
1

Body Joint guided 3D Deep Convolutional
Descriptors for Action Recognition

Congqi Cao, Yifan Zhang, Member, IEEE, Chunjie Zhang, Member, IEEE, and Hanqing Lu, Senior Member, IEEE

Abstract—Three dimensional convolutional neural networks
(3D CNNs) have been established as a powerful tool to simultane-
ously learn features from both spatial and temporal dimensions,
which is suitable to be applied to video-based action recognition.
In this work, we propose not to directly use the activations
of fully-connected layers of a 3D CNN as the video feature,
but to use selective convolutional layer activations to form a
discriminative descriptor for video. It pools the feature on the
convolutional layers under the guidance of body joint positions.
Two schemes of mapping body joints into convolutional feature
maps for pooling are discussed. The body joint positions can be
obtained from any off-the-shelf skeleton estimation algorithm.
The helpfulness of the body joint guided feature pooling with
inaccurate skeleton estimation is systematically evaluated. To
make it end-to-end and do not rely on any sophisticated body
joint detection algorithm, we further propose a two-stream
bilinear model which can learn the guidance from the body
joints and capture the spatio-temporal features simultaneously. In
this model, the body joint guided feature pooling is conveniently
formulated as a bilinear product operation. Experimental results
on three real-world datasets demonstrate the effectiveness of body
joint guided pooling which achieves promising performance.

Index Terms—body joints, convolutional networks, feature
pooling, two-stream bilinear model, action recognition.

I. INTRODUCTION

Recognizing the action performed in video is one of the
most popular research fields in computer vision. Different
from images which only contain spatial information, videos
are three dimensional (3D) spatio-temporal streams. A lot
of research focused on how to take both the appearance
information and the motion information into account for video-
based action recognition [1]–[6].

Much of the previous work on action recognition used
hand-crafted features such as HOG [7], HOF [8], STIP [9],
Dense Trajectories (DT) [10] and Improved Dense Trajectories
(IDT) [11]. DT has been shown to be an expressive video
representation for action recognition. By taking camera motion
into consideration, IDT improves the performance further.

Besides trajectories of dense points, human action can be
represented by the trajectories of body joints which are more
discriminative and compact. Human action consists of body
poses and interactions with the environment. The position of
body joints defines the appearance of pose, while the tem-
poral evolution of body joints defines the motion. Body joint

C. Cao, Y. Zhang (corresponding author) and H. Lu are with
the National Laboratory of Pattern Recognition, Institute of Au-
tomation, Chinese Academy of Sciences, Beijing 100190, China
(email: {congqi.cao,yfzhang,luhq}@nlpr.ia.ac.cn). C. Zhang is with
the School of Computer and Control Engineering, University of
Chinese Academy of Sciences (email: zhangcj@ucas.ac.cn).

Input video clip

Feature maps
Pooled activations

channel 1

channel N

Fig. 1. Illustration of body joint guided pooling in a 3D CNN. Different colors
of feature maps represent different channels. Each channel of the feature maps
is a 3D spatio-temporal cube. We pool the activations on 3D convolutional
feature maps according to the positions of body joints. By aggregating the
pooled activations of all the clips belonging to one video together, we obtain
a descriptor of the video.

coordinates can be obtained by skeleton estimation algorithms,
e.g. [12], [13]. Most of the existing skeleton-based action
recognition methods model the appearance and the temporal
dynamics of body joints with hand-crafted features, such as
the relative locations between body joints, the angles between
limbs and the angles between limbs and planes spanned by
body parts [14]. However, skeleton-based features are basically
local features comprised of coordinates of body joints and
their 2nd-order or high-order relations. Thus, they are not
quite suitable for modeling and distinguishing actions with
similar pose movement and human-object interactions, such
as “grab” and “deposit” [15]. In addition, they heavily rely
on the skeleton estimation algorithm. Inaccurate body joint
detection cannot be well dealt with.

CNNs have been proved to be effective in extracting local-
to-global features. Encouraged by the success of CNNs in
image classification, recently much effort is spent on applying
CNNs to video-based action recognition. There are mainly
two ways of applying CNNs to video data. One is using the
2D CNN architecture. Directly applying image-based models
to individual frames of videos can only characterize the
visual appearance. The two-stream CNN architecture [2] learns
motion information by using an additional 2D CNN which
takes the optical flow as input. The stacked optical flow frames
are treated as different channels. After convolutional operation,
the temporal dimension is collapsed completely. Therefore
the two-stream CNN is less effective in characterizing long-
range motion patterns among multiple frames. Furthermore,
the computational complexity of optical flow is high.

The other way of adapting CNNs to video is using 3D
CNNs with 3D convolution and 3D pooling layers [3], [5],

ar
X

iv
:1

70
4.

07
16

0v
2

 [
cs

.C
V

]
 2

5
A

pr
 2

01
7

2

Conv1a_1
64 po

ol
1 Conv2a_1

128 po
ol

2 Conv3a_1
256

Conv3b_1
256 po

ol
3 Conv4a_1

512
Conv4b_1

512 po
ol

4 Conv5a_1
512

Conv5b_1
(wo relu)

208

64ⅹ16ⅹ112ⅹ112 128ⅹ16ⅹ56ⅹ56 256ⅹ8ⅹ28ⅹ28 512ⅹ4ⅹ14ⅹ14 512ⅹ2ⅹ7ⅹ7

Conv1a_2
64 po

ol
1 Conv2a_2

128 po
ol

2 Conv3a_2
256

Conv3b_2
256 po

ol
3 Conv4a_2

512
Conv4b_2

512 po
ol

4 Conv5a_2
512

Conv5b_2
512

64ⅹ16ⅹ112ⅹ112 128ⅹ16ⅹ56ⅹ56 256ⅹ8ⅹ28ⅹ28 512ⅹ4ⅹ14ⅹ14 512ⅹ2ⅹ7ⅹ7

fc6
2048

fc7
2048 so

ftm
ax

Input Bilinear
pooling

attention stream

feature stream

sig
m

oi
d

256ⅹ8ⅹ28ⅹ28 512ⅹ4ⅹ14ⅹ14 208ⅹ2ⅹ7ⅹ7

512ⅹ2ⅹ7ⅹ7512ⅹ4ⅹ14ⅹ14256ⅹ8ⅹ28ⅹ28

Fig. 2. The block diagram of two-stream bilinear C3D. The attention stream is pre-trained to locate keypoints in 3D convolutional feature maps. It replaces
the ReLU operation after the last convolutional layer of C3D with sigmoid (’wo’ stands for ’without’). The feature stream inherits the convolutional structure
of the original C3D to extract spatio-temporal features. The numbers inside the convolution blobs represent the number of channels, while the numbers above
the blobs stands for the size of feature maps.

[16]. These layers take a volume as input and output a volume
which can preserve the spatial and temporal information of
the input. Both the spatial information and the temporal
information are abstracted layer by layer. Tran et al. [5]
found that the best architecture for 3D CNN is with small
3 × 3 × 3 convolution kernels in all layers. A convolutional
3D network named as C3D was designed to extract features
for videos. The features used in [5] were from fully-connected
layers of C3D which achieved state-of-the-art performance
on multiple video analysis tasks. However, the weakness of
fully-connected layers is the lack of spatio-temporal struc-
ture. Compared with fully-connected layers, 3D convolutional
layers preserve spatio-temporal grids. Different convolutional
layers provide bottom-up hierarchical semantic abstraction. If
used appropriately, convolutional activations can be turned into
powerful descriptors. In image-based computer vision tasks,
there have been explorations to utilize multiple convolutional
layers for segmentation [17] and classification [18]. It is worth
exploring how to utilize the spatio-temporal information in 3D
convolutional layers to obtain discriminative features which
combine different levels of abstraction.

In the preliminary version of our work [19], we have
proposed an efficient way of pooling activations on 3D feature
maps with the guidance of body joint positions to generate
video descriptors as illustrated in Figure 1. The splitted video
clips are fed into a 3D CNN for convolutional computation.
The annotated or estimated body joints in the video frames are
used to localize points in 3D feature maps. The activations
at each corresponding point of body joint are pooled from
every channel. After aggregating the pooled activations of
all the clips within the same video together, we obtain a
descriptor of the video which is called joints-pooled 3D deep
convolutional descriptor (JDD). When mapping points from
video into feature maps for pooling, existing work [20] used
ratio scaling, in which only the sizes of the network’s input
and output are considered. Different from this, we propose
a novel method to map points by taking kernel sizes, stride
values and padding sizes of CNN layers into account which
is more accurate than ratio scaling.

