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Robust Stabilisation of T-S Fuzzy Stochastic
Descriptor Systems via Integral Sliding Modes

Jinghao Li, Qingling Zhang, Xing-Gang Yan and Sarah K. Spurgeon, Senior Member, IEEE

Abstract—This paper addresses the robust stabilisation prob-
lem for T-S fuzzy stochastic descriptor systems using an integral
sliding mode control paradigm. A classical integral sliding mode
control scheme and a non-parallel distributed compensation
(Non-PDC) integral sliding mode control scheme are presented.
It is shown that two restrictive assumptions previously adopted
developing sliding mode controllers for T-S fuzzy stochastic
systems are not required with the proposed framework. A unified
framework for sliding mode control of T-S fuzzy systems is
formulated. The proposed Non-PDC integral sliding mode con-
trol scheme encompasses existing schemes when the previously
imposed assumptions hold. Stability of the sliding motion is
analysed and the sliding mode controller is parameterised in
terms of the solutions of a set of linear matrix inequalities
(LMIs) which facilitates design. The methodology is applied to
an inverted pendulum model to validate the effectiveness of the
results presented.

Index Terms—T-S fuzzy stochastic descriptor systems, integral
sliding mode control, robust stabilisation, non-parallel distributed
compensation (Non-PDC), inverted pendulum.

I. INTRODUCTION

THE DESCRIPTOR system representation is an estab-
lished approach to fully characterize physical systems

and research on linear descriptor systems is mature [1]-[2].
Practically, many complex physical models, such as con-
strained mechanical systems, bio-economic singular systems,
robotic systems, show nonlinear features. Although the nonlin-
ear descriptor system can be linearized at a certain operating
point so that linear theory can be applied, the resulting
analysis and synthesis results are only local and may not be
satisfactory. This motivates considering the original nonlinear
descriptor system directly for the purpose of design. Recently,
detailed qualitative analysis and control methods for several
classes of singular biological system have been developed
[3]. However, for general nonlinear descriptor systems, the
methodology is laborious and it is difficult to derive global
stability conditions. In 1985, Takagi and Sugeno presented
the well-known T-S fuzzy model [4], which can represent
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exactly a nonlinear model in a compact set of the state space.
One advantage of representing a nonlinear system by a T-
S fuzzy model is that existing results on linear systems can
be utilized. Early results on stability and stabilisation are
frequently based on a common quadratic Lyapunov function
which inevitably introduces conservatism. With the objective
of decreasing this conservatism, several different classes of
non-quadratic Lyapunov functions have been explored where
piecewise Lyapunov functions [5], fuzzy Lyapunov functions
[6] and line-integral Lyapunov functions [7] are the most
typical. Parallel distributed compensation (PDC) is the classi-
cal control approach adopted for T-S fuzzy systems whereby
the controller shares the same fuzzy inference rules with the
controlled plant. However, when a non-quadratic Lyapunov
function together is used in conjunction with the PDC control
scheme, the solution to a set of bilinear matrix inequalities is
often required. In addition, conservatism will always exist. For
this reason, non-parallel distributed compensation (Non-PDC)
is proposed in [8] and combined with a non-quadratic Lya-
punov function to show the superiority of the approach when
compared to PDC. Fuzzy controller designs for T-S fuzzy
systems have been developed for both PDC and Non-PDC
where [5], [9] provide a complete review of T-S fuzzy systems.
As nonlinear descriptor systems are often encountered in the
real world, stabilisation of T-S fuzzy descriptor systems has
been considered [4]. Subsequently investigations on T-S fuzzy
descriptor systems have attracted increasing attention from
the control community [10]-[12]. Stochastic phenomena are
known to arise in many branches of science and engineering
[13]. This motivates introducing stochastic characteristics into
the model representation. In recent years, many results have
been reported on the study of T-S fuzzy stochastic descriptor
systems, including passivity and passification [14], filtering
[15], observer-based control [16] and guaranteed cost control
[17]. Notice that in practice within control systems there al-
ways exist unknown disturbances and parameter uncertainties
which increase the complexity of the system. It follows that
the design of a suitably robust control to tolerate or attenuate
disturbances is pertinent.

Sliding mode control is widely established as an effective
robust control strategy in both theoretical research and practi-
cal applications [18]-[20]. One of its superior features is the
insensitivity to parameter variations and disturbances arising
in the same channel as the control input. The essence of sliding
mode control is to design a suitably high-speed switching
control law such that the resultant closed-loop system is
attracted to a user-defined sliding surface in finite time and
remains there for all subsequent time. Increasing attention
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has been paid to the sliding mode control problem for T-
S fuzzy descriptor systems [21]-[23], stochastic descriptor
systems [24]-[25] and T-S fuzzy stochastic normal systems
(E = I) [26]-[27]. However, sliding mode control for T-S
fuzzy stochastic descriptor systems has not yet been studied
and this provides motivation for this paper. In addition, as
demonstrated in [27], there exist two restrictive assumptions
for the development of sliding mode controllers for T-S fuzzy
stochastic systems: the input matrices of each linear subsystem
of the T-S fuzzy system are forced to be equal and the product
of a parameter matrix in the sliding variable and the diffusion
matrices of each linear subsystem must be zero. Without these
two assumptions, an effective sliding mode control method for
T-S fuzzy stochastic normal system with parameter uncertain-
ties has been developed by introducing the state and input
vectors into the sliding variable [27]. However, it is difficult
to apply this method to counteract unknown disturbances
which occur in the input channel for T-S fuzzy stochastic
normal systems and the direct extension of the results to
T-S fuzzy stochastic descriptor systems is problematic. As
a consequence, removing these two assumptions completely
and designing a suitable sliding mode control scheme for a
T-S fuzzy stochastic descriptor system with unknown input
disturbances is the second motivation for this paper.

In this paper, the robust stabilisation problem for T-S fuzzy
stochastic descriptor systems is studied using an integral slid-
ing mode control approach. Firstly, two novel integral sliding
surfaces are constructed and the stability of the corresponding
sliding motion is analysed. The design parameter matrices
defining the sliding variable are obtained by solving LMIs.
A classical integral sliding mode controller and a Non-PDC
integral sliding mode controller are presented to guarantee
that motion on the prescribed sliding surface is maintained.
To show the validity of the proposed integral sliding mode
method, simulation results of an inverted pendulum system
are provided. The contributions of this paper are threefold:
1) the equality of the input matrices of each subsystem and
the restrictive assumption on the parameter matrix in the
sliding variable and the diffusion matrix of each subsystem
are no longer a requirement of the approach; 2) a series of
new sliding mode control schemes for T-S fuzzy stochastic
systems are presented; 3) descriptor redundancy and property
of fuzzy membership functions are exploited to decrease the
conservatism.

The rest of this paper is organised as follows. Section II
presents the problem description and some essential lemmas.
Section III focuses on construction of the sliding surface,
stability of the sliding motion, synthesis of a sliding mode
controller and comparisons with the existing results. Section
IV provides examples to illustrate the effectiveness of the
proposed methods and Section V concludes the paper.

