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Can We Speculate Running Application with Server

Power Consumption Trace?
Yuanlong Li, Member, IEEE, Han Hu, Member, IEEE, Yonggang Wen, Senior Member, IEEE, and Jun

Zhang Fellow, IEEE

Abstract—In this paper, we propose to detect the running
applications in a server by classifying the observed power
consumption series for the purpose of data centre energy
consumption monitoring and analysis. Time series classification
problem has been extensively studied with various distance
measurements developed; also recently the deep learning based
sequence models have been proved to be promising. In this paper,
we propose a novel distance measurement and build a time series
classification algorithm hybridizing nearest neighbour and long
short term memory (LSTM) neural network. More specifically,
first we propose a new distance measurement termed as Local
Time Warping (LTW), which utilizes a user-specified index set
for local warping, and is designed to be non-commutative and
non-dynamic programming. Second we hybridize the 1NN-LTW
and LSTM together. In particular, we combine the prediction
probability vector of 1NN-LTW and LSTM to determine the label
of the test cases. Finally, using the power consumption data from
a real data center, we show that the proposed LTW can improve
the classification accuracy of DTW from about 84% to 90%. Our
experimental results prove that the proposed LTW is competitive
on our data set compared with existed DTW variants and its non-
commutative feature is indeed beneficial. We also test a linear
version of LTW and find out that it can perform similar to state-
of-art DTW based method while it runs as fast as the linear
runtime lower bound methods like LB Keogh for our problem.
With the hybrid algorithm, for the power series classification
task we achieve an accuracy up to about 93%. Our research can
inspire more studies on time series distance measurement and
the hybrid of the deep learning models with other traditional
models.

Index Terms—Time series classification, time warping, recur-
rent neural network, long short term memory

I. INTRODUCTION

NOWADAYS, a growing number of data centres have been

built to support complicated computation and massive

storage required by various blooming applications [1]. Each

data center is typically equipped with hundreds of thousands

servers and requires many mega-watts electricity to power its

hosted servers and the auxiliary facilities [2]. An essential

problem is to monitor such a large amount of servers for

energy saving and maintaining the business continuity, which

is critical to build green data centre [3] and improve energy

efficiency [4].
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Monitoring technologies [5] can be divided into two cate-

gories: intrusive and non-intrusive. Intrusive technologies re-

quire the install of certain monitoring software which requires

the administration role of the system. Compared to the intru-

sive methods, non-intrusive methods are more flexible, which

only require limited data for the monitoring and analysis.

In this paper, for the purpose of energy consumption mon-

itoring, we propose to detect the running program in a server

by analysing the observed power consumption series. The

power data can be measured without the administration right

of the server, which can be useful in collecting the power

related information of the servers for the purpose of energy

consumption analysis. The proposed classification analysis can

only gain the type of the running program, avoiding any

possibility in accessing the privacy-related contents in the

server.

The proposed program detecting problem falls into the field

of time series classification. As a time series classification

problem, the power data classification problem can be chal-

lenging as the power series collected in detection may be only

a small piece of the whole power series of a program, with

incomplete and limited information. For this problem, the key

is to design an accurate and fast classification algorithm.

Currently there are a few similar works on classifying

signals (like the power consumption signals studied here)

such as [6] [7] [8]. However, the technologies applied in

these literature are based on common spectral or statistical

features with classifiers such as nearest neighbour or neural

network. In a more general aspect, the time series classification

problem has been extensively studied [9], among which the

most popular method is 1-nearest neighbour with dynamic

time warping (DTW). The major research line in time series

classification has been the developing of various DTW based

distance measurements (variants such as [10] and enhancers

[11]); yet we find that even though these measurements can

be better than the original DTW by certain degree for certain

cases, these variants all have been designed to incorporate

the dynamic programming idea of DTW (except some lower

bound methods like LB Keogh [12]) and all designed to

be commutative. Another line of research has also become

notable recently, i.e. the long short term memory (LSTM)

neural network [13] [14], which shows great modelling ability

for sequential data. In this work, we propose a novel classifier

with much higher accuracy and based on the great efforts in

the current literature.

In this research, firstly, we propose a Local Time Warping

(LTW) time series distance measurement, which is a light
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weight DTW variant that does not need the dynamic program-

ming procedure and is designed to be non-commutative. LTW

can be set to a linear runtime algorithm which can perform

almost as good as the DTW on our data set. Secondly, instead

of further enhancing the distance measurement which can be

much more complicated and time consuming, we look into a

less expensive solution, which is to develop a hybrid algorithm

of the 1-nearest neighbour with LTW (1NN-LTW) and the

recent deep learning model for time sequential modelling. To

do so, we first utilize the state-of-art sequential data modelling

neural network LSTM to classify the power series. Then we

propose a new hybrid algorithm of the proposed 1NN-LTW

and the LSTM. Our study shows that both 1NN-LTW and

LSTM can outperform the 1NN-DTW with similar accuracy;

however, these two algorithms have their unique different

natures and the accurately classified samples of these two

algorithms have significant differences. The hybrid algorithm

of the two classifiers, termed as LSTM/LTW, improves the

classification accuracy further easily.

The main contributions of this paper are summarized as

follows:

• We propose a new distance measurement LTW. LTW

has two unique features which are different from the

existing DTW variants: 1) LTW is based on simple

“local warping”, no dynamic programming procedure

is needed; 2) LTW is non-commutative and is flexible

for the nearest neighbour classifier for the time series

classification problem. Our experimental results show that

for our problem, the proposed LTW can perform better

than DTW and its several different variants. Also our

experiment shows that the non-commutative feature of

LTW is beneficial. Furthermore, the linear version of

LTW can perform almost as good as DTW on our data set.

These results show that for certain cases, a light weight

local warping distance measurement (such as the LTW)

may be good enough for the classification task; however,

this does not mean that the proposed LTW can work for

all kinds of time series data sets.

• For the first time, we develop a hybrid algorithm of 1NN-

DTW and LSTM termed as LSTM/LTW. The hybrid al-

gorithm is based on a well trained LSTM neural network.

Although the training procedure of the LSTM can be time

consuming, the classification process can be fast in testing

with the LTW distance.