In this paper, we extend our previous work [19] as follows:

1) In [19], the body joint positions are obtained from either
manual annotation or an off-the-shelf skeleton estimation
algorithm. To make it do not rely on any sophisticated skeleton
estimation algorithm, we propose a two-stream bilinear C3D
model which can learn the guidance from the body joints
and capture the spatio-temporal features simultaneously in this
paper. 2) The body joint guided feature pooling is achieved
by sampling (i.e. directly taking out the activations at the
chosen positions corresponding to body joints) in [19]. In
this paper, the pooling process is formulated as a bilinear
product operation in the proposed two-stream bilinear C3D
model which is easy to be trained end to end. 3) We validate
the effectiveness and good generalization capability of the
two-stream bilinear C3D on three RGB datasets where not
all the body joints are available. 4) An advanced version of
aggregation method is introduced and analysed in this paper.
5) We systematically discuss the helpfulness of body joint
guided pooling with inaccurate noisy skeletons under different
accuracy rates.

The whole network of two-stream bilinear C3D is illustrated
in Figure 2. The numbers inside the convolution blobs repre-
sent the number of filters, while the numbers above the blobs
stands for the size of feature maps, in order of channel, length,
height and width. The first stream aims to predict keypoints
in 3D feature maps which is pre-trained with the supervision
of body joint positions. Since it functions as taking attention
on discriminative regions automatically, we name it as an
attention stream. The second feature stream aims to capture
spatio-temporal appearance and motion features which inherits
the convolutional layers of the original C3D. The two streams
are multiplied with bilinear product. It is end-to-end trainable
with class label.

The main contributions of our work include:

• We are the first to combine 3D CNNs and body joints
to improve action recognition by using a novel method
to map body joint positions in video frames to points in
feature maps for pooling.

• We propose a two-stream bilinear model which can learn
the guidance from body joints and capture the spatio-
temporal features simultaneously.

3

• We formulate the pooling process in the proposed two-
stream bilinear 3D CNN as a generalized bilinear product
operation, making the model end-to-end trainable.

II. RELATED WORK

Research in video-based action recognition is mainly driven
by progress in image classification, where those approaches
are adapted or extended to deal with image sequences. Fine-
grained recognition in images [21]–[24] highlights the impor-
tance of spatial alignment which can increase the robustness
toward image transforms. Absorbing from these thoughts, it
is intuitive to align human poses with body joints to promote
action recognition result.

There are two ways of extracting aligned features with
CNN. One way is sampling multiple sub-images from the
input image based on keypoints (such as the body parts of
birds) and using one CNN to extract features for each sub-
image [25]–[27]; encoding is employed to aggregate regional
features, which usually are fully-connected layer activations,
to image-level representation. Another option is only taking
the whole image as input and pool convolutional activations
with the guidance of keypoints on feature maps [18], [27]–
[29]. Since the latter method only needs to run a CNN once
for an image, it reduces the computational cost compared with
the former one which needs to run CNN forward computation
multiple times.

To extract representation of video for action recognition, the
pose-based CNN descriptor P-CNN [30] cropped RGB and
optical flow images into multiple part patches (e.g. right hand
and left hand) as the inputs of a two-stream CNN. This belongs
to the first alignment method mentioned above. Different from
this, we take advantage of the abundant information in 3D
convolutional feature maps by body joint guided pooling. Our
approach is more efficient in computation than P-CNN that
needed to compute not only body joint positions but also
optical flow images and uses multiple inputs with two deep 2D
CNNs. Furthermore, we do not need to compute activations
of fully-connected layers.

Trajectory-pooled deep-convolutional descriptors (TDD)
[20] falls within the second alignment scheme. Wang et
al. utilized two-stream CNN to learn convolutional feature
maps, and conduct trajectory-constrained pooling to aggregate
these convolutional features into video descriptors. The main
differences between TDD and JDD are: Firstly, TDD used
2D CNNs, while we adopt 3D CNNs. 3D CNNs are more
suitable for spatio-temporal feature learning compared with 2D
CNNs owning to 3D convolution and 3D pooling operations.
Secondly, TDD used dense trajectory points to pool the feature
maps, while we use body joints. For human action recognition,
body joints are more discriminative and compact compared
with dense trajectory points. Thirdly, TDD used ratio scaling
to map trajectory points into feature maps. We compute the
corresponding points of body joints by taking the kernel sizes,
strides and paddings of CNN layers into consideration, which
is more accurate. In addition, we do not need to compute
optical flow while TDD needed.

Without directly using the annotation of keypoints, Liu et al.
[18] adopted to pool one convolutional layer with the guidance

of the successive convolutional layer for fine-grained image
recognition. Bilinear CNN [31] can be seen as a generalization
of cross-convolutional-layer pooling [18] which multiplied
the outputs of two separate CNNs using outer product at
each location and pooled to obtain an image descriptor. By
using two CNNs, the gradient computation of bilinear CNN
is simplified for domain specific fine-tuning compared with
cross-convolutional-layer pooling. [23] and [24] took an extra
step to train one of the two CNNs in bilinear model explicitly
with part annotations for keypoints prediction. All these works
aim at fine-grained image classification.

It should be noted that the recently popular concept of
soft attention based model [32], [33] can also fit into the
framework of keypoint pooling which used Recurrent Neural
Networks (RNN) to learn attention regions of the video frames
sequentially. In these work, one group of pooling weights for
the current frame was learned at each time. While we utilize
3D CNN to learn multiple groups of pooling weights which
correspond to multiple spatio-temporal attention regions for
video clip as an extension of our previous work in this paper.

III. JOINTS-POOLED 3D DEEP CONVOLUTIONAL
DESCRIPTORS

In this section, we give an introduction to the proposed
joints-pooled 3D deep convolutional descriptors (JDD). Firstly,
we review the 3D architecture proposed in [5]. Then we
introduce two schemes of mapping body joints to points in
feature maps for pooling. Finally we describe two methods of
feature aggregation.

A. 3D Convolutional Networks Revisited

We use the C3D model proposed by Tran et al. [5] which
is trained on Sports-1M dataset to compute 3D convolutional
feature maps.

Using shorthand notation, the full architecture of C3D is
conv1a(64)−pool1− conv2a(128)−pool2− conv3a(256)−
conv3b(256) − pool3 − conv4a(512) − conv4b(512) −
pool4− conv5a(512)− conv5b(512)− pool5− fc6(4096)−
fc7(4096) − softmax, where the number in parenthesis
indicates the number of convolutional filters. There is a ReLU
layer after each convolutional layer which is not listed. All 3D
convolution kernels are 3× 3× 3 (in the manner of d×k×k,
where d is temporal depth and k is spatial size) with stride 1
and padding 1 in both spatial and temporal dimensions. All
pooling kernels are 2×2×2, except for pool1 which is 1×2×2
with the intention of not to merge the temporal signal too
early. C3D takes a clip of 16 frames as input. It resizes the
input frames to 171× 128px (width × height), then crops to
112×112. More details and explanations can be found in [5].

B. Mapping Schemes

For JDD, we compare two schemes of mapping body joints
to points in 3D convolutional feature maps. One straightfor-
ward way is using the ratio of the network’s output to its input
in spatial and temporal dimensions to scale the body joint
coordinates from the original video frame into feature maps
as shown in Equation 1, which is named as Ratio Scaling.

4

(xic, y
i
c, t

i
c) = ((rix · xv), (riy · yv), (rit · tv)) (1)

where () is the rounding operation and (xic, y
i
c, t

i
c) is the point

coordinate in the ith 3D convolutional feature maps corre-
sponding to (xv, yv, tv) which is the body joint coordinate in
the original video clip. (rix, r

i
y, r

i
t) is the size ratio of the ith

convolutional feature maps to the video clip in spatial and
temporal dimensions.

A more precise way to compute the accurate coordinate of
the point corresponding to body joint, is taking the kernel size,
stride and padding of each layer into account. We call it as
Coordinate Mapping.

The mapping relationship of points can be computed layer
by layer. Let pi be a point in the ith layer. (xi, yi, ti) is the
coordinate of pi. Given pi, the corresponding point pi+1 can
be computed by mapping pi to the (i+ 1)th layer.

For the convolutional layers and pooling layers, the coor-
dinate mapping from the ith layer to the (i + 1)th layer is
formulated as follow:

xi+1 =
1

sxi
(xi + paddingxi −

kxi − 1

2
) (2)

where sxi , k
x
i , padding

x
i are the x-axis component of stride,

kernel size and padding of the ith layer respectively. The
equation also applies to y and t dimensions. Similar to
Equation 1, the coordinate in the left of equals sign should
be the value after rounding. For clarity, we omit the symbol
of rounding in the equation.

