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Abstract—In the paper, a constrained Space Maneuver
Vehicles (SMV) trajectory optimization problem is formulated
and solved using a new three-layer-hybrid optimal control solver.
To decrease the sensitivity of the initial guess and enhance the
stability of the algorithm, an initial guess generator based on a
specific stochastic algorithm is applied. In addition, an improved
gradient-based algorithm is used as the inner solver, which can
offer the user more flexibility to control the optimization process.
Furthermore, in order to analyze the quality of the solution,
the optimality verification conditions are derived. Numerical
simulations were carried out by using the proposed hybrid solver
and the results indicate that the proposed strategy can have better
performance in terms of convergence speed and convergence
ability when compared with other typical optimal control solvers.
A monto-carlo simulation was performed and the results show
a robust performance of the proposed algorithm in dispersed
conditions.

Index Terms—Space Maneuver Vehicles, trajectory opti-
mization, optimal control, initial guess, improved gradient-based
algorithm, optimality verification.

I. INTRODUCTION

SPACECRAFT trajectories planning is usually recognized
as an optimal control problem [1]–[4]. Due to the high

nonlinear nature and strict path constraints, direct transcription
algorithms are commonly used to approximate the optimal
solution [5], [6]. Direct transcription algorithms [7] can be
divided into two major schemes: direct shooting scheme [8], in
which only the control parameters are discretized at temporal
nodes; and direct collocation scheme [9], where both the state
and control are parameterized. Many both theoretical and
experimental works have been carried out in this field. For
example, Yakimenko et al. [10] applied an Inverse Dynamics
in the Virtual Domain (IDVD) collocation method to generate
a near-optimal aircraft trajectory. The work of Albin and Rit-
ter [11] presents a multiple-shooting-based model predictive
control scheme for generating the optimal control sequence of
a two-stage turbocharged gasoline airpath problem. In [12],
considering the model physical constraints, an energy-optimal
control trajectory was generated for a wave energy converter
based on a specific collocation method. In addition, Ben-
son et al. [7] developed a Gauss pseudospectral (orthogonal

R. Chai, A. Savvaris and A. Tsourdos are with the School of
Aerospace, Transport and Manufacturing, Cranfield University, UK,
e-mail: (r.chai@cranfield.ac.uk), (a.savvaris@cranfield.ac.uk), and
(a.tsourdos@cranfield.ac.uk).

S.Chai and Y. Xia are with the school of Automation, Beijing In-
stitute of Technology, Beijing, China, e-mail: (chaisc97@163.com), (xi-
a yuanqing@bit.edu.cn).

collocation) method for transcribing general optimal control
problems. In their latest works, a hp-adaptive strategy was
embedded in the framework of the original solver [13].

Normally, after the discretization process, the resulting
Nonlinear Programming problem (NLP) can be solved numer-
ically via well-developed algorithms such as the Sequential
Quadratic Programming (SQP) [14] or Interior Point method
(IP) [15]. However, the main challenge for gradient-based
algorithms is that an initial guess value must be provided to
the NLP solver. For the user to provide an initial guess is
usually problematic since the guess sequences might be far
from the optimal solution or close to a local optimal solution.
It is likely for the optimizer to converge to a local solution
or a neighborhood of the initial guess. Using optimal control
software such as GPOPS or ICLOCS, this process usually
made by interpolating the boundary conditions provided by the
user [16]. However, due to the lack of the physical knowledge,
the initial guess value may not be physically meaningful and it
can hardly satisfy the dynamic equations and path constraints.
Therefore, the NLP solver may start at an infeasible point
where most of the constraints cannot be satisfied.

In recent years, evolutionary-based algorithms have be-
come popular and have been widely investigated for solving
trajectory optimization problems [6]. The main advantages of
using evolutionary algorithms are that it is simple to under-
stand and easy to implement. Furthermore, it is more likely
than other methods to locate the global optimum solution.
Contributions made to apply this type of methods can be found
in literatures. For example, Yokoyama et al. [17] implemented
Genetic Algorithm (GA) to solve a constrained space plane
reentry problem. In [18], a low-thrust interplanetary trajectory
optimization problem was studied, and the main contribution
is that a bi-level evolutionary-based optimal control solver
was created. Kim et al. [19] proposed a Particle Swarm
Optimization (PSO) to calculate the optimal trajectory for a
manipulator motion planning problem. Similarly, a doubly fed
induction generator optimal control problem was investigated
in [2], wherein a modified PSO algorithm was applied to
approximate the optimal control trajectory. Although all the
aforementioned works have shown the feasibility of applying
stochastic algorithms for trajectory optimization problems, the
verification of solution optimality will become difficult. More-
over, the computational burden caused by the evolutionary
optimization process is usually high [20].