• Numerical experiments show that for the power data clas-

sification problem, with the LTW distance measurement,

the accuracy of the 1NN-LTW classifier can be improved

from about 84% to about 90% compared to the 1NN-

DTW. With the hybrid algorithm LSTM/LTW, we achieve

the power consumption series classification accuracy upto

about 93%, which proves that using the power consump-

tion series to detect the type of the running programs in

a server can be very accurate.

The remainder of this paper is organized as follows. In

Section II, we briefly introduce the state-of-art time series

classification algorithms. In Section III, we introduce the

experimental data collection design and some preliminary

��
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Fig. 1. Illustration of the DTW distance measurement. In computing the DTW
distance between samples x and y, the DTW algorithm finds the best match
(shown by the dash lines) between the two series at different time steps.

analysis on the data. In Section IV, we introduce the new

proposed algorithm and in Section V we show the numerical

evaluation results and the analysis. In Section VI we conclude

the whole paper and introduce the future works.

II. RELATED WORKS

The power data classification problem studied in this paper

can be taken as a time series classification problem, which

has been studied extensively for the past decades. For this

problem, common classifiers like support vector machine

(SVM), k-nearest neighbour (KNN) with Euclidean distance

have been proved to be non-competitive to the DTW distance

measurement based method like 1NN-DTW [15]. Recently

there have been a lot of new methods which have been proved

to be as competitive as 1NN-DTW. On one hand, there are

many non-neural network based methods like Shapelet based

method, dictionary based methods, interval based methods and

ensembles of these methods. We will brief these methods

below. On the other hand, recently with the fast development

of deep learning [16] and its applications [17] [18] [19], LSTM

neural network has also been proved to hold high modelling

ability for sequential data. In the following we will briefly

introduce LSTM.

A. Non-Neural Network Approaches

The most popular non-neural network time series classifiers

are nearest neighbour based method with various different

distance measurements. The most popular method is the 1NN-

DTW, which is a special k-nearest neighbour classifier with

k = 1 and a special DTW distance measurement. For the 1-

NN classifier, the common standard procedure to label of a

test sample given a set of training samples is as follows. First

the distances of the test sample to all the training samples

are computed; then the training sample that has the smallest

distance to the test sample is chosen and its label is assigned

to the test sample as the classification result. In the above

procedure, the key is to utilize a proper distance measurement.

For 1NN-DTW, the DTW distance is used, which has superior

performance for time series data.

The DTW calculates the distance of two sequences x and y

in a manner of finding the best match between them, as shown

in Fig. 1. The idea is that sequential data often contain similar

fluctuation patterns, however, a same pattern, when existed in

different sequences as sub-sequences, may be stretched, shrank

or delayed in the time axis. In this case, the DTW distance

measurement aims to warp the time axis non-linearly and finds
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the best match between the two samples such that when a same

pattern exists in both sequences, the distance is smaller.

Mathematically, the DTW distance is computed by the

following dynamic programming process. Denote D(i, j) as

the DTW distance between sub-sequences x[1 : j] and y[1 : j],
then the DTW distance between x and y can be computed by

the dynamic programming process with the following iterative

equation:

D(i, j) = min{D(i−1, j−1), D(i−1, j), D(i, j−1)}+|xi−yj|.
(1)

The time complexity to compute the DTW distance is O(nm),
where n and m are the length of x and y respectively. The

DTW distance measurement actually re-align the time step

index pairs in the computing of the distance. In practice,

usually a threshold w is used to restrict the index offset

in the alignment, which can be critical to the classification

results [20]. Also there are many study [21] working on

accelerating the computing speed of DTW, which results in

the fast DTW that can be computed in linear time of the

length of the sequences. In this paper, we follows the idea of

DTW but propose a new distance measurement, which can be

computed with a local warping index set without a dynamic

programming process and has a special non-communicative

nature that can be helpful.

There are many DTW variants proposed. We name only a

few here for the space constraint; one can refer to [9] for a

more complete review and comparison of the existing methods.

A popular line of research is the Derivative DTW (DDTW)

proposed by Keogh and Pazzani [22], which utilizes derivative

of the raw series in computing the distance. Batista et al.

proposed the Complexity Invariant distance (CID) [11], which

is a weight modifier that can be used to enhance any kind of

distance measurement, and is proved to be very useful when

using with DTW. In CID, the first order derivative of the raw

series is used in the computation of the modifier. The idea of

using the derivative series is further studied in [23], in which

the distance is computed based on the combination of the raw

series and the derivative series. There are also other DTW

variants, such as the Move-Split-Merge [10] method, which

introduces move and split operation to dynamic warping in

DTW.

Besides DTW based method, there have been many new

different methods for time series classification which look into

the pattern of the time series. For example, Ye and Keogh et al.

proposed the Shapelet [24] based method, which utilizes the

subsequences that can differentiate different classes to do the

classification; recently similar work is done in [25]. Lin et al.

proposed the dictionary based method [26], which transforms

the series into discrete words in a dictionary and then do the

classification. In [27], Deng et al. proposed interval based

classifiers to extract the feature from intervals in each time

series for the classification. In this paper, we focus on DTW

based methods and will not compare with these methods, as

proved by the through comparison experiments done in [9],

these methods perform similar with DTW based methods.

Beside the above listed works, ensemble method for time

series classification is another popular research direction [28]

[29]. Ensemble method combines multiple different classifiers

to create a new classifier that can be better than any single

classifier. Recently, different ensemble methods based on the

above listed classifiers have been proposed and have shown

promising performance [29]. However, we have not seen any

work on ensemble method of the above methods and deep

neural network like LSTM. In this paper, we propose a simple

hybrid algorithm of a nearest neighbour classifier and LSTM.

The LSTM neural network used in this paper is introduced

below.

B. LSTM

LSTM is first proposed by Hochreiter and Gers et al. as

an upgrade of the recurrent neural network (RNN) [30]. RNN

is used to handle sequential data with a special calculation

process following the time step increment, while traditional

neural network simply treats the sequence as a plain vector.

