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Abstract—Function evaluations of many real-world optimiza-
tion problems are time or resource consuming, posing a serious
challenge to the application of evolutionary algorithms to solve
these problems. To address this challenge, the research on
surrogate-assisted evolutionary algorithms has attracted increas-
ing attention from both academia and industry over the past
decades. However, most existing surrogate-assisted evolutionary
algorithms either still require thousands of expensive function
evaluations to obtain acceptable solutions, or are only applied to
very low-dimensional problems. In this paper, a novel surrogate-
assisted particle swarm optimization inspired from committee-
based active learning is proposed. In the proposed algorithm,
a global model management strategy inspired from committee-
based active learning is developed, which searches for the best
and most uncertain solutions according to a surrogate ensemble
using a particle swarm optimization algorithm and evaluates
these solutions using the expensive objective function. In addition,
a local surrogate model is built around the best solution obtained
so far. Then a particle swarm optimization algorithm searches
on the local surrogate to find its optimum and evaluates it. The
evolutionary search using the global model management strategy
switches to the local search once no further improvement can be
observed, and vice versa. This iterative search process continues
until the computational budget is exhausted. Experimental results
comparing the proposed algorithm with a few state-of-the-art
surrogate-assisted evolutionary algorithms on both benchmark
problems up to 30 decision variables as well as an airfoil design
problem demonstrate that the proposed algorithm is able to
achieve better or competitive solutions with a limited budget
of hundreds of exact function evaluations.

Index Terms—particle swarm optimization, expensive prob-
lems, surrogate, model management, active learning.

I. INTRODUCTION

As a powerful optimization tool, evolutionary algorithms
(EAs) are able to solve problems that cannot be easily handled
by conventional mathematical programming techniques and
have found many successful real-world applications [1]. In
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the real world, however, it is more often than not that quality
evaluations involve computationally expensive numerical sim-
ulations or costly experiments [2]. In some cases, simulations
in multiple fidelity levels are available for evaluations [3],
[4]. For example, two- and three-dimensional computational
fluid dynamic (CFD) simulations are subject to a trade-off
between fidelity and computational cost [5]. Multi-fidelity
optimization methods take the full advantages of different
fidelity levels [6]. However, the simulation model with the
lowest fidelity level may still be computationally expensive,
e.g., one single CFD simulation takes from minutes to hours
[7]. Such expensive function evaluations cannot be afforded by
EAs, which typically require tens of thousands fitness evalua-
tions. To overcome this barrier, surrogate-assisted evolutionary
algorithms (SAEAs) have been developed where part of the
expensive fitness evaluations are replaced by computationally
cheap approximate models, often known as meta-models or
surrogates [5], [8].

SAEAs have become a popular approach to optimization
of the real-world expensive problems [9], [10], due to their
effectiveness in reducing the computational cost to a relatively
low budget, provided that the computational cost for building
surrogates takes much less time than that for the exact function
evaluations (FEs). Given certain amount of data, a single
model [11] or multiple models [12], [13] can be employed
to estimate the fitness of candidate solutions. In the litera-
ture, polynomial regression (PR) models [14], support vector
machines (SVMs) [15], radial basis function (RBF) networks
[16], [17], artificial neural networks (ANN) [9], and Gaussian
processes (GP), also known as Kriging [18], [19] have been
used to construct surrogates.

As indicated in [8], [9], model management plays a key role
in making the most use of surrogate models given a limited
computational budget. According to the discussions detailed
in [10], various model management strategies are needed for
online and offline data-driven SAEAs, mainly depending on
the amount of given data and the availability of new data. For
offline SAEAs, no new data can be made available during the
optimization and the model management strategy considerably
varies depending on whether the amount of given data is
big [10] or small [20]. For online SAEAs, it is usually assumed
that the model management strategy is able to actively identify
a limited number of new candidate solutions to be evaluated
using the expensive fitness function. In this paper, we assume
that the optimization algorithm is allowed to evaluate a small
number of selected solutions during optimization and therefore
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we focus on developing a new model management strategy
that identifies new solutions to be evaluated that can most
effectively accelerate the convergence process.

Most earlier model management strategies employ a gen-
eration based method [21], [22]. In generation based model
management approaches, the key question is to adapt the
frequency in which the real fitness function is used. For
example, a strategy inspired from the trust region method was
proposed in a surrogate-assisted genetic algorithm [22], while
the average approximation error of the surrogate during one
control cycle was used in an evolution strategy with covariance
matrix adaptation to adjust the frequency of using the real
objective function [9].

By contrast, individual based model management [9], [23]
focuses on determining which individuals need to be evaluated
within each generation. The most straightforward criterion is
to evaluate solutions that have the best fitness according to
the surrogate [9], [21], because these solutions might improve
the accuracy of the model in the promising region of search
space and lead to better solutions on the basis of the updated
surrogate model. An alternative criterion is to select solutions
whose estimated fitness is the most uncertain [23], [24]. Eval-
uation of these solutions can not only encourage exploration
but most effectively enhance the accuracy of the surrogate
as well [5]. To estimate uncertainty in fitness estimation, the
average distance between a solution and the training data can
be adopted [23]. Since Kriging models are able to provide
uncertainty information in the form of a confidence level of
the predicted fitness [25], they have recently become very
popular in SAEAs. To take advantage of the uncertainty
information provided by the Kriging models, various model
management critera, also known as infill sampling criteria
in the Kriging-assisted optimization, have been proposed in
SAEAs, such as probability of improvement (Pol) [26], [27],
expected improvement (ExI) [26], [28], and lower confidence
bound (LCB) [11].

So far most SAEAs have been developed to tackle small
to medium-sized (up to 30 decision variables) expensive opti-
mization problems with few exceptions [29], [30], [31], [32],
partly because a majority of real-world expensive optimization
problems have a medium-sized decision variables [11], and
partly because most surrogates are not able to perform well
for high-dimensional problems with limited training data. Nev-
ertheless, existing SAEAs typically still require a large number
of expensive FEs to obtain an acceptable solution. For exam-
ple, the ensemble-based generalized surrogate single-objective
memetic algorithm (GS-SOMA) [33] needs 8000 exact FEs
for 30-dimensional single-objective benchmark problems, the
Pol-based surrogate-assisted genetic algorithm with global and
local search strategy (SAGA-GLS) [27] costs 6000 exact FEs
on 20-dimensional single-objective benchmark problems, and
the Gaussian process surrogate model assisted evolutionary
algorithm for medium-scale expensive problems (LCB-based
GPEME) [11] uses 1000 exact FEs for 30- and 50-dimensional
single-objective benchmark problems. Such a large number
of expensive FEs, although already greatly reduced compared
to those used in the evolutionary optimization literature, is
not practical for many extremely expensive problems. In this

paper, we aim to develop a new algorithm that is able to obtain
acceptable solutions to medium scale expensive optimization
problems with a budget of hundreds of exact FEs. To this end,
a new model management strategy is proposed by borrowing
ideas from committee-based active learning [34], [35] that
actively queries new training data to most efficiently improve
the approximation quality of the current model without signifi-
cantly increasing the size of training dataset. More specifically,
we employ a global model management strategy that aims to
find the most uncertain and the best solutions for evaluation
suggested by an ensemble surrogate using a particle swarm
optimization (PSO) algorithm [36]. On top of this global
model management strategy, we also introduce a local model
management strategy that searches for the optimum of a local
surrogate for evaluation.

The rest of this paper is organized as follows. Section II
elaborates the connection between model management and
active learning that has motivated this work. Section III de-
scribes the details of the proposed algorithm. The comparative
experimental results on benchmark problems are presented
in Section IV, followed by an application of the proposed
algorithm to an airfoil design optimization problem in Section
V. Section VI concludes this paper with a summary of this
paper and a discussion of future work.

II. MOTIVATIONS

Model management in online SAEAs aims to reduce the
number of exact FEs while still being able to achieve high-
quality solutions [8]. In SAEAs, the training dataset D; =
{{(x1,y1) ,--s (X¢,y¢) } stores ¢ solutions, including their deci-
sion variables and fitness value evaluated with the expensive
fitness function denoted in Equation (1), where x is a d-
dimensional decision vector. Using D;, a surrogate model,
which is an approximation of the expensive fitness function,
can be constructed, as denoted in Equation (2). The error € in
Equation (3) describes the difference between the expensive
fitness function and the surrogate.

y = f(x) (1)
g =f(x,Dy) 2)
f(x) = f(x,Dy) +£(x) 3)

The main target of model management is to identify a new
candidate solution x;4; to be evaluated for its exact fitness
value y;11 using the expensive exact objective function [8],
[28]. Then, the new sample will be added to the database Dy,
leading to an updated dataset D, as expressed in Equation
4):

Diy1 = Dy U (X415 Yig1) €]

Typically, two criteria are used to select new candidate
solutions to be evaluated and then added to D, for updating

the surrogate. The first criterion is to select the optimum of
the surrogate model f(x, D;), as described in Equation (5).

x{H = arg min f(x, Dy) 5)
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With xf 1 the updated surrogate f (x, D¢41) will learn more
details about the fitness landscape around xf 41> which offers
the search algorithm an opportunity to exploit the promising
area round the optimum.