Notation: The notation used throughout this paper is quite
standard. Rn represents the n-dimensional Euclidean space,
and Rm×n represents the set of all m × n real matrices.
The superscripts T and −1 denote matrix transposition and
matrix inverse respectively. The symbol (Ω,F, {Ft},P) is a
complete probability space with a filtration {Ft} satisfying
the usual conditions (i.e. it is right continuous and contains

all P-null sets) and E{·} is the expectation operator. R+

represents the set of positive real numbers. ‖ · ‖ denotes
the Euclidean norm of a vector or the induced norm of a
matrix. V ∈ C2,1 (Rn × R+;R) denotes the family of all
real-valued functions V (x, t) defined on Rn × R+ such that
they are continuously twice differentiable in x and once in
t. L1 (R+;Rn) and L2 (R+;Rn×m) respectively denote the
family of all Rn-valued measurable {Ft}-adapted process
f = {f(t)}t≥0 and n × m-matrix-valued measurable {Ft}-
adapted process g = {g(t)}t≥0 such that

∫ T
0
‖f(t)‖dt < ∞

and
∫ T

0
‖g(t)‖2dt < ∞ a.s. for every T > 0. The notation

P > 0 (P ≥ 0) implies that P is a real symmetric and positive
definite (semi-positive definite) matrix. For a symmetric matrix
A, λmin(A) and λmax(A) denote the minimum eigenvalue and
the maximum eigenvalue of matrix A, respectively. He(A)
stands for A + AT . The star ? in a matrix block implies
that it can be induced by symmetric position. Matrices, if
their dimensions are not explicitly stated, are assumed to be
compatible for algebraic operations.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following T-S fuzzy stochastic descriptor sys-
tem fixed for the probability space (Ω,F,P):
Plant Rule i: IF z1(t) is Fi1, z2(t) is Fi2, · · · , zp(t) is Fip,
THEN

Edx(t) = [Aix(t) +Bi (u(t) + w(t))] dt+ Jix(t)dω(t) (1)

where i ∈ {1, 2, · · · , r}, z1(t), z2(t), · · · , zp(t) are the
premise variables, Fi1, Fi2, · · · , Fip are the fuzzy sets, and
r is the number of IF-THEN rules. x(t) ∈ Rn is the state
vector, u(t) ∈ Rm is the input vector, w(t) ∈ Rm is the
unknown disturbance which satisfies ‖w(t)‖ ≤ w̄. ω(t) is a
one-dimensional Brownian motion defined on the probability
space (Ω,F,P). E, Ai, Bi, Ji, i = 1, 2, · · · , r are known
real matrices with proper dimensions and matrix E has the
property rank(E) = re ≤ n. Without loss of generality, it is
assumed that rank[E Ji] = rankE, i = 1, 2, · · · , r.

Based on the centre-average defuzzifier, product inference
and the singleton fuzzifier, the overall T-S fuzzy stochastic
descriptor system can be inferred as

Edx(t) =

r∑
i=1

hi (z(t)) {[Aix(t) +Bi (u(t) + w(t))] dt

+ Jix(t)dω(t)}
(2)

where z(t) = [z1(t), z2(t), · · · , zp(t)] and hi (z(t)) =∏p
j=1 Fij(zj(t))∑r

i=1

∏p
j=1 Fij(zj(t))

is the normalized membership function
with Fij(zj(t)) denoting the membership degrees of zj(t) in
fuzzy set Fij . For all t ≥ 0, the normalized membership func-
tion satisfies hi (z(t)) ≥ 0, i = 1, 2, · · · , r,

∑r
i=1 hi (z(t)) =

1. To ease the notation, in the sequel, A(h) and B(hh) are
respectively used to denote the single sum

∑r
i=1 hi (z(t))Ai

and double sums
∑r
i=1

∑r
j=1 hi (z(t))hj (z(t))Bij .

Some basic definitions and essential lemmas are first re-
called to facilitate development of the main results. To this
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end, the unforced T-S fuzzy stochastic descriptor system (2)
is shown as follows

Edx(t) = A(h)x(t)dt+ J(h)x(t)dω(t) (3)

Definition 1: The T-S fuzzy stochastic descriptor system (3)
is said to be asymptotically mean square stable if for any initial
condition x0 ∈ Rn, limt→∞ E{‖x(t)‖2} = 0.

Lemma 1 [13]: Let x(t) be an n-dimensional Itô process
on t ≥ 0 with the stochastic differential

dx(t) = f(t)dt+ g(t)dω(t)

where f(t) ∈ L1 (R+;Rn) and g(t) ∈ L2 (R+;Rn×m). Let
V ∈ C2,1 (Rn × R+;R). Then V (x(t), t) is a real-valued Itô
process with its stochastic differential given by

dV (x(t), t) = [Vt (x(t), t) +
1

2
trace

(
gT (t)Vxx (x(t), t) g(t)

)
+Vx (x(t), t) f(t)]dt+ Vx (x(t), t) g(t)dω(t)

Lemma 2 [28]: Suppose a piecewise continuous matrix
A(t) ∈ Rn×n, and a matrix X ∈ Rn×n satisfy the following
inequality

A(t)TX +XTA(t) ≤ −αI

for all t and some positive number α. Then the followings
hold:

1) A(t) is invertible,
2) ‖A−1(t)‖ ≤ a for some a > 0.
Lemma 3 (Finsler’s Lemma) [29]: Let x ∈ Rn, Ω = ΩT ∈

Rn×n, W ∈ Rm×n. The followings are equivalent:
1) xTΩx < 0, ∀ Wx = 0, x 6= 0;
2) ∃X ∈ Rn×m: Ω +XW +WTXT < 0.
It should be noted that in the sliding mode control of T-S

fuzzy descriptor systems [21]-[22] and stochastic descriptor
systems [24], the following assumptions are imposed respec-
tively:
A1: The matrices Bi, i = 1, 2, · · · , r satisfy B1 = B2 =

· · · = Br = B;
A2: There exists a matrix S such that det(SBi) 6= 0 and

SJi = 0, i = 1, 2, · · · , r.
These assumptions are restrictive and limit the applicability

of the methods. As will be shown in Section IV, the model
describing the balancing of the inverted pendulum on a cart
does not satisfy these two assumptions and in this case,
existing results [21]-[24] are not applicable. The design of
an appropriate sliding mode scheme for T-S fuzzy stochastic
descriptor systems without the two assumptions is a main
focus of this paper.

III. MAIN RESULTS

First of all, a classical integral sliding mode control scheme
is presented to remove the restrictive assumptions A1 and A2
for the T-S fuzzy stochastic descriptor system (1). A Non-
PDC integral sliding mode control scheme will then be derived
to decrease the conservatism stemming from the selection of
the coefficient matrix which defines the sliding surface in
the classical integral sliding mode control approach. Finally,
comparison with the existing sliding mode control methods is
undertaken to show the merits of the proposed method in this
paper.

A. Classical Integral Sliding Mode Control Scheme

This subsection is divided into three parts: the first part
considers construction of an appropriate sliding surface, the
second part focuses on the stability analysis of the motion,
and the final part presents the sliding mode controller design
method. First consider the construction of the sliding surface.

1) Construction of Sliding Surface: The sliding surface is
defined by s(t) = 0, where the sliding variable is constructed
as follows

s(t) = SEx(t)− SEx(0)

−
∫ t

0

S(A(h) +B(h)K1)x(τ)dτ
(4)

where K1 ∈ Rm×n is the coefficient matrix to be determined
in the sequel, and S ∈ Rm×n is the parameter matrix ensuring
the nonsingularity of SB(h). To this end, the method in [30]
can be adopted. By defining B = 1

r

∑r
i=1Bi, it follows that

B(h) = B +HF (h̄(z(t)))G (5)

where h̄(z(t)) = [h1(z(t)), h2(z(t)), · · · , hr(z(t))], H =
1
2 [B − B1, B − B2, · · · , B − Br], F (h̄(z(t))) = diag[(1 −
2h1(z(t)))I, (1−2h2(z(t)))I, · · · , (1−2hr(z(t)))I], and G =
[I, I, · · · , I︸ ︷︷ ︸

r

]T . Thus, the following result can be derived by the

approach in [30].
Lemma 4 [30]: If the following LMIs[

−I ?
f1H −I

]
< 0,

[
Q ?
I f2I

]
> 0, Q < f3I, 2f1

√
λmin (BTB) ? ?
rf2 rf1 ?
rf3 0 rf1

 > 0

(6)

are solvable for (Q, f1, f2, f3) with Q > 0, then there
exists parameter matrix S =

(
BTQ−1B

)−1
BTQ−1 such that

SB(h) is nonsingular.
Remark 1: More generally, matrix B can also be chosen

as the convex combination of Bi, i = 1, 2, · · · , r, that is,
B =

∑r
i=1 ξiBi with ξi ≥ 0 and

∑r
i=1 ξi = 1. From the

property of convex combinations, it follows that if just one of
the matrices Bi is nonsingular, then there must exist a set of
scalars ξi, i = 1, 2, · · · , r such that the nonsingularity of B
can be guaranteed. In this case, define

H =
1

2

[
B − rξ1B1, B − rξ2B2, · · · , B − rξrBr, 2ζI

]
,

F(h̄(z(t))) = diag[(1− 2h1(z(t)))I, (1− 2h2(z(t)))I, · · · ,

(1−2hr(z(t)))I,
1

ζ

r∑
i=1

hi(z(t))(1−rξi)Bi],G =
[
GT I

]T
where ζ = ‖

∑r
i=1 hi(z(t)) (1− rξi)Bi‖. It can be shown that

B(h) = B +HF(h̄(z(t)))G. Therefore, the result in Lemma
4 is also applicable with H , G, r replaced by H, G, r + 1,
respectively.