With such nature, RNN is suitable for modelling sequential

data. However, it suffers from a problem called diminishing

gradient, which is caused by the iterative process on the time

axis and makes the gradient used in the training process

extremely small and causes training failure. To solve the

problem, the LSTM is proposed and it utilizes a memory core

to avoid the diminishing gradient. The details of the LSTM

neural network will be introduced in Section IV.

LSTM has shown great modelling power for sequential data

and has been successfully applied in various machine learning

fields like image recognition [31], [32] (a simpler efficient

sequence modelling neural network than LSTM is proposed

in this paper), natural language process (NLP) [33], video

analysis [34] and etc. It is also noted that LSTM can be both

discriminative and generative. By discriminative, LSTM can

be used for classification tasks while by generative, LSTM

can be used to generate similar sequences like the training

samples [35]. In this paper, we utilize the discriminative ability

of LSTM for our power data classification task.

III. POWER SERIES DATA COLLECTION AND

PRELIMINARY ANALYSIS

In this section we present the power series data we collected

followed by some preliminary analysis on the data. We will

detail the simulation design rules for the data collection and the

data samples collected with some pretreatment. The proposed

preliminary analysis includes data visualization with different

dimension reduction methods, classification results with some

canonical classifiers, and feature study.

A. Power Series Data Collection

We first introduce the designing rules of the simulation

for data set collection. As a data-driven study on the power

series classification methodology, we need to collect a set of

sample power data. The data collection should be designed

carefully to make sure that the classification problem is

neither trivial nor impossible to accomplish. In this sense, our

guiding line for power data collection is to collect “different”

and “similar” power series: By “different”, the power series
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TABLE I
COLLECTED POWER SEQUENCES OF DIFFERENT PROGRAMS. MAPREDUCE

AND WEB SERVER ARE THE TWO MAJOR CLASSES, WHILE IN MAPREDUCE

THERE ARE MANY SUBCLASSES. IN TOTAL THERE ARE 13 CLASSES.

Program Number of sequences Class label

MapReduce

Spark

Word Count 100 0
Sorting 100 1
PI 100 2

MLlib

CrossValidator 40 3
Kmean 40 4
LR 40 5
SVM 40 6
Cosine similarity 40 7
PCA 40 8

Hadoop
Word Count 100 9
Sorting 100 10
PI 100 11

Web server data 40 12

must be generated by different programs. By “similar”, the

different programs can have some similar features so that the

classification algorithms need to be really discriminative.

Follow the above guideline, we collected in total 13 classes

of power data as shown in Table I (for convenience they are

labelled as 0,1,...,12 respectively). These data fall into two

major categories:

• Web server power data: usually fluctuate in a continuous

pattern;

• Spark/Hadoop MapReduce programs: usually show stage-

pattern, e.g. the Map stage and the Reduce stage.

For the Hadoop/Spark category, we test different programs on

these platforms, some are the same for both platforms, such as

the “Word Count” program; some only exist on one platform,

for example, the “MLlib” programs on the Spark platform.

With such design, we can achieve the proposed “different”

and “similar” design goal.

Note that the collected data series are of different lengths

as the running duration can vary among different programs.

Although classification methods like 1NN-DTW can deal with

power series of different lengths, to apply other canonical

methods, in the following we cut the collected series into fixed

length sequences. It is also reasonable to label sub-sequences

instead of the complete power sequences of the programs as in

a blind test, we have no information about the start/end point

of a program. The detailed cutting method we utilize here is

as shown below.

The goal is to cut the power sequences into length 200

samples. To do so, first we discard sequences with length

smaller than 200 time slots (time unit: 3 seconds). The left

number of sequences for each class is: [77, 31, 30, 35, 28,

7, 40, 14, 5, 100, 58, 36, 40]. Although some power data are

discarded, the total duration of the left sequences is about 199

hours and with the time unit being 3 seconds, the amount of

the data are still adequate for the study. Then these sequences

are further cut into length 200 sub-sequences in the following

way: For each sequence q of length n, we cut it into multiple

sequences q[0 : 200], q[50 : 250], .... , q[(n − 200) : n]. We

obtain 3200 test sequences in this cutting procedure, which are

used as the power data in our classification study. Note that

these sequences are overlapped, as indicated by the cutting

method.

Furthermore, for the purpose of multi-fold tests, we divide

these samples into five folds F0-F4. Note that to avoid the

overlapping of the training data and the test data, the fold

partition is done before the sequence cutting. For each fold of

test, we use Fi,F(i+1)%5 as the test data, and the left folds as

the training data.

B. Preliminary Analysis

We do some preliminary analysis on the pretreated data. The

following analysis are meant to provide a basic understanding

of the power data in view of classification.

1) Basic Characteristic Analysis Based on Visualization:

We use various dimension reduction methods to visualize the

data, which can help to identify if the power series can be

successfully classified to a certain degree. We utilize eight

different dimension reduction methods with scikit-learn [36]

and project the original fixed length power sequences into

a 2-dimensional space. These dimension reduction methods

are PCA, LDA, LLE, modified LLE, Isomap, MDS, Spectral

Embedding and t-SNE, which are widely adopted dimension

reduction methods. The 2-dimensional codes of the power

data generated by these methods are shown in Fig. 2. We use

different colors to show samples from different classes.

From the Fig. 2 we can observe that the power series data

are not easy to distinguish after the dimension reduction. This

may be due to the short length (2 here) of the embedding code;

however, it still shows that the power series classification task

cannot be easily done.

2) Tackling the Classification Problem with the Canonical

Classifiers: We test some canonical classifiers to tackle the

power series classification problem. The canonical classifiers

tested here are listed as follows: Nearest Neighbours, Linear

SVM, RBF SVM, Decision Tree, Random Forest, AdaBoost,

Naive Bayes, LDA and QDA [36] . Parameter settings for

these classifiers are tuned manually. The classification results

of these methods are shown in Table II.

From the results we can observe that for a 13-classes

classification problem, the highest accuracy achieved by these

methods are about 60% (by Random forest). The classification

accuracy is not promising (when compared to the 1NN-DTW

shown below), which actually proves that our power series

labelling problem is a typical time series classification prob-

lem, as stated in [15], for such problem, canonical Euclidean

distance metric based classifiers cannot achieve good results

usually.

