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Evolutionary Multi-objective Blocking
Lot-streaming Flow Shop Scheduling with Machine

Breakdowns
Yuyan Han, Dunwei Gong, Member IEEE, Yaochu Jin, Fellow IEEE, and Quanke Pan

Abstract—In various flow shop scheduling problems, it is very
common that a machine suffers from breakdowns. Under these
situations, a robust and stable sub-optimal scheduling solution is
of much more practical interest than a global optimal solution
that is sensitive to environmental changes. However, blocking lot-
streaming flow shop scheduling problems with machine break-
downs have not yet been well studied up to date. This paper
presents, for the first time, a multi-objective formulation of
the above problem including robustness and stability criteria.
Based on this formulation, an evolutionary multi-objective robust
scheduling algorithm (REMO, for short) is suggested, in which
solutions obtained by a variant of single-objective heuristic
algorithm are incorporated in population initialization and two
novel crossover operators are proposed to take advantage of non-
dominated solutions. In addition, a rescheduling strategy based
on the local search is introduced to further reduce the influence
resulting from machine breakdowns.The proposed algorithm is
applied to 22 test sets, and compared with the state-of-the-
art algorithms without machine breakdowns. Our empirical
results demonstrate that the proposed algorithm can effectively
tackle blocking lot-streaming flow shop scheduling problems in
the presence of machine breakdowns by obtaining scheduling
strategies that are robust and stable.

Index Terms—Machine breakdown, scheduling, robustness and
stability criteria, genetic algorithms, rescheduling strategy.

I. INTRODUCTION

VARIOUS real-world problems can be formulated as flow
shop scheduling problems, among which lot-streaming

flow shop (LSFS) problems are very typical ones. In these
problems, a job is split into several sublots, with each being
transferred to the downstream machine after it is completed
on the current one [1]. Dependent on whether an intermedi-
ate buffer exists or not, LSFS scheduling problems can be
classified into two categories: one with infinite buffers and
the other with finite buffers. The former does not cause job
blocking since it has enough intermediate buffers to store those
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completed jobs, whereas the latter only maintains a limited
capacity of in-process inventories. LSFS scheduling problems
with no intermediate buffers can be seen as a special case of
the latter. In the literature, flow shop scheduling problems with
no intermediate buffers are known as blocking flow shop (BFS)
scheduling problems [2]. Correspondingly, LSFS scheduling
problems with no intermediate buffers are called blocking
LSFS problems (BLSFS), where a sublot is kept blocked on
the current machine until the downstream one is available.

BLSFS scheduling problems are commonly seen in real-
world applications, such as in poultry industry [3], serial man-
ufacturing processes [4], and iron and steel industry [5]. How-
ever, they are very difficult to solve effectively due to the large
number of constraints and high complexity. Apart from the
above-mentioned difficulties, real-world BLSFS scheduling
problems often suffer from various disruptions and unforeseen
events. Generally, uncertainties in BLSFS scheduling problems
can be classified into two categories [6]: resource-related
and job-related factors. The former mainly refers to machine
breakdowns and material shortage, whereas the latter includes
the arrival of new jobs, and changes in process time. Although
various efforts have been made on solving LSFS scheduling
problems with single or multiple objectives, most of them do
not take uncertainty into account. It is, however, extremely
important to guarantee that an optimal schedule is relatively
insensitive to unforeseen machine breakdowns. Therefore, it
is high time that efforts be dedicated to the multi-objective
BLSFS scheduling problem with machine breakdowns. This
study has the following twofold novelties.

In case that the considered scheduling problem is subject
to uncertainties, robustness and stability are two common
objectives to reduce the effects of the uncertainties. This
study formulates, for the first time, a multi-objective BLSFS
scheduling problem that takes robustness and stability to such
uncertainties as machine breakdowns into account. The formu-
lation of the above scheduling problem can better reflect real-
world applications, and thus, is of more practical significance,
compared to those in previous work.

Following that, an evolutionary multi-objective robust
scheduling algorithm is then proposed to solve the formulated
multi-objective scheduling problem. The proposed evolution-
ary algorithm has the following trifold features. The first is
that the population is initialized with solutions obtained by
a variant of a single-objective heuristic, vNEH. The second
is that two novel crossover operators are designed to take
advantage of non-dominated solutions. Third, a rescheduling
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strategy based on the local search is presented to further reduce
the negative influence resulted from machine breakdowns. The
performances of the proposed initialization, crossover, and
rescheduling strategies are empirically evaluated, respective-
ly. The experimental results demonstrate that the proposed
strategies can effectively tackle the multi-objective BLSFS
scheduling problem in the presence of machine breakdowns
by obtaining robust and stable scheduling strategies.

The rest of this paper is organized as follows. Section
II provides a brief overview of related works. Section III
formulates the BLSFS scheduling problem with the makespan
and the tardiness time being the two objectives, and its non-
deterministic version including the robustness and stability
criteria. The proposed optimization algorithm is described in
Section IV. Empirical results are presented and discussed in
Section V. Finally, Section VI concludes the paper.

II. LITERATURE REVIEW

Generally, methods for solving a flow shop scheduling
problems in the presence of uncertainties can be divided into
the two categories. The first category converts the problem
with uncertainties into a deterministic one by constructing
a robust mathematical model or surrogate measures using
discrete or continuous scenario sets with intervals with known
and specific terminals, and then solves it using existing algo-
rithms [7]. The second category modifies an existing schedule
strategy in response to the uncertainties, i.e. the rescheduling
methods[8].

In the real-world, the processing time of a job may be highly
uncertain. Up to date, there are three types of methods to
tackle the uncertainty of processing time in the flow shop
scheduling. The first is to model the uncertain processing
time using a gamma distribution, with gamma being the
expected processing time[9]. The second is to describe the
uncertain processing time using an interval number, with the
actual processing time being any value in the range of the
interval[10]. The third method introduces a fuzzy number to
capture the uncertainty in processing time. Accordingly, the
objectives of makespan and (or) the total weighted completion
time are (is) also a fuzzy number(s)[11].

In addition uncertainty in processing time, machine break-
down has also been considered in the single-machine schedul-
ing problems. Both scenario-based robustness and slack-based
surrogate measures are also employed to represent the uncer-
tainties of an optimization problem. Liu et al. [12] proposed
a surrogate measure based on the robustness and stability
objectives, and adopted a two-stage multi-population genetic
algorithm to optimize the above criteria. Their computational
results show that the proposed method successfully reduced
the sensitivity of the obtained schedule strategy to machine
breakdown. Chaari et al. [13] and Goren et al. [7] developed
a scenario-based and a slack-based methods, respectively,
to measure robustness of a scheduling strategy. However,
the robustness measures focus only on the structure of a
scheduling strategy, and neglect the uncertainties involved in a
scheduling problem. To overcome the above drawbacks, Xiong
et al. [14] developed two new surrogate measures by taking

the location of the float time and machine breakdown as well
as the probability of the machine breakdown into account.

Rescheduling strategies have also been adopted to deal with
uncertainties in the flow shop scheduling, which can be further
categorized into two approaches. The first approach includes
either a right-shift heuristic that shifts the remaining operation
schedules forwards in case of a machine breakdown and/or
a partial or a complete rescheduling. In partial rescheduling,
rescheduling is conducted only on the operation schedule(s) in
failure, whereas, in complete rescheduling, a completely new
schedule strategy will be generated. Compared with partial
rescheduling, complete rescheduling can theoretically obtain
a new optimal solution, although in practice, such optimal
solutions are hardly achievable, while complete rescheduling
requires prohibitive computation time. Moreover, complete
rescheduling often results in instability, which means that there
is a lack of continuity in a detailed schedule, often causing
additional production cost [15].

The second approach includes dynamic, robust and
predictive-reactive rescheduling methods. Rahman et al. [16]
proposed a proactive-reactive method based on a two-step
procedure. In the first step, a robust optimization approach
is adopted to generate an initial robust solution proactively
against the uncertainty in processing time. In the second step,
a reactive approach is applied to yield the best modified
sequence so as to deal with unexpected event(s). As flow
shop scheduling problems with machine breakdown remain
a challenge, Wang et al. [17] developed a decomposition-
based method to decompose all machines into several clusters,
using a neighboring K-means clustering without predefining
the number of clusters. To reduce the possibility of frequent
machine breakdowns, Liao and Chen [18] designed a heuristic
to maximize makespan at the cost of increasing either the total
setup or the total idle time, based on the assumption that long
idle time between machines might significantly reduce the rate
of machine breakdowns.

Although the above-mentioned methods have been success-
fully applied to solve the flow shop scheduling problems in
the presence of uncertainties such as changes in processing
time and machine breakdowns, no multi-objective approach
to BLSFS with machine breakdowns has been reported. The
multi-objective formulation of BLSFS with machine break-
down suggested in this work is closer to the real world,
and thus, is of more practical significance, compared to the
problem formulations found in the literature.

