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Engineering Deep Representations for Modeling 
Aesthetic Perception 

Yanxiang Chen, Yuxing Hu, Luming Zhang, Ping Li, and Chao Zhang 
Abstract—Many aesthetic models in multimedia and computer 

vision suffer from two shortcomings: 1) the low descriptiveness and 
interpretability 1  of the hand-crafted aesthetic criteria (i.e., fail to 
indicate region-level aesthetics), and 2) the difficulty of engineering 
aesthetic features adaptively and automatically toward different image 
sets. To remedy these problems, we develop a deep architecture to learn 
aesthetically-relevant visual attributes from Flickr2, which are localized 
by multiple textual attributes in a weakly-supervised setting. More 
specifically, using a bag-of-words (BoW) representation of the frequent 
Flickr image tags, a sparsity-constrained subspace algorithm discovers 
a compact set of textual attributes (i.e., each textual attribute is a sparse 
and linear representation of those frequent image tags) for each Flickr 
image. Then, a weakly-supervised learning algorithm projects the 
textual attributes at image-level to the highly-responsive image patches. 
These patches indicate where humans look at appealing regions with 
respect to each textual attribute, which are employed to learn the visual 
attributes. Psychological and anatomical studies have demonstrated 
that humans perceive visual concepts in a hierarchical way. Therefore, 
we normalize these patches and further feed them into a five-layer 
convolutional neural network (CNN) to mimick the hierarchy of human 
perceiving the visual attributes. We apply the learned deep features onto 
applications like image retargeting, aesthetics ranking, and retrieval. 
Both subjective and objective experimental results thoroughly 
demonstrate the superiority of our approach. 
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I. Introduction 

                                                        
1  In this work, “describing” and “interpretability” means the ability of 

seeking region-level representation of each mined textual attribute, i.e., a 

Perceptually aesthetic modeling refers to the process of 

discovering low-level and high-level visual patterns that can 

arouse human aesthetic perception. It is a useful technique to 

enhance many applications, i.e., image retargeting, photo 

album management, and scene rendering. Taking retargeting as 

an example, the aesthetically pleasing image regions are 

squeezed slightly and vice versa. Moreover, effectively 

describing region-level aesthetics can guide the level of details 

in non-photorealistic image rendering. As a popular media 
sharing website with millions of photos uploaded and 

commented daily, Flickr is an ideal platform to study and 

simulate how humans perceive photos with aesthetic features at 

low&high-level. However, perceptually aesthetic modeling 

based on Flickr still encounters the following challenges: 

• Flickr contains a large amount of photos with multiple 

latent aesthetic attributes (e.g., the “field guide” and 

“movement”). Conventional aesthetic models, however, 

are typically built upon generic features which quantify the 

compliance to a pre-defined criterion (e.g., the “rule of 

thirds”). Practically we need tailored and datasetdependent 

features to capture these latent aesthetic attributes, but 
engineering these features requires the domain knowledge 

of professional photographers. 

• The interpretability of an aesthetic model reflects the 

capability of indicating which regions are responsive to 

each aesthetic attribute. A highly interpretable aesthetic 
model has both the scientific impact and application value. 

As far as we know, however, the existing aesthetic 

modeling pipeline is more or less a blackbox. They have 

limited power to provide region-level response to each 

aesthetic attribute. In this work, textual attribute means a 

combination of those frequent image tags, such as 

“portrait”, “beach”, and “art”, which are discovered 

automatically. 

• Previous methods associate each photo with a set of 

aesthetic attributes only in well-controlled settings. For 

example, the training images’ beautifulness is quantified to 

reduce the disturbance of noisy tags [2]. In reality, image 

tags from Flickr are labeled uncontrollably by a rich variety 

of users with diverse backgrounds, education, etc. This will 

inevitably produces noisy image tags, which necessitates 

an aesthetic model to robustly tackle noises from image 

tags. 

To solve these problems, we propose a CNN-based framework 

which models aesthetic perception automatically and 

interpretably, by calculating a compact set of textual and visual 

attributes from tagged Flickr images. The pipeline of our 
proposed framework is elaborated in Fig. 1. For each tagged 

image from an Internet-scale Flickr corpus, we employ a bagof-

words (BoW) representation of those frequently-occurring and 

sparse and linear representation of those frequent image tags. 
2https://www.flickr.com/  
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noisy image tags. Toward an efficient system, a 

sparsityconstrained subspace algorithm converts each BoW 

histogram into a compact set of textual attributes. They reflect 

the highly representative aesthetic attributes of an image. To 

locate the appealing visual attributes, a weakly supervised 

algorithm maps the textual attributes at image-level into the 

salient patches (indicated by different colors in the middle of 

Fig. 1) in an image. Both psychological and anatomical studies 
have shown that human vision system is multi-layered and 

forms higherlevel abstracts from input raw pixels incrementally. 

That is to say, the intrinsic hierarchy of CNN has the potential 

to model human visual perception. Based on this, for each 

textual attribute, the corresponding extracted patches are 

employed to learn a five-layer CNN to simulate the hierarchial 

perception of human beings. The learned deep feature is applied 

on a range of multimedia tasks: image retargeting, aesthetics 

classification, and image retrieval. 

The contributions of this paper can be summarized as: 1) The 

first deep architecture that learns aesthetically-relevant visual 

attributes extracted from massive-scale Flickr images; 2) a 

weakly supervised algorithm associating each textual attribute 

with the corresponding visual attribute; and 3) adopting the 

deep features on several multimedia applications, coupled with 

extensive experimental validation. 

II. Related Work 

Our work is related to two research topics in multimedia and 

pattern recognition: computational image aesthetics analysis 

and deep learning for aesthetic attribute modeling. 

A. Computational Image Aesthetic Analysis 

1) Global features-based models: Datta et al. [3] proposed 58 

low-level visual features, e.g., the shape convexity, to capture 

photo aesthetics. Dhar et al. [5] proposed a set of highlevel 

attribute-based predictors to evaluate photo aesthetics. In [6], 

Luo et al. employed a GMM-based hue distribution and a 
prominent line-based texture distribution to assess the global 

composition of an image. To represent image local composition, 

regional features describing human faces, region clarity, and 

complexity were developed. In [7], Marchesotti et al. tackled 

the problem of visual aesthetic modeling by discovering mid-

level features. The designed algorithm can automatically learn 

semantic aesthetics-related attributes by combining image, 

scoring, and textual data from the AVA data set [2]. The authors 

shown that the learned attributes can facilitate a variety of 

media applications, e.g., aesthetic quality prediction, image 

tagging, and retrieval. Experiments shown that the above two 

generic descriptors outperform many hand-crafted and dataset-

dependent aesthetic descriptors. 