3) Feature Based Classification Study: In general, as a sig-

nal classification problem, the power series labelling problem

can be solved by first extracting certain features from the raw

power series and then carry out the classification with these

features. In this subsection, we study such possibility and test

power series classification with the DFT [37] feature of the

original power sequences. With DFT, each power sequence

can be transformed into the spectrum space resulting a new

representation. The spectrum representation can be aligned as

a vector as the input to the classifiers. We test the classification

result of 1NN-DTW with the raw data compared to with the

DFT feature. The classification results are shown in Table III.

Note that for the 1NN-DTW, the maximum offset r is set to

15% of the sample length, which is manually tuned in the

experiment.
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Fig. 2. Projection results with different manifold learning methods. The power series samples (200 dimensional data) are projected into 2-dimensional space
for visualization. The results show that the power series are difficult to discriminate.

TABLE II
THE CLASSIFICATION RESULTS OF THE CANONICAL CLASSIFIERS. THESE CLASSIFIERS CAN ACHIEVE ACCURACY UP TO ABOUT 60%.

Test case Nearest Neighbours Linear SVM RBF SVM Decision Tree Random Forest AdaBoost Naive Bayes LDA QDA

Fold 0 0.4346 0.5187 0.3175 0.5747 0.5891 0.4593 0.4406 0.4380 0.4092

Fold 1 0.4427 0.5105 0.3063 0.5607 0.6050 0.4192 0.4360 0.4377 0.4276

Fold 2 0.4420 0.5071 0.3283 0.5901 0.6133 0.4121 0.4016 0.4256 0.4248

Fold 3 0.4475 0.5004 0.3094 0.5835 0.6378 0.3813 0.4123 0.3707 0.4574

Fold 4 0.4673 0.5383 0.3301 0.5610 0.6174 0.3834 0.4278 0.4407 0.4786

TABLE III
CLASSIFICATION RESULTS OF THE 1NN-DTW WITH THE ORIGINAL

SERIES AND WITH THE DFT FEATURE.

Test case
1NN-DTW with
original series

1NN-DTW with
DFT feature

Fold 0 0.8548 0.7122

Fold 1 0.8393 0.7029

Fold 2 0.8369 0.6761

Fold 3 0.8329 0.6998

Fold 4 0.8514 0.6885

From Table III we can observe that the DFT features are not

helping. The reason is that classification with the original data

can maximize the information used in classification, while the

DFT feature is less informative.

To summary, we find that the power series classification

problem is not easy to tackle especially with the canonical

classifiers and with some common used features. In the fol-

lowing, we will propose a new distance measurement inspired

from DTW and combine it with the state-of-art sequence

modelling neural network LSTM.

IV. THE PROPOSED POWER SERIES CLASSIFICATION

ALGORITHM

In this section we present the proposed new power series

classification algorithm which hybridizes a nearest neighbour

classifier with a novel distance measurement and a LSTM clas-

sifier. In the following we first introduce the two components

respectively and then present the hybrid algorithm.

A. Nearest Neighbour with the Local Time Warping (LTW)

We propose a new classifier which utilize a novel distance

measurement to compute the distance between two sequences

which we termed as Local Time Warping (LTW) as its warping

computation for each time step is done in a local window

without a dynamic programming procedure like DTW. The

LTW is developed to replace the DTW distance measurement

in the 1NN-DTW classifier.

The idea behind LTW is as follows. Comparing the al-

gorithms of DTW and the Euclidean distance, the major

difference in between is that there are a lot of “min” operators

in DTW. Such “min” operator actually is the key to the “warp-

ing” map between the two time series. Despite the warping

operation, DTW utilizes a dynamic programming procedure to

optimize the mapping. Note that dynamic programming is slow

and it is not directly optimizing the classification accuracy. In

this case, what if we do not use the dynamic programming

procedure? We may try some low cost warping operations; is

it possible that such a distance measurement can be as good

as DTW? Here we propose the LTW to answer this question.

Also, note that the DTW is computed by a beautiful symmetric



6

formula which makes it commutative for the two time series in

computing the distance. What if we do not need the distance

measurement to be commutative? Can it be better with the

non-commutative feature? Our proposed LTW will also answer

this problem. The detailed design is shown below.

The LTW distance measurement is computed in the follow-

ing way. Suppose we have two sequences x and y, both of

length n. We define the LTW distance between x and y as:

dLTW
k (x,y) =

n−k∑

i=k+1

min(|xi − yi|, |xi − yi+1|, |xi − yi+k|),

(2)

LTWG(x,y) =
∑

k∈G

dLTW
k (x, y). (3)

As shown in (3), LTW works in the following manner. In

computing the distance between x and y (when we want to

find a nearest neighbour of x), we set x as the base sequence

and test the similarity of y to x in the following way: with

a warping index set G, for k ∈ G, for time step i in x, we

compute the minimum absolute distance between xi and one

of yi, yi+1, yi+k; then we add these distance measures for

i = k + 1, ..., n − k and for k ∈ G up, which is the LTW

distance from y to x with warping index G. Note that (2) is a

linear algorithm (only three items to compare no matter how

large k is). Detailed pseudo code to compute LTWG(x,y) is

shown in Algorithm 1.

Algorithm 1 LTWG(x,y)

1: n = length(x)
2: r = 0
3: d0 = abs(x− y)
4: d1 = abs(x[1, .., n− 1]− y[2, ..., n])
5: for k ∈ G do

6: dk = abs(x[1, .., n− k]− y[k + 1, ..., n])
7: dk =

∑n−k
i=k+1 min(d0[i],d1[i],dk[i])

8: r = r + dk
9: end for

10: Return r.

Note that the LTWG(x,y) distance is non-commutative,

which means that LTWG(x,y) 6= LTWG(y,x) can be true.

We use LTWG(x,y) to compute the nearest neighbour of

sequence x, in a sense that to find the best match of x

among the other samples such as y. For comparison, the DTW

distance is obviously commutative. The non-commutative fea-

ture of LTW can be beneficial, as our target is to find the

nearest neighbour for each x. A non-commutative distance

measurement is enough to serve the purpose and can provide

more flexibility by enforcing less constraints to the distance

measurement.