For ReLU layers, since the operations do not change the
size of the feature maps, the coordinate mapping relationship
is unchanged between layers, which is formulated as follow:

(xi+1, yi+1, ti+1) = (xi, yi, ti) (3)

We need to take all the preceding layers into consideration
to compute the coordinate mapping relationship between fea-
ture maps and video clip. In C3D, all the convolutional layers
use 3×3×3 kernels sliding in spatial and temporal dimensions
with stride 1 and padding 1. The strides of pooling layers are
2 in both spatial and temporal dimensions and there is no
padding when pooling. The kernel sizes of pooling layers are
2×2×2 except for pool1 which uses 1×2×2 kernels without
merging the signal in temporal dimension. After bringing the
values of C3D kernel sizes, strides and paddings into Equation
2 and Equation 3 recurrently, we can obtain the relationship
between point coordinates in the ith convolutional feature
maps and body joint positions in the input video clip, which
is formulated as follows:

(xic, y
i
c) =

1

2i−1
· (xv −

2i−1 − 1

2
, yv −

2i−1 − 1

2
) (4)

tic =
1

2i−2
(tv −

2i−2 − 1

2
) (5)

The coordinates in the left of equals sign should be the
values after rounding. We omit the operation of rounding in
the equations for clarity. The expression in temporal dimension
is a little different from that in spatial dimension because the

input is downsampled in the spatial dimension one more time
than that in the temporal dimension.

C. Aggregation Methods
To recognize the action performed in a video sequence,

since the video is splitted into clips as the input of C3D, we
need to aggregate the extracted features of clips over time to
form a video descriptor for classification.

By employing body joints in video clips to localize points
in 3D feature maps, we can determine the positions to pool.
The pooled representation corresponding to each body joint
in a frame of a video clip is a C dimensional feature vector,
where C is the number of feature map channels. We use f i,tk

to represent the C dimensional feature vector pooled with the
guidance of the ith body joint at the tth frame of the kth clip.

There are two ways to aggregate the pooled feature vec-
tors in all the clips within a video sequence to a video
descriptor. One way is to follow the setting of C3D [5].
It is straightforward to concatenate all the pooled feature
vectors belonging to one clip as a representation of the
clip. It is a C × N × L dimensional feature formulated as
fk = [f1,1k , f2,1k , ..., fN,1

k , f1,2k , f2,2k , ..., fN,2
k , ..., fN,L

k], where
N is the number of body joints in each frame and L is
the length of the video clip. Then average pooling and L2
normalization are used to combine K clip representations
{f1, f2, ..., fK} into a video descriptor, where K is the number
of clips within the video sequence. The dimension of JDD
aggregated in this way is C × N × L. This is the default
aggregation method for JDD. Unless otherwise specified, we
use this aggregation method for a fair comparison with the
original C3D features.

The other way of aggregation is to concatenate the pooled
feature vectors corresponding to the body joints in one frame
as a C × N dimensional representation which is formulated
as f tk = [f1,tk , f2,tk , ..., fN,t

k]. Then one clip is characterized
by L representations {f1k , f2k , ..., fLk } within the same clip.
Max+min pooling is used to aggregate these representations
into a clip descriptor, where max+min pooling means selecting
the maximum value and the minimum value of each feature
dimension. The whole video contains K clips in total. Finally
max+min pooling and L2 normalization are used to combine
the K clip descriptors into a video descriptor. In this way,
the dimension of JDD is 4×C ×N which is independent of
the length of the video clip since the activations are pooled
along time not only between clips but also within clip. The
dimension of JDD is quadruple that of f tk because max+min
pooling is used twice. We choose max+min pooling for its
good performance compared with average pooling and max
pooling which has been verified in [30]. This is the advanced
version of aggregation for JDD.

In addition, the JDDs obtained from different convolutional
layers can be fused together to improve the ability of rep-
resentation due to their complementarity. JDDs can also be
combined with other features or models.

IV. TWO-STREAM BILINEAR C3D
In order to get rid of the dependence of complicated skeleton

estimation algorithms, a framework consisting of two C3D

5

streams multiplied with bilinear product is designed to take
attention on keypoints, extract features and generate the pooled
descriptors for video clips jointly which can be trained end
to end using class label. In this section, firstly, we explain
how to compute JDD with bilinear product. Then, we detail
the network we apply to automatically predict spatio-temporal
keypoints in 3D convolutional feature maps with the guidance
of body joints. Finally, we introduce the forward and backward
computations of a general bilinear formulation used in our
model.

A. JDD by Bilinear Product

The original body joint guided feature pooling in JDD
is realized by selecting the activations at the corresponding
points of body joints on convolutional feature maps, which
is equivalent to assigning hard weights to the activations.
Specifically, the activations at the corresponding points of body
joints are assigned with weight 1, while the activations not
at the corresponding points of body joints are assigned with
weight 0.

Given a video clip, we can generate a heat map with the
same spatio-temporal size of the convolutional feature maps
to be pooled for each body joint at each frame. We represent
the size with l×h×w, in order of length, height and width. In
the heat map, the value at the corresponding point of the body
joint is coded as 1, while the others are coded as 0. Then the
process of pooling on one feature map guided by the heat map
of one body joint can be formulated as a pixel-wise product
between the 3D feature map and the 3D heat map, followed by
a summation over all the pixels. If we flatten all the activations
on the 3D feature map and the activations on the 3D heat
map into a vector respectively, the above operations can be
considered as an inner product between the two vectors.

For JDD, there are M channels of heat maps in total, where
M = N×L with N representing the number of body joints in
each frame and L standing for the length of video clip. With
heat maps, the computation of JDD can be achieved through
bilinear product. Firstly, resize the heat maps with the size of
M × l×h×w to a 2D matrix A with M rows and l×h×w
columns. Similarly, resize the C × l × h × w feature maps
derived from the original C3D to a 2D matrix B with C rows
and l × h × w columns. Then the bilinear product can be
formulated as:

P = ABT (6)

where BT is the transposition of B. P is a matrix with the
size of M × C.

After concatenating all the values in the product matrix
P as a long vector, the identical feature to JDD for video
clip is obtained. The feature can also be formulated as L
representations with N×C dimensions as the same with JDD.

Note that the heat maps can be viewed as M groups of
weights. With heat maps, it is convenient to generalize hard
pooling to soft pooling by assigning convolutional activations
soft weights within the range of [0,1]. Not only JDD, any key-
points pooling or attention pooling methods can be computed
with bilinear product as described above.

C3D
conv1— conv5
(without relu5b)

sigm
oid cross entropy loss

ground-truth keypoint heat maps

predicted keypoint heat maps

Fig. 3. The attention model to predict spatial-temporal keypoints in 3D
convolutional feature maps. It is pre-trained with the supervision of body
joint positions. A 3D CNN is used to regress the ground-truth heat maps of
keypoints corresponding to the annotated body joints.

B. 3D attention model

For body joint guided pooling, we can use manually anno-
tated or automatically detected body joints. However, not all
the datasets and practical situations can offer annotated body
joints, and the computation complexity of skeleton estimation
algorithms are high in general. Actually, we only need to
locate the keypoints in the downsampled feature maps instead
of to estimate the precise body joint positions in the original
video frames. Therefore, we propose to use a 3D CNN to take
attention on discriminative parts in feature maps automatically
which is pre-trained with the guidance of body joint positions.

A C3D without the ReLU layer after conv5b and fully-
connected layers is used to regress the heat maps of the
corresponding points described in Section IV-A, separately for
each body joint in an input video clip. We use a pixel-wise
sigmoid cross entropy loss for training:

` =
1

M

M∑
m=1

l∑
k=1

h∑
j=1

w∑
i=1

(pmijk log p̂
m
ijk

+(1− pmijk) log(1− p̂mijk)) (7)

where pmijk is the ground-truth heat map value of the mth
channel at location (i, j, k) and p̂mijk is the sigmoid value of
conv5b’s output at location (i, j, k) of the mth channel. i, j, k
are the index in width, height, length respectively.

The outputs of the 3D attention model are soft weight
heat maps corresponding to each body joint. By using the
heat maps to pool the original C3D’s convolutional feature
maps with bilinear product, we can obtain the descriptors
of video clips independent of skeleton estimation algorithms.
This architecture is indeed a two-stream bilinear C3D model.

C. End-to-End training of two-stream bilinear C3D

We propose a two-stream bilinear C3D model to learn
the guidance from the body joints and capture the spatio-
temporal features automatically. The two streams (i.e. the
attention stream which inherits the parameters of the pre-
trained 3D attention model and the feature stream which
inherits the original C3D’s convolutional layers) are combined
with bilinear product. The whole network can be trained end-
to-end with class label. In this section, we will introduce

6

the forward and backward computations of a general bilinear
product used in our model.

The forward computation of a general form of bilinear
product is:

P = AWBT (8)

where P ∈ RM×C ,A ∈ RM×K1 ,W ∈ RK1×K2 ,B ∈
RC×K2 . W is a matrix of parameters to be learned by the
network. Compared with Equation 6, A and B need not to have
the same number of columns in this formulation. Furthermore,
with W , more statistical characteristics between A and B can
be learned.

We use the general form of bilinear product in our pro-
posed two-stream bilinear C3D model. Figure 2 illustrates the
architecture of the network which includes attention, feature
extraction, keypoints pooling and classification in a unified
framework.

The whole network is end-to-end trainable with softmax
loss supervised by class label. The gradients of the bilinear
layer can be computed with back propagation as follow:

∂`

∂A
=

∂`

∂P
BWT

∂`

∂B
= (

∂`

∂P
)
T

AW
∂`

∂W
= AT ∂`

∂P
B (9)

where ∂`
∂A is the back propagated gradient of the loss function

` wrto. A.