III. PROBLEM FORMULATION

The BLSFS scheduling problem with and without machine
breakdown will be formally defined in this section. Related
notations are given as follows.

m the total number of machines, with each being indexed
by i = 1, 2, ...,m;

n the total number of jobs, with each being indexed by
j = 1, 2, ..., n ;
π(j) the j-th job of sequence π ;
wπ(j) the total number of sublots belonging to job π(j) ;

e the e-th sublot, with each being indexed by i =
1, 2, ..., wπ(j) ;
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pπ(j),i the processing time of job j on machine i;
π(j), i, e the e-th sublot of the j-th job on the i-th machine;
Cπ(j),i,e completion time of sublot e belonging to job j on

machine i;
Sπ(j),i,e the start time of sublot e belonging to job j on

machine i;
dj the due date of job j;
BTi the random breakdown time of machine i;
RTi the random repair time of machine i;
f

′
the makespan criterion;

f
′′

the tardiness time criterion;
f1 the robustness criterion related to makespan;
f2 the robustness criterion related to the tardiness time;
f3 the stability criterion.

A. Formulation of the BLSFS scheduling problem without
machine breakdown

In BLSFS, blocking, in this paper, refers to the situation
where no buffers exist for any adjacent machines, which is
considered as an additional constraint to incorporate the pro-
cess of calculating the objectives. Consider a BLSFS schedul-
ing problem with n jobs and m machines, in which these
jobs are represented by π(1), π(2), ..., π(n), and the sequence
formed by these jobs is denoted as π = {π(1), π(2), ..., π(n)}.
Each job is processed on each machine in the same order and
can be split into several sublots of an equal size, i.e., each
sub-lot of a job has different processing times on different
machines and has the same processing time on the same
machines. In addition, we assume the following:

• A job can be processed on machine i only after all sublots
of its previous job have been completed on this machine;

• At any time, each machine can process at most one sublot,
and each sublot can be processed on at most one machine;

• All sublots of the same job should be continuously
processed and no buffers exist for any machine;

• Both the setup time of each job and the transportation
time of each sublot are included in their processing time.

For a BLSFS scheduling problem, each sublot of a job
can be processed by at most one machine at the same
time, although there may be a number of repeatable sublots.
Additionally, the blocking constraint between adjacent sublots
on a machine is considered. As a result, it is unpractical to
regard all the sublots of a job as a whole, and impossible to
achieve the values of the objectives using only one equation.
Thus, for the BLSFS scheduling problem, each sublot must be
addressed separately in the problem formulation.

According to the above assumptions, the BLSFS scheduling
problem without machine breakdown can be formulated as
follows.

{
Sπ(1),1,1 = 0
Cπ(1),1,1 = Sπ(1),1,1 + pπ(1),1

(1)

{
Sπ(1),i,1 = Cπ(1),i−1,1

Cπ(1),i,1 = Sπ(1),i,1 + pπ(1),i
i = 2, 3, ...m

(2)

{
Sπ(j),1,1 = max{Cπ(j−1),1,wπ(j−1)

, Sπ(j−1),2,wπ(j−1)
}

Cπ(j),1,1 = Sπ(j),1,1 + pπ(j),1
j = 2, 3, ..., n

(3)

{
Sπ(j),i,1 = max{Cπ(j),i−1,1, Sπ(j−1),i+1,wπ(j−1)

}
Cπ(j),i,1 = Sπ(j),i,1 + pπ(j),i

i = 2, 3, ...,m− 1
j = 2, 3, ..., n

(4)

{
Sπ(j),m,1 = max{Cπ(j),m−1,1, Cπ(j−1),m,wπ(j−1)

}
Cπ(j),m,1 = Sπ(j),m,1 + pπ(j),m

j = 1, 2, 3, ..., n
(5)

{
Sπ(j),1,e = max{Cπ(j),1,e−1, Sπ(j),2,e−1}
Cπ(j),1,e = Sπ(j),1,e + pπ(j),1

e = 2, 3, ..., wπ(j)

j = 1, 2, 3, ..., n

(6)

{
Sπ(j),i,e = max{Cπ(j),i−1,e, Sπ(j),i+1,e−1}
Cπ(j),i,e = Sπ(j),i,e + pπ(j),i

e = 2, 3, ..., wπ(j)

i = 2, 3, ...,m− 1
j = 1, 2, 3, ..., n

(7)

{
Sπ(j),m,e = max{Cπ(j),m−1,e, Cπ(j),m,e−1}
Cπ(j),m,e = Sπ(j),m,e + pπ(j),m

e = 2, 3, ..., wπ(j)

j = 1, 2, 3, ..., n

(8)

Equation (1) is utilized to calculate the completion time of
the first sublot of the first job on the first machine, which is
different from Equation (2), where the start time of π(1), 1, 1
is equal to zero. The calculations for the first sublots of the
following jobs in the sequence on the first machine is described
in Equation (3). When calculating the start time, we take into
account the completion time of the last sublot of the previous
job on the current machine and the start time of the last sublot
of the previous job on the downstream machine. The related
time of the first sublots of the following jobs on the (m-1)
machines is calculated in Equation (4), which includes the
completion time of the first sublot of the current job on the
previous machine and the start time of the last sublot of the
previous job on the downstream machine. Equation (5) defines
the completion time of the first sublot of a job on the last
machine. Equations (6)-(8) calculate the start and complete
time of the rest sublots of a job on different machines, which
guarantees that the sublots of the same job are continuously
processed. During the recursive calculations, the completion
time of the jobs on a machine is calculated sequentially from
the first to the last job.

Given that the start time of the first sublot of the first job
on the first machine is equal to zero, i.e., Sπ(1),1,1 = 0,
the two objectives of the BLSFS scheduling problem without
machine breakdown can be calculated as follows: To clearly
understand a BLSFS scheduling problem, an example for the
decoding procedure is given below. The job sequence based
representation is adopted in the proposed algorithm, which is
easy to decode into a schedule. Assume that there are two
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jobs and two machines, where both jobs 1 and 2 contain 2
sublots. The processing time of each sublot is: pπ(1),1 = 1,
pπ(1),2 = 2, pπ(2),1 = 4, pπ(2),2 = 2.

Let π = (1, 2) and Sπ(1),1,1 = 0. The objective value, i.e.,
makespan, is calculated as follows:

(a) Sπ(1),1,1 = 0, Cπ(1),1,1 = Sπ(1),1,1 + pπ(1),1 = 1;
(b) Sπ(1),2,1 = Cπ(1),1,1 = 1, Cπ(1),2,1 = Sπ(1),2,1 +

pπ(1),2 = 3;
(c) Sπ(1),1,2 = max(Cπ(1),1,1, Sπ(1),2,1) = 1, Cπ(1),1,2 =

Sπ(1),1,2 + pπ(1),1 = 2;
(d) Sπ(1),2,2 = max(Cπ(1),1,2, Cπ(1),2,1) = 3, Cπ(1),2,2 =

Sπ(1),2,2 + pπ(1),2 = 5;
(e) Sπ(2),1,1 = max(Cπ(1),1,2, Sπ(1),2,2) = 3, Cπ(2),1,1 =

Sπ(2),1,1 + pπ(2),1 = 7;
(f) Sπ(2),2,1 = max(Cπ(2),1,1, Cπ(1),2,2) = 5, Cπ(2),2,1 =

Sπ(2),2,1 + pπ(2),2 = 7;
(g) Sπ(2),1,2 = max(Cπ(2),1,1, Sπ(2),2,1) = 7, Cπ(2),1,2 =

Sπ(1),1,2 + pπ(2),1 = 11;
(h) Sπ(2),2,2 = max(Cπ(2),1,2, Cπ(2),2,1) = 11, Cπ(2),2,2 =

Sπ(2),2,2 + pπ(2),2 = 13;
The above makespan of permutation π is Cπ(2),2,2 = 13.

min f ′ = Cπ(n),m,wπ(n)
(9)

min f ′′ =

n∑
j=1

max{0, Cπ(j),m,wπ(j)
− dj} (10)

B. Formulation of the BLSFS scheduling problem with ma-
chine breakdown

In the following, the situation in which a machine breaks
down is investigated. For simplicity, the following additional
assumptions are made for the BLSFS scheduling problems
with machine breakdowns.

• Any machine can suffer from breakdowns during the
production process, and the number of each machine’s
breakdown is equal to β;

• When a machine breaks down, the job being processed
on the machine will be stopped;

• Each sublot that suffers from a disruption is required to
be reworked after the repair is finished;

• Except for machine breakdowns, no other factors that
disturb a job’s processing are considered.

To characterize a machine breakdown, three aspects need to
be taken into account [19], i.e., which machine breaks down,
when the machine breaks down (i.e., machine breakdown
time), and when the broken-down machine will be operational
again (i.e., machine repair time). In real-world scheduling, it
is very difficult, if not impossible, to build an exact probability
model of the machine breakdown. In this study, a unifor-
m distribution function is adopted to simulate the machine
breakdown time and repair time under the assumption that the
probability of machine breakdown is equal at any time.