B. Long Short Term Memory Neural Network

We utilize the LSTM classifier following [38] for our power

series classification problem. The LSTM neural network con-

sists of an input layer, a LSTM layer and a logistic regression

layer as depicted in Fig. 3. The three layers function in the

following way respectively:

,QSXW�VHULHV��LQ�HDFK�WLPH�VWHS�

WKHUH�LV�D�YHFWRU�[W

/670�HQFRGLQJ��(DFK�[W�LV�HQFRGH

LQWR�D�P�'�YHFWRU��KW��

$YHUDJH�RYHU�GLIIHUHQW�WLPH�VWHSV��������KW��Q

[� [� [� [Q

/RJLVWLF�UHJUHVVLRQ�OD\HU�ZLWK�D�

���GLPHQWLRQDO�RXWSXW�
2XWSXW

6RIWPD[

[WXXX XXX

Fig. 3. Illustration of the LSTM neural network. It contains three layers: the
input layer, the LSTM layer and the logistic regression layer. The output is a
13-dimensional vector which denotes the probability of the sample belonging
to each class.

• Input layer: The input data sample, which is a length n
vector x, is firstly discretized into range [0, S]. Such an

operation is a smoothing operation to the original power

series, which can affect the performance of the LSTM.

Then each time step xt, t = 1, ..., n is enriched into a

m-dimensional vector xt which can ease the following

computation, i.e. xt = xt ·e, where e is a m-dimensional

vector with all entries equal to 1. After the above process,

the new sequence x1,x2, ...,xn is used as the input to the

LSTM layer.

• LSTM layer: The LSTM layer contains n LSTM node,

where each LSTM node t can output an m dimensional

code ht. The operation inside the LSTM node is shown

below. First, for each time step xt, the LSTM node needs

to compute a new state denoted by Ct. To compute Ct,

a candidate state C′
t is firstly computed as:

C′
t = tanh(Wcxt +Ucht−1 + bc). (4)

Then two gates, an input gate it and a forget gate ft are

computed to update the new state:

it = σ(Wixt +Uiht−1 + bi). (5)

ft = σ(Wfxt +Ufht−1 + bf ). (6)

Then the new state of the LSTM node is computed as:

Ct = it ·Ct + ft ·C
′
t. (7)

With the node state, to further compute the output, an

output gate is firstly computed as:

ot = σ(Woxt +Uoht−1 + bo). (8)

Finally the output of a LSTM node t is computed as:

ht = ot · tanh(Ct). (9)

The output of all LSTM nodes are then added together

as the output of the LSTM layer:

h =

n∑

t=1

ht. (10)

• Logistic regression layer: In this layer the output of the

LSTM layer is used to compute the label of the test

sample in the following way. First we use the softmax
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[39] function to compute the probability vector P with its

each entry representing the probability of the test sample

belonging to a class:

P = softmax(Wh+ b). (11)

Then the prediction ypred is the class which achieves the

largest probability:

ypred = argmaxi(P). (12)

To train the LSTM classifier, the loss function is defined

as the negative log-likelihood function with the label of the

training data y:

−L(θ,D) = −

|D|−1∑

i=0

log(Py(i) |x(i), θ)), (13)

where θ is the set of all the weight and bias parameters in

the LSTM neural network (which are adjusted in the training

process); D is a batch of training samples. Size of D can be

important for the performance of of the classifier. The detailed

training algorithm is shown in Algorithm 2.

Algorithm 2 LSTM Training Procedure

1: Divide the training data into a training set and a validation

set. Partition the training data set into batches.

2: Set Epoch = 0, best validation error Vbest =∞; denoting

θ as the set of all control parameters of the LSTM;

randomly initialize θ; set best LSTM parameter setting

θbest = ∅; initialize MaxEpoch.

3: //Training process:

4: while Epoch < MaxEpoch do

5: for Each batch of the training data do

6: Compute the loss function according to (13).

7: Update θ to reduce the loss.

8: end for

9: Compute the loss on the validation set, termed as Vc.

10: if Vc < Vbest then

11: Vbest ← Vc.

12: θbest ← θ.

13: end if

14: Epoch = Epoch+ 1.

15: end while

16: Output: The LSTM network with the best parameter

setting θbest.

C. Hybridization of LSTM and 1NN-LTW

In this subsection we propose to combine the 1NN-LTW

classifier and the LSTM classifier. The underlying rational is

that both classifier can achieve high classification accuracy for

our problem but in very different manners: the 1NN-LTW is

a nearest neighbour classifier, which is a data-based classifier

without a training process; while LSTM is a training based

classifier in which the training data are firstly used to build

a model and then the model is used to classify the test data.

In our experiments, both classifiers can perform promisingly

individually; however, our numerical simulation shows that

the accurately classified samples by the two classifiers have

significant differences. In such sense, we propose to combine

the two algorithms to construct a even stronger classifier.

The hybrid algorithm is designed in the following way.

Considering that in practice, the training of LSTM and the

computing of the distance matrix for 1NN-LTW can be both

time consuming, the hybrid algorithm is designed to be as

simple as possible. We first obtain the two individual classifiers

CLTW (the nearest neighbour classifier with CID enhanced

LTW) and CLSTM (the trained LSTM classifier). For each

classifier, we obtain the probability vector when classifying

some test time series x: pLTW (x) and pLSTM (x), where

pLTW (x) is defined as:

pLTW (x) =

∑m
i=1(m− i)vi

∆
, (14)

where vi is a all zero vector except its value at the index of

the class of the ith neighbour obtained from CLTW is to be

1. ∆ is a normalization vector which is used to make sure that

the summation of the obtained probability vector equal to 1.

pLSTM (x) is obtained equation (11).

With this two probability vector, we simply add them up

and the test series will be classified to be the class index with

the maximum probability, i.e.:

CLSTM/LTW (x) = argmax(pLTW (x)+pLSTM (x)). (15)

The detailed algorithm is shown in Algorithm 3.

Algorithm 3 Hybridization of 1NN-LTW and LSTM

1: Train CLSTM with the training data according to Algo-

rithm 2.

2: For test time series x, compute the probability vector

pLTW (x) according to Algorithm 1 and pLSTM (x) with

the well trained CLSTM .

