encryption lhea input plane and fourier plane random encoding, Optidtet®e20 (7) (1995)
767-769.

W. Chen, B. Javidi, X. Chen, Advances in optical segusigstems, Advances in Optics and Photonics 6 (2) (2014) 15%—

X. Peng, P. Zhang, H. Wei, B. Yu, Known-plaintext attamk optical encryption based on double random phase keyigsdptters 31 (8)
(2006) 1044-1046.

A. Carnicer, M. Montes-Usategui, S. Arcos, |. JuveNsinerability to chosen-cyphertext attacks of optical gption schemes based on
double random phase keys, Optics letters 30 (13) (2005)-16345.

X. Peng, H. Wei, P. Zhang, Chosen-plaintext attack misliess double-random phase encoding in the fresnel do@aiics letters 31 (22)
(2006) 3261-3263.

Y. Wu, Y. Zhou, G. Saveriades, S. Agaian, J. P. Noonari\@®arajan, Local shannon entropy measure with statistestb for image
randomness, Information Sciences 222 (2013) 323-342.

A. Rukhin, et al., A statistical test suite for randomdapseudorandom number generators for cryptographic apipiits, NIST Special
Publication 800-22revla (2010).

D. Arroyo, J. Diaz, F. B. Rodriguez, Cryptanalysis of @eaound chaos-based substitution permutation netwoghnabProcessing 93 (5)
(2013) 1358-1364.

C. Li, M. Z. Chen, K.-T. Lo, Breaking an image encryptialgorithm based on chaos, International Journal of Bifimosand Chaos 21 (07)
(2011) 2067-2076.

C. Li, Y. Liu, L. Y. Zhang, M. Z. Chen, Breaking a chaotimage encryption algorithm based on modulo addition and X@&uation,
International Journal of Bifurcation and Chaos 23 (04) @Q-12.

C. Li, L. Y. Zhang, R. Ou, K.-W. Wong, S. Shu, Breaking avabcolour image encryption algorithm based on chaos, Meali dynamics

15



[41]
[42]
[43]
[44]
[45]
[46]
[47]
(48]
[49]
[50]

[51]
[52]

70 (4) (2012) 2383-2388.

Y. Liu, L. Y. Zhang, J. Wang, Y. Zhang, K. W. Wong, Chosglaintext attack of an image encryption scheme based onfiadgiermutation-
diffusion structure, arXiv:1503.06638.

E. Solak, C. Cokal, O. T. Yildiz, T. Biyikoglu, Cryptelysis of Fridrich’'s chaotic image encryption, Internatl Journal of Bifurcation and
Chaos 20 (05) (2010) 1405-1413.

L.Y. Zhang, C. Li, K.-W. Wong, S. Shu, G. Chen, Cryptayzathg a chaos-based image encryption algorithm usingterstructure, Journal
of Systems and Software 85 (9) (2012) 2077—-2085.

S. Li, C. Li, G. Chen, N. G. Bourbakis, K.-T. Lo, A genergliantitative cryptanalysis of permutation-only multirgediphers against
plaintext attacks, Signal Processing: Image Communic&®(3) (2008) 212-223.

A. Jolfaei, X.-W. Wu, V. Muthukkumarasamy, On the seéguof permutation-only image encryption schemes, IEEEnSeg&tions on Infor-
mation Forensics and Security.

F. Chen, K.-W. Wong, X. Liao, T. Xiang, Period distribrt of generalized discrete arnold cat map foe p®, IEEE Transactions on
Information Theory 58 (1) (2012) 445-452.

F. Chen, K.-W. Wong, X. Liao, T. Xiang, Period distritrt of generalized discrete arnold cat map fore= 2%, IEEE Transactions on
Information Theory 59 (5) (2013) 3249-3255.

F. Chen, K.-W. Wong, X. Liao, T. Xiang, Period distrilmr of generalized discrete arnold cat map, Theoretical @der Science 552 (2014)
13-25.

Y. Niu, X. Wang, M. Wang, H. Zhang, A new hyperchaotic &ys and its circuit implementation, Communications in Niegdr Science and
Numerical Simulation 15 (11) (2010) 3518-3524.

Z. Eslami, A. Bakhshandeh, An improvement over an imageryption method based on total iting, Optics Communications 286 (2013)
51-55.

G. Zhang, Q. Liu, A novel image encryption method basedotal shifiing scheme, Optics Communications 284 (12) (2011) 27753278
S. Paul, B. Preneel, Solving systems dfetliential equations of addition, in: Proceedings of the Xitktralasian Conference on Information
Security and Privacy, Springer, 2005, pp. 75-88.

16



	1 Introduction
	2 Notations and main assumptions
	3 Image cryptosystems review
	4 Problem formulation
	4.1 Parvin's diffusion scheme
	4.2 Norouzi and Yang's diffusion scheme

	5 Main results
	5.1 Cryptographic strength of the equation (k) (k) = y
	5.2 Cryptographic strength of the equation (k) g(, k)=y

	6 Cryptographic applications
	7 Conclusion
	Appendix  A Proof of Theorem 2