The second criterion is to select the solution whose predic-
tion given by the surrogate is the most uncertain, f(x, D), as
shown in Equation (6), implying that there are few samples
near this solution in Dy:

X = argmax U (f (x, Dy)), (6)

where U(f(x,D;)) is the uncertainty measurement of
f(x,D;). By evaluating the most uncertain solution and
adding it to the database, the search algorithm will be able
to explore a new region in the decision space based on the
updated surrogate model.

In most SAEAS, two criteria are usually combined into one
criterion, e.g., Pol, ExI, and LCB as discussed in Section
I, which may make it difficult to strike a proper balance
between exploration and exploitation. To address the above
issue, we resort to active learning [34] that has become very
popular recently in the machine learning community. One of
the existing query strategies of active learning is to minimize
the expected error of a model by proposing a small number
of new queries (new sample points). Because of the active
queries, the size of training dataset of active learning can often
be much smaller than the required size in normal supervised
learning [37].

There are various query strategies in active learning [37].
Among them, query by committee (QBC) [38] is a simple
yet very effective active learning approach [39], which can be
applied to both classification and regression problems [35].
QBC involves a committee of models that are all trained
by the dataset D,. Each model can vote on the output of a
series of query candidates, then the query with the maximum
disagreement is added to the training dataset. It is believed
that such query strategy can efficiently enhance the accuracy.

It is clear that model management in SAEAs and making
queries in active learning share similar questions to answer.
They are both concerned with the efficient use of limited data
to enhance the quality of models as much as possible. In this
paper, we aim to borrow the ideas from active learning to
improve the efficiency of model management. To be exact,
we select solutions to be evaluated and added to the dataset
for surrogate training by adopting a similar strategy used in
QBC.

III. SURROGATE-ASSISTED PARTICLE SWARM
OPTIMIZATION VIA COMMITTEE-BASED ACTIVE
LEARNING

A. The Overall Framework

The canonical PSO algorithm is an efficient single-objective
optimizer inspired from swarm behaviors of social animals
such as fish schools and bird flocking [40]. Assisted by
surrogate models, PSO has been employed to cope with
real-world expensive optimization problems [41], such as the
groundwater bioremediation problem [42] and aerodynamic

shape design problem [43]. Most existing surrogate-assisted
PSO algorithms use a single surrogate model.

A novel surrogate-assisted PSO with the help of committee-
based active learning, termed CAL-SAPSO, is proposed in
this section. A generic diagram of the overall algorithm is
presented in Fig. 1. The PR, RBF, and Kriging models are
employed as the surrogate ensemble. To update the surrogate
ensemble, samples are chosen to be evaluated using three
different criteria during the iterations in CAL-SAPSO. Those
criteria are controlled by two model management strategies:
one based on QBC that globally searches for the most uncer-
tain and the best solution of the current surrogate, respectively,
while the other searches for the best solution of a local
surrogate around the current optimum.

In the QBC based model management, two criteria, i.e.,
uncertainty and performance, are adopted to add new infilling
samples into the dataset. The uncertainty based criterion
measures the disagreement among the outputs of the ensemble
members, while the performance based criterion is the fitness
estimated by the surrogate. Both criteria are based on the
global ensemble surrogate model. In the local model manage-
ment, the estimated fitness is the only criterion. However, the
fitness is estimated using the local surrogate, which is based
on the ensemble surrogate model built using data around the
current optimum.

In the proposed algorithm, we employ a PSO variant with
linear weight adaption [36] to optimize those three criteria,
maximizing either the fitness or uncertainty, which can be
viewed as three different optimization problems.

Before the optimization starts, Latin hypercube sampling
(LHS) [44] is applied to initialize the dataset with 5d solutions,
where d is the dimension of the decision space, evaluated
using the expensive fitness function (denoted as Dy ;441) for
building the initial surrogate in Fig. 1.

The algorithm starts with the QBC based model manage-
ment, and switches to the local model management whenever
no further improvement can be achieved. Vice versa, the
algorithm switches back to the QBC based model management
whenever the fitness can no longer be improved using the local
surrogate model. The whole algorithm terminates when the
maximum number of expensive FEs is exhausted, which is
denoted as Dreprmination 10 Fig. 1. Like the setting in [2], a
maximum number of 11d exact FEs in total can be used for
CAL-SAPSO.

In the following, we will present the details of the optimizer,
the QBC based model management, and the local model
management.

B. Particle Swarm Optimization

In the canonical PSO algorithm [40], each individual solu-
tion x in generation g updates its position by the velocity v as
Equation (7), which is based on the previous velocity, the best
solution found so far by each particle (personal best) Xppest,
and the best of the personal best solutions (global best) Xgpest
as shown in Equation (8), where r; and 75 are two random
numbers in [0,1], ¢; and ¢y are set to 1.49445 as suggested
in [45].

x9tt = x9 4 y9t! 7
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Fig. 1. A generic diagram of the surrogate-assisted PSO based on committee-based active learning.

1
Vng - wgvg +ciry (Xpbest - Xg) + corg (ngest - Xg) (8)

In the PSO with linear weight adaptation, the inertia weight
wg for velocity updating linearly decreases from 0.9 to 0.4
with generation g as Equation (9), where ¢y,,x is the maximal
number of generations to be conducted [36].

wy = 09— 05—

gmax

©))

C. OBC based Model Management

The QBC based model management is composed of two
search processes performed by the PSO. The first one is to
identify the most uncertain solution of the ensemble surrogate
fms(x, D) constructed from selected subset of the data in
the current dataset D;. Once the most uncertain solution is
found, it is evaluated using the expensive fitness function and
the ensemble is updated. This is followed by the second search
process that aims to find the best solution of the updated
ensemble surrogate. The flowchart for updating the database
for constructing the surrogate ensemble is presented in Fig. 1.

To construct the ensemble surrogate, many heterogeneous
models can be employed. In this work, the surrogate ensemble
fe"s consists of three widely used surrogate models in existing
SAEAs, a PR, an RBF and a Kriging model as below.

. fl (PR): a quadratic polynomial model (or second-order
polynomial model).

. fg (RBF): an RBF network with 2d+1 neurons (Gaussian
radial basis functions) in the hidden layer.

. fg (Kriging): a simple Kriging model [46] with a Gaus-
sian kernel.

The final output of the ensemble is the weighted sum of all
member outputs, as described in Equation (10):

Fens (%) = wi f1 + wa fo + ws f3 (10)

where fl is the ¢-th output of each member, 1 < ¢ < 3, and
w; 1s a weight for the ¢-th output defined by:

€

2(e1 +e2 +e3) (b

U)i:l*

where e; is the root mean square error (RMSE) of the ¢-
th model, following one of the weighted aggregation method
(termed WTALI) suggested in [47].

Note however that only a diverse subset of the data in D is
used for training the ensemble to reduce the computation time
in ensemble training. The subset, denoted by Dy, is obtained
by selecting the most different 5d data points from the ¢ points
in D; based on a difference measure inspired by a diversity
proposed in [48]. The difference measure adopted in this work
calculates each individual’s distance to its nearest neighbor in
the d-dimensional decision space, as detailed in Algorithm 1.
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Algorithm 1 Pseudo code of data selection.
Imput: D; = {(x1,v1), ..., (X¢, y¢) }-the dataset with ¢ sam-
ples, d-the dimension of x.
1: Set Dj empty.
2: Move the sample with the current best fitness value from
D, to Dj.
3:fort=1:5d—1do
4:  Calculate the distances of all the members in D; to their
nearest neighbors in Dy.
5:  Move the sample with the largest distance from D; to
D3.
6: end for
Output: Dj.

Once the ensemble is built, the PSO starts searching for the
x" in the whole decision space that maximizes the following
objective function:

12)

u —
Xiy1 = argmax Uens(x),

where U, is the disagreement among the ensemble members
in predicting a solution x. Note that in [35], the variance of the
outputs of members is defined as U, s. However, the variance
of three member outputs fails to indicate the disagreement.
Therefore, in this work, we define U, to be the maximum
difference between the outputs of two members as described
in Equation (13):

Uens(x) = max(fi(x, Dy) — fj(X>Df))>

where 1 < 4,5 < 3. When the number of members increases
to 5, the variance of the outputs of members is recommended
as Ugps.