3: Classify the test time series x according to (15) and get

the label lhybrid(x).
4: Output: lhybrid(x), as the predicted label for sample x.

V. NUMERICAL EVALUATION AND ANALYSIS

In this section we present the experimental results

of the above proposed algorithms and the analysis. We

first conduct experiments to investigate the proposed

LTW and compared it with various variants of DTW.

Then we compare the classification accuracy of the

proposed 1NN-LTW, LSTM and their hybrid algorithm

LSTM/LTW with the baseline algorithm 1NN-DTW.

Test data and codes for the LTW tests are available at

https://www.dropbox.com/sh/9iu6xg5eskq90g8/AABz8kaFOU

WNtBa5XRPg6D9ua?dl=0. In presenting the classification

results, for convenience, we will simply use test Fold i to

denote the test with test samples in Fi and F(i+1)%5.

A. Experimental Study on LTW

In this subsection, we conduct experiments to prove that

the proposed LTW is indeed a different distance measurement

from the existed DTW variants, and prove that it works better
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or nearly the same(for the linear version) to DTW and its

various state-of-art variants. We will also prove that the non-

communicative feature is indeed beneficial. Note that we will

not try to use massive experimental data to prove that the

proposed LTW is superior than other DTW variants, which is

indeed not true not only because of the No Free Launch theory,

but also because these distance measurements are mostly

designed in a way without a training objective to directly

optimize the classification accuracy: for example, in DTW,

the dynamic programming process can optimize the match;

however, such optimization goal is different from the classifi-

cation accuracy. In such sense, all these distance measurements

can suffer from model bias and when they are applied to

different data sets, their performance will definitely vary. As

proved in [9], only ensemble based methods can significantly

outperform 1NN-DTW by more than 3% on different data sets.

In this section, we will only conduct experiments on our data

set to compare LTW with the DTW with Manhattan distance

(DTWm), DTW with Euclidean distance(we will use this as

the default DTW in this paper, as it has better performance),

and DTW variants MSM, LB Keogh, and the enhancer CID as

these methods performs good in general as shown in [9]. In the

following experiments, we conduct pairwise Wilcoxon signed

rank test [40] to test whether a target algorithm performs

significantly different to the other algorithms or not. We show

the computed T value, where T = 0 means the compared

algorithms are significantly different to the target algorithm

at significance level 0.05 in our five fold test, otherwise not.

Details are shown below.

First, we present the comparison of 1NN-LTW (G =
{1, 2..., 10}) with 1NN-DTWm (warping window w = 20),

1NN-DTW (warping window w = 20), MSM (with its

threshold parameter c = 1.0). These parameter settings are

manually tuned to achieve best performance in a 3-fold internal

cross validation of the training data. We will show analysis on

the affects of the warp set G in Section V-D. The results are

shown in Table IV. Clearly the performance of 1NN-LTW is

better.

Second, we compare the fast linear LTW with G = {10}
with the linear runtime lower bound method LB Keogh. We

test LB Keogh with window size w = 5 and w = 10
respectively. The reason we set the window size to 5 is that

in this case the warping set has a size of 10, which is of

the same size of 1NN-LTW (G = {1, 2..., 10}), such that we

can show whether 1NN-LTW (G = {1, 2..., 10}) is different

to LB Keogh or not. For window size 10, we want to test

LB Keogh with the same largest warp index offset as LTW

with G = {10}. The results are shown in Table V and LTW

with G = {10} outperforms LB Keogh significantly on our

data set. This proves that the fast linear version of LTW can

still perform quite good and is different from the lower bound

method LB Keogh.

Third, we present the classification results with the CID

enhanced distance measurement. We show the results of

CID(DTW) and CID(LTW) with G = {1, 2..., 10} and

G = {10} in Table VI. Clearly, the CID can improve the

performance of both DTW and LTW for our data set. With

CID modifier, the LTW is still slightly better than DTW; how-

TABLE IV
CLASSIFICATION ACCURACY OF 1NN-LTW (G = {1, 2...,10}) WITH

1NN-DTWM (w = 20), 1NN-DTW (w = 20), MSM (c = 1.0).

Test case 1NN-LTW({1,...,10}) 1NN-DTWm 1NN-DTW MSM

Fold 0 0.8862 0.7988 0.8548 0.8294

Fold 1 0.8854 0.7958 0.8393 0.8310

Fold 2 0.8661 0.8220 0.8369 0.8699

Fold 3 0.8809 0.8118 0.8329 0.8682

Fold 4 0.8894 0.8168 0.8514 0.8515

Wilcoxon T Target 0 0 0

TABLE V
COMPARISON OF 1NN-LTW (G = {10}) WITH 1NN-LB KEOGH

(w = 5, 10).

1NN-LTW(G = {10}) LB Keogh (w = 5) LB Keogh (w = 10)

Fold 0 0.8829 0.5866 0.4542

Fold 1 0.8762 0.5791 0.4753

Fold 2 0.8444 0.6081 0.4592

Fold 3 0.8696 0.6018 0.4616

Fold 4 0.8838 0.6053 0.4326

Wilcoxon T Target 0 0

ever, the advantage of CID(LTW) over CID(DTW) becomes

smaller, we believe that it is reasonable as the accuracy is

upper bounded and it will be much more difficult to further

improve the accuracy when the algorithm is already very

accurate.

At last, we present the experimental results to show that

the non-commutative feature of LTW is indeed beneficial. To

do so, we implement a simple commutative version of LTW

defined as:

LTW com(x,y) = LTW (x,y) + LTW (y,x). (16)

The experimental results compare the LTW with the LTW com

is shown in Table VII. Clearly, LTW outperforms its com-

mutative version significantly. This proves that the non-

commutative feature of LTW is indeed beneficial.

B. The Classification Accuracy Rate Comparison

The five-fold classification accuracy results for the hybrid

algorithm LSTM/LTW are shown in Table VIII, compared

with the non-hybrid classifiers 1NN-DTW, 1NN-CID(LTW),

LSTM and a recently proposed ensemble classifier Ensemble

of Elastic distance measurements for time series classification

TABLE VI
CLASSIFICATION RESULTS WITH CID ENHANCED DISTANCE

MEASUREMENT.