V. EXPERIMENTS

In this section, we firstly make a brief introduction to the
datasets and the experimental settings we use. Then, we com-
pare the two mapping schemes with exploratory experiments.
We also analyse the performance of JDD with feature fusion.
Next, we test the robustness of JDD with estimated body joints
as well as by adding random white Gaussian noise to the
ground-truth body joint positions. Besides these, the experi-
mental results of two-stream bilinear C3D and other pooling
models are reported. Finally, we evaluate JDD and two-stream
bilinear C3D on public datasets and give a comparison with
the state-of-the-art results.

A. Datasets

We evaluate our method on three public action datasets:
subJHMDB [34], Penn Action [35] and UCF101 dataset [36].
The scales of the three datasets increase successively. These
datasets all cover actions performed indoor and outdoor. The
first two datasets are provided with annotated body joints,
while the last one is not.

subJHMDB dataset is a dataset with full body inside
the frame, containing 316 videos with 12 action categories.
subJHMDB provides action labels for each video and the
annotation of 15 body joints for each frame. We use the
3-fold cross validation setting provided by the dataset for

experiments. The dataset is collected from movies and Internet.
The lengths of frames in videos range from 16 to 40.

Penn Action dataset contains 2326 video sequences of
15 action classes. 13 body joints are annotated for each
frame, even though there are videos in which not all the
body joints are inside the frame or visible. We use the 50/50
trainning/testing split provided by the dataset to evaluate the
results on it. For other dataset which are without annotated
body joints or too small to train an attention model, we split
Penn dataset to 90/10 training/testing split randomly to train an
attention model used for transferring. The videos are obtained
from various online video repositories. The lengths of videos
are from 18 to 663 frames.

UCF101 dataset consists of 13,320 videos belonging to 101
human action categories. There is no annotation of body joints
and it is time-consuming to estimate the positions of body
joints for this relatively large dataset. The attention model
trained on Penn Action dataset is transferred to it for keypoint
pooling. We use the three split setting provided with this
dataset. The video lengths are from 29 to 1776 frames.

B. Implementation details

We split the videos into clips as the input of 3D CNN
models. The videos of Penn Action and UCF101 datasets are
splitted into 16-frame clips with 8-frame overlapping between
two consecutive clips. For subJHMDB, due to its short length
(34 frames in average), we sample the first, the middle and the
last 16 frames of each video to generate three clips, where the
consecutive two clips may have several frames overlapped.

When extracting JDD, each clip is input to C3D. We pool
the activations of a particular 3D convolutional layer based
on body joint positions. The pooled activations of all the clips
belonging to one video are aggregated to be a descriptor of the
video based on the methods introduced in Section III-C. Linear
SVM [37] is used to classify the video descriptors. Since
subJHMDB dataset and Penn Action dataset are provided with
annotated body joints, comparison between JDDs based on
the ground truth and estimated body joints can be made on
these datasets. The skeleton estimation algorithm [38] based
on RGB images is used to predict the positions of body joints.
The computational complexity of [38] is O(L × T 2) with L
locations and T mixture component types for each body part.
The runtime is approximately 10 seconds for 15 body joints
without GPU acceleration on Intel i7-3770 CPU @3.4GHz.
Note that we do not finetune the original C3D for feature
extraction on subJHMDB and Penn Action datasets.

As for two-stream bilinear C3D, the attention stream is
pre-trained with the body joints of Penn Action dataset. And
the whole network is finetuned with class label on Penn
Action dataset. To test the generalization capability of the 3D
attention model trained on Penn dataset, the attention model is
transferred to subJHMDB and UCF101 datasets for keypoints
prediction and bilinear pooling.

C. Analysis of JDD and baselines

The body joint coordinates and C3D features are used as
baselines. We compare JDD with these features and evaluate

7

TABLE I
RECOGNITION ACCURACY OF BASELINES AND JDDS WITH DIFFERENT CONFIGURATIONS ON SUBJHMDB DATASET.

Concatenate
all the activations

JDD
Ratio Scaling
(1× 1× 1)

JDD
Coordinate Mapping

(1× 1× 1)

JDD
Ratio Scaling
(3× 3× 3)

JDD
Coordinate Mapping

(3× 3× 3)
joint coordinates 0.5480 - - - -

fc7 0.6892 - - - -
fc6 0.6996 - - - -

conv5b 0.6713 0.7724 0.8186 0.7843 0.8007
conv5a 0.5952 0.7296 0.7563 0.7273 0.7343
conv4b 0.5057 0.7349 0.7251 0.7507 0.7773
conv3b 0.3943 0.6696 0.6419 0.6730 0.6733

JDD with different pooling settings. The results on subJHMDB
dataset are listed in Table I. We adjust the parameters of linear
SVM for each kind of feature by cross validation.

The recognition accuracies of using body joint coordinates
as feature and C3D features are listed in the first column of
Table I. We can see that directly using the coordinates of
body joints as feature performs not well. With the increase of
layers, the C3D features, which are obtained by concatenating
all the activations of a specific layer as a long vector, are
more discriminative since they achieve better results. This
implicitly indicates that deep architectures learn multiple levels
of abstraction layer by layer. The recognition accuracy of
fc7 is a little inferior to that of fc6. It is probably because
we do not finetune the original C3D on subJHMDB dataset
that the second fully-connected layer is more suitable for the
classification of the pre-trained dataset.

For JDD, we show the experiments on pooling at different
3D convolutional layers with different body joint mapping
schemes. We also test JDD with pooling one activation at the
corresponding point in feature maps and pooling a 3× 3× 3
cube around the corresponding point, where corresponding
point refers to the point in feature maps corresponding to body
joint in the original video frame. From Table I, we can see
that, compared with C3D features, our proposed JDDs have
superior performance which demonstrates the effectiveness
of body joint guided pooling. Generally, JDDs pooled from
the higher layers encapsulate more discriminative information
for recognition. Pooling a cube around the corresponding
points is usually better than pooling one activation because
the former takes more surrounding information into account,
except for conv5b and conv5a. It is probably because the
spatial and temporal size of the feature maps in these layers
is small, thus a cube around the corresponding point encloses
too much background information which impairs the perfor-
mance. At shallow layers, JDDs with Ratio Scaling and JDDs
with Coordinate Mapping are close in performance. As the
layer goes deeper, the performance of JDDs with Coordinate
Mapping is much better than that with Ratio Scaling. It is
probably because the difference between the coordinates of
corresponding points obtained by the two mapping schemes
becomes more significant on the deeper layer. The best result
is obtained by JDD of conv5b with Coordinate Mapping. For
other layers, the performance of JDDs obtained by pooling a
cube around the corresponding point with Coordinate Mapping
is also better than that with Ratio Scaling. This verifies that

TABLE II
RECOGNITION ACCURACY OF FUSING JDDS FROM MULTIPLE LAYERS

TOGETHER ON SUBJHMDB DATASET.

Fusion Layers Accuracy
JDD (conv5b+fc6) 0.825

JDD (conv5b+conv4b) 0.833
JDD (conv5b+conv3b) 0.830

Coordinate Mapping is more appropriate than Scaling Ratio
for computing the coordinates of corresponding points. We
use Coordinate Mapping and 1 × 1 × 1 pooling for conv5b,
3× 3× 3 pooling for other layers in the rest experiments.

Additionally, we try to fuse JDDs from different convolu-
tional layers together to see if they can compensate each other.
Table II represents the results of different combinations using
late fusion with the scores of SVM on subJHMDB. Fusing
JDDs of different layers indeed improves the recognition
results, which indicates that the features are complementary.
The combination of JDDs from conv5b and conv4b improves
the performance mostly.

D. Robustness analysis of JDD

To evaluate the influence of body joint detection’s precision
to JDD, we generate JDD based on the estimated body joints
computed by [38]. For subJHMDB dataset, the per joint L1
distance error between the ground-truth body joint positions
and the estimated body joint positions is (22.93, 17.57) pixels
in width and height. The average ratio of L1 distance error to
frame size is (0.072, 0.073). The accuracies of JDD based on
ground truth and estimated body joints are listed in Table III.
The drop of accuracy is also reported. We compare JDD with
P-CNN [30], Pose [34] and HLPF [30]. P-CNN is a pose-
based CNN descriptor which used positions of body joints
to crop RGB and optical flow images into patches. These
patches are used as multiple inputs to feed into two 2D CNNs.
The activations of fully-connected layers and their temporal
differences were aggregated with max+min pooling to describe
the video. Pose and HLPF are hand-crafted high-level pose
features. They share the same idea to design features: The
distances and inner angles between the normalized body joint
positions were used as static features; dynamic features were
obtained from trajectories of body joints; temporal differences
of some static features were also combined. Compared with
Pose, HLPF used head instead of torso as the center to
compute relative positions; HLPF also converted angles from

8

TABLE III
IMPACT OF ESTIMATED BODY JOINTS VERSUS GROUND-TRUTH BODY
JOINTS FOR JDD, P-CNN AND TWO HIGH-LEVEL POSE FEATURES ON

SUBJHMDB DATASET.