In order to combine the advantages of the traditional
and stochastic-based methods, this paper presents a hybrid
structure for solving the spacecraft trajectory optimization
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problem. So far to the best of our knowledge, there are
fewer integrated design results have been reported to generate
the optimal spacecraft flight trajectory. Therefore, the present
study is an attempt to address this concern. The proposed
structure contains an outer layer that can generate a reference
trajectory with respect to the state and control variables. The
algorithm used in this layer is an adaptive differential evolution
algorithm and the fundamental framework of this stochastic
algorithm is based on [21]. Following that, the reference
trajectory is provided to the inner layer, where a new improved
gradient-based solver is applied. Compared with other typical
optimal control methods, using this approach can improve both
the stability and efficiency. Moreover, this integrated design
can offer the designers more flexibility in order to control the
optimization process and verify the optimality.

The main contributions of the work reported in this paper
include the following three aspects:

1) We propose a new optimal trajectory generation method
by constructing an integrated framework that contains
a newly developed initial guess generator and an inner
gradient solver.

2) An improved gradient-based solver is designed and
embedded in the proposed algorithm framework. This
method can better control the solution-finding process
and achieve faster convergence speed for solving the
spacecraft trajectory optimization problem.

3) Both optimality verification and simulation results are
provided to illustrated the effectiveness of the proposed
design.

Some preliminary results have appeared in [21]; however, the
results obtained in this paper are more integrated, including
detailed formulation, analysis and simulations.

The remainder of this paper is organized as follow:
Section II presents the mathematical formulation of the Space
Maneuver Vehicles (SMV) trajectory optimization problem.
In Section III, the three-layer-hybrid optimal control solver is
constructed. The optimality conditions of the SMV trajectory
planning problem is derived and analyzed in Section IV.
Section V presents the simulation results and verifies the
optimality conditions numerically. The concluding remark is
given in Section VI.

II. SPACE MANEUVER VEHICLE TRAJECTORY
OPTIMIZATION PROBLEM

In this section, the mission scenario investigated in this
paper is presented. The space vehicle re-enters the atmosphere
at a predetermined altitude for observation and gathering of
information of inaccessible areas. The space vehicle descends
down to a minimum allowable altitude of around 50𝑘𝑚, once
this altitude point is reached, the spacecraft fires its engine and
starts the ascent phase, exiting the atmosphere and returning
back to Low Earth Orbit (LEO). An engine model is embedded
in the dynamics such that the vehicle can have enough kinetic
energy to exit the atmosphere and return back into orbit.

A. Problem formulation
The overall formulation of the time-optimal SMV trajec-

tory programming problem containing the flight dynamics is

given as follows:

minimize 𝐽 = 𝑡𝑓
subject to 𝑟̇ = 𝑉 sin 𝛾

𝜃 = 𝑉 cos 𝛾 sin𝜓
𝑟 cos𝜑

𝜑̇ = 𝑉 cos 𝛾 cos𝜓
𝑟

𝑉̇ = 𝑇 cos𝛼−𝐷
𝑚 − 𝑔 sin 𝛾

𝛾̇ = 𝐿 cos𝜎+𝑇 sin𝛼
𝑚𝑉 + (𝑉

2−𝑔𝑟
𝑟𝑉 ) cos 𝛾

𝜓̇ = 𝐿 sin𝜎
𝑚𝑉 cos 𝛾 + 𝑉

𝑟 cos 𝛾 sin𝜓 tan𝜑

𝑚̇ = − 𝑇
𝐼𝑠𝑝𝑔

[𝑟(0), 𝜃(0), 𝜑(0), 𝑉 (0), 𝛾(0), 𝜓(0),𝑚(0)]
= [𝑟0, 𝜃0, 𝜑0, 𝑉0, 𝛾0, 𝜓0,𝑚0]

(1)

where 𝑡𝑓 is the terminal time. 𝑟, 𝜃, 𝜑, 𝑉 , 𝛾, 𝜓, 𝑚 represent the
radial distance, longitude, latitude, velocity, flight-path angle,
heading angle and vehicle’s mass, respectively. The control
variables are the angle of attack 𝛼, bank angle 𝜎 and thrust 𝑇 .
In the paper, the dynamic model given by Eq.(1) is abbreviated
as 𝑥̇ = 𝑓(𝑥, 𝑢), 𝑥(0) = 𝑥0, where 𝑥 ∈ ℜ7 and 𝑢 ∈ ℜ3

denote the state and control variables, respectively. Detailed
information including the aerodynamic model and atmospheric
model can be found in [22].