1NN-CID(DTW) 1NN-CID(LTW{1,...,10}) 1NN-CID(LTW{10})

Fold 0 0.8829 0.9041 0.8837

Fold 1 0.8854 0.8904 0.8912

Fold 2 0.8833 0.8684 0.8579

Fold 3 0.8950 0.9013 0.8887

Fold 4 0.8999 0.9031 0.8846

Wilcoxon T 4 Target 1

TABLE VII
COMPARISON OF LTW AND THE LTW com

1NN-LTW 1NN-LTW com

Fold 0 0.8862 0.7385

Fold 1 0.8853 0.7029

Fold 2 0.8661 0.7218

Fold 3 0.8809 0.7294

Fold 4 0.8894 0.7692

Wilcoxon T Target 0
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TABLE VIII
CLASSIFICATION ACCURACY OF 1NN-LTW,LSTM AND THE HYBRID

ALGORITHM LSTM/LTW COMPARED TO THE BASELINE ALGORITHM

1NN-DTW AND ENSEMBLE CLASSIFIER EETSC.

Test case 1NN-DTW 1NN-CID(LTW) EETSC LSTM LSTM/LTW

Fold 0 0.8548 0.9040 0.8472 0.8791±0.0142 0.9265±0.0049

Fold 1 0.8393 0.8903 0.8377 0.8834±0.0093 0.9130±0.0039

Fold 2 0.8369 0.8683 0.8355 0.8621±0.0142 0.8909±0.0063

Fold 3 0.8329 0.9013 0.8379 0.8729±0.0170 0.9151±0.0045

Fold 4 0.8514 0.9031 0.8450 0.8762±0.0142 0.9239±0.0047

Wilcoxon T 0 0 0 0 Target

(EETSC) [28]. For the LSTM neural network, we set the

maximum number of epoch (MaxEpoch) to 50. For some

key parameters which can affect the performance of LSTM

,we give a detailed discussion in the following parameter

settings study. Results of LSTM and LSTM/LTW are based

on 30 independent runs as the LSTM is trained by a stochastic

algorithm. For EETSC, as it has four different ensemble

methods, in the revised manuscript we only show the results of

the method which achieves the best performance, which is the

“Prop” method. Note that the code of EETSC is downloaded

from the website provided by the authors.

From Table VIII we can observe that:

• The proposed LSTM classifier shows similar accuracy

compared to 1NN-LTW and it also outperforms 1NN-

DTW on our data set.

• The hybrid algorithm LSTM/LTW can achieve higher

accuracy compared to 1NN-LTW and LSTM by an incre-

ment of about 3%, which proves that the hybrid algorithm

can indeed improve the classification accuracy.

• The performance of EETSC is not as good as the pro-

posed hybrid LSTM/LTW, and it is also weaker than the

CID(LTW). We noticed that the CID modifier is not used

in EETSC, which may be the reason that it performs

similarly to the 1NN-DTW and MSM.

For the first observation, we can see that LSTM, as a neural

network, can significantly outperform the other canonical

classifiers like SVM, which proves its strong modelling ability

for sequential data. Note that a common neural network like

multilayer perceptron (MLP) can not perform as good as

LSTM. The performance of LSTM can be seriously affected

by the training settings, which we will discuss below.

For the second observation, we can see that the improvement

is small, which is reasonable as the baseline algorithms already

achieve a high accuracy individually, making it difficult to

achieve large improvement for the hybrid algorithm. The

improvement caused by the hybrid algorithm will be shown

clearly in the following detailed analysis.

C. Analysis on the Accurately Classified Samples

In this subsection we analyse the accurately classified

samples of the power series and study the difference between

different classifiers. In doing so we will be able to identify

why and how the hybrid algorithm works.

Fig. 4 shows the predicted labels for the test samples in

Fold 0 of the 1NN-DTW, 1NN-LTW, LSTM and the hybrid

algorithm LSTM/LTW. Fig. 5 shows the accurately classified

samples for each class and for each algorithm. From Fig. 4

and 5 we can observe that:

TABLE IX
THE UNION-ACCURACY OF THE 1NN-LTW AND THE LSTM CLASSIFIERS

IN THE FIVE FOLD TESTS.

Test case accunion

Fold 0 0.9482

Fold 1 0.9489

Fold 2 0.9468

Fold 3 0.9541

Fold 4 0.9612

• The proposed 1NN-LTW method performs similarly to

1NN-DTW, although 1NN-LTW can accurately predict

more test samples. This is reasonable as the two classi-

fiers are both nearest-neighbour classifiers and they have

similar measurement definition.

• The proposed LSTM classifier shows certain degree of

difference compared to the other two nearest neighbour

classifiers. One example, the LSTM classifier cannot

predict any test samples from the Spark-MLlib-LR (class

label 5) and the Spark-MLlib-PCA (class label 8) classes,

while both 1NN-DTW and 1NN-LTW can; however,

LSTM performs better than the other algorithms on

classes Spark-MLlib-SVM (class label 6) and Hadoop-

WordCount (class label 9).

• The proposed LSTM/LTW classifier can successfully

combine the advantages of LSTM and 1NN-LTW. Such

as for the Spark-MLlib-LR class and Hadoop-WordCount

classes, the hybrid algorithm achieve similar performance

to the better one of LSTM and 1NN-LTW.

• All the classifiers can successfully classify the test sam-

ples of the web server class, which is reasonable as the

web server program is of a completely different kind from

the other MapReduce programs.

The above results show the difference of the 1NN-LTW

and the LSTM classifier which makes the hybrid algorithm

work. Although 1NN-LTW and the LSTM can achieve similar

accuracy, their accurately classified samples have significant

differences. To make this more clearly, we compute the union-

accuracy accunion of the two classifiers as follows:

accunion =
|ALSTM ∪A1NN−LTW |

N
, (17)

where ALSTM and A1NN−LTW are the sets of the accurately

classified samples by LSTM and 1NN-LTW respectively; N
is the total number of test samples in this test fold. The union-

accuracy of the five fold tests are shown in Table IX. It can be

seen that the union-accuracy is between 94%-96%. It shows

the potentiality of a hybrid algorithm of the two classifiers.

Note that the hybrid algorithm can only achieve accuracy

smaller than the union-accuracy, as the union-accuracy is

computed in an ideal manner.