2) Local feature-based models: Cheng et al. [36] proposed 

the omni-range context, i.e., the spatial distribution of arbitrary 

pairwise image patches, to describe image composition. 

Nishiyama [9] et al. first detected multiple subject regions 

inside a photo. Afterward an SVM classifier is trained for each 

subject region. Finally, the aesthetics of an image is quantified 

by combining the SVM scores of a photo’s internal subject 

regions. In [10], Nishiyama et al. proposed a color harmony-

based aesthetic model, which describes image color 

distribution using its patches. The patch-level color distribution 
is integrated into a BoW histogram, which is subsequently 

classified by an SVM to determine whether a photo is highly or 

low aesthetic. Bhattacharya et al. [11] developed a spatial 

recomposition system which allows users to select a foreground 

object interactively. The system presents recommendations to 

indicate an optimal location of the foreground object, which is 

detected by combining multiple visual features. 

B. Deep learning-based Aesthetics Modeling 

As far as we know, there are only two deep learning models 

for visual aesthetic analysis. In [22], Lu et al. proposed a 

double-layer CNN architecture to automatically discover 

effective features that capture image aesthetics from two 
heterogeneous input sources, i.e., aesthetic features from both 

the global and local views. The double CNN layers are jointly 

trained from two inputs. The first layer takes global image 

representation as the input, while the second layer takes local 

image representations as the input. This allows us to leverage 

both compositional and local visual information. Based on the 

evaluation from the AVA [2], Lu et al.’s algorithm significantly 

outperforms the results reported earlier. This model differs from 

ours fundamentally in two aspects: 1) Both the global and local 

views are heuristically defined, there is no guarantee that they 

can well locate the aesthetically pleasing regions across 
different datasets. Comparatively, our approach uses a weakly 

supervised algorithm to discover visually appealing regions 

indicated by tags. Thus it can be flexibly adapted onto different 

datasets; 2) Lu et al.’s model simply captures the global and 

local aesthetic features of a photo. But there is no evidence that 

abstract aesthetic cues can be well described. Noticeably, in our 

model, a set of CNNs are trained. Each encodes the visual 

attribute corresponding to a textual attribute, which can capture 

 

Fig. 1. The pipeline of the proposed CNN-based aesthetic modeling framework (The blue and green arrows denote the training and test phases respectively. The 
color-tagged regions indicate visual attributes which are aesthetically pleasing. CNN AAi means the sub-network trained from the i-th visual attribute. ). 
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either a concrete or abstract aesthetic cue. In [23] , Champbell 

et al. trained two Restricted Boltzmann Machines (RBMs) on 

the highly and low aesthetic images respectively. The authors 

observed that 10% of the filters learned from the highly 

aesthetic images capture the aesthetics-relevant visual cues. 

But this model is only available on simple abstract paintings 

with low resolution. It is intractable to describe high resolution 
Flickr images with sophisticated semantics. Escorcia et al. [55] 

established a deep architecture to learn visual semantic attribute. 

Empirical results shown that the attribute centric nodes in the 

conv-net encodes information that precisely reconstructs 

attributes in a sparse and unevenly distributed way. 

III. The Proposed Method 

A. Sparse Textual Attributes Discovery 

Given a Flickr image, we use an M-dimensional augmented 

frequency vector →−α to represent the distribution of its tags3. 

In particular, to avoid the randomly-occurring noisy image tags, 

we select the M most frequent tags from the training image set. 

Then, we treat the tag set of each Flickr image as a document 

D, based on which the i-th element of vector →−α can be 

calculated as: 

0.5 f(i, ) 

→−α(i) = 0.5 + ∗ D , (1) 

 
max(f(j, D) : j ∗ D) 

where f(i, D) counts the times of the i-th tag from the M most 

frequent ones occurring in document d, and the denominator 

functions as a normalization factor. In our implementation, we 

set M = 100 based on cross validation. 

Given N Flickr images, they can be represented as N 
augmented frequency vectors. Thereafter, we column-wise 

stack them into a matrix X = [→−α1;→−α2; · · · ;→−αN] ∗ RN×M, 

where each row X∗ j ∗ RN denotes the j-th feature vector cross 

all the documents. To obtain the textual attributes of each Flickr 

image, we employ a subspace algorithm, which converts the 

original M-dimensional vector corresponding to 

3In our implementation, we set M = 100. 

each Flickr image into a D-dimensional textual attribute vector 
(D < min(M, N)). In our implementation, all the 75246 training 

images are adopted to create document matrix X. 

Following the latent semantic analysis (LSA) [25], we 

assume that the D textual attributes   are 

uncorrelated, where each attribute ∗ud ∗ R has the unit length, 

i.e., ||∗ud||2 = 1. Denote U = [∗u1,∗u2, · · · ,∗uD] ∗ RN×D, we 

have 

UTU = I where I is the identity matrix. We assume that each 

feature vector X∗ j can be linearly reconstructed by the textual 

attributes: 
D 

Xj = ∑ adjud + ϵj, (2) 
d=1 

                                                        
2 As experimented on our own complied image set, each Flickr image is  

In the matrix form, the above equation can be reformulated into 

X = UA + ϵ, where A = [adj] ∗ RD×M denotes the projection 

matrix from the tag space to the textual attribute space. We can 

obtain the projection matrix A by solving the following 

optimization. It minimizes the rank-D approximation error 

subject to the orthogonality constraint of U: 

minU,A ||X − UA||2F, s.t. UTU = I, (3) 

where ||·||F denotes the matrix Frobenius norm. The constraint 

UUT = I reflects the uncorrelated property of textual attributes. 

Sparsity of textual attributes: The projection matrix U 

learned from (3) can reconstruct matrix X by a linear 

combination of textual attributes. Typically, the number of 

textual attributes D is not small2. It indicates that aesthetically 

modeling an Flickr image by analyzing all its correlated textual 

attributes might be intractable. Toward an efficient approach, 

we encode a sparsity constraint into (3) in order to achieve a 

sparse projection matrix A. An entry-wise l1-norm of A is added 
as a regularization term to the loss function. Based on this, we 

formulate the sparse textual attributes discovery as: 

minU,A ||X − UA|| || || .t., UTU = I, (4) 

where ||A || M
j=1 |adj| is the entry-wise l1-norm of A; 

and λ is the positive regularization parameter controlling the 

density of A, i.e., the number of nonzero entries. In general, a 

larger λ leads to a sparser A. On the other hand, a highly sparse 

A will lose some relationships between Flickr tags and textual 

attributes and will in turn harm the reconstruction quality. In 
practice, it is important to select an appropriate λ to obtain a 

more sparse A while still maintaining a good reconstruction 

quality. It is noticeable that (4) is solved by alternatively 

optimizing matrix U and A, as detailed in [26]. 