When the search process of the PSO algorithm stops, the
most uncertain solution xj', ; is evaluated using the expensive
fitness function. Assume the real fitness value of xj,; is
Yty 1, the new data point (xy,,,yr,,) is then added to Dj.
Algorithm 1 is applied again to update D; before the ensemble
surrogate is updated, which is denoted to be feps(x, D; 1)

Then, the PSO is started to search for x/ that minimizes
the following objective function:

13)

X{_H = argm);ln fens(x,D}). (14)
Assume the optimum of the above objective function found
by the PSO is x{ 9. This solution is also evaluated using the
expensive objective function to obtain its true fitness value

ytf 1o~ Then, the data pair <x[ 125 ytf +2> is added to the dataset

Dt+1'

D. Local Model Management

In addition to the global search for the most uncertain and
the best solutions using the constructed surrogate, a local
search is performed in the promising area of the search
space to further improve the performance of CAL-SAPSO.
We define the samples in D; whose fitness belongs to the
top 10% as the database D;°”. During the iterations of CAL-
SAPSO, promising solutions are added to D; based on the

surrogate models. As a result, the samples in Di(’p will become
concentrated in a local area, which hopefully is within the
basin the global optimum. Taking Fig. 2 as an example, the
circles denote all samples in D; and filled circles indicate
the samples in D/°”. Solutions in D!°” distribute in the local
area [, u], which is within the basin of the global optimum.
Another local ensemble surrogate model fens(x, D;°P) based
on Dfol’ , denoted by the dotted line in Fig. 2, is built to allow
the PSO algorithm to exploit the optimum located in this area.
The local search is to find the solution x}%; minimizing the
criterion described in Equation (15).

g t
xé‘j_l = argmin fe,s(x, D;7)
X

(15)
x € [1,u]
A (@]
s p
e [ (xD7)

>
X

a / u b

Fig. 2. Illustration of local model management. All circles are samples in Dy
and the filled circles are the samples in D}°?. The local model fens(x, Di°P)
is built within the region [1, u] in the search space.

Once the local optimum is found, it will be evaluated
using the expensive objective function and the new data pair
(xt%1,yi%) is added to D;.

IV. EXPERIMENTAL RESULTS ON BENCHMARK PROBLEMS

In this section, we first present empirical studies that eval-
uate the performance of the proposed algorithm with respect
to the influence of QBC based model management and local
model management, sensitivity analysis of some parameters
of the algorithm, and its scalability to the search dimension.
Then, we compare CAL-SAPSO with a few state-of-the-art
SAEAs on a set of widely used benchmark problems. During
the comparison, 20 independent runs are performed for each
algorithm.

All surrogate models used in this work and compared
algorithms are implemented using the SURROGATES toolbox
[49], which is based on two other toolboxes including DACE
[50] and RBF [51]. The details of training the three models
are given below.

o PR: the least-squares regression is used for training.

o RBF: the gradient descent method is adopted for learning
the centers, weights, and spreads.

o Kriging: the Hooke & Jeeves method [52] that is an ef-
ficient coordinate search is employed for hyperparameter
optimization.
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A. Behavior Study of CAL-SAPSO

To study the influence of each major component of the
proposed algorithm on the its performance, we conducted
various experiments on the modified Rastrigin problem with
adjustable parameters in Equation (16), which has ¢ local
optima with a height of h. Thus, the modified Rastrigin
problem becomes uni-modal when [ equals 1.

d
Ftodified_Rastrigin(X) = 3 (27 + h(1 — cos(lra;)))

i=1 (16)
x € [-1,1]¢

1) Parameter Sensitivity Analysis: Here, the PSO is initial-
ized with 100 random solutions instead of solutions in D; to
avoid getting trapped in local area of D,. The only parameter
in the PSO is the stopping condition. We test the proposed
algorithm using different g4, (20, 50, 100, and 200) on two
modified Rastrigin problems, i.e. (h = 10,/ = 1) as a uni-
modal and (h = 1,/ = 10) as a multi-modal optimization
problem. The average best fitness values obtained by CAL-
SAPSOs with different g4, are shown in Table I. It is clear
the best performance is achieved when g4, = 100 in both
cases. Therefore, we set ¢p,q. to 100 for CAL-SAPSO in the
following experiments.

TABLE I
AVERAGE BEST FITNESS VALUES (SHOWN AS AVG+STD) OBTAINED BY
CAL-SAPSOS WITH DIFFERENT gymqz ON THE MODIFIED RASTRIGIN
PROBLEMS (d = 20).

Gmazx (h=10,1=1)
20 4.85e-02£9.81e-03
50 1.54e-02+3.82¢-03
100 1.44e-02+8.15e-03
200 5.27e-02+8.49e-03

(h=1,1=10)
[ 42¢+00E147¢-01
1.84c-01£5.18¢-02
1.18¢-01L5.78¢-02
1.95¢-01£4.19¢-02

2) Effect of the Global Model Management: To show the
role of QBC based model management in CAL-SAPSO,
we compare two variants of CAL-SAPSO with and with-
out the uncertainty based criterion (denoted as CAL-SAPSO
and CAL-SAPSO-WOQOU) on two modified Rastrigin problems
(d = 20), i.e. (h = 10,I = 1) as a uni-modal and (h =
1,1 = 10) as a multi-modal optimization problem. In addition,
we also compared the QBC based model management with
the widely used infill sampling criteria in Kriging-assisted
evolutionary optimization, including LCB and ExI. To enable
a fair comparison, LCB and ExI use the same settings for the
Kriging model and the optimizer, the only difference is that
LCB and ExI replace the three infilling criteria by LCB or ExI.
The convergence profiles of these four algorithms are plotted
in Fig. 3, where the first 100 exact FEs are the initial samples
determined by Latin hypercube sampling in the dataset before
optimization starts.

From Fig. 3, we can see that both variants of the CAL-
SAPSO converge faster than LCB and ExI on both uni-modal
and multi-modal test functions. Comparing LCB and ExI,
we find that LCB converges slightly faster than ExI on the
uni-modal problem, while ExI converges slightly faster than
LCB on the multi-modal problem. We also note that the
uncertainty based criterion appears to have little influence on
the performance on the uni-modal problem, which is expected.

Modified Rastrigin (h=1, 1=10)
with 20 decision variables

Modified Rastrigin (h=10, 1=1)
with 20 decision variables

I —— CAL-SAPSO —+— CAL-SAPSO
2sll —6— CAL-SAPSO-WOU 10f —&— CAL-SAPSO-WOU
| —— LCB _ I —— LCB
7“7‘* —A— Exl 2l A— Exl
g

Average current best
[

0 50 100 150 200 0 50 100 150 200
No. of true function evaluations No. of true function evaluations

Fig. 3. Convergence profiles of CAL-SAPSO, CAL-SAPSO-WOU, LCB, and
ExI on the modified Rastrigin problems (d = 20).

From these result, we can surmise that the uncertainty based
criterion is very important for optimization of multi-modal
problems.

Furthermore, we compare the above four algorithms on the
modified Rastrigin problems (d = 20,h = 1) with various
l. Note that the number of local optima of the modified
Rastrigin problem increases as [ increases. The average best
fitness values obtained by these four algorithms are shown in
Table II. We conducted Friedman tests with the Bergmann-
Hommel post-hoc test [53] to analyze the results presented in
Table II and the p-values are shown in Table III. From these
results, we can see that CAL-SAPSO significantly outperforms
LCB and ExI, while CAL-SAPSO-WOU cannot significantly
outperform LCB and ExI. These results demonstrate that the
proposed uncertainty-based model management strategy is
able improve the performance of CAL-SAPSO.

3) Effect of Local Model Management: To demonstrate
the effect of the local search based model management, we
compare different variants of the CAL-SAPSO on two mod-
ified Rastrigin problems (d = 20), i.e., a uni-modal problem
when (h = 10, = 1), and a multi-modal problem when
(h = 1,1 = 10). In addition to the comparison between CAL-
SAPSO variants with and without local search based model
management (denoted as CAL-SAPSO and CAL-SAPSO-
WOLS), we also compare a CAL-SAPSO variant without
using performance based criterion (CAL-SAPSO-WOF) to
show the different influence of the performance based criterion
within the global QBC based model management and local
model management. The convergence profiles of the three
compared algorithms are presented in Fig. 4, where the first
100 exact FEs are the initial samples in the dataset.