Method GT Esti Diff
JDD (conv5b) 0.819 0.777 0.042
P-CNN [30] 0.725 0.668 0.057

Pose [34] 0.751 0.541 0.210
HLPF [30] 0.782 0.511 0.271

degrees to radians and L2 normalized the features. In [34], the
authors verified that the high-level pose features outperformed
HOG, HOF, MBH and DT for action recognition.

From Table III, we can see that JDD outperforms competing
methods significantly on subJHMDB dataset. The existing
pose-based deep convolutional descriptors have not take full
advantage of body joints. The high-level pose features suffer
from severe performance degradation when the body joint
positions are inaccurate. Note that we only use the JDD
pooled from conv5b and employ simple average pooling
between clips. JDD achieves the best performance not only
with ground-truth body joints, but also with estimated body
joints, exceeding other methods in the order of 10%. And
the drop of accuracy for JDD is the smallest among all the
descriptors which demonstrates that JDD is pretty robust to
errors in pose estimation.

The superior performance of JDD compared with P-CNN
which additionally used optical flow images as input demon-
strates that we do not need to crop the images into multiple
patches to advance accuracy as usual. The information in
feature maps obtained by taking one image or video clip
as input is abundant. We can take good advantage of it by
keypoint pooling.

We further evaluate the robustness of JDD by adding white
Gaussian noise to the ground-truth body joint positions in all
the frames of subJHMDB dataset and Penn Action dataset.
The noise has zero mean and the standard deviation (σx, σy)
is proportional to the size of frame:

(σx, σy) = α× (W,H) (10)

where α is a coefficient indicating the ratio of noise intensity
to the frame size.

We plot the accuracies of JDD from conv5b under different
degrees of noise in Figure 4. The magenta dashed line repre-
sents the accuracy of C3D conv5b which concatenates all the
activations on conv5b without pooling. The accuracy of JDD
conv5b is higher than C3D con5b until the coefficient α is
bigger than 0.3. Take the video frames with 320× 240px for
example, a coefficient with 0.3 means that the standard devia-
tion of noise is (96, 72) in pixel, which is a considerably large
noise added to body joint positions. The experimental results
demonstrate that JDD is effective in extracting discriminative
features while robust to noise.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

α

ac
cu

ra
cy

(a) subJHMDB dataset

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.7

0.75

0.8

0.85

0.9

0.95

α

ac
cu

ra
cy

(b) Penn Action dataset

Fig. 4. The sensitivity of JDD from conv5b to the noise added to the body
joint positions. The coefficient α of x axis indicates the ratio of noise intensity
to frame size. The magenta dashed line plots the accuracy of C3D conv5b
as a baseline.

E. Analysis of two-stream bilinear C3D and other pooling
models

In our proposed two-stream bilinear C3D model, we pool
the spatio-temporal convolutional feature maps with the 3D
heat maps predicted by the attention stream which is pre-
trained with the guidance of body joint positions. We make
a comparison of the prosed model with existing pooling
models in this section. The results of C3D original features,
variations of cross-convolutional-layer pooling, JDD and two-
stream bilinear pooling on Penn Action dataset are listed in
Table IV. The symbol “×” means bilinear product.

Cross-convolutional-layer pooling was proposed by [18] for
fine-grained image classification. It pooled one convolutional
layer with the guidance of the successive layer. The com-
putation of pooling could be realized by bilinear product as
described in Section IV-A. The idea of cross-convolutional-
layer pooling can apply to any two convolutional layers. If the
last convolutional layer is multiplied by itself, it is a special
case of the bilinear CNN model [31] with the configuration
of using two identical network architectures. We extend cross-
convolutional-layer pooling to any two 3D convolutional layers
as baselines.

For JDD, we use the algorithm in [38] to estimate the posi-
tions of body joints in Penn Action dataset without finetuning.
The number of body joints defined by the annotation of Penn
Action dataset is 13, which is not equal to 15 defined with the
skeleton estimation algorithm. The latter contains two more
body joints which are “neck” and “belly” than the former. This
is why the dimension of JDD with the estimated body joints is
not equal to that with the ground-truth body joints as listed in
Table IV. The per joint L1 distance error between the ground-
truth body joint positions and the corresponding estimated
positions is (68.52, 40.67) pixels in width and height. The
average ratio of L1 distance error to frame size is (0.145,
0.131).

For two-stream bilinear pooling, we pre-train the 3D at-
tention stream as introduced in Section IV-B. The ground-
truth positions of keypoints in heat maps is computed with
Coordinate Mapping for its good performance. When training
the attention model, we use the parameters of C3D convo-
lutional layers as initialization. The training is stopped after
10000 iterations with mini-batches of 10 and learning rate of
10−7. For finetuning the two-stream bilinear C3D with class

9

TABLE IV
RECOGNITION ACCURACY OF C3D [5], VARIATIONS OF CROSS-CONVOLUTIONAL-LAYER POOLING [18] [31], JDD, BILINEAR POOLING WITH 3D

ATTENTION MODEL AND JOINTLY FINETUNED TWO-STREAM BILINEAR C3D ON PENN ACTION DATASET.* MEANS THE ADVANCED VERSION OF
AGGREGATION BY USING MAX+MIN POOLING IN TEMPORAL DIMENSION.

Penn Action C3D
conv5b

C3D
fc6 [5]

conv4b×
conv5b

conv5a×
conv5b [18]

conv5b×
conv5b [31]

JDD conv5b
estimated joints

JDD conv5b
ground truth

Heat map×
conv5b

Heat map×
conv5b *

dimension 50176 4096 262144 262144 262144 122880 106496 106496 26624
if finetuned
deep model

No 0.851 0.860 0.881 0.888 0.878 0.874 0.943 0.917 0.951
Yes 0.895 0.897 0.915 0.919 0.910 0.908 0.958 0.926 0.953

TABLE V
RECOGNITION ACCURACY OF C3D [5], VARIATIONS OF CROSS-CONVOLUTIONAL-LAYER POOLING [18] [31], JDD AND BILINEAR POOLING WITH

TRANSFERRED ATTENTION MODEL ON SUBJHMDB DATASET. * MEANS THE ADVANCED VERSION OF AGGREGATION.

subJHMDB C3D
conv5b

C3D
fc6 [5]

conv5a×
conv5b [18]

conv5b×
conv5b [31]

JDD conv5b
estimated joints

JDD conv5b
ground truth

Heat map×
conv5b

Heat map×
conv5b *

dimension 50176 4096 262144 262144 122880 122880 106496 26624
accuracy (not finetuned) 0.670 0.689 0.742 0.775 0.777 0.819 0.788 0.797

TABLE VI
RECOGNITION ACCURACY OF C3D [5], THE SPATIAL NET OF TWO-STREAM CNN [2], TDD [20], AND BILINEAR POOLING WITH TRANSFERRED
ATTENTION MODEL ON UCF101 DATASET. WE COMPARE BETWEEN THE MODELS USING RGB IMAGES AS INPUT FOR FAIRNESS. * MEANS THE

ADVANCED VERSION OF AGGREGATION.

UCF101 C3D
conv5b

C3D
fc6 [5] Spatial net [2] TDD FV [20]

Spatial conv4
TDD FV [20]
Spatial conv5

TDD FV [20]
Spatial conv4+conv5

Heat map×
conv5b

Heat map×
conv5b *

dimension 50176 4096 4096 32768 32768 65536 106496 26624
if finetuned no no yes yes yes yes no no

accuracy 0.811 0.815 0.730 0.819 0.809 0.828 0.827 0.847

label, the mini-batch is set to 5. We firstly using the learning
rate of 10−4 to finetune the fully-connected layers with 5000
iterations, then we finetune the whole network with learning
rate of 10−6. The learning rate is divided by 10 three times
respectively after 10000, 20000, 20000 iterations.

As shown in Table IV, the highest accuracy is obtained by
JDD based on ground-truth body joints. The result of JDD with
estimated joints could be further improved with more precise
predictions. Excluding JDD based on annotated joints, pooling
with heat maps regressed by 3D attention model achieves the
best classification result. With jointly finetuning the whole
network of two-stream bilinear C3D supervised by class
label, the performance is further improved. By replacing the
operations of intra-clip concatenation and inter-clip average
pooling both with max+min pooling in temporal dimension
for feature aggregation, the accuracy of the jointly finetuned
two-stream bilinear C3D is increased by 3%.