B. Constraints

The spacecraft reconnaissance mission should satisfy
strict box and path constraints to protect the structure of the
vehicle. These constraints usually depend on the mission re-
quirements. Regarding the box constraints, during the mission,
each state and control variable should vary in the tolerable
region and this can be described as 𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥
and 𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥. Besides, the path constraints that
the vehicle must satisfy during the entire mission are the
aerodynamic heating, dynamic pressure and load factor, which
can be summarised as:

𝑄̇𝑑 = 𝐾𝑄𝜌
0.5𝑉 3.07(𝑐0 + 𝑐1𝛼+ 𝑐2𝛼

2 + 𝑐3𝛼
3) < 𝑄̇𝑑𝑚𝑎𝑥

𝑃𝑑 =
1
2𝜌𝑉

2 < 𝑃𝑑𝑚𝑎𝑥

𝑛𝐿 =
√
𝐿2+𝐷2

𝑚𝑔 < 𝑛𝐿𝑚𝑎𝑥
(2)

where 𝑄𝑑𝑚𝑎𝑥, 𝑃𝑑𝑚𝑎𝑥 and 𝑛𝐿𝑚𝑎𝑥 represent acceptable maxi-
mum heating rate, dynamic pressure and load factor, respec-
tively.

In order to describe the angular rate and range of the
control variables, three first-order lag equations are appended
to the equations of motion. Consequently, the control variables
are divided into the actual controls 𝛼, 𝜎, 𝑇 and the demanded
controls 𝛼𝑐, 𝜎𝑐, 𝑇𝑐. In this way, the discontinuity in the control
profiles can be removed.⎧⎨⎩

𝛼̇ = 𝑘𝛼(𝛼𝑐 − 𝛼)
𝜎̇ = 𝑘𝜎(𝜎𝑐 − 𝜎)

𝑇̇ = 𝑘𝑇 (𝑇𝑐 − 𝑇 )

⎧⎨⎩ 𝛼𝑐𝑚𝑖𝑛 ≤ 𝛼𝑐 ≤ 𝛼𝑐𝑚𝑎𝑥
𝜎𝑐𝑚𝑖𝑛 ≤ 𝜎𝑐 ≤ 𝜎𝑐𝑚𝑎𝑥
𝑇𝑐𝑚𝑖𝑛 ≤ 𝑇𝑐 ≤ 𝑇𝑐𝑚𝑎𝑥

(3)

III. A THREE-LAYER-HYBRID OPTIMAL CONTROL SOLVER

Traditional optimal control solvers tend to be sensitive
with respect to the initial guess value provided by the users.
However, according to the work carried-out by Conway [6],
for solvers based on evolutionary algorithms or metaheuristics,
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the problem needs to be discretized by a relatively small
size of temporal set, and there is no guarantee of optimality.
To address these problems, a new three-layer-hybrid optimal
control solver was designed by combining the advantages of
the traditional solvers and evolutionary-based solvers.

A. Initial guess generator

In the first layer of the proposed solver, an initial guess
generator is designed to generate a reference trajectory, which
can then be provided to the inner gradient-based solver as
a start point of Newton iterations. The method used in this
layer is an adaptive differential evolution algorithm similar
to the framework proposed in [21]. This algorithm is then
combined with a self-learning strategy proposed in [23]–[25].
Moreover, to handle different types of constraints entailing in
the problem, a V-based constraint handling strategy is embed-
ded in the algorithm framework, hence the name Violation
Learning Differential Evolution (VLDE). For completeness, a
brief description of this stochastic-based method is introduced
in this section.