The expected value of the machine breakdown time is
generated using the following discrete uniform distribution.

E(BTi) = rand()%Ti + pπ(j),i × i
i = 1, 2, ...,m
j = 1, 2, ..., n

(11)

E(Ti) =

n∑
j=1

pπ(j),i × wπ(j) i = 1, 2, ...,m (12)

In Eq.(11), rand() is a function that generates a random integer
within the range of [0,MAXINT], where MAXINT is the
maximum integer that can be generated by a computer. Ti

represents the total processing time on the i-th machine for all
jobs. rand()%Ti denotes the remainder when rand() is divid-
ed by Ti. Equation (11) indicates that the machine breakdown
time ranges from pπ(j),i to makespan, and the probability of
machine breakdown observes a uniform distribution.

The expected value of the repair time is simulated using the
following discrete uniform distribution.

E(RTi) = rand()%31 + 1 i = 1, 2, ...,m (13)

Equation (13) is employed to specify the repair time. For the
scheduling problem considered in this paper, we assume that
the repair operation can be completed within the processing
time of a job on a machine. For the BLSFS scheduling
problem, the processing time of a job is generated using
Equation (13) as suggested in [20], where 31 is the upper
bound of the processing time of a job.

Assuming that a job can be resumed when a broken-down
machine is repaired, the expected completion time of the
job is related not only to the processing time and the job
sequence, but also to the machine breakdown time and the
repair time. So the expected start time of this job is not
Sπ(j),i,e as described in Equations (2-8); instead, it is the
sum of the breakdown and the repair time, i.e., E(Sπ(j),i,e) =
max{E(RTi) + E(BTi), Cπ(j),i−1,e, Sπ(j),i,e−1} .

Fig. 1 illustrates the process of BLSFS without (with)
machine breakdown with an instance having two jobs and three
machines. Suppose that π(1) and π(2) each contain 2 sub-lots.
When there exist no machine breakdowns, the completion time
is equal to t1, as shown in Fig.1(a). If there is one machine
breakdown, e.g., machine M1, at this time, π(2), 1, 1 requires
to be reworked after the repair is finished, which delays the
start time of π(2), 1, 2 and increases the completion time from
t1 to t2, see in Fig. 1(b). By contrast, when two machines,
e.g., machine M1 and M3, break down, the completion time
increases to t3. The example in Fig. 1 indicates that the number
of machine breakdowns will heavily influence the completion
time.

Most existing research has focused on optimizing one
particular performance measure, for instance, either makespan,
or total flow time, earliness time, or tardiness time[21], when
the flow shop problem is supposed to be deterministic. In case
the scheduling problem is subject to uncertainties, robustness
and stability are two common objectives to reduce the effects
of the uncertainty [7], [16], which has been demonstrated to
be effective [22]. The robustness measure is to minimize the
difference between the objective functions before and after a
machine breakdown, and the stability measure aims to reduce
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Fig. 1. Gantt of BLSFS without (with) machine breakdown

the discrepancy between the modified schedule strategy and
the initial one.

In this study, for handling machine breakdowns, robustness
based on makespan and the tardiness time and stability are
also taken into account in addition to makespan and tardiness
time when formulating the scheduling problem. Specifically,
the robustness objectives based on makespan and the tardiness
time, as well as the stability objective can be represented as
follows.

min f1 = E(Cπ′(n),m,wπ′(n)
)− E(Cπ(n),m,wπ(n)

) (14)

min f2(π) =
1

n
(

n∑
j=1

max{0, Cπ′(j),m,wπ(j)
− dj} (15)

−
n∑

j=1

max{0, Cπ(j),m,wπ(j)
− dj})

min f3 =

m∑
i=1

n∑
j=1

|E(Cπ′(j),i,wπ′(j)
)− E(Cπ(j),i,wπ(j)

)|

n×m
(16)

where π refers to the original job sequence, and π′ denotes
the modified sequence after implementing the rescheduling
strategy, which will be described in detail in Section 4.3.
f1 and f2 are the robustness objective based on makespan
and the tardiness time, respectively. As shown in Fig.1, a
small f1 indicates a small difference between the makespan
objectives before and after the machine breakdowns. Similarly,
the smaller f2 is, the less the customers will be influenced
by the machine breakdowns. In addition, a small f3 means
a small modification in the scheduling, typically implying a
smaller cost resulted from the machine breakdown.

IV. THE PROPOSED ALGORITHM

The proposed evolutionary optimization algorithm is pre-
sented in Algorithm 1, where the maximal elapsed CPU time
is regarded as the stopping criterion considered in the proposed
algorithm. The parameter, pc, is the crossover probability, r is
a random number in the range of [0,1] and rand() is a function
that generates a random integer in the range of [0, MAXINT].
The proposed algorithm is composed of the following three
stages. In the first stage, an initial population is generated
using solutions obtained by a slightly modified version of the
single-objective heuristic algorithm proposed in [23] that min-
imizes either the makespan or the tardiness time for BLSFS
problems without considering machine breakdown, referring
to line 1. In the second stage, the population is evolved using
an evolutionary multi-objective algorithm to simultaneously
optimize the robustness and stability criteria of the BLSFS
scheduling problem in the presence of machine breakdowns,
seeing lines 3-11. The multi-objective evolutionary algorithm
is characterized by two new crossover operators in addition
to one insertion operator and a swap operator. Finally, a
rescheduling strategy is adopted to further reduce the influence
resulting from machine breakdowns, showing in lines 12-14.
The details of the algorithm will be elaborated in following
sections.

A. Population Initialization

The heuristic algorithm proposed by [23], NEH for short, is
employed to generate an initial sequence (solution). The main
idea is that jobs with a large total processing time (i.e., the sum
of the processing time on all machines) should be scheduled
as early as possible. Based on the above sequence, a new
sequence is produced by performing n(n+1)/2− 1 insertion
operators to optimize one objective. As NEH is meant for
single-objective optimization, a variant of NEH, termed vNEH
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Algorithm 1 The framework of the proposed algorithm
Input: Initialize the parameters used in the proposed algorith-

m
Output: the non-dominated solution set

1: Initialize the population using a variant of NEH.
2: while the stopping criterion is not met do
3: if r < pc then
4: if rand()%2 then
5: Implement the improved similar job order

crossover operator;
6: else
7: Implement the improved similar block order

crossover.
8: end if
9: else

10: Implement the mutation operator.
11: end if
12: if machine breakdowns occur then
13: Carry out the rescheduling strategy.
14: end if
15: Execute the selection and archive updating operators
16: end while

has been suggested to generate solutions for initializing the
population. To promote the diversity of the initial population,
random solution(s) within the neighborhood of the solutions
obtained by vNEH will also be generated. The details of vNEH
are presented in Algorithm 2.

Note again that vNEH solved the BLSFS scheduling prob-
lem by minimizing either the makespan or the tardiness time
without considering machine breakdowns. Thus, the initial
population will contain at least one solution that minimizes
the makespan and one solution that minimizes the tardiness
time, which can be used to calculate the robustness and sta-
bility criteria described in Eqs.(14-16). This initial population
will be further evolved in the second stage, where machine
breakdowns will be considered.

B. Crossover and mutation operators

Crossover and mutation operators play an important role
in evolutionary algorithms, which generate new candidate so-
lutions for selection. Such operators become more critical for
search performance in scheduling than in continuous optimiza-
tion. Consequently, a large body of research in evolutionary
scheduling has been dedicated to designing problem-specific
crossover and mutation operators to enhance the performance
of evolutionary algorithms. However, not many variation oper-
ators have been proposed for solving multi-objective schedul-
ing problems, where valuable information contained in the
non-dominated solutions can be taken advantage of.

In the following, we present two new crossover operators
together with two mutation operators.

1) Crossover operators: A variety of crossover operators
have been developed, such as similar job order crossover
(SJOX), similar block order crossover (SBOX)[24], order
crossover (OX) [25], one-point order crossover (OP), two-
point order crossover (TP) [26], and generalized position

Algorithm 2 vNEH heuristic
Input: the number of jobs, n
Output: num initial solutions

1: let π = ϕ,π∗ = ϕ,and k = 0;
2: Step 1: Generate a seed sequence, π =
{π(1), π(2), ..., π(n)} , by sorting jobs according to
their total processing time in a descending order;

3: Step 2: Pick the first two jobs of π, form two
subsequences,π(1), π(2) and π(2), π(1), evaluate the per-
formance of the subsequences, and select the one with the
local minimal value of f ′ as the current sequence, π∗;

4: Step 3: let k = 3. carry out the insertion operator below:
5: while k < n do
6: Pick the k-th job of π , obtain k subsequences by inserting

it into k possible positions of the current sequence, π∗, and
select the subsequence with the local minimal f ′ value as
the current sequence;

7: k = k + 1;
8: end while
9: /*There is no following statements for NEH.*/

10: Insert π(n) into the current sequence π∗ at n possible
positions, simultaneously evaluate two objectives, f ′ and
f ′′. Denote the n complete sequences as T S;

11: Set C = ∅ and T S ′ ← T S;
12: while |C| < num do
13: Seek non-dominated solutions in T S ′ → D based on

the Pareto dominance relation;
14: Set k = |D|.
15: if k ≥ (num− |C|) then
16: Randomly select num − |C| non-dominated solu-

tion(s) from D → E .
17: C = C

∪
E .