Remark 2: Note that when B1 = B2 = · · · = Br = B,
by choosing Q = I and without solving the LMIs (6), the
parameter matrix S can be given as S =

(
BTB

)−1
BT , since

it has been proved in [31] that this set is optimal in the sence
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that the Euclidean norm of the mismatched disturbances is
minimized.

2) Stability of the Sliding Motion: Based on (2) and (4), it
can be shown that

ds(t) = SB(h)(u(t) + w(t)−K1x(t))dt+ SJ(h)x(t)dω(t)
(7)

In the sliding phase, E{s(t)} = 0 holds. When the state
trajectories of the system (2) reach and are confined to
the sliding surface with sliding variable (4), from (7), it is
necessary to satisfy

(SB(h))(u(t) + w(t)−K1x(t)) = 0

Since SB(h) is nonsingular, the equivalent control can be
obtained as

ueq(t) = K1x(t)− w(t) (8)

By substituting (8) into the system (2), the sliding mode
dynamics are given as follows

Edx(t) = Ac(h)x(t)dt+ J(h)x(t)dω(t) (9)

where Ac(h) = A(h) +B(h)K1.
Theorem 1: If the following matrix inequalities

∆i =

 ∆i1 ? ?
∆i2 −εHe(Pi) ?
∆i3 0 −P1

 < 0 (10)

are solvable for (P1, P2i, P3i, X,Φi, Z1, ε) , i = 1, 2, · · · , r
where P1 > 0, ε > 0, P3i = PT3i , E+ is the
pseudoinverse of E in the Moore-Penrose sense, ∆i1 =
He (AiX +BiZ1), ∆i2 = X−Pi+ε (AiX +BiZ1), ∆i3 =[
Ire 0

]
NTE+JiX , Pi = N

[
P1 PTi2
Pi2 Pi3

]
NTET +

V ΦiU , orthogonal matrices M and N satisfying MEN =[
Λ 0
0 0

]
, Λ = diag{λ1, λ2, · · · , λre} > 0, λ1, λ2, · · · , λre

are the singular values of matrix E, U and V are respectively
the last n − re rows and the last n − re columns of M and
N , then the sliding motion (9) is regular, impulse free and
asymptotically mean square stable. Furthermore, the coeffi-
cient matrix K1 in (4) can be expressed as K1 = Z1X

−1.
Proof: Suppose that matrix inequalities in (10) are solv-

able, pre- and post-multiplying ∆i by
[
−εI I 0

]
and its

transpose yield X is invertible. It can be shown that

P(h) = N

[
P1 P2(h)T

P2(h) P3(h)

]
NTET + V Φ(h)U

= N

[
P1 0

P2(h) 0

] [
Λ 0
0 0

]
M

+N

[
0 0
0 Φ(h)

]
M

= N

[
P1 0

P2(h) Φ(h)

] [
Λ 0
0 I

]
M

(11)

Furthermore

(P(h))−1 = MT

[
Λ−1 0

0 I

] [
P−1

1 0
F (Φ(h))−1

]
NT

(12)
where F represent terms that are unimportant within the
current analysis.

From (12), it follows that

ET (P(h))−1

= NNTETMT

[
Λ−1 0

0 I

] [
P−1

1 0
F F

]
NT

= N

[
Ire
0

]
P−1

1

[
Ire 0

]
NT = (P(h))−TE ≥ 0

(13)

Summing (10) for all i = 1, 2, · · · , r and using the Schur
complement Lemma, straightforward algebraic manipulation
yields [

∆4(z(t)) ?
∆2(h) −εHe(P (h))

]
< 0 (14)

where ∆4(z(t)) = He (A(h)X +B(h)Z1) +
XTJ(h)T (E+)TET (P(h))−1E+J(h)X .

Pre- and post-multiplying (14) by diag{X−T , (P(h))−1}
and its transpose, the following can be obtained[

J(h)T (E+)TET (P(h))−1E+J(h) ?
(P(h))−1 0

]
+ He(

[
X−T

ε(P(h))−1

] [
Ac(h) −I

]
) < 0

(15)

By Finsler’s Lemma, (15) can be guaranteed by the follow-
ing inequality

yT
[
J(h)T (E+)TET (P(h))−1E+J(h) ?

(P(h))−1 0

]
y < 0 (16)

for any y =
[
y1 y2

]T 6= 0 satisfying[
Ac(h) −I

]
y = 0 (17)

Substituting (17) into (16), the following can be obtained

∆̃(z(t)) = (J(h))T (E+)TET (P(h))−1(E+)J(h)

+ He
(
(Ac(h))T (P(h))−1

)
< 0

(18)

The regularity and absence of impulse in the system (9) can
now be proved. Define

M̃ =

[
Λ−1 0

0 0

]
M, M̃JiN =

[
J1i J2i

0 0

]
M̃AciN =

[
A1i A2i

A3i A4i

] (19)

Substituting (19) into (18), it follows that[
F F
F ∇(z(t))

]
< 0

where ∇(z(t)) = (J2(h))TP−1
1 J2(h) +

He((A4(h))T (Φ(h))−1).
Note that P1 > 0 and ∇(z(t)) < 0. Then by Lemma 2,

it follows that A4(h) is nonsingular and ‖(A4(h))−1‖ ≤ ρ1

with ρ1 > 0. As a result, from [14], the sliding motion (9) is
regular and impulse free.

Using the coordinate transformation x(t) = N

[
x̃1(t)
x̃2(t)

]
,

the sliding motion (9) is equivalent to

dx̃1(t) = [(A1(h)−A2(h)(A4(h))−1A3(h))x̃1(t)dt

+ (J1(h)− J2(h)(A4(h))−1A3(h))x̃1(t)dω(t)]

x̃2(t) = − (A4(h))−1A3(h)x̃1(t)



SUBMIT TO IEEE TRANSACTIONS ON CYBERNETICS 5

Next, the sliding motion (9) will be shown to be asymp-
totically mean square stable. Select the Lyapunov function
candidate as follows

V (x̃1(t)) = x̃T1 (t)P−1
1 x̃1(t) = xT (t)ET (P(h))−1x(t) (20)

Let L be the diffusion operator associated with (20). Then
by Lemma 1, it can be shown that

dV (x̃1(t)) = xT (t)∆̃(z(t))x(t)dt

+ 2xT (P(h))−TJ(h)x(t)dω(t)
(21)

Thus, LV (x̃1(t)) = xT (t)∆̃(z(t))x(t). From (18), there
exists a positive constant % such that

LV (x̃1(t)) < −%‖x(t)‖2 (22)

According to (20)

λmin(P−1
1 )‖x̃1(t)‖2 ≤ V (x̃1(t)) ≤ λmax(P−1

1 )‖x̃1(t)‖2
(23)

Due to ‖(A4(h))−1‖ ≤ ρ1, two positive constants ρ2 and ρ3

can be defined satisfying

ρ2‖x̃1(t)‖ ≤ ‖x̃2(t)‖ ≤ ρ3‖x̃1(t)‖

which further implies

ρ4‖x̃1(t)‖2 ≤ ‖x(t)‖2 ≤ ρ5‖x̃1(t)‖2 (24)

where ρ4 = ρ2
2 + 1 and ρ5 = ρ2

3 + 1.
Using Lemma 1 and (21), it can be calculated that

d
[
eεtV (x̃1(t))

]
= εeεtV (x̃1(t)) dt+ eεtLV (x̃1(t)) dt

+ eεtVx (x̃1(t)) Jix(t)dω(t)
(25)

Integrating and taking expectations on both sides of (25), it
follows that

eεtE {V (x̃1(t))} = E {V (x̃1(0))}

+ E
∫ t

0

eετLV (x̃1(τ)) dτ

+ E
∫ t

0

eετ εV (x̃1(τ)) dτ

(26)

Substituting (22), (23) and (24) into (26), it can be established
that

E {V (x̃1(t))} ≤ e−εtE {V (x̃1(0))}

+E
∫ t

0

ε̃e−ε(t−τ)‖x̃1(τ)‖2dτ

where ε̃ = ελmax
(
P−1

1

)
− %ρ4.