Besides, we can demonstrate that the discovered textual 
attributes can be represented by the M most frequent tags from 

the training image set. Based on (2), the tag vector α∗ from 

each Flickr image can be represented by a linear combination 

of the textual attributes: X = UA. Thus it is straightforward to 

obtain: U = XA−1, where matrix U is a N × D matrix whose 

columns denote the D textual attributes, matrix X ∗ RN×M 

represents the N tag vectors from the training data, and A−1 ∗ 

RM×D is the projection matrix. Based on the sparsity constraint 

in (4), matrix A is sparse and so do A−1. That is to say, each 

attributes ui in matrix U can be sparsely represented by a linear 

combination of the columns of matrix X, where the contribution 
of the j-th column is indicated by [A−1]ji. Here [·]ji indicates the 

ji-th element of a matrix. In summary, the ith textual attribute 

can be represented by the non-zero elements in the i-th column 

of matrix A−1 (the dimensionality of each column is M). That is 

to say, we can name the i-th textual attribute by the frequent 

tags corresponding to the non-zero elements in the i-th column 

of matrix A−1. 

B. Weakly Supervised Visual Attributes Learning 

This section introduces a graphlet-based weakly supervised 

learning framework to detect visual attributes corresponding to 

associatedvisual attributeswith based2 
∗attributes5ontextualcrossDattributes.validation. is set to 14Towardsince 
thethereentireare aboutimage10set,∗ the15 optimal number of  
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each textual attribute. We first construct a superpixel pyramid 

which captures objects with different shapes seamlessly. To 

quantify region-level response to each textual attribute, a 

manifold embedding algorithm transfers textual attributes into 

graphlets. Finally, the patch containing graphlets most 

responsive to each textural attribute form the visual attribute. 

Graphlet construction: There are usually millions of raw 

pixels inside an image, treating each of them independently 

brings intractable computation. It is generally accepted that 

pixels within an image are highly correlated with its spatial 

neighbors. Therefore, we sample a collection of superpixels and 
use them to construct different objects. As objects with various 

scales may evoke human aesthetic perception, we construct 

superpixels with three sizes by overly, moderately, and 

deficiently segmenting each image. The segmentation is based 

on the well-known simple linear iterative clustering (SLIC). It 

is established from the k-means clustering and has a time 

complexity of O(N), where N is the number of pixels inside an 

image. Compared with the conventional methods, experiments 

have shown that SLIC is computationally more efficient, 

requires less memory, and generates superpixels more adherent 

to object boundaries. By segmenting each image three times 

with different SLIC parameters, a superpixel pyramid is 

constructed to capture objects with different sizes. 

As shown in Fig. 2, different objects can be constructed by 

 

Fig. 2. A superpixel pyramid describing the Dubai towers from multiple scales. 

The first pyramid layer describes the rough outline of the four towers, the 

surrounding lake and the sky, reflecting textual attributes such as “harmonic” 

and “symmetric”. The second layer captures the shape of each individual tower, 

which corresponds to textual attributes such as “flame” and “dynamic”. The 

third layer encodes the details of the four towers, e.g., the shape tower top. It is 

highly responsive to textual attributes such as “shape” and “edge”. 

a set of spatially neighboring superpixels. More specifically, a 

graphlet is a moderately sized graph defined as: 

G = (V, E),   

where V is a 

set of vertices, each representing a superpixel; E is a set of 
edges, each connecting a pair of spatially neighboring 

superpixels. We call a graphlet t-sized if it is constituted by t 

superpixels. 

Given a t-sized graphlet, we represent it by a t×(t+128+9) 

matrix as: 

M = [MC,MT,MS ], (6) 

where MC is a t × 9 matrix and each row is the 9- dimensional 

color moment [29] from a superpixel; MT is a t × 128 matrix 

where each row is a 128-dimensional HOG [30] from a 

superpixel; and MS is a t × t adjacency matrix representing the 

topology of a graphlet. The graphlet extraction is based on 

random walk on the superpixel mosaic. More specifically, we 

first index the superpixels and then select a starting one. 

Afterward, spatially neighboring superpixels are visited oneby-

one until the maximum graphlet size is reached. Due to the 

number of graphlets is exponentially increasing the maximum 

graphlet size, we set it to 7 in our work. 

Weakly supervised semantic encoding: The textual attributes 

indicate the aesthetically pleasing regions in a Flickr image. To 

locate them, we propose a weakly supervised learning 

algorithm which transfers textual attributes into different 

graphlets in an image. The objective function is formulated as: 

argmin∑ ||yi − yj||2[ls(i , j) − ld(i, j)], s.t., YYT = Id, (7) 
Y 

ij 

where Y = [y1,y2, · · · ,yn], each denoting a d- dimensional post-

embedding graphlet from the training images. Y in Eq.(7) is 
initialized by the vector obtaining by row-wise concatenating 

matrix M in Eq.(6). The number of graphlets in Y depends on 

different image sets. In our implementation, the number is 

75246. ls and ld are functions measuring the semantic similarity 

and difference between graphlets, which are quantified 

according to textual attributes. Denoting→−n = [n1,n2, · · · ,nC]T 

where ni is the number of images with the i-th textual attribute, 

and c(·) contains the textual attributes of the Flickr image from 

which a graphlet is extracted, then we can obtain: 

[c(Gi) c(Gj)]n 
ls(i, j) = ∩ nc →−, (8) 

∑∗c →− 

[c(Gi) c(Gj)]n 

ld(i, j) = ∑ c , (9) 

c   n 

where the numerator of ls denotes the number of images sharing 

the common textual attributes with the images where the i-th 

and j-th graphlets are extracted; the numerator of ld is the 
number of images having different textual attributes with the 

images where the i-th and j-th graphlets are extracted. The 

denominator represents the total number of images with all 

textual attributes, which functions as a normalization factor. 

Objective function (7) can be reorganized into: 

argminY∑ ||yi − yj||
2[ls(i , j) − ld(i, j)] 

ij 

= argmaxY tr(YUYT), s.t. YYT = I (10) 

where U   + 

[IN e ], and ×N diagonal 

matrix whose h-th diagonal element is ls(h,i) − ld(h,i). Note that 
(10) is a quadratic problem with quadratic constraints, which 

can be solved by eigenvalue decomposition with a time 

complexity of O(N3). To accelerate the solution, an iterative 

coordinate propagation [31]-based embedding is applied. 