By using the discretization technique, the continuous-time
optimal control problem given by Eq.(1) is then converted to a
series of static Nonlinear Programming problems (NLPs). The
discretization method used in this layer is the direct Runge-
Kutta method [8] and the resulting static model can be written
as:

minimize 𝐽 = 𝑡𝑓
subject to 𝑥𝑘+1 = 𝑥𝑘 + ℎ𝑘

∑︀𝑠
𝑖=1 𝑏𝑖𝑓(𝑥𝑘𝑖, 𝑢𝑘𝑖),

𝑥𝑘𝑖 = 𝑥𝑘 + ℎ𝑘
∑︀𝑠
𝑗=1 𝑎𝑖𝑗𝑓(𝑥𝑘𝑗 , 𝑢𝑘𝑗),

𝑔(𝑥𝑘𝑖, 𝑢𝑘𝑖) ≥ 0,
𝑥(0) = 𝑥0
𝑖 = 1, ..., 𝑠 𝑘 = 0, ..., 𝑁𝑘−1

(4)

where 𝑁𝑘 is the number of discretized time nodes, while 𝑔
stands for the inequality constraints described in Eq.(2)-(3).
It can be seen from Eq.(4) that only the control variables
are parameterized at temporal nodes [𝑡0, 𝑡1, ..., 𝑡𝑓 ]. Then, the
equations of motion are integrated with a numerical integration
method, e.g, forth-order Runge-Kutta method. In this way
the advantage is that the control box constraints (described
in Eq.(2)) and equations of motion (Eq.(1)) can be satisfied
automatically by initializing all population members within
the specified lower and upper bounds and by integrating the
dynamic model forward via numerical integration. Specifically,
if the initial population contains 𝑁𝑃 individuals, then all the
decision variables can be generated randomly according to the
limits of demanded angle of attack, bank angle and thrust
given in Eq.(2) such that every decision variable can be in
the feasible zone.

𝛼𝑐 = 𝛼𝑚𝑖𝑛𝑐 + 𝑟𝑎𝑛𝑑(·)× (𝛼𝑚𝑎𝑥𝑐 − 𝛼𝑚𝑖𝑛𝑐 )
𝜎𝑐 = 𝜎𝑚𝑖𝑛𝑐 + 𝑟𝑎𝑛𝑑(·)× (𝜎𝑚𝑎𝑥𝑐 − 𝜎𝑚𝑖𝑛𝑐 )
𝑇𝑐 = 𝑇𝑚𝑖𝑛𝑐 + 𝑟𝑎𝑛𝑑(·)× (𝑇𝑚𝑎𝑥𝑐 − 𝑇𝑚𝑖𝑛𝑐 )

(5)

Remark 1. It is worth noting that by combining a shooting-
scheme with the evolutionary solver, it offers the user more
flexibility to choose the temporal set. (e.g. the designer can use
a relatively large temporal set to parameterize the dynamics).
This is because the resulting NLP problem contains less

number of equality constraints compared with collocation dis-
cretization scheme. For collocation methods, both of the state
and control variables will be discretized and consequently, the
equations of motion are transcribed to a series of algebraic
equations (equality constraints). This implies that the resulting
number of optimization parameters and equality constraints
tends to be larger and cannot be satisfied automatically. For
instance, if an optimal control problem contains 𝑛𝑠 state
variables, 𝑛𝑐 control variables and is parameterized using 𝑁𝑘
collocation points, the number of decision variables of the
NLP solver is 𝑛𝑠 × (𝑁𝑘 + 1) + (𝑛𝑐 × 𝑁𝑘) + 1, which is
large compared with shooting scheme since in a shooting
method, only the control variable is parameterized. When a
NLP problem contains too many optimization parameters and
equality constraints, it tends to cost the stochastic-based solver
significant number of iterations to capture the true behaviour
of the model and fail to satisfy all of the constraints.

It should be noted that the constraint handling strate-
gy used in this paper is based on the violation degree of
constraints 𝑉𝑜𝑙. Using this approach, each individual among
the population can be associated with all the constraints;
and the value of the violation function can directly reflect
the magnitude of the solution infeasibility. For example, the
violation degree for relation “≤” (i.e. 𝑔𝑗(𝑢) ≤ 𝑔*𝑗 , where 𝑔*𝑗
is the required upper bound) can be defined as:

𝜇𝑔𝑗 (𝑢) =

⎧⎪⎨⎪⎩
0, 𝑔𝑗(𝑢) ≤ 𝑔*𝑗 ;
𝑔𝑗(𝑢)−𝑔*𝑗
𝑔𝑗𝑚𝑎𝑥−𝑔*𝑗

, 𝑔*𝑗 ≤ 𝑔𝑗(𝑢) ≤ 𝑔𝑚𝑎𝑥𝑗 ;

1, 𝑔𝑗(𝑢) ≥ 𝑔𝑚𝑎𝑥𝑗 .
(6)

where 𝜇𝑔𝑗 (𝑢) is a continuous function and 𝑔𝑗(𝑢) is the value
of 𝑗th constraint for each individual, while the tolerance range
should be (𝑔*𝑗 , 𝑔

𝑚𝑎𝑥
𝑗 ).