For subJHMDB which is too small to train a deep network
and UCF101 which is not annotated with ground-truth body
joints, the 3D attention model trained on Penn Action dataset
after 10000 iterations with 90/10 training/testing split and
10−6 learning rate is transferred to them. The recognition
results of pooling models on subJHMDB and Penn Action
dataset are listed in Table V and Table VI respectively. We
do not enumerate the results of P-CNN which also belongs
to pooling methods in this section since they have already
been analysed in Section V-D. The feature dimension of P-
CNN is 163840 which is higher than that of JDD and two-
stream bilinear C3D. The estimated body joints of subJHMDB

dataset predicted with algorithm [38] is provided by the
dataset. For large-scale dataset UCF101, the computation cost
of skeleton estimation algorithm as analysed in Section V-B
is too high (approximately 10 seconds for 1 frame). With
the 3D architecture we use, it is able to process at 313 fps
using a single K40 Tesla GPU. It is unsuitable to apply cross-
convolutional-layer pooling and the original bilinear CNN [31]
to large-size dataset such as UCF101, because the feature
dimensions of these models are high. In our proposed two-
stream bilinear C3D, with the pre-trained 3D attention model
which is guided with body joints, the number of channels
of one stream is decreased, therefore the dimension of the
pooled descriptor is reduced. With the advanced version of
aggregation as introduced in Section III-C, the dimension is
further reduced and the performance is improved. On UCF101,
we compare our methods with other models using RGB images
as input. Although advanced performance can be achieved
by taking optical flow images as input, the computational
cost of optical flow is heavy for large-scale dataset. And
not only competing methods, but also C3D can use optical
flow images as input. Therefore, it is more fair to compare
between methods that use only RGB images as input. The
trajectory-pooled deep-convolutional descriptor (TDD) [20]
pooled on the normalized 2D convolutional feature maps based
on the trajectories of dense points. In fact, the process of
commutating dense trajectories include the computation of
optical flow. TDD used the information of optical flow even
in the spatial CNN. TDD FV used Fisher vector to encode
local TDDs over the whole video into a global super vector,

10

where local TDDs were the descriptors of video clips obtained
by aggregating the pooled feature vectors belonging to one
trajectory with sum pooling.

Note that we do not finetune our proposed model on
subJHMDB and UCF101. The results listed in Table V and
Table VI demonstrates that bilinear pooling with 3D attention
model is generic and effective in extracting discriminative
features in 3D convolutional layers. Our proposed approach
outperforms competing methods with higher accuracy and
lower feature dimension.

F. Comparison with the state of the art

1) Evaluation on subJHMDB Dataset: We compare our
method with the state-of-the-art approaches on subJHMDB. As
represented in Table VII, our proposed JDD and two-stream
bilinear C3D outperform competing methods significantly.

The methods classified to Video features use the raw
video frames to extract features. They do not use ground-truth
body joints, neither in training phrase nor in testing phrase.
The methods classified to Pose features use the ground-truth
body joints for training. Some of these work also reported
their results with annotated body joints in testing. There are
attempts to combine video features with pose features for
performance improvement which are classified to Pose+Video
features.

Among video features, C3D performs much better than
Dense Trajectories (DT) and Improved Dense Trajectories
encoded with Fisher vector (IDT-FV). We increase the recog-
nition of C3D with body joint guided pooling by about 10%
with estimated joins and 15% with ground-truth body joints.
We have already made a brief comparison of JDD with pose
features HLPF, Pose, and posed-based convolutional descriptor
P-CNN in Section V-D. ACPS [39] is an action conditioned
pictorial structure model for pose estimation that incorporated
priors over actions. Directly combining the video features and
the pose features together does not necessarily lead to per-
formance improvement, taking Pose+DT for example. MST-
AOG [40] is a multiview spatio-temporal AND-OR graph
representation for cross-view action recognition. Body joints
were utilized to mine the discriminative parts. ST-AOG [41]
is also a spatio-temporal AND-OR graph which decomposed
actions into poses, spatio-temporal parts, and parts.

Compared to other methods, JDD has a superior perfor-
mance. Fusing JDDs of conv5b and conv4b together further
improves the performance benefiting from the complemen-
tarity between convolutional layers. When ground-truth body
joints are used, two-stream bilinear C3D is equivalent to
JDD of conv5b. Therefore, they have the same accuracy in
these configurations. Different from JDD and P-CNN which
are dependent on skeleton estimation algorithms to predict
body joint positions in practical situation, two-stream bilinear
C3D learns keypoints in feature maps automatically with the
transferred 3D attention model. The best accuracy without
ground-truth body joints in testing is achieved by two-stream
bilinear C3D with the advanced version of aggregation by
using max+min pooling in temporal dimension, outperforming
competing methods significantly.

TABLE VII
RECOGNITION ACCURACY OF THE STATE-OF-THE-ART APPROACHES AND

OUR PROPOSED MODELS ON SUBJHMDB DATASET. * MEANS THE
ADVANCED VERSION OF AGGREGATION.

Method Accuracy
testing without

GT joints
testing with
GT joints

Video
features

DT [34] 0.460 -
IDT-FV [11] 0.609 -
C3D fc6 [5] 0.688 -

Pose
features

HLPF [30] 0.511 0.782
Pose [34] 0.541 0.751

ACPS [39] 0.615 -

Pose+
Video

features

MST-AOG [40] 0.453 -
Pose+DT [34] 0.529 -
ST-AOG [41] 0.612 -
P-CNN [30] 0.668 0.725

ACPS+IDT-FV [39] 0.746 -
JDD (conv5b) 0.777 0.819

JDD (conv5b+conv4b) 0.778 0.833
JDD (conv5b+conv4b) * 0.772 0.837
two-stream bilinear C3D 0.788 0.819

two-stream bilinear C3D * 0.797 0.826

TABLE VIII
RECOGNITION ACCURACY OF THE STATE-OF-THE-ART APPROACHES AND

OUR PROPOSED MODELS ON PENN ACTION DATASET. * MEANS THE
ADVANCED VERSION OF AGGREGATION.

Method Accuracy
testing without

GT joints
testing with
GT joitns

Video
features

DT [42] 0.734 -
STIP [35] 0.829 -

IDT-FV [11] 0.920 -
C3D fc6 [5] 0.860 -

Pose
features

ACPS [39] 0.790 -
Actemes [35] 0.794 -

Action Bank [43] 0.839 -

Pose+
Video

features

MST-AOG [40] 0.740 -
ST-AOG [41] 0.855 -

ACPS+IDT-FV [39] 0.929 -
P-CNN [30] 0.953 0.977

JDD (conv5b) 0.874 0.943
JDD(conv5b+conv4b) 0.893 0.957

JDD(conv5b+conv4b) * 0.938 0.981
two-stream bilinear C3D 0.926 0.943

two-stream bilinear C3D * 0.953 0.971

It should be noted that, JDD and our proposed two-stream
bilinear model fuse the information of body joints and 3D con-
volutional features in model level. They also can be combined
with IDT-FV and other features in feature level or decision
level as ACPS+IDT-FV did.

2) Evaluation on Penn Action Dataset: There are videos
with invisible body joints on Penn Action dataset. Take the
category of “playing guitar” for example, less than one third of
a person is visible. There also exist errors in annotations. Nev-
ertheless, compared with other methods, our proposed JDD
and two-stream bilinear C3D still have superior performance
as shown in Table VIII. Except the methods which have been
introduced before, Actemes [35] used body joint positions to
discover patches that were clustered in the spatio-temporal
keypoint configuration space. Action bank [43] represented
actions on the basis of holistic spatio-temporal templates.

11

 bas
eba
ll_p
itch

 bas
eba
ll_s
win
g

 b
enc
h_p
ress

 b
owl

 cle
an_
and
_jer
k

 g
olf_
swi
ng

 j
um
p_r
ope

 jum
pin
g_j
ack
s

 pu
llup

 pu
shu
p

 sit
up

 sq
uat

 st
rum
_gu
itar

ten
nis_
fore
han
d

 te
nni
s_se
rve

 baseball_pitch

 baseball_swing

 bench_press

 bowl

 clean_and_jerk

 golf_swing

 jump_rope

 jumping_jacks

 pullup

 pushup

 situp

 squat

 strum_guitar

tennis_forehand

 tennis_serve

57 4 0 0 1 0 0 0 0 0 0 0 0 0 1

5 51 0 0 0 1 0 0 0 0 0 1 0 0 0

0 0 65 0 1 0 0 0 0 4 0 1 0 0 0

0 0 0 85 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 27 0 0 0 0 1 0 17 0 0 0

1 0 0 0 0 76 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 37 0 0 3 0 0 0 0 1

1 0 0 0 0 3 0 49 1 0 0 1 0 1 0

0 0 0 0 0 0 1 0 100 0 0 0 0 0 0

2 0 0 0 1 0 1 1 0 93 8 0 1 0 0

0 0 0 0 0 0 1 0 0 6 42 0 0 0 1

0 1 9 0 8 0 0 2 1 2 0 94 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 47 0 0