Based on the manifold embedding algorithm, we calculate 
the attribute-level response map for each image. In particular, 

given D the number of textual attributes, we train a multiclass 

SVM based on the one-versus-rest scenario. The saliency 

response of graphlet G to textual attribute ud is calculated based 

on the probabilistic output of SVM: 

50 superpixels 150 superpixels 350 superpixels  
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p(y(G) → ud) = − d , (11) 

 
1 + exp( ϕu (y(G))) 

where y(G) is the post-embedding vector corresponding to 

graphlet G, and ϕud(·) denotes the classification hyper-plane 

separating graphlets belonging to images with textual attribute 

ud from the rest of graphlets. 

After obtaining the saliency map to each textual attribute, we 

randomly generate 10000 patches in each image. The patch 

sizes are tuned as follows: the patch width is tuned from 

[0.1w,0.9w] with a step of 0.01w, while the patch height is 
tuned from [0.1h,0.9h] with a step of 0.01h. Note that w and h 

denote the width and height of an image respectively. Then, the 

patch W whose internal graphlets’ joint probability can be 

maximized is selected, i.e., 

maxW ∏ p(y(G) → ud). (12) 
G∗W 

Patch W indicates the visual attribute that is most responsive to 

textual attribute ud. It captures the aesthetically relevant visual 

feature and we therefore call it aesthlet. 

C. Aesthlet-normalized CNN for Aesthetic Modeling 

We integrate aesthlets into a deep architecture which learns 

patch-normalized representations to model visual attributes. 

After localizing different aesthlets using a weakly supervised 

manner, we normalize and feed them into a CNN for extracting 

standard representations for visual attributes modeling. To this 

end, we leverage both the power of CNN to learn discriminative 

visual features and the advantage of aesthlets to enhance CNN 
learning by localizing highly aesthetic regions. Noticeably, 

although CNN has been successfully applied to a variety of 

multimedia tasks, they cannot generalize well when are trained 

using small-scale data. Our proposed aesthlets make the 

learning process requiring fewer training examples due to the 

increased training set size. This is because a Flickr image 

usually contains multiple aesthlets, each of which is treated as 

a single training example. 

Starting from a large collection of aesthlet patches, we resize 

each of them into 64 × 64. Then, we randomly jitter each patch 

and flip it horizontally/vertically with probability 0.5 to 

improve the generalization, thereby a CNN is trained to 

represent each aesthlet. The architecture of the proposed CNN 

is elaborated in Fig. 3. The network contains four layers, i.e., 

convolution, max pooling, local response normalization and a 

fully-connected layer with 1024 hidden units. Afterward the 

network branches out one fully connected layer containing 128 
units to describe each visual attribute. The last two layers are 

split to form tailored features for each visual attribute, e.g., 

determining whether a Flickr image is “brightly-colored” or 

“well-structured” will require different visual features. 

Comparatively, the bottom layers are shared in order to: 1) 

reduce the number of parameters, and 2) take advantage of the 

common low-layer CNN structure. The parameters of our 

developed CNN are adjusted by cross-validation. Specifically, 

we first set the entire parameters, i.e., the input patch size, the 

number of convolutions, and the strides exactly the same as 

those in Krizhevsky et al. [24]’s work. Then, we tune one 

parameter while leaving the rest unchanged. We set the tuning 

parameter by maximizing the accuracy of aesthetic prediction 

on our compiled data set [35]. 

The entire CNN is trained based on the standard 

backpropagation [16] of the error, combined with a stochastic 

gradient decent as a loss function, i.e., the sum of the logloss of 

each aesthlet from a training image. The architecture of each 

CNN layer is shown in Fig. 3 and the implementation details 

are provided in [16]. To effectively handle noise, we employ 

aesthlet patches with high detection accuracies ( based on (12)) 
in the training stage. In our paper, we adopted a pretrained 

network (trained from an image set by combining three 

aesthetic images data set: CHUK [33], PNE [3], and AVA [2]) 

to increase the aesthetic prediction performance. We exactly 

following the training phase of the deep architecture in [60]. 

The neural network consists of five convolutional layers, each 

which are followed by max-pooling layers and three 

fullyconnected layers with a final 1000-way softmax. 

As shown in Fig. 4, each aesthlet describes the aesthetics 

 

Fig. 4. Examples comparing the roles of global composition and aesthlets in 

describing image aesthetics. The color-tagged regions indicate aesthlets 

acquired using the Flickr tags on the right. 

of a Flickr image in a single view. Therefore, we first utilize the 

developed CNN with respect to each aesthlet to generate 

representative aesthetic feature from a single view. Then, we 

combine the representations from multiple views to obtain the 

final aesthetic feature describing the entire image. More 

specifically, we extract the activations from the fc attr layer 

 
in Fig. 3, which is 1024-dimensional, to describe each aesthlet. 

Finally, we concatenate the activations of all the aesthlets into 

a long feature vector. It is worth emphasizing that, if an aesthlet 

does not activate for an image, we set its corresponding feature 

representation to zero. 

cloudy  
sky  
pines  
water  
reflection  
hills  
harmony  
balanced  
vast  
outdoor  
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As exemplified in Fig. 4, the aforementioned aesthlet-based 

CNN exploits regional visual features perceived by human 

beings. Nevertheless, global features also play an important 

role in describing image aesthetics. In general, however, 

aesthlet patches cannot cover the entire image region. Even 

worse, in some degenerated cases, a Flickr image may have 

very few detected aesthlets, e.g., abstract paintings without 

specific objects. To deal with this, we also incorporate a CNN 

whose inputs are patches covering the whole Flickr image, in 

order to capture the global aesthetics of Flickr images. 

Obviously, patches covering the whole image can be 
considered as special aesthlets. Therefore, the CNN is 

implemented using the same structure as that shown in Fig. 3. 

Lastly, we concatenate the feature vectors corresponding to 

all the aesthlets from each Flickr image into a 128 ∗ (D + 

1)dimensional feature vector, which reflects the aesthetic 

feature of the image both locally and globally. 

D. Applications of the Deep Aesthetic Features 

We employ the learned deep aesthetic features to enhance 

three key applications in multimedia: photo retargeting, 

aesthetics-based image classification and retrieval. 