Modified Rastrigin (h=10, I=1)
with 20 decision variables

1 ()1
| 500000000 N00a00a00
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Modified Rastrigin (h=1, 1=10)
with 20 decision variables
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No. of exact function evaluations No. of exact function evaluations

Fig. 4. Convergence profiles of CAL-SAPSO, CAL-SAPSO-WOLS, and
CAL-SAPSO-WOF on the modified Rastrigin problems (d = 20).
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TABLE I

AVERAGE BEST FITNESS VALUES (SHOWN AS AVG+STD) OBTAINED BY CAL-SAPSO, CAL-SAPSO-WOU, LCB, AND EXI ON THE MODIFIED

RASTRIGIN PROBLEMS (d = 20).

CAL-SAPSO

CAL-SAPSO-WOU

LCB

ExI

3.64e-0413.26e-04

7.85e-03+2.78e-03

3.27e+00£3.76e-01

3.65e+00£2.36e-01

W = ~

5.26e-03+3.18e-03

1.05e-01+£3.02e-02

3.78e+00£3.48e-01

4.04e+00£3.00e-01

5

3.30e-04+2.46e-04

4.97e-03+£1.12e-03

2.06e+00£6.06e-01

2.64e+00£4.29e-01

10

1.18e-01+£5.78e-02

1.16e+00=£8.06e-02

4.01e+00£3.54e-01

3.84e+00£3.98e-01

Average rank

1.000

2.000

3.250

3.750

TABLE III
p-VALUES OF FRIEDMAN TEST WITH THE BERGMANN-HOMMEL
POST-HOC TEST (SIGNIFICANT LEVEL=0.05) FOR THE COMPARISONS
AMONG CAL-SAPSO, CAL-SAPSO-WOU, LCB, AND EXI ON THE
MODIFIED RASTRIGIN PROBLEMS (d = 20). THE SIGNIFICANT
DIFFERENCES ARE HIGHLIGHTED. CAL-SAPSO AND
CAL-SAPSO-WOU ARE NOTATED AS CAL AND WOU FOR SIMPLICITY.

CAL | WOU | LCB ExI
CAL NA 0.273 | 0.014 | 0.003
WwOu | 0.273 NA 0.171 | 0.055
LCB | 0.014 | 0.171 NA 0.584
ExI 0.003 | 0.055 | 0.584 NA

As shown in Fig. 4, the local model management can
improve the performance of CAL-SAPSO in particular in
the later stage, although the improvement on the uni-modal
problem is not as significant as that on the multi-modal
problem. For the uni-modal problem, CAL-SAPSO-WOLS
and CAL-SAPSO-WOF have a similar performance. For the
multi-modal problem, CAL-SAPSO-WOF is slightly worse
than CAL-SAPSO-WOLS, probably because local manage-
ment only may easily get trapped in a local optimum. These
comparative results suggest that it is necessary to use both
uncertainty and performance based global model management,
and the performance can be further enhanced by introducing
an additional local model management process.

To more quantitatively assess the contribution made by the
global model management and local model management in
CAL-SAPSO, we calculate the percentage of improvements
contributed by global and local model management (xf and
x!*) in CAL-SAPSO, respectively, on both problems. The
results are plotted in Fig. 5, where the contribution is de-
fined as the improvement of ytf 41 Or yij_l compared to the
previous samples in the dataset D,. In other words, a range
of [0%, 100%)] contribution percentage can be mapped to the
interval between the best sample in the initial dataset and
the obtained best solution. From these figures, we can see
that the local model management has contributed more than
10% of the overall improvement on the multi-modal test
problem, but only less than 1% improvement on the uni-modal
problem. Fig. 6 records the average number of global model
management (each of which uses two expensive FEs) and the
number of successful global and local searches on these two
test problems, where a successful search means that a better
solution is obtained by applying one global or local search (xf
and x'*). For the uni-modal Rastrigin problem, CAL-SAPSO
is able to strike a good balance between global and local
search, and the success rate of both global and local model
management is around 50%, while a slightly low success rate

can be achieved on the multi-modal test problem.

u Global search Local search

bt
heti-t0

82%  84% 86% 8% 90%  92%

Contribution rate

94%  96%  98%  100%

Fig. 5. Percentage of contribution made by the global and local model
management on modified Rastrigin problems (d = 20).

30 h=10, 1=1 30 h=1,1=10
40 40
30 30
20 20
10 10
0 0

Global search

® Average call number

Global search

® Average call number

Local search Local search

Average success number Average success number

Fig. 6. Average number of global and local search versus the number
successful global and local searches on modified Rastrigin problems (d = 20).

4) Scalability: To examine the scalability of CAL-SAPSO
to the dimension of the decision space, we compare three
CAL-SAPSO variants (CAL-SAPSO, CAL-SAPSO-WOLS,
and CAL-SAPSO-WOU) with LCB and ExI based model
management strategies on two modified Rastrigin problems
of various numbers of decision variables (d = 10,20, 30).
Again, the Rastrigin function is a uni-modal function when
(h = 10,1 = 1), and a multi-modal problem when (h =
1,1 = 10). The obtained average best fitness values obtained
by these five compared algorithms are listed in Table IV.

We employ the Friedman test with the Bergmann-Hommel
post-hoc test [53] to analyze the results in Table IV, and the
p-values are shown in Table V. CAL-SAPSO-WOU signifi-
cantly outperforms LCB and ExI, whereas CAL-SAPSO and
CAL-SAPSO-WOLS significantly outperform LCB and ExI.
The uncertainty-based model management is able to improve
the performance of CAL-SAPSO. Comparing CAL-SAPSO
with CAL-SAPSO-WOLS, CAL-SAPSO significantly out-
performs CAL-SAPSO-WOU, whereas CAL-SAPSO-WOLS
cannot significantly outperform CAL-SAPSO-WOU. The local
model management strategy slightly improves the performance
of CAL-SAPSO. We also find that the performance of CAL-
SAPSO and CAL-SAPSO-WOLS is not strongly affected as
the dimension of the decision space increases. Note that the
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TABLE IV
AVERAGE BEST FITNESS VALUES (SHOWN AS AVG+STD) OBTAINED FROM CAL-SAPSO, CAL-SAPSO-WOLS, CAL-SAPSO-WOU, LCB, AND EXI

ON THE MODIFIED RASTRIGIN PROBLEMS WITH VARIOUS d.

l h d CAL-SAPSO CAL-SAPSO-WOLS | CAL-SAPSO-WOU LCB ExI
1 10 | 10 | 9.43e-03+£2.14e-03 4.60e-02+5.21e-03 5.85e-02+1.15e-05 1.77e-01£5.15e-02 4.59e-01£2.03e-01
1 10 | 20 | 1.44e-02+8.15¢-03 1.22e-01+£1.15e-02 3.88e-0243.83e-02 | 1.24e+01£2.08¢+00 | 1.40e+01+£7.13e-01
1 10 | 30 | 6.45e-03+£3.63e-03 7.74e-02+7.71e-03 1.26e-01£2.78e-02 | 2.51e+01£1.33e+00 | 2.47e+01+1.43e+00
10 1 10 | 4.76e-01£1.09e-01 5.86e-01£1.24e-01 1.11e+00£1.76e-03 | 1.00e+00+1.51e-01 1.09e+00£2.63e-01
10 1 20 | 1.18e-01£5.78e-02 5.06e-01+£5.55e-02 1.16e+00£8.06e-02 | 4.01e+0043.54e-01 3.84e+00+£3.98e-01
10 1 30 | 2.12e-01£9.27e-02 8.17e-014-1.04e-01 2.43e+00£2.90e-01 | 6.44e+0016.50e-01 6.60e+00£3.77e-01
Average rank 1.167 2.167 3.000 4.1667 4.500
TABLE V TABLE VI
p-VALUES OF FRIEDMAN TEST WITH THE BERGMANN-HOMMEL TEST PROBLEMS.
POST-HOC TEST (SIGNIFICANT LEVEL=0.05) FOR THE COMPARISONS OF
CAL-SAPSO, CAL-SAPSO-WOLS, CAL-SAPSO-WOU, LCB, AND Problem d Optimum Note
EXI ON THE MODIFIED RASTRIGIN PROBLEMS (d = 20). THE Ellipsoid 10,20,30 0 Uni-modal
SIGNIFICANT DIFFERENCES ARE HIGHLIGHTED. CAL-SAPSO, Rosenbrock | 10,20,30 0 Multi-modal with narrow valley
CAL-SAPSO-WOLS, AND CAL-SAPSO-WOU 1S SHORTED TO CAL, Ackley 10,20,30 0 Multi-modal
WOLS, AND WOU. Griewank 10,20,30 0 Multi-modal
Rastrigin 10,20,30 0 Very complicated multi-modal
CAL | WOLS | WOU | LCB ExI
CAL NA 0.273 0.045 | 0.001 | 0.000
WOLS | 0.273 NA 0.361 | 0.029 | 0.011
‘]’:’gg g-ggi g-gg; 01\;81 01321 8&(1)(5) independent runs are shown in Table VII, and the convergence
o 0.000 T 0011 0100 10715 T N& profiles of the algorithms are plotted in Figs. 7-11. The results

local model management strategy has consistently improved
the performance.