Assign 0 < ε ≤ %ρ4
λmax(P−1

1 )
, and note (23), then

E{‖x̃1(t)‖2} ≤ λmax(P1)E {V (x̃1(0))} e−εt (27)

As t tends to ∞, (27) yields limt→∞ E{‖x̃1(t)‖2} = 0.
By (24), it follows that limt→∞ E{‖x(t)‖2} = 0. As a
consequence, based on Definition 1, the sliding motion (9)
is asymptotically mean square stable.

Remark 3: The existence of an asymptotically mean square
stable sliding motion (9) is proved in Theorem 1 and the coef-
ficient matrix K1 in the sliding varible (4) is obtained in terms
of a set of matrix inequalities. Due to the redundancy in the

derivative coefficient matrix E, some slack matrices Pi2, Pi3,
Φi, i = 1, 2, · · · , r are introduced and the matrix ET (P(h))−1

is only dependent on the orthogonal matrix N and positive
definite matrix P1. Moreover, based on the property of fuzzy
membership functions, P1 is set to be independent of the fuzzy
membership functions to avoid the derivative of the fuzzy
membership functions appearing. Therefore, the conservatism
of the common quadratic Lyapunov function is reduced by
exploiting the properties of fuzzy membership functions and
descriptor redundancy.

3) Design of the Sliding Mode Controller: Theorem 2:
Assume that matrices S and K1 satisfy Lemma 4 and Theorem
1. The sliding mode controller

u(t) = K1x(t)− (SB(h))
−1
Qs(t)− ς (SB(h))

T
s(t)

‖ (SB(h))
T
s(t)‖

(28)
can confine the state trajectories of the resultant closed-loop
system in a sufficiently small band around the sliding surface
with sliding variable (4) if Q is a positive definite matrix and
ς > w̄ where w̄ is defined by the upper bound on the norm
of the disturbance w(t).

Proof: Select the Lyapunov function candidate as
Ṽ (s(t)) = 1

2s
T (t)s(t). By the Itô formula, it follows that

dṼ (s(t)) = sT (t)SB(h) (u(t) + w(t)−K1x(t)) dt

+ xT (t)Υ(hh)x(t)dt

+ sT (t)SJ(h)x(t)dω(t)

= LṼ (s(t)) dt+ sT (t)SJ(h)x(t)dω(t)

where Υ(hh) = 1
2 (J(h))TSTSJ(h).

By (28), it can be computed that

LṼ (s(t)) ≤− λmin (Q) ‖s(t)‖2 + λmax (Υ(hh)) ‖x(t)‖2

+ (w̄ − ς)
∥∥(SB(h))T s(t)

∥∥
(29)

To achieve the sliding mode, the following condition should
be satisfied

LṼ (s(t)) ≤ −ζ
∥∥(SB(h))T s(t)

∥∥ (30)

where ζ > 0. Without loss of generality, ς can be selected to
satisfy ς = ζ + w̄.

Combining (29) with (30), (30) holds if the following is
satisfied

−λmin (Q) ‖s(t)‖2 + λmax (Υ(hh)) ‖x(t)‖2 ≤ 0

which means that for ‖s(t)‖ ≥
√

λmax(Υ(hh))‖x(t)‖2
λmin(Q) , (30) is

true. Similar to [27], [32], define the following small band
around the sliding surface

B (s(t)) =

{
s(t)

∣∣∣∣∣‖s(t)‖ ≤
√
λmax (Υ(hh)) ‖x(t)‖2

λmin (Q)

}
It can be concluded that the sliding variable remains in the
band B (s(t)) as in [27], [32]-[34]. It follows directly from
theorem 3.1 in [32] that the state trajectories of the resultant
closed-loop system are generally not kept on the sliding
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surface, but will remain in a sufficiently small bounded region
surrounding the sliding surface.

Remark 4: It should be noted that a term proportional to the
sliding variable is introduced into the sliding mode controller
(28). This removes the rigorous assumption A2 by defining
a small band around the sliding surface as in [27], [32] and
it is proved that the sliding variable is restricted to a small
neighbourhood of the sliding surface. Note that when the
assumption SJ(h) = 0 holds, by assigning Q = 0, the band
B (s(t)) is the sliding surface itself. In this case, the sliding
mode controller (28) can maintain the state trajectories of the
closed-loop system on the sliding surface.

B. Non-PDC Integral Sliding Mode Control Scheme

It should be noted that despite the tractability of the classical
integral sliding mode control scheme presented above, some
conservatism may be produced in solving matrix inequalities
for the coefficient matrix K1 since a common matrix K1 is re-
quired to stabilise all the local subsystem (E,Ai, Bi, Ji) , i =
1, 2, · · · , r. As a consequence, a Non-PDC integral sliding
mode control scheme will be proposed to further reduce this
conservatism.

The sliding surface is defined by s(t) = 0, where the sliding
variable is constructed as follows

s(t) = SEx(t)− SEx(0)

−
∫ t

0

S(A(h) +B(h)K2(h)(Y (h))−1)x(τ)dτ
(31)

Here S ∈ Rm×n is the same as that in (4) and K2i ∈ Rm×n,
Yi ∈ Rn×n, i = 1, 2, · · · , r are unknown coefficient matrices
to be designed later.

Remark 5: The sliding variable in (31) introduces the
nonlinear term K2(h)(Y (h))−1x(τ) to deal with the case
when the coefficient matrix K1 in (4) cannot be obtained
by Theorem 1. In the case that Y1 = Y2 = · · · = Yr, the
Non-PDC integral sliding mode control scheme reduces to the
PDC integral sliding mode control scheme. Furthermore, when
assumption A1 and Y1 = Y2 = · · · = Yr hold, the sliding
variable in (31) can recover the sliding variable presented in
[21], [26] or in [22] by incorporating a delay term. In fact,
when the matrix S is selected to ensure the invertibility of
SB(h), the nonlinear term K2(h)(Y (h))−1x(τ) in (31) can be
replaced by other stabilising state feedback control laws [35]-
[36] applicable for T-S fuzzy stochastic descriptor systems.
This observation is similar to that seen for nonlinear normal
systems in [37]. As a result, a new framework for the sliding
mode control of T-S fuzzy stochastic descriptor system is
proposed, even when assumptions A1 and A2 are not satisfied.

As in the previous subsection, the equivalent control law
can be obtained as

ueq(t) = K2(h)(Y (h))−1x(t)− w(t) (32)

By substituting (32) into the system (2), the sliding mode
dynamics are given by

Edx(t) = (A(h) +B(h)K2(h)(Y (h))−1)x(t)dt

+ J(h)x(t)dω(t)
(33)

To use the non-quadratic Lyapunov function, the following
assumption in [38]-[39] is enforced.

Assumption 1: ∂hi(z(t))
∂t ≥ φi (φi ≤ 0) for all i =

1, 2, · · · , r, where φi, i = 1, 2, · · · , r are scalars.
Now, the following theorem will provide a method to solve

the existence problem of sliding modes and the unknown
coefficient matrices can also be obtained.