1 2 0 0 0 0 1 0 0 1 0 0 0 35 37

2 0 0 0 0 0 0 0 0 0 0 0 0 9 60
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) C3D fc6

 bas
eba
ll_p
itch

 bas
eba
ll_s
win
g

 b
enc
h_p
ress

 b
owl

 cle
an_
and
_jer
k

 g
olf_
swi
ng

 j
um
p_r
ope

 jum
pin
g_j
ack
s

 pu
llup

 pu
shu
p

 sit
up

 sq
uat

 st
rum
_gu
itar

ten
nis_
fore
han
d

 te
nni
s_se
rve

 baseball_pitch

 baseball_swing

 bench_press

 bowl

 clean_and_jerk

 golf_swing

 jump_rope

 jumping_jacks

 pullup

 pushup

 situp

 squat

 strum_guitar

tennis_forehand

 tennis_serve

60 2 0 0 1 0 0 0 0 0 0 0 0 0 0

1 55 0 0 0 1 0 1 0 0 0 0 0 0 0

0 0 66 0 0 0 0 0 0 2 1 2 0 0 0

0 0 0 85 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 37 0 0 0 0 0 0 8 0 0 0

0 0 0 0 0 77 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 39 0 0 0 0 0 0 1 1

0 0 0 0 2 2 0 50 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 100 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 105 1 1 0 0 0

0 0 0 0 0 0 0 0 0 5 43 0 2 0 0

0 0 8 0 2 0 0 0 0 1 0 106 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 48 0 0

1 0 0 0 0 1 0 0 0 1 0 0 1 53 20

2 0 0 0 0 0 0 0 0 0 0 0 0 4 65
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) two-stream bilinear C3D

Fig. 5. The confusion matrixes obtained by C3D fc6 and two-stream bilinear
C3D on Penn Action dataset.

The performance of C3D is inferior to IDT-FV on this
dataset. The reason of C3D’s inferiority is probably that C3D
resized the video images with too much information loss. The
widths of frames in Penn Action dataset vary from 270 to 482
pixels, while the heights of frames vary from 204 to 480 pixels.
Most frame resolutions are 480 × 270 and 480 × 360 which
are larger than 320× 240 in subJHMDB dataset. By resizing
frames to 171×128 and cropping to 112×112 patches as input,
C3D changed the ratio and resolution of video frames in Penn
Action dataset too much. We follow the experimental setting
of C3D to resize and crop frames. While P-CNN took multiple
224× 224 image patches as input. We think the performances
of C3D-based methods are damaged because of small input
images. By using larger images as input, the accuracy of C3D,
JDD and two-stream bilinear C3D should be improved.

In addition, IDT is a hand-crafted feature based on optical
flow tracking and histograms of low-level gradients. IDT-
FV encoded IDT with fisher vector. P-CNN benefits from
optical flow in another way by taking optical flow images
as an extra input. However it is time-consuming to compute
IDT-FV and optical flow. In [5], there has been runtime
analysis which shows that C3D is 91 times faster than IDT
[11] and 274 times faster than Brox’s optical flow methods
[44]. Our proposed two-stream bilinear C3D is even free
from the sophisticated skeleton estimation algorithms. If only
for performance improvement, it is feasible to combine C3D
features, JDD and two-stream bilinear features, which are
high-level semantic descriptors, with IDT-FV and optical flow
since they are complementary to each other.

Note that the authors of [41] removed the action “playing
guitar” and several other videos because less than one third
of a person is visible in those data. While we do not remove
any videos. This illustrates that JDD is robust for occlusion.
The authors [41] also corrected the errors of annotated body
joints which remain at the left-top corner of image by training
a regression model to predict their positions. While we do
nothing to rectify the positions of body joints. We even do
not finetune the skeleton estimation algorithm on Penn Action
dataset. This indicates that JDD is not sensitive to error.

We visualize the confusion matrixes obtained by C3D fc6
and two-stream bilinear C3D in Figure 5. The most confusing
categories of C3D are “clean and jerk” versus “squat”, “tennis
forehand” versus “tennis serve” due to their similarity in
appearance and motion. With the ability of extracting discrim-

TABLE IX
RECOGNITION ACCURACY OF THE STATE-OF-THE-ART APPROACHES AND
OUR PROPOSED MODELS ON UCF101 DATASET. * MEANS THE ADVANCED

VERSION OF AGGREGATION.

Method Accuracy
IDT [11] 0.762

IDT-FV [11] 0.859
ImageNet [45] 0.688

CNN-M-2048 [2] 0.730
VGGNet [46] 0.784
LRCN [47] 0.711

LSTM composite model [48] 0.758
Slow Fusion network [3] 0.654

C3D fc6 [5] 0.815
two-stream bilinear C3D 0.827

two-stream bilinear C3D * 0.847

inative spatio-temporal features in convolutional feature maps,
two-stream bilinear C3D performs much better than C3D fc6
features. If we use the advanced version of aggregation instead
of the basic version, the accuracy of two-stream bilinear C3D
could be further improved to 95.3% and the accuracy of fusing
JDDs from conv5b and conv4b could be 98.1% with ground-
truth body joints.

The result in Table VIII is consistent with that of Table
VII. The best accuracy with ground-truth joints is obtained by
fusing JDDs of multiple layers together. The best accuracy
without annotation in testing is obtained with two-stream
bilinear C3D. JDDs are verified to make the best of body joints
and 3D CNN to form discriminative video descriptors. Fur-
thermore, two-stream bilinear C3D unified the computations
of JDD in an end-to-end framework which is independent of
skeleton estimation algorithms.

3) Evaluation on UCF101 Dataset: We compare our
proposed two-stream bilinear C3D against hand-crafted fea-
tures, deep convolutional networks, convolutional networks
combined with recurrent neural networks and other 3D CNN
models on UCF101 which is a challenging dataset with
occlusions, large-scale variations and complex scenes.

The results are shown in Table IX. These models use RGB
video frames as input. IDT-FV improves the performance of
IDT significantly with Fisher vector encoding. However, as
analysed in Section V-F2, dense trajectory based methods are
computationally intensive and have a high time cost. ImageNet
[45] refers to the deep features extracted using Caffe’s Ima-
geNet pre-trained model. Very deep two-stream convolutional
network [46] replaced the CNN-M-2048 architecture [49]
used in two-stream convolutional network [2] with VGGNet
[50] which has smaller convolutional kernel sizes, smaller
convolutional strides, and deeper network architectures. The
results of CNN-M-2048 and VGGNet are obtained with well
designed training. LRCN [47] and LSTM composite model
[48] are two CNN-RNN based methods. They used long short
term memory (LSTM) units to model the temporal evolutions
over video frames which are represented by convolutional
features [45], [50]. The convolutional network and the RNN
network can be trained jointly. Slow fusion network [3] used
3D convolutions and average pooling in its first 3 convolutional
layers.

12

Leaving out the results with the aid of optical flow and
dense trajectories, C3D performs pretty well among competing
methods. We report the result of C3D fc6 reproduced by us.
With the transferred attention stream and bilinear pooling, our
proposed two-stream bilinear C3D outperforms all the other
RGB-based models significantly even without finetuning.

VI. CONCLUSIONS

In this paper, we propose a novel joints-pooled 3D deep
convolutional descriptor (JDD) which can take advantages of
body joints and C3D for action recognition. The positions of
body joints are used to sample discriminative points from fea-
ture maps generated by C3D. Furthermore, we propose an end-
to-end trainable two-stream bilinear C3D model which formu-
lates the body joint guided feature pooling as a bilinear product
operation. The two-stream bilinear C3D learns keypoints in
3D feature maps, captures the spatio-temporal features and
pools activations in a unified framework. Experiments show
that the best recognition result with ground-truth body joints
is obtained by multi-layer fusion of JDDs. Without precise
annotated body joints, two-stream bilinear C3D achieves the
highest performance among competing methods. Promising
experimental results in real-world datasets demonstrate the
effectiveness and robustness of JDD and two-stream bilinear
C3D in video-based action recognition.

In the future, we will consider to integrate optical flow
and dense trajectories into our proposed two-stream bilinear
model in an efficient way. Also, temporal models such as RNN
will be tried to replace the aggregation methods used now.
Meanwhile, the problem of overfitting when training the CNN-
RNN network which is doubly deep in spatial and temporal
dimensions with limited data need be solved with network
designment and data augmentation.

REFERENCES

[1] L. Shao, X. Zhen, D. Tao, and X. Li, “Spatio-temporal laplacian pyramid
coding for action recognition,” IEEE Trans. Cybern., vol. 44, no. 6, pp.
817–827, 2014.

[2] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for
action recognition in videos,” in Proc. Adv. Neural Inf. Process. Syst,
2014, pp. 568–576.

[3] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and F. Li,
“Large-scale video classification with convolutional neural networks,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2014, pp. 1725–1732.

[4] Z. Xu, Y. Yang, and A. G. Hauptmann, “A discriminative CNN video
representation for event detection,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2015, pp. 1798–1807.

[5] D. Tran, L. D. Bourdev, R. Fergus, L. Torresani, and M. Paluri,
“Learning spatiotemporal features with 3d convolutional networks,” in
Proc. IEEE Int. Conf. Comput. Vis, 2015, pp. 4489–4497.