In summary, CAL-SAPSO performs well on both uni-
modal and multi-modal problems when the number of decision
variables changes from 10 to 30.

B. Comparative Experiment on Benchmark Problems

To further examine the performance of the proposed algo-
rithm, we compare CAL-SAPSO with four popular SAEAs on
benchmark problems of different dimensions d = 10, 20, 30
listed in Table VI. The compared algorithms include GPEME
[11], WTA1 [47], GS-SOMA [33], and MAES-ExI (Meta-
model assisted EA with ExI as the infill sampling criterion)
[26]. To be fair, all settings for the surrogate models (i.e. PR,
RBF, and Kriging models) of the compared algorithms are the
same as those in CAL-SAPSO. The main characteristics of
the four SAEAs to be compared are shown below.

o GPEME: a Kriging-based SAEA with LCB as its criterion
for selecting solutions for evaluation tested on median
scale problems.

o« WTAI: an ensemble-based SAEA with weights assign-
ment by the RMSE of PR, RBF, and Kriging models.
In the experiment, WTA1 keeps evaluating the optimum
of the surrogate ensemble and adds it to the dataset for
model updating.

o GS-SOMA: an SAEA using a PR models and a ensemble
model (PR, RBF, and Kriging models).

o« MAES-ExI: a Kriging-based SAEA with ExI as its cri-
terion for selecting solutions for evaluation.

All algorithms under comparison begin with 5d exact FEs

and terminate after 11d exact FEs are exhausted. The average
best fitness values obtained by the five algorithms over 20

in Table VII are analyzed using the Friedman test and the p-
values are adjusted according to the Hommel procedure [53],
where CAL-SAPSO is the control method. In general, CAL-
SAPSO significantly outperforms GPEME and MAES-ExI,
which has a better average rank than GS-SOMA and WTAI.

The Ellipsoid problem is a uni-modal problem, and the
convergence profiles of CAL-SAPSO, GPEME, WTAI1, GS-
SOMA, and MAES-ExI on the Ellipsoid function of dimen-
sions d = 10, 20, 30 are shown in Fig. 7. All ensemble-based
algorithms, CAL-SAPSO, WTA1, and GS-SOMA, are able to
find a much better solution, and CAL-SAPSO performs the
best for d = 20, 30, while GS-SOMA achieves the best result
for d = 10. Note that GA-SOMA also uses a global and a local
surrogates. By contrast, GPEME and MAES-ExI fail to make
sufficient progress, in particular for d = 20, 30. These results
indicate that uncertainty based model management is helpful
also for uni-modal optimization problems, which is consistent
with the findings reported in [33].

The convergence profiles of CAL-SAPSO, GPEME, WTAI,
GS-SOMA, and MAES-ExXI on the Rosenbrock function of
dimensions d = 10,20, 30 are shown in Fig. 8. The Rosen-
brock function is a multi-modal problem with a narrow valley
leading to the global optimum. Again, the ensemble-based
SAEAs, WTA1, GS-SOMA, and CAL-SAPSO outperform
GPEME and MAES-ExI. Among the three ensemble based
approaches, CAL-SAPSO is able to perform consistently well
for d = 10,20, 30. GS-SOMA performs better than the plain
ensemble method WTA1, but the improvement becomes minor
when dimension of the decision space d increases.

The Ackley function is a multi-modal optimization problem
with a very narrow basin around the global optimum. The
peak of becomes even more narrower when the dimension d
increases. The convergence profiles of the five compared al-
gorithms on the Ackley function of dimensions d = 10, 20, 30
are shown in Fig. 9. Different to the convergence profiles on
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TABLE VII
AVERAGE BEST FITNESS VALUES (SHOWN AS AVGtSTD) OBTAINED BY CAL-SAPSO, GPEME, WTA1, GS-SOMA, AND MAES-EXI, WHICH ARE
ANALYZED BY THE FRIEDMAN TEST. THE p-VALUES ARE ADJUSTED BY THE HOMMEL PROCEDURE (CAL-SAPSO IS THE CONTROL METHOD, THE
SIGNIFICANT LEVEL IS 0.05).

Problem d CAL-SAPSO GPEME WTAI1 GS-SOMA MAES-ExI
Ellipsoid 10 8.79e-0148.51e-01 3.78e+01£1.53e+01 | 3.00e+0042.02¢-03 1.77e-011+1.65¢-01 1.74e+01+£7.36e+00
Ellipsoid 20 | 1.58e+00+4.83e-01 | 3.19e+02+9.03e+01 | 2.17e+01£8.51e+00 | 9.97e+0043.41e+00 | 5.22e+02+5.58e+01
Ellipsoid 30 | 4.02e+001+1.08e+00 | 1.23e+03+2.24e+02 | 8.56e+01%1.17e+01 | 6.67e+0141.11e+01 | 1.71e+03+1.77e+02
Rosenbrock | 10 | 1.77e+00+3.80e-01 | 2.07e+01+£7.44e+00 | 1.18e+0142.13e-03 | 4.77e+0041.14e+00 | 1.69e+01+4.63e+00
Rosenbrock | 20 | 1.89e+00+3.32e-01 | 6.15e+01+£2.19e+01 1.00e+0143.90e-02 | 6.52e+0041.13e+00 | 9.81e+0142.42e+01
Rosenbrock | 30 | 1.76e+00+£3.96e-01 | 8.42e+01+£2.79e+01 1.18e+0148.19¢-01 | 9.82e+0041.10e+00 | 1.32e+02+1.66e+01
Ackley 10 | 2.0le+01+£2.44e-01 1.38e+0142.50e+00 | 1.90e+01+£1.23e+00 | 1.84e+01£1.73e+00 | 7.49e+0013.77e+00
Ackley 20 | 2.01e+0140.00e+00 | 1.84e+01£9.19e-01 | 2.01e+0140.00e+00 | 1.83e+0141.99e+00 | 1.84e+01+1.30e+00
Ackley 30 | 1.62e+01+4.13e-01 1.95e+0144.39¢-01 1.51e+01+6.98e-01 1.61e+0143.61e-01 2.02e+0141.30e-01
Griewank 10 | 1.12e+00+£1.21e-01 | 2.72e+01+£1.13e+01 1.07e+004-2.04e-02 1.08e+0041.78e-01 1.20e+0145.19e+00
Griewank 20 | 1.06e+00+3.66e-02 | 1.37e+02+3.21e+01 | 2.00e+0014.32¢-01 1.17e+0046.37e-02 | 2.64e+0241.54e+01
Griewank 30 9.95e-01+3.99¢-02 2.84e+02+5.25e+01 3.22e+00+£3.25¢-01 2.51e+0044.06e-01 | 4.47e+0243.14e+01
Rastrigin 10 | 8.88e+01+2.26e+01 | 7.15e+01+£1.27e+01 | 9.58e+0143.20e+00 | 1.05e+0241.52e+01 | 8.75e+0141.29e+01
Rastrigin 20 | 7.51e+01+1.44e+01 | 1.69e+02+2.86e+01 1.53e+0243.12e+00 | 1.54e+0244.23e+00 | 1.91e+02+1.91e+01
Rastrigin 30 | 8.78e+011+1.65e+01 | 2.86e+02+3.06e+01 | 2.54e+02+3.07e+01 | 2.81e+0242.66e+01 | 3.70e+02+2.16e+01
Average rank 1.967 3.733 2.833 2.267 4.200
Adjusted p-value NA 0.007 0.267 0.603 0.000
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Fig. 7. Convergence profiles of CAL-SAPSO, GPEME, WTA1, GS-SOMA, and MAES-ExI on the Ellipsoid function of dimensions d = 10, 20, 30.
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Fig. 8. Convergence profiles of CAL-SAPSO, GPEME, WTA1, GS-SOMA, and MAES-ExI on the Rosenbrock function of dimensions d = 10, 20, 30.

the Ellipsoid and Rosenbrock functions, the ensemble based
methods are outperformed by GPEME and MAES-ExI on the
10-dimensional Ackley function, although they are not able to
perform well on 20- and 30-dimensional Ackley functions.
We can observe that on the Ackley function, none of the
compared algorithm can perform consistently well. This might
be due to the narrow peak around the optimum, which makes
it very difficult for the surrogate to effectively learn the fitness
landscape.