Image retargeting: To demonstrate the descriptiveness 

 

Fig. 5. Image retargeting based on the GMM learned from our deep features 

of the deep aesthetic feature, we first apply it onto image 

retargeting. Specifically, we attempt to shrink a set of wide 

pictures (width/height=3/2) into a narrow one 

(width/height=2/3), where the aesthetically-pleasing elements 

can be optimally preserved. It is generally acknowledged that 

photo aesthetic assessment is a subjective task. Viewers with 

different backgrounds/experiences might have different 

opinions on the same picture. In order to reduce such bias, it is 

necessary to leverage the aesthetic experiences of multiple 

users. Herein, we learn the distribution of deep aesthetic 

features from a large collection of professional photographers. 

For image retargeting, a 5-component GMM is deployed to 

learn the distribution of deep features calculated from all the 

training aesthetically pleasing Flickr images: 

p(z|θ) =  αlN(z|πl,Σl), (13) 

where z denotes the deeply-learned features, and θ = {αl,πl,Σl} 

are the GMM parameters. 

Based on the GMM, we shrink a test image to make its deep 

feature most similar to those from the training images, as shown 

in Fig. 5. Particularly, we decompose an image into equal-sized 

grids. Afterward the horizontal (w.r.t. vertical) weight of grid ϕ 

is calculated as: 

wh(ϕ) = max p(z(ϕ)|θ), (14) 

where z(ϕ) denotes the deep aesthetic feature calculated by the 

shrunk image. After obtaining the horizontal (w.r.t. vertical) 

weight of each grid, a normalization step is carried out to make 

them sum to one: 

whϕi 

w¯ h(ϕi) = , (15) 

 

i   wh(ϕi) 

Given the size of the retargeted image W × H, the horizontal 

dimensionality of the i-th grid is shrunk to [W ·w¯ h(ϕi)], where 
[·] rounds a real number to the nearest integer. The shrinking 

operation along the vertical direction is similar to that along the 

horizontal direction. 

Aesthetics-based image classification/retrieval: The 
objective of these two tasks is to show the ability of our 

designed deep feature in discriminating different aesthetic 

levels. Specifically, for aesthetics-based image classification, 

each picture is described by our designed deep aesthetic feature, 

and then we train a probabilistic model (as illustrated in Fig. 6) 

to identify whether a picture is highly or low aesthetic. For 

aestheticsbased image retrieval, for each query picture, we first 

calculate the aesthetic score of each picture from the database 

using the probabilistic model. Afterward, we output pictures in 

the database whose aesthetic scores are close to that of the 

query image. 

The deep aesthetic feature reflects human aesthetic 

perception. They can be used to: 1) identify whether a Flickr 

image is highly or low aesthetic, and 2) aesthetics-based image 

retrieval. The key technique of these two applications is a 

probabilistic model. 

 

Fig. 3. A graphical illustration of the proposed deep architecture (CNP means convolution, normalization and pooling, and FC denotes the fully-connected 

layer. The (D + 1)-th visual attribute corresponds to the aesthlet describing an entire Flickr image.) 

GMM learned from deep features  
of well-aesthetic Flickr images 
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As shown in Fig. 6, given a set of training images and a test 

one, they are highly correlated through their deep aesthetic 

features z and z∗. The probabilistic model contains 

 

Fig. 6. A graphical illustration of the probabilistic model for image aesthetics 

quantification 

four layers. The first layer corresponds to all the training images 

I1, I1, · · · , IL which are aesthetically pleasing; the second layer 

denotes all the deep aesthetic features z learned from the 

training images; the third layer represents the deep aesthetic 

feature z∗ extracted from the test image; and the last layer 

denotes the test image I∗. 

Naturally, image aesthetics can be quantified as the amounts 

of deep aesthetic features that can be transferred from the 

training images into the test one. Therefore, the aesthetics of a 

test image can be quantified as: 

γ = p(I∗|I1, I1, · · · , IL) 

= p(I∗|z∗) · p(z∗|z) · p(z|I1, I2, · · · , IL), (16) 

where the probability p(z∗|z) is calculated as: p(z∗|z) = 

| is the deep aesthetic feature obtained from the 

test image. z j denotes the deep aesthetic feature calculated 

from the j-th training image. 

Following many algorithms [32], [35], we define the 

similarity between deep aesthetic features as a Gaussian kernel: 

p(z∗|z) ∗ exp . (17) 

 

After obtaining the aesthetic score γ of a test Flickr image. If γ > 

0.5, then this image is deemed as “aesthetically pleasing” and 

vice versa. Besides, for aesthetics-based image retrieval, we 
output images in the database whose aesthetic scores are similar 

to that of the query image. 

IV. Experimental Results and Analysis 

This section evaluates the performance of the proposed deep 

aesthetic feature based on four experiments. The first 

experiment visualizes and analyzes the effectiveness of the 

proposed aesthlet. Next, we compare the three applications 

based on our deeply-learned aesthetic feature with the stateof-

the-art. A step-by-step evaluation of the proposed method is 

presented subsequently. The last experiment evaluates the 

influence of different parameter settings. 

All the experiments were carried out on a personal computer 

equipped with an Intel i5-2520M CPU and 8GB RAM. The 

algorithm was implemented on the Matlab 2012 platform. 

A. Descriptiveness of the Proposed Aesthlet 

As the input to our deep architecture, aesthlets are image 
patches which are aesthetically pleasing and correspond to the 

textual attributes in each Flickr image. In this experiment, we 

first visualize the extracted aesthlets on a subset of our collected 

Flickr image [34] dataset. Then, a comprehensive user study 

based on 132 participants is conducted to evaluate the 

descriptiveness of our proposed aesthlets. 

Dataset Compilation: We spent significant time, effort, and 

resources to crawl photos from 35 well-known Flickr groups. 

For each group, we collected 70,000 ∗ 90,000 photos from 

nearly 7,400 Flickr users. The statistics of our dataset is shown 

in Fig. 7. For different Flickr groups, the numbers of photos 

belonging to each user varies from 10 to 220. We rank the Flickr 

images from each group based on the aesthetic measure by 

Zhang et al. [35]. The top 10% highly aesthetic photos 

constitute the image set. 

We set the number of textual attributes D to 10 and 

 

Fig. 8. Visualized aesthlets corresponding to each textual attribute 

calculate the corresponding aesthlets according to (12). The 

representative aesthlets describing each textural attribute is 

presented in Fig. 8, and the following observations can be made: 

• The learned textural attributes are representative to each 

Flickr image, as the corresponding visual attributes can 

accurately detect aesthetically pleasing regions in each 

image. Moreover, we notice that each Flickr image is 

associated with fewer than three textural attributes. This is 

achieved by the sparse LSA which can accelerate aesthetic 

modeling remarkably. 