Theorem 3: If the following matrix inequalities

P1i +X ≥ 0, i = 1, 2, · · · , r (34)

Θii < 0, i = 1, 2, · · · , r
1

r − 1
Θii +

1

2
(Θij + Θji) < 0, i, j = 1, 2, · · · , r, i 6= j

(35)

are solvable for (P1i, Yi,Φi,K2i, X, P2i, P3i, η) , i =
1, 2, · · · , r where P1i > 0, η > 0, P3i = PT3i and

Θij =

 Θij1 ? ?
Θij2 −ηHe(Yi) ?
Θij3 0 −Pi1


with Θ1ij = He(AiYj + BiK2j) −∑r
k=1 φk(EN

[
P1k +X PT2k
P2k P3k

]
NTET ), Θ2ij =

Pi−Yi+η(AiYj+BiK2j)
T , Θ3ij =

[
Ire 0

]
NTE+JiPj ,

Pi = N

[
P1i PT2i
P2i P3i

]
NTET + V ΦiU , orthogonal

matrices M and N satisfying MEN =

[
Λ 0
0 0

]
, Λ =

diag{λ1, λ2, · · · , λre} > 0, λ1, λ2, · · · , λre are the singular
values of matrix E, U and V are respectively the last n− re
rows and the last n − re columns of M and N , then the
sliding motion (33) is regular, impulse free and asymptotically
mean square stable.

Proof: If the matrix inequalities (35) hold, then Θ(hh) <
0. Based on (34) and φi ≤ 0, pre- and post-multiplying Θ(hh)
by
[
−ηI I 0

]
and its transpose yield P(h) is invertible.

It can be verified that

P(h) = N

[
P1(h) 0
P2(h) 0

] [
Λ 0
0 0

]
M

+N

[
0 0
0 Φ(h)

] [
Λ 0
0 I

]
M

= N

[
P1(h) 0
P2(h) Φ(h)

] [
Λ 0
0 I

]
M

From the invertibility of P(h), it follows that

(P(h))−1 = MT

[
Λ−1 0

0 I

] [
(P1(h))−1 0

F (Φ(h))−1

]
NT

where F represent terms that are unimportant within the
current analysis.

Furthermore, it can be computed that

ET (P(h))−1 = (P(h))−TE

= N

[
Ire
0

]
(P1(h))−1

[
Ire 0

]
NT ≥ 0

(36)
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Since ∂hk(z(t))
∂t ≥ φk and φk ≤ 0, it can be obtained that

−
r∑

k=1

φk(EN

[
P1k +X PT2k
P2k P3k

]
NTET )

= −
r∑

k=1

φk(MT

[
Λ 0
0 I

] [
P1k +X 0

0 0

] [
Λ 0
0 I

]
M)

≤ −
r∑

k=1

∂hk(z(t))

∂t
EN

[
P1k PT2k
P2k P3k

]
NTET

−
r∑

k=1

∂hk(z(t))

∂t
EN

[
X 0
0 0

]
NTET

Note that
∑r
k=1 hk(z(t)) = 1, then

∑r
k=1

∂hk(z(t))
∂t = 0, it

can be further shown that

−
r∑

k=1

φk(EN

[
P1k +X PT2k
P2k P3k

]
NTET )

≤ −
r∑

k=1

∂hk(z(t))

∂t
EN

[
P1k PT2k
P2k P3k

]
NTET

= −
r∑

k=1

∂hk(z(t))

∂t
EPk = −E ∂

∂t
(P(h))

(37)

Due to Θ(hh) < 0, by using the Schur complement lemma,
it follows from (36) and (37) that

He(

[
(Y (h))T

η(Y (h))T

] [
A(h) +B(h)K2(h)(Y (h))−1 −I

]
)

+

[
Θ4(z(t)) ?
P(h) 0

]
< 0

(38)

where Θ4(z(t)) = −E ∂
∂t (P(h)) +

(P(h))T (J(h))T (E+)TET (P(h))−1E+J(h)P(h).
By Finsler’s Lemma, (38) holds if the following is satisfied

zT
[

Θ4(z(t)) ?
P(h) 0

]
z < 0 (39)

for any z =
[
zT1 zT2

]T 6= 0 satisfies z2 = (A(h) +
B(h)K2(h)(Y (h))−1)z1.

Furthermore, (39) implies that

He((A(h) +B(h)K2(h)(Y (h))−1)P(h))

+ (P(h))T (J(h))T (E+)TET (P(h))−1E+J(h)P(h)

− E ∂

∂t
(P(h)) < 0

(40)

Similar to the proof of Theorem 1, the regularity and
absence of impulse of the sliding motion (33) can be proved.

Due to P(h)(P(h))−1 = I , it can be obtained that

∂

∂t
((P(h))−1) = −(P(h))−1 ∂

∂t
(P(h))(P(h))−1 (41)

Pre- and post-multiplying (40) by (P(h))−T and its trans-
pose, it follows from (41) that

Ξ(z(t)) = He((A(h) +B(h)K2(h)(Y (h))−1)T (P(h))−1)

+ (J(h))T (E+)TET (P(h))−1E+J(h)

− ET ∂
∂t

((P(h))−1) < 0

Define x(t) = N

[
x̃1(t)
x̃2(t)

]
and choose the following

Lyapunov function candidate

V (x̃1(t)) = x̃T1 (t)(P1(h))−1x̃1(t) = xT (t)ET (P(h))−1x(t)

Then by Lemma 1, it can be calculated that

LV (x̃1(t)) = xT (t)Ξ(z(t))x(t)

The subsequent proof can be directly obtained from that of
Theorem 1 and thus is omitted.

Remark 6: If the conditions in Theorem 3 are solvable, an
ideal sliding mode exists and a set of unknown coefficient ma-
trices K2i, Yi, i = 1, 2, · · · , r are obtained. Theorem 3 also
provides an approach to solve the state feedback stabilising
problems for a T-S fuzzy stochastic descriptor system based
on the Non-PDC scheme. Since the non-quadratic Lyapunov
function and Non-PDC scheme are used, some slack matrices
are introduced, the conditions in Theorem 3 are expected to
be less conservative than that in Theorem 1.

The sliding mode controller can be designed using the
following result.

Theorem 4: Assume that matrices S and K2i, Yi, i =
1, 2, · · · , r satisfy Lemma 4 and Theorem 3. The sliding mode
controller

u(t) = K2(h)(Y (h))−1x(t)− (SB(h))−1Qs(t)

− ς (SB(h))T s(t)

‖(SB(h))T s(t)‖
(42)

can confine the state trajectories of the resultant closed-loop
system to a sufficiently small band around the sliding surface
with sliding variable (31) if Q is a positive definite matrix and
ς > w̄ where w̄ is defined in Theorem 2.

When the coefficient matrices Y1 = Y2 = · · · = Yr, the
sliding variable in (31) degenerates to

s(t) = SEx(t)− SEx(0)

−
∫ t

0

S(A(h) +B(h)K3(h))x(τ)dτ
(43)

Here S ∈ Rm×n is the same as that in (4) and K3i ∈ Rm×n,
i = 1, 2, · · · , r are unknown coefficient matrices to be de-
signed later.

In this case, the sliding mode dynamics are given by

Edx(t) = Ac3(hh)x(t)dt+ J(h)x(t)dω(t) (44)

where Ac3(hh) = A(h) +B(h)K3(h).
Corollary 1: If (34) and the following matrix inequalities

zii < 0, i = 1, 2, · · · , r
1

r − 1
zii +

1

2
(zij + zji) < 0, i, j = 1, 2, · · · , r, i 6= j

are solvable for (P1i, Y,Φi, Z3i, X, P2i, P3i, η) , i =
1, 2, · · · , r where P1i > 0, η > 0, P3i = PT3i and

zij =

 zij1 ? ?
zij2 −ηHe(Y ) ?
zij3 0 −Pi1


with Θ1ij = He(AiY + BiZ3j) −∑r
k=1 φk(EN

[
P1k +X PT2k
P2k P3k

]
NTET ), Θ2ij =
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Pi−Y +η(AiY +BiZ3j)
T , Θ3ij =

[
Ire 0

]
NTE+JiPj ,

Pi = N

[
P1i PT2i
P2i P3i

]
NTET + V ΦiU , orthogonal

matrices M and N satisfying MEN =

[
Λ 0
0 0

]
, Λ =

diag{λ1, λ2, · · · , λre} > 0, λ1, λ2, · · · , λre are the singular
values of matrix E, U and V are respectively the last n− re
rows and the last n − re columns of M and N , then the
sliding motion (44) is regular, impulse free and asymptotically
mean square stable. Furthermore, the coefficient matrix K3i

in (43) can be expressed as K3i = Z3iY
−1.