The convergence curves of the compared algorithm on the
multi-modal Griewank function of dimensions d = 10, 20, 30

are shown in Fig. 10. From the figure, we can observe that the
three ensemble based methods CAL-SAPSO, WTA1 and GS-
SOMA perform similarly well, and all better than GPEME
and MAES-ExI. Among the three ensemble based methods,
CAL-SAPSO outperforms GS-SOMA and WTAL1 on the 30-
dimensional Griewank function.

Finally, we examine the performance of the algorithms on
the multi-modal Rastrigin function. The convergence curves
of all the compared algorithm on the Rastrigin function of
dimensions d = 10,20, 30 are plotted in Fig. 11. While all
the compared algorithms perform comparatively on the 10-
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Fig. 9. Convergence profiles of CAL-SAPSO, GPEME, WTA1, GS-SOMA, and MAES-ExI on the Ackley function of dimensions d = 10, 20, 30.
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Fig. 10. Convergence profiles of CAL-SAPSO, GPEME, WTA1, GS-SOMA, and MAES-ExI on the Griewank functions of dimensions d = 10, 20, 30

dimensional Rastrigin function, CAL-SAPSO performs the
best on the 20- and 30-dimensional Rastrigin functions.

From the above results, we can see that CAL-SAPSO
performs the best in eight out of the ten instances on the five
test problems of dimensions 20 and 30 when the computation
budget is limited to 220 and 330 FEs, respectively. Note how-
ever that the performance of CAL-SAPSO is less competitive
on 10-dimensional test functions, probably because the number
of expensive FEs is too small, as only 60 new solutions are
evaluated during the optimization. Of these 60 newly evaluated
solutions, almost half of them are consumed in the uncertainty-
based model management, leaving little opportunity for CAL-
SAPSO to sufficiently exploit the search space.

However, CAL-SAPSO, like all other SAEAs examined in
this work, has performed poorly on the Ackley function. The
bad performance of the SAEAs on the Ackley function might
be attributed to the very narrow and deep peak of the fitness
landscape round the global optimum and the large number
of local optima, causing major difficulties for the surrogate
to learn sufficient information about the landscape around
the global optimum with a very limited number of training
samples.

Another observation we can make is that CAL-SAPSO, GS-
SOMA and WTALI, all of which use a heterogeneous ensemble,
perform more robustly on various problems compared to
GPEME and MAES-ExI, which use one single model as the
surrogate. This observation suggests that an heterogeneous
ensemble is more reliable for fitness estimation when little
is known about the problem to be optimized.

It appears that a maximum of 11d FEs is inadequate for

exploring all local optima for the above benchmark problems.
To further examine the performance of the ensemble- and non-
ensemble-based algorithms, we increased the allowed compu-
tational budget to 1000 FEs and compare the performance of
CAL-SAPSO (ensemble-based) and GPEME (non-ensemble-
based) on 30-dimensional Ackley and Rastrigin functions.
Their convergence curves are shown in Fig. 12. On the Ackley
functions, CAL-SAPSO outperforms GPEME at the begin-
ning. However, CAL-SAPSO gets trapped in local optima,
while the solution found by GPEME keeps improving and
GPEME outperforms CAL-SAPSO after 800 FEs. For the
Rastrigin function, CAL-SAPSO outperforms GPEME during
the 1000 FEs. These results indicate that the performance of
CAL-SAPSO will become less superior to that of GPEME
when more FEs are allowed.

Note that Kriging models are mainly suited for low-
dimensional problems (typically less than 15) due to its
prohibitively high computational complexity as the dimension
of the problem becomes high [18]. It is known that the compu-
tational complexity of constructing a Kriging model is O(n?)
[18], [54], where n is the size of training data. As shown in
[11], building a Kriging model using 150 training data for
a 50-dimensional problem with the MATLAB optimization
toolbox optimizing hyperparameters takes from 240 to 400
seconds, which means that it may take from 1000 to 1800
seconds and from 12000 to 20000 seconds, when the number
of training data is 250 (5d) and 550 (11d), respectively, for
50-dimensional problems. Obviously, using kriging models as
computationally efficient surrogates no longer makes sense for
high-dimensional problems. Even if the MATLAB optimiza-
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Fig. 12. Convergence profiles of CAL-SAPSO and GPEME on the 30-
dimensional Ackley and Rastrigin functions.

tion toolbox is replaced by the computationly more efficient
Hooke & Jeeves method [52], building a Kriging moddel still
takes 10 and 100 seconds when the number of training data is
250 and 550, respectively, as shown in [54]. Thus, constructing
a Kriging model itself becomes a computationally expensive
problem as the training data increases, no matter which
optimizer is used for optimizing its hyperparameters. Worse,
although optimizing the hyperparameters of the Kriging model
using the Hooke & Jeeves method [52] is able to significantly
reduce the computation time, the performance of the Kriging
model degenerates considerably. For example, the optimal
solution obtained by GPEME on the 30-dimensional Ackley
function reported in [11] is 5, while the result obtained in this
work degrades to 13 when the hyperparameters of the Kriging
model is optimized using the Hooke & Jeeves method. We
also compare CAL-SAPSO with GPEME without dimension
reduction on the 50-dimensional Rastrigin function and the
convergence profiles are presented in Fig. 13. From the figure,
we can see that CAL-SAPSO outperforms GPEME.

To further compare the algorithms based on different
methodologies, we test CAL-SAPSO and GPEME on four 30-
dimensional multi-modal CEC’ 05 test problems [55], which
are F6 (shifted Rosenbrock’s Function), F7 (shifted rotated
Griewank’s Function), F8 (shifted rotated Ackley’s Function),
and F10 (shifted rotated Rastrigin’s Function), which are
harder than the problems tested in Table VII. Note that we
remove the constant fy;,s from those four test problems so
that the optimum lies on the origin. Table VIII lists the average
best fitness values obtained by CAL-SAPSO and GPEME on
F6, F7, F8, and F10, from we can see that CAL-SAPSO
outperforms GPEME on all problems.
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Fig. 13. Convergence profiles of CAL-SAPSO and GPEME on the 50-
dimensional Rastrigin function.

TABLE VIII
AVERAGE BEST FITNESS VALUES (SHOWN AS AVGESTD) OBTAINED BY
CAL-SAPSO AND GPEME ON 30-DIMENSIONAL CEC’ 05 TEST
PROBLEMS (F6, F7, F8, AND F10). THE WILCOXON SIGNED-RANK TEST
CONDUCTED FOR STATISTICAL SIGNIFICANCE AT A SIGNIFICANT

LEVEL=0.05.

Problem CAL-SAPSO GPEME p-value
F6 1.38e+03+2.12e+03 | 1.18e+0443.88e+03 | 1.03e-04
F7 1.00e+00+2.09e-02 | 2.83e+02+5.36e+01 | 8.86e-05
F8 1.64e+01+5.98e-01 1.93e+0147.40e-01 | 8.86e-05
F10 2.49e+02+2.44e+01 | 3.77e+02+4.12e+01 | 8.86e-05

V. AIRFOIL DESIGN

To examine the performance of CAL-SAPSO on real-world
problems, we present here the simulation results of CAL-
SAPSO applied to a transonic airfoil design optimization prob-
lem. Predicting airfoil performance requires time-consuming
CFD simulations, leading to a computationally expensive
optimization problem. In the following, we first present a very
brief formulation of the problem and then the comparative
results.

A. Problem Formulation

The airfoil design problem adopted in this work is based on
the RAE2822 airfoil test case described within the GARTEUR
AGS52 project. The target of the design is to optimize the
geometry of the airfoil defined by 14 controlling points of a
non-rational B-spline (NURBS) to minimize the drag over lift
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ratio at two different transonic conditions as shown in Equation

(17):
2

. Cd/Cf;
irfosl = T Wi\ = /| =) >
fA f l Zz:; (Cl Clb)1

where, for each flight design condition i, Cy and Cj are the
drag and lift coefficients, respectively, for the designed airfoil,
C% and C} are the drag and lift coefficients for the baseline
airfoil, and w; is the weight assigned to each design condition
(each set to 0.5 in the current study). Hence the objective
fairfou = 1 for the baseline RAE2822 airfoil. An expensive
CFD simulation is required to calculate C; and C; for each
transonic condition for any given geometry. A full description
of the test case is available from the GARTEUR AGS52 project
website!.

a7

B. Results

CAL-SAPSO, as well as other three SAEAs, including
WTA1, GPEME, and GS-SOMA are employed to optimize
the geometry of the RAE2822 airfoil. As both MAES-ExI
and GPEME employ Kriging based infill sampling criteria,
and they have similar performance on benchmark problems
in Section IV-B, we exclude MAES-EXI in this section. All
the algorithms start with 5d initial sample and terminates by
11d exact function evaluations, and each algorithm is run 20
times, and their average best fitness values are given in Table
IX. From these results, we can confirm that CAL-SAPSO
outperforms other compared algorithms.