[6] L. Liu, L. Shao, X. Li, and K. Lu, “Learning spatio-temporal represen-
tations for action recognition: A genetic programming approach,” IEEE
Trans. Cybern., vol. 46, no. 1, pp. 158–170, 2016.

[7] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2005,
pp. 886–893.

[8] N. Dalal, B. Triggs, and C. Schmid, “Human detection using oriented
histograms of flow and appearance,” in Proc. Eur. Conf. Comput. Vis.,
2006, pp. 428–441.

[9] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld, “Learning
realistic human actions from movies,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2008.

[10] H. Wang, A. Klaser, C. Schmid, and C.-L. Liu, “Action recognition by
dense trajectories,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2011, pp. 3169–3176.

[11] H. Wang and C. Schmid, “Action Recognition with Improved Trajecto-
ries,” in Proc. IEEE Int. Conf. Comput. Vis, 2013, pp. 3551–3558.

[12] J. Tompson, A. Jain, Y. LeCun, and C. Bregler, “Joint training of a con-
volutional network and a graphical model for human pose estimation,”
in Proc. Adv. Neural Inf. Process. Syst, 2014, pp. 1799–1807.

[13] J. Shotton, T. Sharp, A. Kipman, A. W. Fitzgibbon, M. Finocchio,
A. Blake, M. Cook, and R. Moore, “Real-time human pose recognition
in parts from single depth images,” Commun. ACM, vol. 56, no. 1, pp.
116–124, 2013.

[14] C. Chen, Y. Zhuang, F. Nie, Y. Yang, F. Wu, and J. Xiao, “Learning a
3d human pose distance metric from geometric pose descriptor,” IEEE
Trans. Vis. Comput. Graph., vol. 17, no. 11, pp. 1676–1689, 2011.

[15] Y. Du, W. Wang, and L. Wang, “Hierarchical recurrent neural network
for skeleton based action recognition,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2015, pp. 1110–1118.

[16] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks
for human action recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 1, pp. 221–231, 2013.

[17] B. Hariharan, P. A. Arbeláez, R. B. Girshick, and J. Malik, “Hyper-
columns for object segmentation and fine-grained localization,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 447–456.

[18] L. Liu, C. Shen, and A. van den Hengel, “The treasure beneath
convolutional layers: Cross-convolutional-layer pooling for image clas-
sification,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015,
pp. 4749–4757.

[19] C. Cao, Y. Zhang, C. Zhang, and H. Lu, “Action recognition with joints-
pooled 3d deep convolutional descriptors,” in Proc. 25th Int. Joint Conf.
Artif. Intell., 2016, pp. 3324–3330.

[20] L. Wang, Y. Qiao, and X. Tang, “Action recognition with trajectory-
pooled deep-convolutional descriptors,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2015, pp. 4305–4314.

[21] T. Berg and P. N. Belhumeur, “POOF: part-based one-vs.-one features
for fine-grained categorization, face verification, and attribute estima-
tion,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2013, pp.
955–962.

[22] K. Duan, D. Parikh, D. J. Crandall, and K. Grauman, “Discovering
localized attributes for fine-grained recognition,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2012, pp. 3474–3481.

[23] S. Huang, Z. Xu, D. Tao, and Y. Zhang, “Part-stacked CNN for fine-
grained visual categorization,” CoRR, vol. abs/1512.08086, 2015.

[24] N. Zhang, E. Shelhamer, Y. Gao, and T. Darrell, “Fine-grained pose
prediction, normalization, and recognition,” CoRR, vol. abs/1511.07063,
2015.

[25] Y. Gong, L. Wang, R. Guo, and S. Lazebnik, “Multi-scale orderless
pooling of deep convolutional activation features,” in Proc. Eur. Conf.
Comput. Vis., 2014, pp. 392–407.

[26] L. Liu, C. Shen, L. Wang, A. van den Hengel, and C. Wang, “Encoding
high dimensional local features by sparse coding based fisher vectors,”
in Proc. Adv. Neural Inf. Process. Syst, 2014, pp. 1143–1151.

[27] N. Zhang, M. Paluri, M. Ranzato, T. Darrell, and L. D. Bourdev,
“PANDA: pose aligned networks for deep attribute modeling,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2014, pp. 1637–1644.

[28] N. Zhang, R. Farrell, and T. Darrell, “Pose pooling kernels for sub-
category recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2012, pp. 3665–3672.

[29] N. Zhang, J. Donahue, R. B. Girshick, and T. Darrell, “Part-based r-cnns
for fine-grained category detection,” in Proc. Eur. Conf. Comput. Vis.,
2014, pp. 834–849.

[30] G. Chéron, I. Laptev, and C. Schmid, “P-CNN: pose-based CNN features
for action recognition,” in Proc. IEEE Int. Conf. Comput. Vis, 2015, pp.
3218–3226.

[31] T. Lin, A. RoyChowdhury, and S. Maji, “Bilinear CNN models for fine-
grained visual recognition,” in Proc. IEEE Int. Conf. Comput. Vis, 2015,
pp. 1449–1457.

[32] S. Sharma, R. Kiros, and R. Salakhutdinov, “Action recognition using
visual attention,” CoRR, vol. abs/1511.04119, 2015.

[33] V. Ramanathan, J. Huang, S. Abu-El-Haija, A. N. Gorban, K. Murphy,
and L. Fei-Fei, “Detecting events and key actors in multi-person videos,”
CoRR, vol. abs/1511.02917, 2015.

[34] H. Jhuang, J. Gall, S. Zuffi, C. Schmid, and M. J. Black, “Towards
understanding action recognition,” in Proc. IEEE Int. Conf. Comput.
Vis, 2013, pp. 3192–3199.

[35] W. Zhang, M. Zhu, and K. G. Derpanis, “From actemes to action: A
strongly-supervised representation for detailed action understanding,” in
Proc. IEEE Int. Conf. Comput. Vis, 2013, pp. 2248–2255.

13

[36] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A dataset of 101 hu-
man actions classes from videos in the wild,” CoRR, vol. abs/1212.0402,
2012.

[37] R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin, “LIBLINEAR: A
library for large linear classification,” J. Mach. Learn. Res., vol. 9, pp.
1871–1874, 2008.

[38] Y. Yang and D. Ramanan, “Articulated pose estimation with flexible
mixtures-of-parts,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2011, pp. 1385–1392.

[39] U. Iqbal, M. Garbade, and J. Gall, “Pose for action - action for pose,”
CoRR, vol. abs/1603.04037, 2016.

[40] J. Wang, X. Nie, Y. Xia, Y. Wu, and S. Zhu, “Cross-view action
modeling, learning, and recognition,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2014, pp. 2649–2656.

[41] B. X. Nie, C. Xiong, and S. Zhu, “Joint action recognition and pose
estimation from video,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2015, pp. 1293–1301.

[42] H. Wang, A. Kläser, C. Schmid, and C. Liu, “Dense trajectories and
motion boundary descriptors for action recognition,” Int. J. Comput.
Vis., vol. 103, no. 1, pp. 60–79, 2013.

[43] S. Sadanand and J. J. Corso, “Action bank: A high-level representation
of activity in video,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2012, pp. 1234–1241.

[44] T. Brox and J. Malik, “Large displacement optical flow: Descriptor
matching in variational motion estimation,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 33, no. 3, pp. 500–513, 2011.

[45] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. B. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proc. 22nd ACM Int. Conf. Multimedia,
2014, pp. 675–678.

[46] L. Wang, Y. Xiong, Z. Wang, and Y. Qiao, “Towards good practices for
very deep two-stream convnets,” CoRR, vol. abs/1507.02159, 2015.

[47] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, T. Darrell, and K. Saenko, “Long-term recurrent convolutional
networks for visual recognition and description,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2015, pp. 2625–2634.

[48] N. Srivastava, E. Mansimov, and R. Salakhutdinov, “Unsupervised
learning of video representations using lstms,” in Proc. Int. Conf. Mach.
Learning, 2015, pp. 843–852.

[49] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, “Return of
the devil in the details: Delving deep into convolutional nets,” in Proc.
Brit. Mach. Vis. Conf, 2014.

[50] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

	I Introduction
	II Related Work
	III Joints-pooled 3D Deep Convolutional Descriptors
	III-A 3D Convolutional Networks Revisited
	III-B Mapping Schemes
	III-C Aggregation Methods

	IV Two-stream bilinear C3D
	IV-A JDD by Bilinear Product
	IV-B 3D attention model
	IV-C End-to-End training of two-stream bilinear C3D

	V Experiments
	V-A Datasets
	V-B Implementation details
	V-C Analysis of JDD and baselines
	V-D Robustness analysis of JDD
	V-E Analysis of two-stream bilinear C3D and other pooling models
	V-F Comparison with the state of the art
	V-F1 Evaluation on subJHMDB Dataset
	V-F2 Evaluation on Penn Action Dataset
	V-F3 Evaluation on UCF101 Dataset

	VI Conclusions
	References