D. Discussion on the Parameter Settings

In this subsection we discuss the parameters settings in the

above algorithms. First we study the parameter used in the

LTW measurement, the warping index set G. The test results

with different G settings are shown in Table X. It can be seen

that a proper G setting is needed as a set G too small can
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Fig. 4. Classification response for different algorithms on Fold 0. The ground truth/predicted labels of the test samples are plotted against the index of the
sample. Clearly the hybrid algorithm gains the advantage of both LSTM and 1NN-LTW.

TABLE X
TEST RESULTS WITH DIFFERENT SETTINGS FOR THE WARPING INDEX SET

G IN 1NN-LTW

G = {1} G = {1, .., 4} G = {1, ..., 8} G = {1, ...,12}
Fold 0 0.8166 0.8591 0.8727 0.8846

Fold 1 0.8075 0.8552 0.8728 0.8904

Fold 2 0.8138 0.8601 0.8684 0.8661

Fold 3 0.8132 0.8668 0.8760 0.8802

Fold 4 0.8103 0.8571 0.8878 0.8902

deteriorate the performance. In our experiments we find that

with a larger set G, the performance of LTW is more stable.

Note that increasing the size of G can cause higher computing

cost.

Second, we discuss the parameter settings for the LSTM

classifier. Tuning of the hyper-parameters of the LSTM net-

work is critical. In our experiments, we find that an improper

setting can result a bad performance with accuracy lower than

50% for the LSTM. We find the following key settings in the

LSTM classifier, which we have tested and find the proper set-

ting, although detailed experimental results are omitted here.

The hyper-parameter settings: three parameters are specially

tuned in our experiments, which are the batch size (we set to

60), the dimension of the LSTM node (we set to 90), and the

discretized range parameter S (we set to 100). We also tested

two more different implementation variations of LSTM: 1)

Adding a dropout layer, which is tested and not helpful in our

case. 2) More than one LSTM layers, which has been tested

and is also not helpful.

E. Discussion on the Time Cost

In this subsection we analyse the time cost of the proposed

algorithm. First, we compare the time cost of the 1NN-

LTW(G = {1, ..., 10}), 1NN-LTW(G = {10}), 1NN-DTW

(w = 20), LB Keogh, and LSTM (decomposed into the

training time cost and the test time cost). These algorithms

are all implemented in Python and tested on a Ubuntu server

14.04 with Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz.

The codes are implemented as single thread programs which

can only utilize one core. For the LSTM, we show both its

training time cost and its classification (test) time cost. The

time cost data for different algorithms on Fold 0 are shown in

Table XI.

From Table XI we can observe: 1) The proposed LTW

distance measurement is much faster than DTW. The time

cost of LTW(G = {10}) is similar to LB Keogh, which shows

that the algorithm itself can be very useful when the time cost

matters. 2) The training time needed of LSTM is smaller than

the time cost of 1NN-DTW in our experiment. However, it

should to be noticed that the time cost of LSTM is determined

by the training epochs. The classification time cost of LSTM

is only 294 seconds, which is much faster when compared

with the other classifiers; this shows that after the neural

network is trained, it can be used in classification with high

time efficiency. Also note that as GPU based neural network

training is widely used in practice, the time cost of LSTM can

be greatly reduced if GPU is used. We also note that the time

cost of EETSC is high (335,074 seconds in training and 25,335

seconds in testing with code written in Java and runs with all

CPU cores), this is because in the training procedure, EETSC

tests many different parameter settings through internal cross

validation within the training data. The test time cost shows

that as it is ensemble of nine different classifiers, the time cost

is high as expected.

VI. CONCLUSION AND FUTURE WORKS

In this research, we study the server power consumption

series classification problem used as a non-intrusive method

for data centre energy monitoring. First we propose a new
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Fig. 5. Accurately classified samples for the different algorithms on Fold 0. Samples from the same class are drawn in the same sub-figure: (a)1NN-DTW; (b)
1NN-LTW; (c) LSTM; (d) LSTM/LTW. LSTM cannot classify some classes while the hybrid algorithm gains the advantage of both LSTM and 1NN-LTW.

TABLE XI
RUN TIME COST (SECONDS) OF DIFFERENT ALGORITHMS.

1NN-LTW
(G = {1, ...,10})

1NN-LTW
(G = {10})

1NN-DTW LB Keogh
LSTM
Train

LSTM
Test

Time
Cost

4695±1.2 2019±1.0 55171±237.5 3390±0.6 11043±79.9 294±0.1

time series distance measurement termed as local time warping

(LTW) and build a hybrid algorithm of the 1-nearest neighbour

with LTW and the LSTM neural network. The proposed LTW

distance measurement is designed to be a light weight time

series measurement with local warping operations within a

predefined warping index set, and it is designed to be non-

commutative. LTW can be taken as the simplified version

of DTW with only the warping operation (a series of “min”

operations). The LTW is proved to be better than DTW on

our data set and its non-commutative feature is proved to be

beneficial. Also a linear version of LTW can perform almost

as good as the DTW on our data set. The proposed LTW

shows that for a certain time series classification problem,

it is possible to use some light weight time series distance

measurement to achieve quite good classification accuracy.

Second we apply the state-of-art sequential data modelling

neural network LSTM to classify the power series. Our study

show that LSTM can perform well compared to 1NN-LTW

with similar accuracy; however, these two algorithms have

their unique different natures and the accurately classified

samples of these two algorithms have significant difference.

In this sense, we propose a hybrid algorithm of the two

classifiers termed as LSTM/LTW, which further improves

the accuracy. The proposed hybrid algorithm can achieve

classification accuracy as high as 93% in our experiments.

For the future work, one interesting problem is to study

the case that the power series generated by multiple programs

thus with multiple labels. The problem is especially interesting

when we have the test data being the combination of different

programs (such as a pair of programs (A, B)) where this

special pair may not be seen in the training data, for example,

the training data may only contain samples generated by

program pairs like (B,C) and (A,C). In this case, the classifier

should be able to recognize the new pair (A, B). Also, one
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can try more complicated ensemble algorithms with LSTM

and other existed time series classification algorithms.
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