TABLE IX
AVERAGE BEST FITNESS VALUES OBTAINED BY CAL-SAPSO, WTAI,
GPEME, AND GS-SOMA ON THE RAE2822 AIRFOIL TEST CASE. THE
BEST RESULTS ARE HIGHLIGHTED.

Algorithm Avg Std

Baseline RAE2822 | 1.00e-00 NA
CAL-SAPSO 6.84e-01 | 1.08e-02
WTA1 7.79¢-01 | 1.06e-02
GPEME 7.78e-01 | 9.99e-03
GS-SOMA 7.44e-01 | 2.18e-02

The four best designs obtained by the compared algorithms,
together with the baseline RAE2822 airfoil, are shown in Fig.
14. The left panel in each sub-figure of Fig. 14 describes the
geometry of the obtained optimal design, where the plus signs
indicate the 14 NURBS control points. The right panel in each
sub-figure of Fig. 14 shows the distribution of local pressure
coefficient over the upper and lower surfaces of the airfoil
design, for each of the two transonic flight conditions. For the
baseline RAE2822 airfoil, Fig. 14 shows a rapid change in the
pressure coefficient on the airfoil upper surface near X=0.6 for
both flight conditions. This highlights the presence of shock
waves, which in turn will lead to a high drag coefficient. For
transonic flows, the location and strength of shock waves are
extremely sensitive to very small changes in the overall airfoil
shape. For each of the designed airfoils, it can be seen that the
strength of these shock wave features have been reduced by
varying amounts, leading to an improvement in the objective

Uhttp://www.garteur.org/

function for all the algorithms. The designs from CAL-SAPSO
and GS-SOMA show similar pressure distributions, with CAL-
SAPSO achieving the lowest overall level of the objective.
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Fig. 14. The baseline design and the best designs obtained by CAL-SAPSO,
WTAIL, GPEME, and GS-SOMA.

VI. CONCLUSION

This paper proposes an ensemble-based model management
strategy combining uncertainty and performance based criteria
for surrogate-assisted evolutionary optimization of computa-
tionally expensive problems. The basic idea is inspired by
QBC in active learning that selects the sample having the
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largest degree of uncertainty among the committee members.
In addition to the QBC based global model management, a
local model management strategy is also proposed to enhance
local search ability. The ensemble surrogate in this work
is composed of three types of models, one PR model, one
RBF model and one Kriging model, making the performance
more robust to various optimization problems. The proposed
algorithm is examined on uni-modal and multi-modal test
problems of dimensions of 10, 20, 30, and 50. Simulation
results demonstrate that the proposed algorithm outperforms
four state-of-the-art SAEAs compared in this work on the ma-
jority of the 20- and 30-dimensional test problems for a limited
computation budget. The superiority of the performance of the
proposed algorithm is confirmed on an 14-dimensional airfoil
design optimization problem.

Despite the promising performance of the proposed algo-
rithm on the 20- and 30-dimensional test problems considered
in this work, its performance on 10-dimensional problems is
less competitive, where the computational budget is particu-
larly small. One reason might be that most expensive fitness
evaluations done online are exhausted in the uncertainty-
based model management stage and the algorithm is not
able to adequately exploit the search space. Thus, our future
work is to adaptively allocate the available resources to the
three model management stages so that the limited budget
can be fully taken advantage of. In addition, the proposed
algorithm has been examined on optimization problems up
to a dimension of 50. In the future, we will also extend the
proposed algorithm to deal with higher dimensional expensive
optimization problems.

In the proposed algorithm, PSO is adopted as the optimizer.
It should be mentioned that other metaheuristic optimization
algorithms such as evolution strategies can replace the PSO.
Thus, it is of interest to empirically compare the performance
of the proposed algorithm when a different metaheuristic
algorithm is adopted as the optimizer.

REFERENCES

[1] P. J. Fleming and R. C. Purshouse, “Evolutionary algorithms in control
systems engineering: a survey,” Control engineering practice, vol. 10,
no. 11, pp. 1223-1241, 2002.

[2] J. Knowles, “ParEGO: a hybrid algorithm with on-line landscape ap-
proximation for expensive multiobjective optimization problems,” IEEE
Transactions on Evolutionary Computation, vol. 10, no. 1, pp. 50-66,
2006.

[3] D. Lim, Y.-S. Ong, Y. Jin, and B. Sendhoff, “Evolutionary optimization
with dynamic fidelity computational models,” in International Confer-
ence on Intelligent Computing. Springer, 2008, pp. 235-242.

[4] A. I Forrester, A. Sébester, and A. J. Keane, “Multi-fidelity optimization
via surrogate modelling,” in Proceedings of the royal society of london
a: mathematical, physical and engineering sciences, vol. 463, no. 2088.
The Royal Society, 2007, pp. 3251-3269.

[51 Y. Jin, “Surrogate-assisted evolutionary computation: Recent advances
and future challenges,” Swarm and Evolutionary Computation, vol. 1,
no. 2, pp. 61-70, 2011.

[6] B. Liu, S. Koziel, and Q. Zhang, “A multi-fidelity surrogate-model-

assisted evolutionary algorithm for computationally expensive optimiza-

tion problems,” Journal of Computational Science, vol. 12, pp. 28-37,

2016.

Y. Jin and B. Sendhoff, “A systems approach to evolutionary multiob-

jective structural optimization and beyond,” Computational Intelligence

Magazine, IEEE, vol. 4, no. 3, pp. 62-76, 2009.

[8] Y.lJin, “A comprehensive survey of fitness approximation in evolutionary
computation,” Soft Computing, vol. 9, no. 1, pp. 3-12, 2005.

[7

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

Y. Jin, M. Olhofer, and B. Sendhoff, “A framework for evolutionary
optimization with approximate fitness functions,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 5, pp. 481-494, 2002.

H. Wang, Y. Jin, and J. O. Jansen, “Data-driven surrogate-assisted
multiobjective evolutionary optimization of a trauma system,” [EEE
Transactions on Evolutionary Computation, vol. 20, no. 6, pp. 939-952,
2016.

B. Liu, Q. Zhang, and G. G. Gielen, “A Gaussian process surrogate
model assisted evolutionary algorithm for medium scale expensive opti-
mization problems,” IEEE Transactions on Evolutionary Computation,
vol. 18, no. 2, pp. 180-192, 2014.

Y. Jin and B. Sendhoff, “Reducing fitness evaluations using clustering
techniques and neural network ensembles,” in Proceedings of the 6th An-
nual Conference on Genetic and Evolutionary Computation. Springer,
2004, pp. 688-699.

D. Lim, Y.-S. Ong, Y. Jin, and B. Sendhoff, “A study on metamodeling
techniques, ensembles, and multi-surrogates in evolutionary computa-
tion,” in Proceedings of the 9th Annual Conference on Genetic and
Evolutionary Computation. ACM, 2007, pp. 1288-1295.

Z. Zhou, Y. S. Ong, M. H. Nguyen, and D. Lim, “A study on
polynomial regression and Gaussian process global surrogate model in
hierarchical surrogate-assisted evolutionary algorithm,” in Evolutionary
Computation, 2005. CEC 2005. IEEE Congress on, vol. 3. 1EEE, 2005,
pp. 2832-2839.

I. Loshchilov, M. Schoenauer, and M. Sebag, “Comparison-based opti-
mizers need comparison-based surrogates,” in Parallel Problem Solving
from Nature, PPSN XI. Springer, 2010, pp. 364-373.

R. G. Regis, “Evolutionary programming for high-dimensional con-
strained expensive black-box optimization using radial basis functions,”
IEEE Transactions on Evolutionary Computation, vol. 18, no. 3, pp.
326-347, 2014.

C. Sun, Y. Jin, J. Zeng, and Y. Yu, “A two-layer surrogate-assisted
particle swarm optimization algorithm,” Soft Computing, vol. 19, no. 6,
pp. 1461-1475, 2015.