18: else
19: Set C = C

∪
D and T S ′ = T S ′\D.

20: end if
21: end while
22: Output num initial solutions.

crossover (GPX) [27]. Previous studies have shown that SJOX
and SBOX outperform the others. In addition, [28] proposed a
new crossover operator based on SJOX, called artificial chro-
mosome SJOX (ACJOX), which can produce more promising
candidate solutions than SJOX [28].

Empirical results have shown that both SBOX and ACJOX
operators are superior to most of their counterparts [28].
However, a common weakness of the SBOX and ACJOX
operators is that they use two parents only to generate offspring
individuals. In addition, SBOX does not take identical gene
blocks in the parents at different loci. As they both were
designed for single-objective optimization, neither SBOX nor
ACJOX takes non-dominated solutions into account. Due to
the above reasons, two enhanced crossover operators based
on SBOX and ACJOX, respectively, are proposed for the
multi-objective BLSFS scheduling problem, which are named
improved SBOX (ISBOX) and improved SJOX (ISJOX), re-
spectively.

ISBOX consists of the following steps. First, a temporary
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set composed of a number of gene blocks (containing at least
two genes) that appear frequently in the chromosome of all
non-dominated solutions achieved so far. Then, two parents are
randomly selected from the parent population. Then, randomly
select one of the parents and identify if there are common gene
blocks between the parent and the temporary set. If yes, put the
identical gene blocks into its offspring at the same locus (loci)
as in the parent. The genes of the offspring in the rest loci are
filled up based on the OP crossover using the two parents.
The second offspring individual is generated in a similar way
using the parent and temporary set.

It is worth noting that ISBOX considers the common gene
blocks between the temporary set and the parents at any loci,
avoiding loss of promising gene blocks in the parents. It should
also be pointed out that there exists a specific situation where
no common gene block between the temporary set and the
parents is identified. In this situation, ISBOX becomes the
traditional OP crossover operator.

In the following, we present an example to illustrate how
ISBOX works. Suppose there are 5 non-dominated solutions in
the current archive, denoted by πi, i = 1, 2, 3, 4, 5 , with each
containing 7 jobs. Their expressions are given as follows.

π1 = {2, 6, 3, 1, 4, 5, 7};
π2 = {3, 5, 1, 6, 7, 2, 4};
π3 = {4, 5, 2, 1, 7, 3, 6};
π4 = {4, 1, 7, 2, 6, 3, 5};
π5 = {4, 5, 2, 6, 3, 7, 1};

To perform the ISBOX crossover, a temporary set is gener-
ated using the following three steps.

Step 1: Count the times that job j (j = 1, 2, ..., 7) appears
immediately after job i (i = 1, 2, ..., 7) in all non-dominated
solutions. In this example, the times that jobs 1, 2, 3, 4, 5,
6, and 7 appears immediately after jobs 1 are 0, 0, 0, 1, 0, 1
and 2, respectively. Similarly, the times that jobs 1, 2, 3, 4, 5,
6, and 7 appear immediately after job i (i = 2, ..., 7) can be
found as follows:

job 2: 1, 0, 0, 1, 0, 3, and 0;
job 3: 1, 0, 0, 0, 2, 1, and 1;
job 4: 1, 0, 0, 0, 3, 0, and 0;
job 5: 1, 2, 0, 0, 0, 0, and 1;
job 6: 0, 0, 3, 0, 0, 0, and 1;
job 7: 1, 2, 1, 0, 0, 0, and 0.

Step 2: Put gene blocks i,j that job j appears immediately
after job i with the highest into the temporary set.

Step 3: Repeat Step 2 to obtain a complete temporary set,
{{1,7}, {2,6}, {3,5}, {4,5}, {5,2}, {6,3}, {7,2}}.

Following this, randomly select two parents from the pop-
ulation, e.g., parent1 = {1, 2, 6, 4, 5, 3, 7} and parent2 =
{5, 2, 7, 1, 4, 3, 6}. Find out the common gene blocks between
parent1 and the temporary set, i.e., {2,6} and {4,5} and put
them into offspring1 at loci 2, 3, 4, and 5.

To obtain the genes for the unfilled loci of offspring1,
randomly choose a crossover point (in this example between
gene 4 and gene 5) and perform OP crossover on parents1
and 2. This results in offspring1 to be {1,2,6,4,5,3,6}. Note
however that the obtained offspring is infeasible, as it contains
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Fig. 2. Process of performing ISBOX

job 6 twice and job 7 is not included. Therefore, this offspring
is repaired by replacing job 6 on locus 7 with job 7 (note
that job 6 at locus 2 is part of a gene block and should not
be changed). Because job 7 appears before job 3 in parent2,
we exchange the positions of jobs 3 and 7 to preserve the
gene block in parent2. The above steps result in offspring1
{1,2,6,4,5,7,3}. Similarly, offspring2 {5,2,7,1,4,3,6} will be
generated. The whole process of generating offspring1 and
2 is illustrated in Fig. 2.

The second new crossover operator, ISOJX, can be de-
scribed by the following steps. First, generate a temporary
individual based on all non-dominated solutions in the current
archive. Then randomly select two parents from the population
and compare the genes of each parent with those of the
temporary individual at the same locus. If they are the same,
put the gene in the same locus of its offspring. Similar
to ISBOX, the genes in the rest loci of the offspring are
generated by performing OP between the two parents. The
second offspring is created in the same way.

In the following, we use the same example used above to
exemplify the main steps of ISOJX.

First, a temporary individual is generated according to the
following three steps.

Step 1: For all non-dominated solutions, count the times
that job i appears at position k (k = 1, 2, ..., 7). For example,
the times that job 1 appears at loci 1, 2, 3, 4, 5, 6, and 7 is
0, 1, 1, 2, 0, 0, and 1, respectively. Similarly, the times that
jobs 2, 3, 4, 5, 6 and 7 appear at loci 1, 2, 3, 4, 5, 6, and 7
can be given as follows:

job 2: 1, 0, 2, 1, 0, 1, and 0;
job 3: 1, 0, 1, 0, 1, 2, and 0;
job 4: 3, 0, 0, 0, 1, 0, and 1;
job 5: 0, 3, 0, 0, 0, 1, and 1;
job 6: 0, 1, 0, 2, 1, 0, and 1;
job 7: 0, 0, 1, 0, 2, 1, and 1.

Step 2: Put the job that appears most frequently at locus k
into the temporary individual at the same locus.

Step 3: Repeat Step 2 until the temporary individual is a
complete sequence, i.e., {4,5,2,1,7,3,6}. Following this, ran-
domly select two parents from the population, e.g., parent1 =
{1, 2, 6, 4, 5, 3, 7} and parent2 = {5, 2, 7, 1, 4, 3, 6} . By
comparing temporary individual and parent1, we find that
the gene at locus 6 is that same, i.e., job 3. Thus, assign job
3 to locus 6 of offspring1.

Finally, the genes at the rest of the loci of offspring1
are obtained by perform a OP on parent1 and parent2 by
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randomly choosing a crossover point, say between gene 2 and
gene 3, resulting offspring1 to be {1,2,7,1,4,3,6}. Again,
offspring1 is an infeasible solution and needs to be repaired.
Since job 1 appears twice, and job 5 is absent, one of job 1
in the offspring should be substituted with job 5. Because
job 5 appears before job 7 in parent2, job 1 at locus 4
is replaced by job 5 and then the order of jobs 5 and 7
are exchanged to preserve the gene block in parent2. Thus,
offspring1 is obtained to be {1,2,5,7,4,3,6}, offspring2
can be generated similarly, which is {5,2,4,1,7,3,6}. The whole
process of ISOJX or generating offspring1 and 2 is depicted
in Fig. 3.

2) Mutation operators: Although various mutation opera-
tors have been used to further change the offspring individuals
generated by crossover, it has been shown in [1] that two
mutation methods, insertion and swap, are very efficient.
Thus, in this study, we randomly select one of them as the
mutation operator in the proposed evolutionary algorithm. In
the following, a process how to utilize the insertion and swap
operators suggested in [1] will be briefly introduced.

The sequence to be mutated is denoted as π and the mutated
sequence π′. Suppose that the loci to perform the insertion
operator are p1 and p2. They are randomly generated, and let
p1 < p2. Then, put all genes of π at loci from p1+1 to p2
into π′ at loci from p1 to p2-1, and then put the gene of π at
locus p1 into π′ at locus p2. Finally, put gene(s) of π at the
other locus (loci) into π′ at the same locus (loci). An example
is provided on the left panel of Fig. 4.