Remark 7: As pointed out in [11], a logarithmically spaced
search ε, η ∈ {10−6, 10−5, · · · , 106} is used to avoid opti-
mization technique to search for ε and η. As a result, the
conditions in Theorems 1 and 3, Corollary 1 are linear matrix
inequalities.

The sliding mode controller can also be synthesized by a
similar structure with that in Theorem 4. In this case, the PDC
integral sliding mode control scheme can be obtained.

C. Comparison with Existing Sliding Mode Control Methods

Other authors have developed sliding mode control methods
for T-S fuzzy normal systems (E = I) when each local subsys-
tem does not share the same input matrix [30], [27]. Although
such methods are effective for T-S fuzzy normal systems, some
restrictions have been observed when the methods are applied
to T-S fuzzy descriptor systems. The following discussion
clarifies the differences between this existing literature and
the method proposed in this paper.

1) Comparison with the Method in [30]:
C1 the methods in [30] and in this paper are applicable to

T-S fuzzy normal systems. The method in [30] requires
a rigorous precondition that (Ai,

1
r

∑r
i=1Bi) is stabilis-

able. The results presented in this paper have no such
requirement;

C2 the method in [30] is based on the assumption [18]
that the system (Ai,

1
r

∑r
i=1Bi) can be expressed in the

regular form (

[
A1i A2i

A3i A4i

]
,

[
0
B

]
) with det(B) 6= 0

by an appropriate coordinate transformation. The sliding
variables then appear as a distinct subsystem which
is dependent of the control input. This facilitates the
sliding mode design and the transformation to regular
form is straightforward for any T-S fuzzy normal system
where

∑r
i=1Bi is full column rank. However, due to the

existence of the derivative coefficient matrix E, it can
be difficult to express the T-S fuzzy descriptor system
(E,Ai,

1
r

∑r
i=1Bi) in regular form.

2) Comparison with the Method in [27]:
C3 Although the method in [27] provides a very effective

solution of the sliding mode control problem for T-S
fuzzy systems with parameter uncertainties, when the
system is subject to unknown matched nonlinearities
or disturbances, the method is not applicable [27]. The
method in this paper can be used;

C4 When the method in [27] is applied to T-S fuzzy descrip-
tor systems, it is required that each descriptor subsystem

Fig. 1. Inverted pendulum on a cart

(E,Ai) is impulse free in order to determine the un-
known coefficient matrices in the sliding variable. This
restriction is not needed in this paper.

IV. EXAMPLES

In this section, three examples are considered to show the
applicability and effectiveness of the results proposed in this
paper. Example 1 is used to validate statements C2 and C3 in
Subsection III-C and to show that the proposed method can
be used to stabilize a T-S fuzzy stochastic descriptor system
which does not satisfy A1 and A2. Example 2 compares the
solvability of classical, PDC and Non-PDC integral sliding
mode control schemes and also justifies the statement C4 in
Subsection III-C. Example 3 is given to verify the statement
C1 in Subsection III-C. In the simulation, the unit vector s(t)

‖s(t)‖
is replaced by s(t)

‖s(t)‖+0.005 as in [18].
Example 1: Consider the problem of balancing the inverted

pendulum on a cart as shown in Fig. 1, where the pivot of
the pendulum is mounted on the cart and the cart can move
in a horizontal direction. By referring to [40]-[41], the state
equation of the dynamic model is represented by

ẋ1 = x2

ẋ2 =
kmlx4 cosx1 + (M +m)mgx5

(M +m)(J +ml2)−m2l2 cos2 x1

− ml cosx1

(M +m)(J +ml2)−m2l2 cos2 x1

(
u+mx2

2x5

)
ẋ3 = x4

ẋ4 =
−k(J +ml2)x4 −m2lgx5 cosx1

(M +m)(J +ml2)−m2l2 cos2 x1

+
J +ml2

(M +m)(J +ml2)−m2l2 cos2 x1

(
u+mx2

2x5

)
0 = l sinx1 − x5

where x1 is the angular rotation of the pendulum(measured
clockwise); x3 is the displacement of the pivot; x5 is the the
horizontal position of the pendulum centre relative to the pivot;
m is the mass of the pendulum; M is the mass of the cart;
l is the distance from the centre of gravity to the pivot; J
is the moment of inertia of the pendulum with respect to the
centre of gravity; k is a viscous damping coefficient; g is the
acceleration due to gravity; u(t) is the horizontal force exerted
on the cart.

It is well known that the viscous damping coefficient is
closely related to the shape of the cart and the air viscosity,
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Fig. 2. Time responses of the unforce system (45)

and the air viscosity varies with changes to external environ-
mental factors such as air density, wind, dryness and humidity,
temperature and so forth. These environmental factors often
feature random variation, which produces a stochastic fluctua-
tion of the damping coefficient and this motivates considering
stochastic noise in the environment within the model. Here it
is assumed that the damping coefficient is subjected to white
noise which is known as the derivative of Brownian motion.
The damping coefficient is replaced by

k −→ k + σω̇

where ω is a one dimensional Brownian motion defined on the
probability space (Ω,F,P). In addition, unknown disturbances
may arise in the control input channel. As a result, the
dynamics of the inverted pendulum on a cart are described
by

dx1 = x2dt

dx2 =
(kmlx4 cosx1 + (M +m)mgx5) dt

(M +m)(J +ml2)−m2l2 cos2 x1

−
ml cosx1

(
u+mx2

2x5 + w
)
dt− σmlx4 cosx1dω

(M +m)(J +ml2)−m2l2 cos2 x1

dx3 = x4dt

dx4 =

(
−k(J +ml2)x4 −m2lgx5 cosx1

)
dt

(M +m)(J +ml2)−m2l2 cos2 x1

+

(
J +ml2

) (
u+mx2

2x5 + w
)
dt− σ(J +ml2)x4dω

(M +m)(J +ml2)−m2l2 cos2 x1

0 = [l sinx1 − x5] dt
(45)

where w ∈ R denotes an unknown disturbance or parameter
variation. Taking M = 8kg, m = 2kg, g = 9.8m/s2, l =
0.5m, k = 0.5, σ = 0.1.

The time responses of the open-loop system (45) are shown
in Fig. 2, which shows that the unforced system (45) is
unstable and oscillatory. Although the integral sliding mode
control method in [37] may be generalized to a nonlinear
stochastic descriptor system, it is required that there exists a
nominal controller to stabilize the nominal nonlinear system.
It should be noted that it may not be straightforward to
find a nominal controller to stabilize the nonlinear stochastic
descriptor system (45). This fact is true especially for complex
nonlinear systems. In the sequel, it will be shown that it
is convenient to apply the proposed fuzzy integral sliding

mode control methods in this paper to stabilize the nonlinear
stochastic descriptor system (45).