Flickr Test image features from Deep 
training images 

Deep feature from 
the test image 

Training Flickr images  
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• Our graphlet-based weakly supervised learning algorithm 

effectively maps the textual attributes to the corresponding 

aesthelts. The is because graphelts can seamlessly capture 

objects with various shapes, and the weakly supervised 

algorithm can be solved analytically and efficiently. 

• We notice that aesthlets corresponding to the same textual 

attribute have highly similar semantics, such as “modern 

architecture”. Simultaneously, aesthlets corresponding to 

different textual attributes have distinguishable semantics, 

such as “scenery” and “beach”. This demonstrates the 

effectiveness of our aesthlets discovering mechanism, 

since the ratio between inter-attribute scatter and 

intraattribute scatter is prone to be maximized. 

As aesthlets reflect human aesthetic perception, it is infeasible 

to measure their descriptiveness quantitatively. In this 

experiment, we conduct a user study to evaluate them 

qualitatively. This strategy was also adopted in [35] for 

comparing the aesthetic quality of cropped photos. We invited 

132 participants and most of them are master/Phd students from 

computer sciences department. For each aesthlet, we asked 

each participant to indicate its preference and discrimination 

scores. The former reflects the attractiveness of the aesthlet, 

while the latter shows whether the aesthelt captures a unique 

style of aesthetics. We set the number of textual attributes D to 

10, 20, 40, 80 and 160 respectively. Then, the average 
preference and discrimination scores of aesthlets are calculated 

and reported in Table I. As can be seen, the preference scores 

under different values of D are above 0.9, which shows that the 

extracted aesthlets can accurately localize visually attractive 

regions. In contrast, the discrimination of aesthlet decreases 

dramatically when the value of D increases. The reason might 

be that the number of latent aesthetic types is much smaller than 

the number of textual attributes D. 

B. Comparative Study 

This subsection evaluates the three applications based on our 

deeply-learned aesthetic features: image retargeting, 

aesthetics-based image classification and retrieval. 

Image retargeting: Fig. 9 compares the proposed method 

(PM) against several representative state-of-the-art approaches, 

including seam carving (SC) [38] and its improved version 

(ISC) [37], optimized scale-and-sketch (OSS) [39] and 

saliencybased mesh parametrization (SMP) [40], and the patch-

based wrapping (PW) [41]. Resolution of the output images is 

fixed to 640 (width) by 960 (height). The experimental images 

are all from the RetargetMe dataset [42] 

In order to make the evaluation comprehensive, we adopt a 

paired comparison-based user study to evaluate the 

effectiveness of our proposed retargeting algorithm. In the 

paired comparison, each participant is presented with a pair of 

retargeted photos from two different approaches, and is 

required to indicate a preference as of which one they would 

choose for an iPhone wallpaper. In the user study, the 
participants are 40 amateur/professional photographers. As 

shown in Fig. 9 , compared with its counterparts, our approach 

well preserves the semantically important objects in the original 

photos, such as the warship and the bubble car. In contrast, the 

compared retargeting methods sometimes shrink the 

semantically important objects, such as the viewer, the boy and 

the football player. Even worse, SC and its variant ISC, as well 

as OSS sometimes result in visual distortions. 

In addition, we present an in-depth study of the user study on 

the 12 sets of retargeted photos displayed in Fig. 9, which is 

inspired by the comparative study of retargeting algorithms in 

[42]. Herein, µ denotes the average number of user scores, since 

the user study is carried out on a set of users. With reference 

means that we present each viewer with the original image and 

then ask him/her to score the lines/edges qualtiy (i.e., whether 

the lines or edges are nicely preserved in the retargeted image). 

As shown in Fig. 9, the average scores with original images are 
higher than those without original images. This is because, 

sometimes the original images are slightly distorted, and 

presenting the reference images can thus lead to a more fair 

evaluation. Meanwhile, without the original images, the scores 

are decided by how perfect the retargeted photos are. In this 

way, the scores are usually lower than those with references 

images. We invited 132 volunteers and most of them are 

Master/Phd students from computer sciences department. For 

each volunteer, we asked them two questions: 1) Whether each 

visualized aesthlet is preferred by him/her and further indicate 

its aesthetic level, which is a real number ranging from 0 to 1. 
0 indicates the lowest aesthetics while 1 denotes the highest 

aesthetics. 2) Whether each visualized aesthlet corresponding 

 

Fig. 7. The 35 Flickr groups (the horizontal axis) and the number of users (the vertical axis) in each group 
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to each textual attribute is distinguishable from those 

corresponding to the 

Fig. 9. Photos retargeted based on different algorithms 

rest textural attribute, and further quantify its discriminative 

level. 0 indicates the lowest discrimination while 1 denotes the 

highest discrimination. After collecting the preference and 
discrimination scores of all the aesthlets, we average them. 

Obviously, these two measures can show the effectiveness of 

our proposed method. First, we evaluate the degree of 

agreement when the volunteers vote for their favorite retargeted 

images, where a high disagreement reflects the difficulty in 

decision making. In our experiment, we use the coefficient of 

agreement defined by Kendall and Babington-Smith [62]. The 

coefficients over all the 12 retargeted images are shown in the 

last column of Fig. 10(a). Besides, we also collect the 

volunteers’ votes on each attribute of the four sets of retargeted 

photos. As shown from the second column to the seventh 

column in Fig. 10(a) , the volunteers are highly agreable on the 

face/people, the texture, and the symmetry because these 

attributes are well preserved by our retargeting model. Then, 

we present the votes on each attribute based on the 12 retargeted 

images. As shown in Fig. 10(b), the proposed method receives 

the most votes on all the attributes consistently. 

Aesthetics-based image classification: We compare our 

approach with five image aesthetics evaluation methods. The 

compared methods include three global feature-based 

approaches proposed by Dhar et al. [5], Luo et al. [6], and 

Marchesotti et al. [7] respectively, as well as two local patch 

integration-based methods proposed by Cheng et al. [36] 

Fig. 10. A detailed analysis of the comparative retargeted photos in Fig. 9 

and Nishiyama et al. [10] respectively, and the CNN-based 

aesthetic model developed by Lu et al.. In [22], Lu et al. 

proposed a novel framework to predict image style, aesthetics, 

and quality. The key technique is a deep network which learns 

the fine-grained details from multiple image patches, where 

multi-patch aggregation functions are learned as part of the 

neural network training. Our proposed aesthlet-based image 

aesthetic model is significantly different from Lu et al.’s 

method, which is conducted in an unsupervised way. In our 

approach, the image patches (i.e., aesthlets) are detected by 

weakly-supervised learning, wherein the weak labels are latent 

topics detected from the M-dimensional augmented frequency 

TABLE II 
Comparative aesthetic quality prediction accuracies 

TABLE I 
Average preference and discrimination scores of aesthlets by varying D 

 D = 5 D = 10 D = 20 D = 40 D = 80 D = 160 

Preference 0.9112 0.9434 0.9221 0.9121 0.9098 0.9002 
Discrimination 0.9004 0.9432 0.8956 0.8211 0.7676 0.6545 
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Dhar et al. 0.7386 0.6754 0.6435 
Luo et al. 0.8004 0.7213 0.6879 
Marchesotti et al. (FV-Color-SP) 0.8767 0.8114 0.7891 
Cheng et al. 0.8432 0.7754 0.8121 
Nishiyama et al. 0.7745 0.7341 0.7659 
Lu et al. 0.8043 0.8224 0.8213 
The proposed method 0.8879 0.8622 0.8465 

vector. 