In the swap operator, genes of π at loci p1 and p2 are put
into π′ at loci p2 and p1, respectively, and gene(s) of π at the
other locus (loci) are put into π′ at the same locus (loci). An
example of the swap operator is given on the right panel of
Fig. 4. The crossover operators and mutation operators will
be performed on each individual with a probability of pc, and
1-pc, respectively. It is noted that if a crossover operator is
to be performed, one of the above two crossover operators is
randomly selected. Similarly, one of the above insertion and
swap operators is randomly adopted when a mutation operator
is to be employed.

C. The rescheduling strategy

Rescheduling refers to locally adjusting the current schedule
strategy, and is preferable because of its potential in saving
computational time and preserving the stability of the sched-
uled plan. Given that an unforeseen machine breakdown may
affect not only the original objectives, but also the scheduling
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Fig. 4. Process of performing mutation operators

strategy, in this study, a reference local search based on
the insertion operator proposed in [29] is adopted as the
rescheduling strategy to maintain the stability of the original
schedule strategy and further reduce the disturbance to the
original objectives.

When a machine breaks down, at least one job is sus-
pended if it is being processed on that machine. At this
moment, the original sequence is divided into the follow-
ing two subsequences. The first consists of the finished
job(s) whose relative position(s) will not be changed. The
second subsequence contains the unscheduled job(s), which
forms a reference sequence, denoted by πr. If an inter-
rupted job is π(d) , the reference sequence will be πr =
{πr(1), πr(2), ..., πr(i), ..., πr(n−d)}, where πr(i) is equal to
π(d+ i), i=1,2,...,n-d. Denote the sequence after rescheduling
as π′, the rescheduling process based on the local search can
be described by Algorithm 3.

Algorithm 3 The rescheduling strategy
Input: the number of jobs, n; the number of machines, m;

the position of the interrupted job, d; the temporary set φ
φ=ϕ.

Output: a number of good solutions
1: Let i=1;
2: while i < n− d do
3: Pick job, πr(i), from the sequence,π, and obtain a subse-

quence, π′ ;
4: i=i+1;
5: Insert job πr(i) into position k (k=d+1,d+2,...,n)of

sequence,π′, respectively, and obtain n− d+ 1 complete
sequence π.

6: Select the sequences using the minimal robustness and
stability criteria based on the Pareto dominance relation,
and put them into the temporary set.

7: end while
8: Update the temporary set φ by deleting the dominated

solutions.

In Algorithm 3, first, we obtain a reference subsequence π′

containing n − d jobs. Second, we take a job from πr (as
shown in line 3), insert it into n − d + 1 positions of the
sequence π′, and evaluate the n− d+ 1 complete sequences,
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referring to lines 5-6. Third, we repeatedly pick a job from
πr and implement the insertion operators of lines 5-6 until πr

is empty, as described in lines 2-7. By this way, we obtain
some solutions and put them into the temporary set, φ . Thus,
last, we update the temporary set by deleting the dominated
solutions using Pareto dominance relation. The above method
can locally adjust an obtained job sequence to seek for a
new sequence having good robustness and stability. Note that
there are n-d iterations for Lines 5, each having a computation
complexity of O(n−d). Thus the total computation complexity
of the rescheduling strategy is O((n− d)2).

In Algorithm 1, we adopt the proposed crossover operator
to generate new solutions. At least one job will be suspended
if the new solution is processed on a machine which breaks
down. The reader is referred to Subsection IV.B for detailed
descriptions of the crossover operators. In the following, we
give an example of the rescheduling strategy.

Let the current solution is π = (3, 1, 4, 6, 2, 5). Assume
job 4 is being processed on machine 2, which breaks down.
At this moment, the original sequence π is divided into the
following two subsequences, i.e, π′′ = (3, 1, 4) and πr =
(πr(1), πr(2), πr(3)) = (6, 2, 5).

Let π′ = π/πr(1)=(3,1,4,2,5). Insert πr(1) into π′ at
the fourth, fifth and sixth position, respectively, which re-
sults in three subsequences, (3,1,4,6,2,5), (3,1,4,2,6,5) and
(3,1,4,2,5,6). Evaluate the subsequences in terms of f1 and
f2. Select the solutions according to line 6 of Algorithm 3,
and put them into a temporary set φ.

Let π′ = π/πr(1)=(3,1,4,6,5). Insert πr(2) into π′ at the
fourth, fifth and sixth position, respectively, resulting in three
subsequences, (3,1,4,2,6,5), (3,1,4,6,2,5) and (3,1,4,6,5,2). E-
valuate the subsequences in terms of f1 and f2. Select the
solutions according to line 6 of Algorithm 3, and put them
into a temporary set φ.

Similarly, let π′ = π/πr(1)=(3,1,4,6,2). Insert πr(3) in-
to π′ at the fourth, fifth and sixth position, respectively,
which results in subsequences, (3,1,4,2,6,5), (3,1,4,6,2,5) and
(3,1,4,6,5,2). Evaluate the subsequences in terms of f1 and f2.
Select the solutions according to line 6 of Algorithm 3, and
put them into temporary set φ.

Finally, update φ by deleting the dominated solutions.

D. Selection and Archive Updating
An external archive of a limited size is employed to store

the non-dominated solutions found so far, in order to avoid
losing good solutions. During the search, these solutions are
iteratively updated by deleting not only dominated solutions
but also non-dominated solutions with a small value of the
crowding distance. The crowding distance is calculated as in
[30].

Before, the parent population is merged with the external
archive and temporary set, φ , to form a combined population.
All individuals are sorted into a number of fronts based
on the non-dominance relationship and a crowding distance
is calculated as in [30]. Finally, PS(the size of the parent
population) individuals are selected based on the front number
and the crowding distance of solutions. For more details of the
selection procedure, please refer to [30].

V. EMPIRICAL COMPARISONS

We have deveoped improved NSGA-II algorithm (INSGA-
II) to solve multi-objective LSFS scheduling problems [1],
where an estimation of distribution algorithm (EDA) is adopt-
ed to replace the traditional crossover operator, and a restart-
ing strategy is employed to increase the diversity of the
population. In [31] a Pareto block-based EDA (PBEDA) for
multi-objective permutation flow shop scheduling problems
was proposed. In PBEDA, a bi-variate probabilistic model
is utilized to generate blocks, and the non-dominated sort-
ing technique is employed to filter solutions. For the same
problem, Li and Ma [32] proposed a novel multiobjective
memetic search algorithm (MMSA), in which a global search
and local search strategies are used to find the promising
solutions. Recently, Wang and Tang [33] developed a machine-
learning based multi-objective memetic algorithm combined
with multi-objective local search (MOMA) to solve the above
optimization problem.

The above state-of-the-art multi-objective algorithms, i.e.,
INSGA-II[1], PBEDA[31], MMSA[32], and MOMA[33],
were selected to compare with our proposed algorithm. As
indicated in Section 2, little work has been reported on solving
a multi-objective LSFS scheduling problem with machine
breakdowns. As a result, it is hard to directly compare the
proposed algorithm with those of solving a BLSFS scheduling
problem without machine breakdowns. To evaluate the perfor-
mances of the rescheduling strategy proposed in this paper
in robustness and stability, the strategy is incorporated into
the four compared algorithms, and compared these algorithms
with their counterparts without the strategy. On the premise
of the same evolutionary strategies, if these algorithms with
the proposed rescheduling strategy obtain solutions better than
those without the strategy, the proposed rescheduling strategy
will be beneficial to improving an algorithm in tacking a
BLSFS scheduling problem with machine breakdowns.

The standard test instances of the lot-streaming flow shop
scheduling problem used in the experiments were originally
proposed in [20]. To more rigorously evaluate the proposed
algorithm, we have added more test instances. The test set is
composed of 220 instances, which are divided into 22 subsets,
with each subset consisting of ten instances of the same size.
For each subset, the size of instances is changed from 30 jobs
and 5 machines to 500 jobs and 20 machines. Each instance
is independently executed five replications. The parameter
settings of these instances, including processing time, due date,
and the number of sublots of each job, are given by a series
of discrete uniform distributions, and listed in Table I.

In the experiments, all the algorithms are written in Visual
C++ 6.0, and the same library functions are employed to
make fair comparisons. All algorithms are implemented on
a PC with Pentium (R) Dual 2.79 GHz and 1.96 G memory,
whose operation system is Microsoft Windows 7 X64. For the
termination criterion of these algorithms, the same maximum
elapsed CPU time of 30 × n ×m milliseconds is employed,
wherenrepresents the number of jobs, and m refers to the
number of machines.