Define x(t) =
[
x1(t) x2(t) x3(t) x4(t) x5(t)

]T
and a compact set Ω = {x(t) : |xi(t)| ≤ ξi, i = 1, 2, · · · , 5}
where ξ1 = 5π

18 and ξ2, ξ3, ξ4, ξ5 are appropriate positive
constants. By sector nonlinear approach [4], the inverted
pendulum system (45) can be represented in the compact set
Ω by the following T-S fuzzy model:

Edx(t) =

8∑
i=1

hi (x1(t)) {[Aix(t) +Bi(u(t)

+ 2x2
2(t)x5(t) + w(t))]dt+ Jix(t)dω}

(46)

where the premise variables are z1(t) = cos(x1(t)), z2(t) =
1

2−0.3 cos2(x1(t)) and z3(t) = sin(x1(t)). The membership
functions are hi(x1(t)) = tj(x1(t))vk(x1(t))µl(x1(t)), i =

l+2(k−1)+4(j−1), j, k, l = 1, 2 with t1(x1(t)) = z1(t)−a2
a1−a2 ,

v1(x1(t)) = z2(t)−b2
b1−b2 , µ1(x1(t)) = z3(t)−c2 arcsin(z3(t))

(c1−c2) arcsin(z3(t)) ,
t2(x1(t)) = 1 − t1(x1(t)), v2(x1(t)) = 1 − v1(x1(t)),
µ2(x1(t)) = 1 − µ1(x1(t)), a1 = 1, a2 = cos(ξ1), b1 = 1

1.7 ,
b2 = 1

2−0.3 cos2(ξ1) , c1 = 1, c2 = sin(ξ1)
ξ1

. The matched
disturbance is w(t) = 0.5 sin(t). The coefficient matrices in
system (46) are

E =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 ,

Ai =


0 1 0 0 0
0 0 0 0.15ajbk 58.8bk
0 0 0 1 0
0 0 0 −0.1bk −5.88ajbk

0.5cl 0 0 0 −1

 ,

Ji =


0 0 0 0 0
0 0 0 0.03ajbk 0
0 0 0 0 0
0 0 0 −0.02bk 0
0 0 0 0 0

 , Bi =


0

−0.3ajbk
0

0.2bk
0


where i = l + 2(k − 1) + 4(j − 1), j, k, l = 1, 2.

It should be noted that the methods in [21]-[24] cannot be
applied, since B1 6= B3 and there does not exist a matrix
S such that det (SBi) 6= 0 and SJi = 0, i = 1, 2, · · · , 8.
It is noted that the regular form in [30] can not be obtained
for the T-S fuzzy stochastic descriptor system (46) Therefore
the sliding mode control method in [30] can not be applied,
which validates the statement C2. Next, a classical integral
sliding mode control scheme and a PDC integral sliding mode
control scheme will be designed.

Classical integral sliding mode control scheme: By applying
Lemma 4 and Theorem 1 with ε = 0.1, the coefficient matrices
defining the sliding variable are obtained as

S =
[

0 −4.3638 0 3.5418 0
]
,

K1 =
[

245.0219 99.0627 10.7313 37.4414 302.9810
]
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Fig. 3. Time responses of the system (45) using the classical integral sliding
mode controller (48), classical nominal controller (51) and integral sliding
mode controller (54)
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Fig. 4. Time responses of the system (45) using the PDC integral sliding
mode controller (50), PDC nominal controller (52) and integral sliding mode
controller (54)

The sliding variable is given by

s(t) = − 4.3638x2(t) + 3.5418x4(t)

−
∫ t

0

8∑
i=1

hi(x1(τ))S(Ai +BiK1)x(τ)dτ
(47)

By Theorem 2, the classical integral sliding mode controller

can be obtained as follows

u(t) =− 2x2
2(t)x5(t) +K1x(t)− 2(

8∑
i=1

hi(x1(t))SBi)
−1s(t)

− 0.1
(
∑8
i=1 hi(x1(t))SBi)

T s(t)

‖(
∑8
i=1 hi(x1(t))SBi)T s(t)‖

(48)

PDC integral sliding mode control scheme: Take η = 1,
φi = −1000, i = 1, 2, · · · , 8. By Corollary 1, the coefficient
matrices for the PDC integral sliding mode controller are
obtained as

K31 =
[

58.4573 50.0312 5.1554 11.6981 326.4954
]
,

K32 =
[

57.9005 49.5838 5.0237 11.4594 323.5178
]
,

K33 =
[

65.5225 55.8304 5.7554 13.0006 343.8131
]
,

K34 =
[

64.9000 55.3832 5.6204 12.7576 340.7738
]
,

K35 =
[

96.1546 84.5041 9.4160 22.2747 548.4739
]
,

K36 =
[

94.8990 83.4823 9.1935 21.7344 541.3294
]
,

K37 =
[

103.2430 90.4962 9.9912 23.4546 554.8338
]
,

K38 =
[

102.7955 89.6102 9.8341 23.0596 546.9059
]
.

The sliding variable is calculated as

s(t) = − 4.3638x2(t) + 3.5418x4(t)

−
∫ t

0

8∑
i=1

hi(x1(τ))S(Ai +Bi

8∑
i=1

hi(x1(τ))K3i)x(τ)dτ

(49)

By (42), the PDC integral sliding mode controller can be
obtained as

u(t) = − 2x2
2(t)x5(t) +

8∑
i=1

hi(x1(t))K3ix(t)

− 2(

8∑
i=1

hi(x1(t))SBi)
−1s(t)

− 0.1
(
∑8
i=1 hi(x1(t))SBi)

T s(t)

‖(
∑8
i=1 hi(x1(t))SBi)T s(t)‖

(50)

Utilizing the classical integral sliding mode control scheme
(47)-(48) and the PDC integral sliding mode control scheme
(49)-(50), under the initial condition x(0) = [π6 0 0 0 0.25]T ,
the time responses of the resultant closed-loop system, and
sliding mode controller are shown in Fig. 3 and Fig. 4. It
shows that the resultant closed-loop system is asymptotically
mean square stable. It is noted that the simulation results by
the classical integral sliding mode control scheme and the PDC
integral sliding mode control scheme are similar, whereas, 8
matrix inequalities in Theorem 1 and 72 matrix inequalities
in Corollary 1 are needed to be checked to guarantee the
existence of sliding mode. Therefore, if the matrix inequalities
in Theorem 1 are solvable, the classical integral sliding mode
control scheme is more desirable from the numerical aspect.

The above simulations validate the fact that the results in
this paper can be applied to T-S fuzzy stochastic descriptor
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system that does not satisfy assumptions A1 and A2. Although
the result in this paper is proposed for the system (46), it can
be applied to the original system (45) in that the T-S fuzzy
stochastic descriptor system (46) is an exact representation of
the system (45) in the compact set Ω. The simulation results
show that the proposed sliding mode control schemes are also
applicable to the original system (45). The method proposed in
this paper uses the integral sliding mode control concept [42]
and thus it is possible to ensure the system initially starts close
to the sliding surface and remains within a bounded region of
the surface for all subsequent time.

In order to show the effect of the disturbance w(t) on the
system performance, the classical nominal controller

u(t) = −2x2
2(t)x5(t) +K1x(t) (51)

and the PDC nominal controller

u(t) = −2x2
2(t)x5(t) +

8∑
i=1

hi(x1(t))K3ix(t) (52)

are also used to control the T-S fuzzy stochastic descriptor
system (46). It is noted that when the disturbance w(t) is
absent, the nominal controllers (51) and (52) can stabilize the
T-S fuzzy stochastic descriptor system (46). The simulation
results are shown in Fig. 3 and Fig. 4. It is seen that in the
presence of the disturbance w(t), the nominal controllers (51)
and (52) can no longer stabilize the system (46). This means
that the input disturbance degrades the system performance.
Example 1 also shows that the proposed integral sliding mode
controllers exhibit much better performance than the nominal
controllers since the discontinuous term is added to reject the
bounded input disturbance.

It should be noted that although the sliding mode control
method in [27] can be generalized to control the T-S fuzzy
stochastic descriptor system, when the matched disturbance
w(t) cannot be expressed as parameter uncertainty, the sliding
mode control method [27] can not stabilize the T-S fuzzy
stochastic descriptor system (46), which coincides with state-
ment C3 in Subsection III-C. Infact, when the method in [27]
is derived for a T-S fuzzy stochastic descriptor system, the
sliding variable becomes

s(t) = SxEx(t)− SxEx(0) + Suu(t)− Suu(0)

− Sx
∫ t

0

(A(h)x(τ) +B(h)u(τ)) dτ

− Su
∫ t

0

(F (h)x(τ) +G(h)u(τ)) dτ

(53)

and the sliding mode controller is

du(t) =

(
F (h)x(t) +G(h)u(t)− η(t)S−1

u

s(t)

‖s(t)‖

)
dt (54)

η(t) = β ‖J(h)x(t)‖2
‖s(t)‖ + α + ‖SxB(h)‖ w̄, α > 0, β =

1
2λmax

(
STx Sx

)
.