In the comparative study, we observe that the source codes 

of the five baseline methods are unavailable and some 

experimental details are not provided. This makes it difficult to 

implement them exactly. In our implementation, we try to 

enhance some components of the baseline methods. The 

following settings are employed. For Dhar’s approach, we use 

the public codes from Li et al. [44] to extract the attributes from 

each photo. These attributes are combined with the lowlevel 

features proposed by Yeh et al. [51] to train the aesthetic 
classifier. For Luo et al.’s approach, not only the low-level and 

high-level features in their publications are implemented, but 

also the six global features from Getlter et al. [52]’s paper are 

utilized to strengthen the aesthetic prediction ability. For 

Marchesotti et al.’s approach, similar to the implementation of 

Luo et al.’s method, the six additional features are also adopted. 

For Cheng et al.’s algorithm, we implement it as a simplified 

version of our method, where only 2-sized graphlets are utilized 

for aesthetics measure. It is worth emphasizing that, for the 

probabilistic aesthetics evaluation models proposed by Cheng 

et al., Nishiyama et al. method, and us, if the aesthetic score is 

higher than 0.5, then this image is categorized as highly 

aesthetic, and vice versa. 

We present the aesthetics prediction accuracies on the CUHK, 

PNE and AVA in Table II. The image tags (e.g., 

“portraits”, “landscape”, and “clouds”) from the three datasets 

are assigned by ourselves. We hired 50 master/Phd students 

from our department to conduct the label annotation task. Each 

student spent 2 ∗ 4 hours to annotate 500 ∗ 700 images. All 

the images from the three data sets: the CHUK (12,000 images), 

the PNE (nearly 1700 images), and the AVA (about 25,000 
images) are annotated. As shown, our approach outperforms 

Marchesotti et al.’s approach by nearly 2%, and exceeds the 

rest of the compared methods by over 6%, The results 

demonstrate the superiority of our method. 

Aesthetics-guided image retrieval: We adopt the precision 
rate [54] to evaluate the performance of image retrieval based 

on our deeply-learned aesthetic features. Precision denotes the 

ratio of the number of relevant images (to the user) to the scope 

S, which is specified by the number of top-ranked images. In 

the experiment, we observe that it is sufficient to display 30 

retrieved images on a screen. Presenting more images may 

decrease their quality. Therefore, we set S = 30 throughout the 

experiment. The experimental dataset is our crawled largescale 

Flickr images from 35 groups. 

In the current image retrieval systems, typically the query 

image is not existed in the image database. To handle this, we 

randomly select 30 images from each Flickr group as the query 

ones, while the rest are treated as the database for retrieval. 

Notably, the precision rate is calculated by averaging the results 

over the 30 ∗ 35 = 1050 queries. 

To alleviate computational burden, we select the most 

informative images from the top 400 images. Relevance 

feedback is employed to bridge the semantic gap in the retrieval 

system. The relevance feedback system contains the following 

stages: 

i) users are shown 30 images which are considered as the most 

informative by SVMactive, where SVMactive denotes the active 

learning with support vector machine [53]; ii) users give 

relevance feedback; iii) (i) is repeated taking into account 

feedback from ii). Users are asked to make relevance 

judgements toward the queries results. Thereafter, the feedback 
information is utilized to re-rank the images in the database. 

SVMactive is utilized as the relevance feedback algorithm. It 

provides users with the most informative images with respect 

to the ranking function. 

We compare our deep features with popular aesthetic 
descriptors proposed by Marchesotti et al. [7], Cheng et al. [36] , 

Lu et al. [22], and Champbell et al. [23] respectively. As shown 

in Table III, in most of the 35 Flickr groups, our deeply-learned 

aesthetic feature achieves the highest precision. We also 

observe that, although Marchesotti et al.’s aesthetic feature is 

simple, its performance is competitive. 

C. Step-by-step Model Justification 

This experiment validates the effectiveness of the three key 

components in our deep aesthetic feature learning pipeline: 1) 

sparsity-constrained textual attributes discovery; 2) weakly 

supervised visual attributes localization; and 3) the 

aesthletnormalized CNN training. To empirically demonstrate 

the effectiveness and inseparability of these components, we 

replace each component by a functionally reduced counterpart 

and report the corresponding performance. We focus on the 

application of aesthetics-based image classification. 

Step 1: To demonstrate the usefulness of the sparse textual 

discovery, three experimental settings are utilized to weaken 

the adopted sparse LSA. First, we abandon the sparsity 

constraint in (4). Afterward, we replace the sparse LSA by the 

well-known popular discriminate analysis (LDA) and principle 

component analysis (PCA) respectively. We present the 
calculated image classification accuracies in Table IV. As can 

be seen, removing the sparsity constraint results in an accuracy 

decrement of 5.2% on average. Moreover, neither LDA nor 

PCA can optimally discover the latent textual attributes, since 

their performances lag behind ours by over 10 %. 

Step 2: To evaluate the effectiveness of the weakly 

supervised visual attributes learning, three experimental 

settings are adopted. We first replace the graphlet-based object 

detection by the objectness measure [56] and the part-based 

object detector [57] respectively. Then, we replace the 

superpixelbased spatial pyramid by the standard grid-based one. 

As shown in Table IV, on average, both the objectness and part-

based detector cause a nearly 1.2% accuracy decrement. 

Notably, the training process of them requires manually 

annotated windows, which might be computationally 

intractable. 

TABLE III 
Precision at top 30 returns of the five compared aesthetic features. The highest 

precision is in bold for each Flickr group. 