All performance comparisons are conducted using the Hy-
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TABLE I
PARAMETER SETTINGS

parameter notation value
number of jobs n {30, 50, 70, 90, 110, 200, 500}
number of machines m {5, 10, 15, 20}
due date of job j dj randIn() mod(15m + 1) + 15n
number of sublots of job j wπ(j) randIn() mod 6 + 1
processing time of j on i pπ(j),i randIn() mod 31 + 1
population size PS 20
the number of initial solutions num 10
crossover probability pc 0.9
external archive size EA 100
stopping condition CPU time 30 × n × m millisecond
number of machine breakdowns β {5, 10, 15}
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Fig. 5. Change of the HV indicator over tine.

pervolume (HV for short) indicator [34]. HV is able to account
for both convergence and diversity of the non-dominated
solutions obtained by an algorithm. Here, (1, 1) is chosen
as the reference point and a larger HV indicates better
performance. In the experiment, we randomly sampled 100
machine breakdown cases whose repair times are generated
using Equations (11) and (13), respectively. For each instance,
the corresponding objective values of every solution are cal-
culated, and the averages of 100 cases are considered as the
objective value of every solution.

1) Performance of the initialization strategy: We first e-
valuate the performance of the vNEH and NEH strategies
by comparing the convergence profiles of the two methods,
given the same genetic operators, rescheduling method and
parameter settings for β = 15. We run two algorithms with
a CPU time of 50 seconds on the aforementioned PC. The
convergence profile, denoted by the change of the average
HV indicator for all instances, where the non-dominated sets
obtained by the above compared methods are employed as the
reference set, are plotted in Fig. 5.

From Fig. 5, we can see that the population initialized with
the solutions generated by vNEH converges faster than that
using NEH. This indicates that vNEH is more efficient in seed-
ing promising solutions for the multi-objective evolutionary
search.

2) Performance of the proposed crossover operator: First,
to demonstrate the effectiveness of the proposed crossover
operators, a sensitivity analysis of parameter pc is conducted.
Without loss of generality, pc is changed from 0 to 1.0 at
a step size of 0.1. The instances and the settings of the
other parameters remain the same as those in Section V. The
corresponding results with respect to the HV indicators are
plotted in Table II.

The following observations can be made from the results in
Table II. First, the proposed algorithm without the crossover
operators (pc = 0) performs very poorly. Second, the proposed
algorithm performs slightly poorly when pc =1 than when
pc = 0.9. The reason might be that if there are no mutation
operators, offspring are generated by using the crossover
operators only, resulting in getting stuck in local optima of the
scheduling problems. Third, for most instances, the proposed
algorithm performs better as pc increases, and it achieves the
best results for pc = 0.9. From these experimental results, we
set the value of pc to 0.9.

Second, we evaluate the performance of the proposed
crossover operators, i.e., ISBOX and ISJOX by comparing
them with the SBOX and SJOX, given the same genetic
operators and parameter settings. Table III presents the com-
parative results in terms of the HV indicator, where the non-
dominated solutions obtained by the above compared methods
are employed as the reference set. “ISBJ” denotes the results
when the improved crossover operators are applied as whereas
“SBJ” refers to the results when SBOX and SJOX are applied.
The better results of the two methods are highlighted.

TABLE III
PERFORMANCES OF THE PROPOSED AND THE COMPARED CROSSOVER

OPERATORS

test sets SBJ ISBJ test sets SBJ ISBJ
30×5 7.3146E-01 8.8405E-01 70×20 4.5157E-01 5.0313E-01
30×10 7.0632E-01 7.0335E-01 90×5 4.9255E-01 5.7237E-01
30×15 7.2125E-01 7.9860E-01 90×10 4.0169E-01 4.5026E-01
30×20 7.8174E-01 7.8455E-01 90×15 3.4274E-01 4.0287E-01
50×5 6.8835E-01 7.1105E-01 90×20 2.1018E-01 3.7098E-01
50×10 6.0502E-01 6.9224E-01 110×5 3.2463E-01 3.9050E-01
50×15 5.5691E-01 6.4334E-01 110×10 3.2762E-01 4.2316E-01
50×20 4.9692E-01 5.5325E-01 110×15 3.0455E-01 4.0574E-01
70×5 6.7090E-01 7.3814E-01 110×20 3.3092E-01 4.1405E-01
70×10 4.5879E-01 5.5978E-01 220×20 2.3592E-01 3.7691E-01
70×15 5.0036E-01 6.0227E-01 500×20 2.4561E-01 3.6749E-01

From Table III, we can see that the improved crossover
achieved better performance in 20 out of 22 test sets in terms
of the HV indicator. From the above results, we can conclude
that the proposed improved crossover operators can generate
more promising candidate solutions than the original ones due
to their ability in taking advantage of the information in the
non-dominated solutions.

3) Comparison of the overall performance: The five algo-
rithms namely, INSGA, PBEDA, MMSA, MOMA and REMO,
are compared in three different machine breakdown situations,
where the number of machine breakdowns (β) is set to 5,
10, and 15, respectively. The experimental results are listed
in Tables IV-VI, respectively, where a row represents results
obtained by different algorithms when solving an instance of
the BLSFS scheduling problem with machine breakdowns.
The row in the bottom, denoted by ’mean’, presents the
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TABLE II
INFLUENCES OF pc ON HV INDICATOR

test sets 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
30×5 3.249E-01 3.949E-01 4.937E-01 5.121E-01 5.653E-01 6.660E-01 6.435E-01 6.826E-01 7.318E-01 8.840E-01 6.422E-01
30×10 3.348E-01 3.110E-01 4.109E-01 4.324E-01 4.776E-01 5.201E-01 6.778E-01 7.525E-01 6.435E-01 7.227E-01 7.447E-01
30×15 2.590E-01 2.829E-01 3.741E-01 4.073E-01 4.538E-01 5.766E-01 6.261E-01 7.139E-01 7.716E-01 7.715E-01 7.602E-01
30×20 2.410E-01 2.246E-01 3.253E-01 4.229E-01 4.677E-01 5.009E-01 6.447E-01 7.504E-01 7.607E-01 7.855E-01 7.452E-01
50×5 2.080E-01 3.578E-01 3.285E-01 4.284E-01 4.386E-01 5.818E-01 5.162E-01 6.639E-01 7.430E-01 7.093E-01 6.766E-01
50×10 2.271E-01 2.530E-01 2.989E-01 3.369E-01 3.516E-01 4.142E-01 5.078E-01 5.236E-01 5.923E-01 6.187E-01 5.268E-01
50×15 2.019E-01 2.255E-01 3.561E-01 4.094E-01 4.351E-01 4.033E-01 4.547E-01 6.295E-01 5.954E-01 6.124E-01 5.798E-01
50×20 1.051E-01 2.144E-01 2.731E-01 2.528E-01 3.570E-01 3.624E-01 4.012E-01 4.490E-01 4.897E-01 5.218E-01 4.251E-01
70×5 2.194E-01 2.212E-01 2.622E-01 2.450E-01 3.018E-01 4.052E-01 4.100E-01 5.494E-01 6.257E-01 7.050E-01 6.473E-01
70×10 1.260E-01 1.909E-01 2.593E-01 3.024E-01 3.398E-01 3.409E-01 3.925E-01 4.233E-01 4.386E-01 5.059E-01 4.138E-01
70×15 1.189E-01 1.243E-01 2.221E-01 2.523E-01 2.332E-01 3.310E-01 3.578E-01 4.338E-01 4.548E-01 5.012E-01 4.292E-01
70×20 1.673E-01 1.650E-01 2.079E-01 3.149E-01 3.053E-01 3.563E-01 4.368E-01 4.744E-01 4.903E-01 4.823E-01 3.796E-01
90×5 1.513E-01 1.730E-01 2.397E-01 2.790E-01 2.520E-01 3.067E-01 3.800E-01 3.660E-01 4.191E-01 5.079E-01 4.243E-01
90×10 1.406E-01 2.615E-01 2.138E-01 2.865E-01 3.056E-01 3.471E-01 3.510E-01 4.059E-01 4.549E-01 4.450E-01 4.181E-01
90×15 6.397E-02 1.496E-01 1.695E-01 1.909E-01 1.756E-01 2.552E-01 2.909E-01 3.357E-01 3.602E-01 3.855E-01 2.610E-01
90×20 4.315E-02 9.081E-02 2.011E-01 1.963E-01 2.019E-01 2.428E-01 2.129E-01 2.772E-01 2.768E-01 3.258E-01 2.248E-01
110×5 1.011E-01 1.312E-01 1.334E-01 1.511E-01 1.850E-01 1.645E-01 2.091E-01 1.952E-01 2.392E-01 2.650E-01 2.021E-01

110×10 1.217E-01 2.108E-01 2.087E-01 2.217E-01 2.822E-01 2.028E-01 3.441E-01 4.168E-01 4.500E-01 4.191E-01 2.289E-01
110×15 2.558E-02 1.333E-01 1.496E-01 1.599E-01 2.214E-01 2.604E-01 2.728E-01 2.240E-01 3.421E-01 3.861E-01 3.019E-01
110×20 8.776E-02 1.015E-01 1.118E-01 1.178E-01 1.949E-01 1.518E-01 2.287E-01 2.833E-01 2.788E-01 3.903E-01 1.920E-01
220×20 1.013E-01 1.052E-01 1.077E-01 2.087E-01 1.509E-01 2.652E-01 2.709E-01 3.146E-01 3.219E-01 3.283E-01 1.932E-01
500×20 9.765E-02 1.383E-01 1.392E-01 2.646E-01 2.107E-01 2.800E-01 2.992E-01 3.071E-01 2.947E-01 3.076E-01 1.897E-01

average values of HV over 22 test sets. The larger the mean
value is, the better the algorithm. To make a fair comparison,
all compared algorithms adopt the same maximum elapsed
CPU time of 30×n×m milliseconds as a termination criterion.
In addition, for convenience, the five compared algorithms
without rescheduling strategy are denoted as INSGAn, PBE-
DAn, MMSAn, MOMAn and REMOn, respectively.