With the parameters in Example 1, it can be calculated that
F1 = [466246.2973 118847.4115 813.1039 8110.1673

−1895.2390] , G1 = −2014.3961,
F2 = [466338.3969 118871.0948 813.4386 8112.7965

−1893.7248] , G2 = −2014.3766,

F3 = [411256.8052 104806.1379 696.6064 7032.0596
−1895.2377] , G3 = −1826.233,

F4 = [411353.0760 104830.8839 696.9483 7034.7605
−1893.7411] , G4 = −1826.2316,

F5 = [462626.9289 117925.0662 807.8164 8061.6496
−1895.2435] , G5 = −2001.3824,

F6 = [462719.8338 117948.9530 808.1522 8064.2913
−1893.7346] , G6 = −2001.3668,

F7 = [407976.5748 103970.2153 691.8141 6988.0922
−1895.2402] , G7 = −1814.4383, α = 0.1,

F8 = [408069.7028 103994.1591 692.1507 6990.7395
−1893.7303] , G8 = −1814.4232, Su = 0.0928,

Sx = [−33.8185 − 17.5846 − 0.1193 − 1.2028 − 168.6425]
By using the sliding mode control scheme (53) and (54),

the initial condition x(0) = [π6 0 0 0 0.25]T , u(0) = 0, the
time responses of the resultant closed-loop system and the
sliding mode controller are show in Fig. 3 and Fig. 4. This
shows that the sliding mode controller (54) cannot stabilize the
T-S fuzzy stochastic descriptor system (46), which validates
statement C3 in Subsection III-C. This means that the sliding
mode control method proposed in this manuscript has certain
advantages over existing methods [QGao].

Example 2: Consider the nonlinear stochastic descriptor sys-
tem described by the T-S fuzzy model (2) with the following
data

E =

[
1 0
0 0

]
,

A1 =

[
−1 1
0 a

]
, B1 =

[
0
1

]
, J1 =

[
0.5 −0.5
0 0

]
,

A2 =

[
b 0
−0.2 −1

]
, B2 =

[
2
1

]
, J2 =

[
−0.5 0.5

0 0

]
where a and b are tuning parameters. The membership func-
tions are h1(x1(t)) = 1+sin(x1(t))

2 , h1(x1(t)) = 1−sin(x1(t))
2

and the matched disturbance is w = 0.05e−t. For different
pairs (a, b) with a ∈ [−1, 3] and b ∈ [−1, 3], the solvability
of the coefficient matrix K1 using Theorem 1, coefficient
matrices K2i, Yi, i = 1, 2 using Theorem 3 and coefficient
matrices K3i, i = 1, 2 using Corollary 1 is verified. The
result shown in Fig. 5 which reveals that the Non-PDC integral
sliding mode control scheme is much less conservative than
the classical integral sliding mode control scheme and PDC
integral sliding mode control scheme.

When a = 0, b = 3, the descriptor system (E,A1) is not
impulse free. Although the sliding mode control method in
[27] can be generalized to a T-S fuzzy descriptor system, as
pointed out in statements C3 and C4 in Subsection III-C, the
method is invalid for this example since it is required that each
descriptor subsystem is impulse free and the unknown distur-
bance can be expressed by parameter uncertainty. However,
from Lemma 4, the parameter matrix S is computed as

S =
[

0.5 0.5
]

Furthermore, the matrix inequalities in (10) in Theorem 1 are
found to be infeasible. Nevertheless, using Theorem 3 with
η = 0.1 and φ1 = φ2 = −100, the following coefficient
matrices are obtained

K21 =
[
−6.1012 −4.7596

]
,
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K22 =
[
−15.9196 11.3776

]
Y1 =

[
7.5602 −0.2557
−1.7573 10.2554

]
, Y2 =

[
7.5625 −0.9032
−3.3748 19.2265

]
The Non-PDC integral sliding mode controller can be com-
puted as

u(t) =

2∑
i=1

hi(x1(t))K2i(

2∑
i=1

hi(x1(t))Yi)
−1x(t)

− 2(

2∑
i=1

hi(x1(t))SBi)
−1s(t)

− 0.1
(
∑2
i=1 hi(x1(t))SBi)

T s(t)

‖(
∑2
i=1 hi(x1(t))SBi)T s(t)‖

(55)

Using the Non-PDC integral sliding mode control scheme
(55) with the initial condition x(0) =

[
2 −3.8

]T
, the

time responses of the resulting closed-loop system and sliding
mode controller are shown in Fig. 6. They are asymptotically
mean square stable. Example 2 shows that among the proposed
integral sliding mode control schemes, the classical integral
sliding mode control scheme is the most conservative and the
Non-PDC integral sliding mode control scheme is the least
conservative. It also shows that when one of the subsystems
of the T-S fuzzy descriptor system is impulse free and the
unknown disturbace is matched, as stated in statements C3
and C4 in Subsection III-C, the sliding mode control method in
[27] cannot be generalized to the T-S fuzzy descriptor system,
but the method proposed in this paper can be used.
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Fig. 7. Time responses of the system (56) under the classical integral sliding
mode controller (57)

Example 3: Consider the T-S fuzzy model in the following
form

ẋ(t) =

2∑
i=1

hi (x(t)) (Aix(t) +Bi (u(t) + w(t))) (56)

where w(t) = 0.05 sin(x1(t)), the membership func-
tions are h1 (x1(t)) = 1

2 (1 + sin(x1(t))), h2 (x1(t)) =
1
2 (1− sin(x1(t))), and the coefficient matrices are given as
follows

A1 =

[
−1 1
0 0.2

]
, B1 =

[
0
1

]
,

A2 =

[
2 0
−0.2 −1

]
, B2 =

[
2
−1

]
It can be verified that the system (56) is unstable and the
method in [30] is not applicable since the pair

(
A1,

B1+B2

2

)
cannot be stabilised. This also verifies the statement C1 in
Subsection III-C. However, using the integral sliding mode
control schemes in this paper, S =

[
1 1

]
is selected

to guarantee the nonsingularity of S
∑2
i=1 hi (x(t))Bi. The

coefficient matrices in the sliding variable can be solved by
Theorems 1 and 3, Corollary 1. Since the classical integral
sliding mode control scheme is much easier to be implemented
than the Non-PDC integral sliding mode control scheme and
PDC integral sliding mode control scheme, only the classical
integral sliding mode control scheme is considered here. Using
Theorem 1 with ε = 1, it follows that

K1 =
[
−1.1678 −0.6487

]
The classical integral sliding mode controller is obtained as

u(t) = −1.1678x1(t)− 0.6487x2(t)− 0.1
s(t)

‖s(t)‖
(57)

Under the initial condition x(0) =
[

0.9 0.8
]T

, the time
responses of the resultant closed-loop system using the classi-
cal integral sliding mode controller are shown in Fig. 7. The
simulation results show that the resultant closed-loop system
is asymptotically mean square stable. Example 3 implies that
the proposed integral sliding mode control method does not
require the assumption that

(
A1,

B1+B2

2

)
and

(
A2,

B1+B2

2

)
are

stabilisable. This coincides with statement C1 in Subsection
III-C.
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V. CONCLUSION

This paper has utilized integral sliding mode techniques to
prescribe robust stability of T-S fuzzy stochastic descriptor
systems. Two restrictive assumptions previously employed in
the sliding mode control of stochastic and T-S fuzzy systems
have been removed by the proposed classical integral sliding
mode control scheme and the Non-PDC integral sliding mode
control scheme. In fact, the proposed sliding mode control
scheme can be generalized to the more general case as
explained in Remark 5. Finally, a few examples including
an inverted pendulum model were simulated to support the
theoretical results obtained in this paper.
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