A Decomposition-Based Many-Objective Evolutionary Algorithm With Two Types of Adjustments for Direction Vectors | IEEE Journals & Magazine | IEEE Xplore

A Decomposition-Based Many-Objective Evolutionary Algorithm With Two Types of Adjustments for Direction Vectors


Abstract:

Decomposition-based multiobjective evolutionary algorithm has shown its advantage in addressing many-objective optimization problem (MaOP). To further improve its converg...Show More

Abstract:

Decomposition-based multiobjective evolutionary algorithm has shown its advantage in addressing many-objective optimization problem (MaOP). To further improve its convergence on MaOPs and its diversity for MaOPs with irregular Pareto fronts (PFs, e.g., degenerate and disconnected ones), we proposed a decomposition-based many-objective evolutionary algorithm with two types of adjustments for the direction vectors (MaOEA/D-2ADV). At the very beginning, search is only conducted along the boundary direction vectors to achieve fast convergence, followed by the increase of the number of the direction vectors for approximating a more complete PF. After that, a Pareto-dominance-based mechanism is used to detect the effectiveness of each direction vector and the positions of ineffective direction vectors are adjusted to better fit the shape of irregular PFs. The extensive experimental studies have been conducted to validate the efficiency of MaOEA/D-2ADV on many-objective optimization benchmark problems. The effects of each component in MaOEA/D-2ADV are also investigated in detail.
Published in: IEEE Transactions on Cybernetics ( Volume: 48, Issue: 8, August 2018)
Page(s): 2335 - 2348
Date of Publication: 25 August 2017

ISSN Information:

PubMed ID: 28858821

Funding Agency:


References

References is not available for this document.