CUHK PNE A VA 
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Flickr group March. Cheng Lu Champ. Ours 
The light Fan. 0.34 0.33 0.43 0.31 0.53 

Film noir Mood 0.16 0.19 0.23 0.16 0.26 
Graphic designers 0.33 0.27 0.31 0.24 0.29 
Aesthetics failure 0.11 0.09 0.15 0.12 0.19 
Green is beautiful 0.14 0.13 0.16 0.12 0.22 

Colors 0.34 0.25 0.28 0.21 0.31 
Closer 0.43 0.41 0.45 0.36 0.51 

Less is more 0.26 0.22 0.25 0.21 0.34 
Field guide 0.34 0.31 0.33 0.28 0.41 
Night lights 0.16 0.14 0.16 0.13 0.19 

Black and white 0.21 0.18 0.19 0.15 0.18 
Stick figure 0.43 0.41 0.34 0.37 0.47 

Writing mach. 0.67 0.64 0.68 0.56 0.76 
Through glass 0.09 0.09 0.07 0.05 0.12 
Fog and rain 0.21 0.20 0.18 0.19 0.25 
Architecture 0.54 0.53 0.54 0.46 0.59 
Window seat 0.42 0.39 0.40 0.36 0.46 
Movement 0.35 0.31 0.33 0.31 0.37 

Orange and blue 0.18 0.16 0.18 0.13 0.21 
Jump Project 0.26 0.24 0.19 0.22 0.31 

What. the weather 0.14 0.12 0.11 0.10 0.17 
Grave 0.28 0.24 0.26 0.21 0.31 

Night images 0.14 0.16 0.12 0.11 0.19 
Tokyo photos 0.24 0.21 0.19 0.19 0.26 

Fruit&vet 0.65 0.62 0.61 0.62 0.69 
Double exposure 0.28 0.23 0.24 0.19 0.32 

Rural decay 0.25 0.23 0.24 0.19 0.28 
Decisive moment 0.24 0.22 0.19 0.17 0.27 

Urban nature 0.32 0.26 0.27 0.23 0.29 
Portraiture 0.54 0.46 0.48 0.47 0.59 

Recipes to share 0.26 0.22 0.24 0.21 0.31 
New York 0.27 0.23 0.25 0.21 0.31 

Toy cameras 0.37 0.31 0.31 0.30 0.42 
Twin lens 0.26 0.22 0.24 0.21 0.29 

Holgagraph 0.33 0.28 0.25 0.21 0.38 
Average 0.28 0.23 0.21 0.19 0.33 

Besides, grid-based spatial pyramid severely decreases the 

performance of aesthetics-based image classification. The 

reason is that, compared with the superpixel-based graphlets, 

gridbased graphlets cannot well fit the complicated object 

shapes. Step 3: We study the performance of our developed 

CNN. We abandon the fully-connected layer and observe that 

the aesthetics-based classification reduces by 4% on average. 

This result reflects the necessity to explore the common low-
layer CNN structure. Additionally, we abandon the global 

image visual attribute. On average, a decrement of nearly 7% 

is observed. This shows the importance of explicitly modeling 

global image configurations in aesthetic modeling. 

D. Parameter Analysis 

In this experiment, we evaluate the influence of important 

parameters in our proposed aesthetic model: 1) the number of 

textual attributes D, 2) the regularizer weight λ in sparse LSA, 

and 3) the structure of our designed CNN. 

First, we tune D from five to 80 with a step of five and report 

the performance of aesthetics-based image classification. As 

shown in Fig. 11, on all the three datasets, the best accuracies 

are achieved when D is 10 or 15. This indicates that there are 

about 10 ∗ 15 latent semantic categories from 

TABLE IV 
Performance decrement by varying the experimental settings in each 

component 

 

Step 1: Sparsity 5.4% 4.9% 5.2 % 
Step 1: Remove LSA 7.5% 6.7% 7.1 % 
Step 1: LDA 9.6% 10.9% 10.3 % 
Step 1: PCA 11.3% 9.5% 10.7 % 
Step 2: Objectness 1.3% 1.0% 1.1 % 
Step 2: Part-based 1.1% 1.1% 1.4 % 
Step 2: Superpixel 7.9% 8.4% 7.3 % 
Step 3: Fully-connected 4.3% 3.8% 4.0 % 
Step 3: Remove global descriptor 8.4% 6.2% 6.7 % 
Step 3: Only global descriptor 12.3% 14.1% 12.7 % 

 
The value of D 

Fig. 11. Aesthetics-based image classification accuracies by varying D on the 

CUHK, PNE and AVA datasets 

each of the three datasets. Second, we choose the value of λ 

from {0.5,0.2,0.1,0.05,0.001} and report the corresponding 

accuracies. As shown in Table V, we notice that the best 

accuracies on all the three datasets are achieved when λ = 0.1. 

Next, we testify the effectiveness of our developed five-layered 

CNN. We change our CNN to a four- and six-layered CNN 

respectively. It is noticeable that the aesthetics-based image 

classification accuracies are decreased by 4.3% and 6.7 % 

respectively. Actually, in our implementation, the five CNN 

layers are validated by cross validations. Lastly, we preserve 
only the global descriptor for image aesthetics prediction, 

where the CNN-based descriptor is removed. As shown in the 

last row of Table V, aesthetics-based image classification using 

only global descriptor results in an accuracy decrement of 13% 

on average. This observation clearly demonstrates the necessity 

of leveraging local descriptors in aesthetic modeling. 

TABLE V 
Aesthetics-based image classification accuracies under different values of λ 

Dataset λ = 0.5 λ = 0.2 λ = 0.1 λ = 0.05 λ = 0.001 

CUHK PNE A VA  
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CHUK 0.7612 0.8133 0.8879 0.6454 0.7687 
PNE 0.7453 0.8231 0.8622 0.7121 0.7453 
AVA 0.8113 0.8214 0.8465 0.7376 0.7786 

V. Conclusions and Future Work 

Perceptually aesthetic model is an important topic in 

multimedia [47], [48], [49], [50], [61], [62], [63] and computer 

vision [58], [59], [45], [46]. This paper proposes a CNN 

framework to hierarchically model how humans perceive 

aesthetically pleasing regions in each Flickr image. We first 

calculate a compact set of textual attributes from those tagged 

Flickr images using a sparsity-constrained LSA. Then, a 

weakly supervised learning algorithm projects the textual 
attributes onto the corresponding aesthlets in each image. These 

aesthlets capture visually attractive image regions and are 

deployed to train a CNN which mimicks human aesthetic 

perception. Based on the CNN, we represent each Flickr image 

by a set of deeply-learned aesthetic features, which can enhance 

a series of media applications, e.g., image retargeting, 

aesthetics-based image classification and retrieval. 

In the future, this work will be extended to a more 

comprehensive deep architecture that encodes auxiliary visual 

cues such as exposure, contrast and symmetry. 
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