TABLE IV
PERFORMANCE COMPARISON OF INSGA, PBEDA, MMSA, MOMA AND

REMO (β = 5)

test sets INSGA PBEDA MMSA MOMA REMO
30×5 8.9701E-01 8.9461E-01 9.0818E-01 9.0785E-01 8.9887E-01

30×10 8.6003E-01 8.6224E-01 8.8220E-01 8.6143E-01 8.8873E-01
30×15 8.7850E-01 8.6409E-01 8.8118E-01 8.9351E-01 8.8290E-01
30×20 7.0205E-01 7.1274E-01 7.6611E-01 7.6806E-01 7.6005E-01
50×5 6.8165E-01 6.7988E-01 7.0285E-01 7.0484E-01 7.5295E-01

50×10 6.4752E-01 6.5613E-01 7.1867E-01 7.2729E-01 7.7073E-01
50×15 6.3552E-01 6.4437E-01 6.7297E-01 6.8686E-01 6.8867E-01
50×20 4.2538E-01 4.3549E-01 4.4282E-01 4.5536E-01 4.6954E-01
70×5 5.1585E-01 5.1617E-01 5.4426E-01 5.7596E-01 5.8060E-01

70×10 3.8740E-01 3.9230E-01 3.9426E-01 4.0508E-01 4.2862E-01
70×15 4.0448E-01 4.2849E-01 4.2272E-01 4.3377E-01 4.7400E-01
70×20 4.5122E-01 4.9225E-01 5.1200E-01 5.2938E-01 5.3878E-01
90×5 3.6501E-01 4.1372E-01 4.2914E-01 4.2424E-01 4.5380E-01

90×10 2.2531E-01 2.3395E-01 3.2536E-01 3.2894E-01 3.9616E-01
90×15 2.7432E-01 2.6230E-01 3.1146E-01 3.1616E-01 3.8184E-01
90×20 3.4490E-01 3.2067E-01 3.6371E-01 3.8549E-01 4.1800E-01
110×5 4.6041E-01 4.6079E-01 5.0907E-01 5.1541E-01 5.8325E-01
110×10 2.8000E-01 2.5542E-01 3.4902E-01 3.1888E-01 3.8616E-01
110×15 2.1953E-01 2.2602E-01 2.5977E-01 2.6455E-01 3.0587E-01
110×20 3.2005E-01 3.9935E-01 3.9554E-01 4.0550E-01 4.5677E-01
220×20 2.9971E-01 3.0095E-01 3.4134E-01 3.5220E-01 3.7656E-01
500×20 2.7026E-01 2.8974E-01 2.8334E-01 2.9937E-01 3.1075E-01

mean 4.7937E-01 4.8826E-01 5.1891E-01 5.2546E-01 5.5471E-01

From Tables VII, we can conclude that INSGAn, PBEDAn,
MMSAn, MOMAn and REMOn perform worse than INSGA,
PBEDA, MMSA, MOMA and REMO. The reason is that
the proposed rescheduling strategy can reduce the negative
influence resulting from machine breakdowns, and reduce the
difference between the completion time before and after ma-
chine breakdowns. In addition, the mean HV produced by the
proposed algorithm, REMO, is 5.5471E-01, 5.6294E-01 and
6.0117E-01 for β= 5, 10, and 15, respectively, which is larger
than any mean HV obtained by the compared algorithms.

TABLE V
PERFORMANCE COMPARISON OF INSGA, PBEDA, MMSA, MOMA AND

REMO (β = 10)

test sets INSGA PBEDA MMSA MOMA REMO
30×5 8.6868E-01 8.5082E-01 8.6026E-01 8.7931E-01 8.6670E-01
30×10 7.3526E-01 7.8088E-01 7.8275E-01 7.8134E-01 7.8374E-01
30×15 7.9681E-01 7.7604E-01 7.9908E-01 8.0821E-01 8.0223E-01
30×20 7.3458E-01 7.4529E-01 7.4855E-01 7.6637E-01 7.9014E-01
50×5 5.4198E-01 6.0660E-01 6.9019E-01 6.8755E-01 6.9378E-01
50×10 6.1779E-01 6.1618E-01 7.0900E-01 7.1427E-01 7.7364E-01
50×15 5.2846E-01 5.3108E-01 5.3552E-01 5.4030E-01 5.4424E-01
50×20 5.7922E-01 5.7760E-01 6.0537E-01 6.0225E-01 5.9993E-01
70×5 5.0915E-01 5.2482E-01 5.6660E-01 5.7866E-01 5.9664E-01
70×10 3.9856E-01 3.9172E-01 4.2521E-01 4.4225E-01 4.3885E-01
70×15 4.0228E-01 3.8406E-01 3.9261E-01 4.0298E-01 4.1501E-01
70×20 3.6449E-01 3.6668E-01 3.9069E-01 4.0578E-01 4.1280E-01
90×5 4.1146E-01 4.4236E-01 4.7458E-01 4.8862E-01 4.9137E-01
90×10 5.4875E-01 5.5171E-01 5.6804E-01 5.6408E-01 5.8987E-01
90×15 5.4121E-01 5.5991E-01 5.5842E-01 5.7337E-01 6.0092E-01
90×20 4.3272E-01 4.3028E-01 4.2148E-01 4.5139E-01 4.8996E-01
110×5 4.0936E-01 4.1674E-01 4.3047E-01 4.2976E-01 4.9288E-01
110×10 2.5212E-01 2.5326E-01 2.8119E-01 2.6133E-01 3.0340E-01
110×15 3.6100E-01 3.4772E-01 3.9799E-01 4.0094E-01 4.3973E-01
110×20 2.2945E-01 2.2383E-01 2.1604E-01 2.3781E-01 2.8491E-01
220×20 3.3227E-01 3.2128E-01 3.3768E-01 3.4026E-01 4.0316E-01
500×20 4.6797E-01 4.5506E-01 5.1076E-01 5.1328E-01 5.7081E-01

mean 5.0289E-01 5.0700E-01 5.3193E-01 5.3955E-01 5.6294E-01

Hence we can conclude that the proposed algorithm is ef-
fective. Overall, REMO outperforms the compared algorithms
for the problem under consideration. Finally, as the number of
machine breakdowns increases, the advantage of the proposed
algorithm over the compared ones becomes more obvious.

We have studied the overall performance of all the compared
algorithms in terms of HV from the following two aspects:

(1) All the algorithms are compared in scenarios of different
machine breakdowns, i.e., the number of machine breakdowns
is 5, 10, and 15, respectively. The experimental results listed in
Tables IV-VI indicate that the proposed algorithm outperforms
its counterparts at a considerable margin.

(2) All the algorithms with and without the rescheduling
strategy are investigated to evaluate influence of the reschedul-
ing strategy, and the experimental results are listed in Table
VII. We can conclude from Table VII that the proposed
rescheduling strategy can alleviate the negative influences
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TABLE VII
PERFORMANCE COMPARISON OF INSGA, PBEDA, MMSA, MOMA AND REMO WITH AND WITHOUT RESCHEDULING STRATEGY(β = 15)