T. Chugh, Y. Jin, K. Miettinen, J. Hakanen, and K. Sindhya, “A
surrogate-assisted reference vector guided evolutionary algorithm for
computationally expensive many-objective optimization,” IEEE Trans-
actions on Evolutionary Computation, vol. PP, no. 99, pp. 1-1, 2016.
T. Chugh, N. Chakraborti, K. Sindhya, and Y. Jin, “A data-driven
surrogate-assisted evolutionary algorithm applied to a many-objective
blast furnace optimization problem,” Materials and Manufacturing Pro-
cesses, vol. PP, pp. 1-29, 2016, doi:10.1080/10426914.2016.1269923.
D. Guo, T. Chai, J. Ding, and Y. Jin, “Small data driven evolutionary
multi-objective optimization of fused magnesium furnaces,” in IEEE
Symposium Series on Computational Intelligence.  Athens, Greece:
IEEE, December 2016.

Y. Jin, M. Olhofer, and B. Sendhoff, “On evolutionary optimization with
approximate fitness functions,” in Proceedings of the 2nd Annual Con-
ference on Genetic and Evolutionary Computation. Morgan Kaufmann
Publishers Inc., 2000, pp. 786-793.

P. B. Nair, A. J. Keane, and R. Shimpi, “Combining approximation con-
cepts with genetic algorithm-based structural optimization procedures,”
in Proceedings of the 39th AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics and Materials Conference, 1998, pp. 1741-1751.
J. Branke and C. Schmidt, “Faster convergence by means of fitness
estimation,” Soft Computing, vol. 9, no. 1, pp. 13-20, 2005.

M. Emmerich, A. Giotis, M. Ozdemir, T. Bick, and K. Giannakoglou,
“Metamodel-assisted evolution strategies,” in Parallel Problem Solving
from Nature—PPSN VII. Springer, 2002, pp. 361-370.

D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimiza-
tion of expensive black-box functions,” Journal of Global optimization,
vol. 13, no. 4, pp. 455-492, 1998.

M. T. Emmerich, K. C. Giannakoglou, and B. Naujoks, “Single-and
multiobjective evolutionary optimization assisted by gaussian random
field metamodels,” IEEE Transactions on Evolutionary Computation,
vol. 10, no. 4, pp. 421-439, 2006.

Z.Zhou, Y. S. Ong, P. B. Nair, A. J. Keane, and K. Y. Lum, “Combining
global and local surrogate models to accelerate evolutionary optimiza-
tion,” IEEE Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews, vol. 37, no. 1, pp. 66-76, 2007.

W. Ponweiser, T. Wagner, and M. Vincze, “Clustered multiple gen-
eralized expected improvement: A novel infill sampling criterion for
surrogate models,” in Evolutionary Computation, 2008. CEC 2008. IEEE
Congress on. 1EEE, 2008, pp. 3515-3522.

C. Sun, J. Ding, J. Zeng, and Y. Jin, “A fitness approximation assisted
competitive swarm optimizer for large scale expensive optimization



IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, XXX XXXX

[30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]
[50]
[51]
[52]

[53]

[54]

[55]

problems,” Memetic Computing, vol. PP, no. 99, pp. 1-12, 2016,
doi:10.1007/512293-016-0199-9.

C. Sun, Y. Jin, R. Cheng, J. Ding, and J. Zeng, “Surrogate-assisted co-
operative swarm optimization of high-dimensional expensive problems,”
IEEE Transactions on Evolutionary Computation, vol. PP, no. 99, pp.
1-1, 2017, doi: 10.1109/TEVC.2017.2675628.

S. Bagheri, W. Konen, C. Foussette, P. Krause, T. Béck, and P. Koch,
“SACOBRA: Self-adjusting constrained black-box optimization with
RBF,” in Proc. 25. Workshop Computational Intelligence, F. Hoffimann
and E. Hiillermeier, Eds. Universitditsverlag Karlsruhe, 2015, pp. 87-96.
P. Koch, S. Bagheri, W. Konen, C. Foussette, P. Krause, and T. Béck, “A
new repair method for constrained optimization,” in in Proceedings of
the 17th Annual Conference on Genetic and Evolutionary Computation.
ACM, 2015, pp. 273-280.

D. Lim, Y. Jin, Y.-S. Ong, and B. Sendhoff, “Generalizing surrogate-
assisted evolutionary computation,” IEEE Transactions on Evolutionary
Computation, vol. 14, no. 3, pp. 329-355, 2010.

S. Tong, “Active learning: theory and applications,” Ph.D. dissertation,
Citeseer, 2001.

R. Burbidge, J. J. Rowland, and R. D. King, “Active learning for re-
gression based on query by committee,” in Intelligent Data Engineering
and Automated Learning-IDEAL 2007. Springer, 2007, pp. 209-218.
A. Chatterjee and P. Siarry, “Nonlinear inertia weight variation for
dynamic adaptation in particle swarm optimization,” Computers &
Operations Research, vol. 33, no. 3, pp. 859 — 871, 2006.

B. Settles, “Active learning,” Synthesis Lectures on Artificial Intelligence
and Machine Learning, vol. 6, no. 1, pp. 1-114, 2012.

H. S. Seung, M. Opper, and H. Sompolinsky, “Query by committee,”
in Proceedings of the fifth annual workshop on Computational learning
theory. ACM, 1992, pp. 287-294.

P. Melville and R. J. Mooney, “Diverse ensembles for active learning,”
in Proceedings of the twenty-first international conference on Machine
learning. ACM, 2004, p. 74.

Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in
Evolutionary Computation, 1998. CEC 1998. IEEE Congress on, 1998,
pp. 69-73.

M. Parno, T. Hemker, and K. Fowler, “Applicability of surrogates to
improve efficiency of particle swarm optimization for simulation-based
problems,” Engineering optimization, vol. 44, no. 5, pp. 521-535, 2012.
R. G. Regis, “Particle swarm with radial basis function surrogates for
expensive black-box optimization,” Journal of Computational Science,
vol. 5, no. 1, pp. 12-23, 2014.

C. Praveen and R. Duvigneau, “Low cost PSO using metamodels
and inexact pre-evaluation: Application to aerodynamic shape design,”
Computer Methods in Applied Mechanics and Engineering, vol. 198,
no. 9, pp. 1087-1096, 2009.

M. Stein, “Large sample properties of simulations using latin hypercube
sampling,” Technometrics, vol. 29, no. 2, pp. 143-151, 1987.

R. C. Eberhart and Y. Shi, “Comparing inertia weights and constriction
factors in particle swarm optimization,” in Evolutionary Computation,
2000. CEC 2000. IEEE Congress on, vol. 1. 1EEE, 2000, pp. 84-88.
R. A. Olea, “Geostatistics for engineers and earth scientists,” Techno-
metrics, vol. 42, no. 4, pp. 444-445, 2000.

T. Goel, R. T. Haftka, W. Shyy, and N. V. Queipo, “Ensemble of
surrogates,” Structural and Multidisciplinary Optimization, vol. 33,
no. 3, pp. 199-216, 2007.

H. Wang, Y. Jin, and X. Yao, “Diversity assessment in many-objective
optimization,” IEEE Transactions on Cybernetics, vol. PP, no. 99, pp.
1-1, 2016, doi=10.1109/TCYB.2016.2550502.

F. Viana and T. Goel, “Surrogates toolbox user’s guide,” http://fchegury.
googlepages. com,[retrieved Dec. 2009], Tech. Rep., 2010.

S. Lophaven, H. Nielsen, and J. Sondergaard, “Dace: A matlab kriging
toolbox. 2002,” Technical University of Denmark, Tech. Rep., 2002.
G. Jekabsons, “RBF: Radial basis function interpolation for mat-
lab/octave,” Riga Technical University, Latvia. version, Tech. Rep., 2009.
J. S. Kowalik and M. R. Osborne, “Methods for unconstrained optimiza-
tion problems,” 1968.

J. Derrac, S. Garcia, D. Molina, and F. Herrera, “A practical tutorial
on the use of nonparametric statistical tests as a methodology for
comparing evolutionary and swarm intelligence algorithms,” Swarm and
Evolutionary Computation, vol. 1, no. 1, pp. 318, 2011.

S. N. Lophaven, H. B. Nielsen, and J. Sg¢ndergaard, “Aspects of
the matlab toolbox dace,” Informatics and Mathematical Modelling,
Technical University of Denmark, DTU, Tech. Rep., 2002.

P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger,
and S. Tiwari, “Problem definitions and evaluation criteria for the CEC

2005 special session on real-parameter optimization,” KanGAL report,
vol. 2005005, p. 2005, 2005.