test sets INSGA PBEDA MMSA MOMA REMO INSGAn PBEDAn MMSAn MOMAn REMOn
30×5 8.498E-01 8.569E-01 8.225E-01 8.641E-01 8.518E-01 2.066E-01 2.673E-01 3.955E-01 4.850E-01 4.513E-01
30×10 8.458E-01 8.548E-01 8.621E-01 8.715E-01 8.994E-01 2.682E-01 2.716E-01 3.264E-01 5.086E-01 4.962E-01
30×15 7.942E-01 8.055E-01 8.372E-01 8.190E-01 8.772E-01 1.616E-01 2.438E-01 2.662E-01 3.620E-01 4.531E-01
30×20 8.099E-01 8.016E-01 8.163E-01 8.188E-01 8.076E-01 1.330E-01 2.069E-01 2.293E-01 4.733E-01 5.723E-01
50×5 7.903E-01 7.919E-01 7.962E-01 8.068E-01 8.016E-01 1.315E-01 2.101E-01 3.275E-01 4.806E-01 5.393E-01
50×10 7.483E-01 7.689E-01 7.827E-01 7.922E-01 5.099E-01 1.519E-01 1.917E-01 2.973E-01 4.733E-01 4.494E-01
50×15 7.342E-01 7.449E-01 7.613E-01 7.693E-01 7.983E-01 1.566E-01 2.063E-01 3.379E-01 4.532E-01 6.222E-01
50×20 5.790E-01 5.881E-01 5.854E-01 5.976E-01 6.080E-01 1.644E-01 2.525E-01 2.614E-01 4.301E-01 5.347E-01
70×5 6.463E-01 6.653E-01 6.839E-01 6.870E-01 7.016E-01 1.762E-01 2.645E-01 2.569E-01 3.487E-01 5.291E-01
70×10 5.106E-01 5.124E-01 5.190E-01 5.212E-01 5.590E-01 1.852E-01 1.436E-01 2.296E-01 3.081E-01 4.423E-01
70×15 4.728E-01 4.949E-01 5.010E-01 5.022E-01 5.451E-01 1.678E-01 1.615E-01 3.050E-01 2.927E-01 3.912E-01
70×20 3.589E-01 3.926E-01 4.069E-01 4.190E-01 4.665E-01 1.559E-01 1.922E-01 2.851E-01 3.849E-01 4.121E-01
90×5 3.995E-01 4.071E-01 4.183E-01 4.225E-01 4.969E-01 1.671E-01 2.221E-01 3.030E-01 4.055E-01 3.608E-01
90×10 5.013E-01 5.209E-01 5.337E-01 5.762E-01 5.933E-01 1.112E-01 2.013E-01 2.556E-01 3.298E-01 4.054E-01
90×15 4.137E-01 4.153E-01 4.114E-01 4.452E-01 4.858E-01 1.033E-01 1.335E-01 2.283E-01 3.037E-01 4.555E-01
90×20 4.116E-01 4.293E-01 4.293E-01 4.334E-01 4.629E-01 1.793E-01 1.352E-01 2.633E-01 2.799E-01 3.633E-01
110×5 5.144E-01 5.361E-01 5.441E-01 5.511E-01 5.729E-01 1.531E-01 3.193E-01 1.802E-01 3.482E-01 4.193E-01
110×10 4.925E-01 5.038E-01 5.038E-01 5.167E-01 5.890E-01 9.720E-02 1.802E-01 2.778E-01 3.044E-01 3.780E-01
110×15 2.916E-01 3.106E-01 3.966E-01 3.872E-01 4.183E-01 9.467E-02 1.950E-01 1.941E-01 2.131E-01 2.378E-01
110×20 2.479E-01 2.869E-01 2.811E-01 2.910E-01 3.018E-01 1.041E-01 1.305E-01 1.161E-01 1.880E-01 2.119E-01
220×20 3.191E-01 3.380E-01 3.954E-01 4.018E-01 4.369E-01 1.223E-01 1.950E-01 2.010E-01 2.974E-01 3.302E-01
500×20 3.792E-01 3.806E-01 4.407E-01 4.159E-01 4.419E-01 1.525E-01 2.170E-01 2.481E-01 3.007E-01 3.775E-01

mean 5.505E-01 5.639E-01 5.786E-01 5.868E-01 6.012E-01 1.520E-01 2.064E-01 2.630E-01 3.623E-01 4.288E-01

TABLE VI
PERFORMANCE COMPARISON OF INSGA, PBEDA, MMSA, MOMA AND

REMO (β = 15)

test sets INSGA PBEDA MMSA MOMA REMO
30×5 8.4975E-01 8.5694E-01 8.2252E-01 8.6408E-01 8.5185E-01

30×10 8.4583E-01 8.5475E-01 8.6209E-01 8.7151E-01 8.9938E-01
30×15 7.9424E-01 8.0552E-01 8.3716E-01 8.1900E-01 8.7723E-01
30×20 8.0987E-01 8.0161E-01 8.1630E-01 8.1880E-01 8.0757E-01
50×5 7.9030E-01 7.9186E-01 7.9620E-01 8.0678E-01 8.0162E-01

50×10 7.4829E-01 7.6892E-01 7.8267E-01 7.9215E-01 5.0987E-01
50×15 7.3416E-01 7.4486E-01 7.6131E-01 7.6930E-01 7.9827E-01
50×20 5.7895E-01 5.8812E-01 5.8544E-01 5.9762E-01 6.0804E-01
70×5 6.4630E-01 6.6532E-01 6.8389E-01 6.8700E-01 7.0164E-01

70×10 5.1065E-01 5.1239E-01 5.1905E-01 5.2119E-01 5.5902E-01
70×15 4.7277E-01 4.9490E-01 5.0102E-01 5.0222E-01 5.4513E-01
70×20 3.5892E-01 3.9264E-01 4.0692E-01 4.1897E-01 4.6651E-01
90×5 3.9949E-01 4.0709E-01 4.1830E-01 4.2246E-01 4.9685E-01

90×10 5.0127E-01 5.2092E-01 5.3369E-01 5.7624E-01 5.9329E-01
90×15 4.1369E-01 4.1528E-01 4.1138E-01 4.4522E-01 4.8583E-01
90×20 4.1161E-01 4.2925E-01 4.2928E-01 4.3345E-01 4.6289E-01
110×5 5.1442E-01 5.3607E-01 5.4413E-01 5.5106E-01 5.7286E-01
110×10 4.9247E-01 5.0377E-01 5.0376E-01 5.1674E-01 5.8897E-01
110×15 2.9163E-01 3.1063E-01 3.9664E-01 3.8718E-01 4.1833E-01
110×20 2.4785E-01 2.8689E-01 2.8115E-01 2.9103E-01 3.0182E-01
220×20 3.1907E-01 3.3798E-01 3.9539E-01 4.0178E-01 4.3693E-01
500×20 3.7917E-01 3.8063E-01 4.4070E-01 4.1591E-01 4.4195E-01

mean 5.5049E-01 5.6392E-01 5.7859E-01 5.8680E-01 6.0117E-01

resulting from machine breakdowns, and reduce the difference
in completion time before and after machine breakdowns.

4) Analysis of convergence curves: In this subsection, we
compare the convergence profiles of five algorithms, including
INSGA, PBEDA, MMSA, MOMA and REMO, when β is
equal to 15. We run these algorithms with a CPU time
of 50 seconds on the aforementioned PC. Several typical
convergence curves, denoted by the change of HV over time,
on instances Ta52, Ta74, Ta96 and Ta158 obtained by INSGA,
PBEDA, MMSA, MOMA and REMO, respectively, are plotted
in Fig. 6. From Fig. 6., we can see that the convergence of the
proposed algorithm is the fastest among the five algorithms in
the four compared instances. It is attributed to the fact that, the
proposed algoirthm explicitly take advantage of information
from non-dominated solutions in generating, whereas the
others do not.
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Fig. 6. Changes of HV w.r.t. evolution

To summarize, the proposed algorithm has much better
or competitive performance compared with four representa-
tive existing algorithms for solving multi-objective BLSFS
scheduling problem with machine breakdowns, which may be
attributed to the fact that the proposed crossover operators can
make full use of information in the non-dominated solutions
and that the proposed rescheduling strategy is able to reduce
the difference in the objectives before and after machine
breakdowns.
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VI. CONCLUSIONS

In this study, the BLSFS scheduling problem with ma-
chine breakdowns is investigated, first by formulating it as
a multi-objective optimization problem, and then solved using
a multi-objective evolutionary algorithm whose population is
initialized with solutions obtained by a single-objective heuris-
tic algorithm. Two new crossover operators are developed
that can make use of non-dominated solutions, which are
combined with two mutation operators to achieve a balance
between exploration and exploitation. Last but not the least, a
rescheduling strategy is proposed that can further reduce the
influence of machine breakdowns.

The performance of the proposed algorithm is evaluat-
ed on 22 test sets of the BLSFS scheduling problem, and
compared with four state-of-the-art algorithms proposed for
solving multi-objetive problems without machine breakdowns.
The experimental results demonstrate the superiority of the
proposed algorithm in terms of robustness and stability of the
approximated non-dominated solutions. The outperforming of
the proposed algorithm may be attributed to the new crossover
operators as well as the rescheduling strategy.

There are several opportunities for future research on BLS-
FS scheduling problems with machine breakdowns. First, we
assume in this study that all machines have the same number of
machine breakdowns, which may be unrealistic. Thus, more
practical machine breakdowns can be considered in future.
Second, in this study, one of the two mutation operators is
randomly selected to generate offspring. It might be desirable
to develop a self-adaptive mechanism for selecting one of
the mutation operators to improve the exploration capabili-
ty. Third, the computational complexity of the rescheduling
strategy may further be reduced. Finally, other types of uncer-
tainties, such as non-deterministic processing times, operator
illness and due-date changes can also be considered.
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