Consequently, the value of violation function 𝑉𝑜𝑙 can be
obtained via 𝑉𝑜𝑙 =

∑︀𝐼
𝑗=1 𝜇𝑔𝑗 (𝑢) +

∑︀𝐸
𝑘=1 𝜇ℎ𝑘

(𝑢), where ℎ
stands for the equality constraints. 𝐼 and 𝐸 are the number of
inequality and equality constraints, respectively. As a result,
the selection procedure is depended on the value of 𝑉𝑜𝑙.
The feasible individual (𝑉𝑜𝑙 = 0) can always dominate the
infeasible one (𝑉𝑜𝑙 ̸= 0), while the individual with small
violation degree can always dominate the one with large
violation degree and then be selected.

The main framework of the proposed VLDE method is
constructed in Algorithm 1, from where it can be seen that
VLDE applies the elitism strategy similar to that of traditional
DE. The main new contributions in the VLDE algorithm lie in
its offspring-creation component, where a simplex-based direct
search operation is coupled with traditional generic operations
such as crossover and mutation. In addition, a learning strategy
is also designed according to the nature of the SMV optimal
control problem. In this way, the diversity of the offspring
generation can be further improved, thus helping avoid the
premature convergence of VLDE. It was shown in [21] that
by applying these modifications, the convergence speed of the
VLDE method for solving spacecraft trajectory optimization
problem is effectively improved. Hence this method is chosen
as the outer initial guess generator in this work.

Since the aim of the initial trajectory generator is to
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Algorithm 1 The main framework of the proposed VLDE

1: Input: the maximum number of generations 𝐺𝑚𝑎𝑥, num-
ber of temporal nodes 𝑁𝑘;

2: Output: the best candidate 𝑥𝑏𝑒𝑠𝑡 among the final popula-
tion 𝑃𝐺𝑚𝑎𝑥

;
3: /*Initialization*/
4: Initialization: generate the initial population 𝑃0 with 𝑁

randomized individuals;
5: /*Main Loop*/
6: while 𝐺 < 𝐺𝑚𝑎𝑥 do
7: (a). choose the best number of the current population
8: as 𝑃𝐺;
9: (b). generate the offspring generation 𝑄𝐺

10: 𝑄𝐺 = VLDE offspring-creation (𝑃𝐺);
11: (c). 𝐿𝐺 = learning strategy (𝑃𝐺, 𝑄𝐺);
12: (d). set 𝑃𝐺 = 𝑃𝐺 ∪𝑄𝐺 ∪ 𝐿𝐺;
13: (e). perform the elite selection based on the new
14: dominant rule to get 𝑃𝐺+1;
15: (e). set 𝐺 = 𝐺+ 1;
16: end while

provide reference state and control sequences to the inner
gradient solver, in order to keep a balance between the quality
of solution and the computational burden, 𝐺𝑚𝑎𝑥 is fixed as
100.

B. An improved gradient-based inner solver

After generating the reference state and control se-
quences, these results are provided to the inner gradient-based
optimizer (layer 2). In the second layer, in order to achieve
a higher accuracy, pseudospectral discretization scheme is
applied to transform the dynamics. That is, both the control
and state variables are parameterized at temporal nodes. It
is discussed in [26], [27] that the approximation accuracy
of pseudospectral methods can be directly controlled via the
number of collocation nodes. For example, the approximate
error order for Gauss pseudospectral method is 𝒪(𝑁3−𝑝

𝑘 ) [27],
whereas for Radau pseudospectral method, this order becomes
𝒪(𝑁2−𝜂

𝑘 ) [26].
The optimization methodology used in the second layer

is an improved gradient algorithm based on the Interior Point
method (IP) and Sequential Quadratic Programming (SQP).
The general idea of the proposed algorithm (referred to as
the IPSQP algorithm) is to use the SQP method where the
Quadratic Programming (QP) subproblem is solved using an
IP method [28]. The general quadratic form of the transcribed
trajectory optimization problem is given below:

min 1
2𝑑𝑥

𝑇𝐻(𝑥𝑘, 𝜆𝑘, 𝑢𝑘)𝑑𝑥+∇𝑓(𝑥𝑘)𝑇 𝑑𝑥
ℎ(𝑥𝑘) +∇ℎ(𝑥𝑘)𝑑𝑥 = 0
𝑔(𝑥𝑘) +∇𝑔(𝑥𝑘)𝑑𝑥 ≤ 0

(7)

where ℎ(·) = (ℎ1(·), ℎ2(·), ..., ℎ𝐸(·))𝑇 and 𝑔(·) =
(𝑔1(·), 𝑔2(·), ..., 𝑔𝐼(·))𝑇 . 𝐻 stands for the Hessian matrix. At
a fixed iteration time 𝑘, the IP strategy is used to solve
the quadratic programming model given by Eq.(7). Then,
the formulation of the improved gradient method can be

formulated as follows:

min 1
2𝑑𝑥

𝑇𝐻(𝑥𝑘, 𝑢𝑘)𝑑𝑥+∇𝑓(𝑥𝑘)𝑇 𝑑𝑥− 𝜇𝑘Σ
𝑚
𝑗=1𝑙𝑜𝑔(𝑠

𝑘
𝑗 + 𝑑𝑠𝑗)

𝑠𝑡. 𝑔(𝑥𝑘) +∇𝑔(𝑥𝑘)𝑑𝑥+ 𝑠𝑘 + 𝑒𝑇 𝑑𝑠 = 0
ℎ(𝑥𝑘) +∇ℎ(𝑥𝑘)𝑑𝑥 = 0
𝑑𝑥 ∈ ℜ𝑛, 𝑑𝑠 ∈ ℜ𝑚

(8)
where the primal and dual variables are 𝑑𝑥 and 𝑑𝑠, re-
spectively. The last two terms 𝑠𝑘 + 𝑒𝑇 𝑑𝑠 in the equality
constraint are considered as the slack variables. The algorithm
consists of two nested loops and correspondingly, it contains
two iteration indices. To distinguish these two iterations, the
internal iteration index is defined as 𝑙 while the external
iteration number is defined as 𝑘. Specifically, the primal, slack
and dual variables in the inner iteration are 𝑑𝑥𝑘,𝑙, 𝑑𝑠𝑘,𝑙, 𝑑𝜆𝑘,𝑙
and 𝑑𝑢𝑘,𝑙, respectively. The main advantage of this algorithm
is that the user can control the inner loop by setting the
termination conditions at any time. Since the 𝐻𝑘 is fixed at the
internal circle, it is not required to solve the QP subproblem
exactly, which means finding the time-consuming QP solution
can be avoided.

The Karush-Kuhn-Tucker (KKT) system of Eq.(8) is
described in Eq.(9), and it is solved iteratively.⎛⎜⎝ 𝐻𝑘 0 ∇ℎ(𝑥𝑘)

𝑇 ∇𝑔(𝑥𝑘)
𝑇

0 𝐷𝑢𝑘,𝑙 0 𝐷𝑠𝑘,𝑙
∇ℎ(𝑥𝑘) 0 0 0
∇𝑔(𝑥𝑘) 𝐼 0 0

⎞⎟⎠
⎛⎜⎝ Δ𝑑𝑥𝑘,𝑙

Δ𝑑𝑠𝑘,𝑙
Δ𝑑𝜆𝑘,𝑙

Δ𝑑𝑢𝑘,𝑙

⎞⎟⎠ =

⎛⎜⎝ −𝐻𝑘𝑑𝑥𝑘,𝑙 −∇𝑓(𝑥𝑘)−∇ℎ(𝑥𝑘)
𝑇 𝑑𝜆𝑘,𝑙 −∇𝑔(𝑥𝑘)

𝑇 𝑑𝑢𝑘,𝑙

−𝐷𝑠𝑘,𝑙𝑑𝑢𝑘,𝑙 + 𝜇𝑘,𝑙𝑒
−ℎ(𝑥𝑘)−∇ℎ(𝑥𝑘)𝑑𝑥𝑘,𝑙

−𝑔(𝑥𝑘) +∇𝑔(𝑥𝑘)𝑑𝑥𝑘,𝑙 − 𝑠𝑘 + 𝑒𝑇 𝑑𝑠𝑘,𝑙

⎞⎟⎠
(9)

where Δ𝑑 = [Δ𝑑𝑥𝑘,𝑙,Δ𝑑𝑠𝑘,𝑙,Δ𝑑𝜆𝑘,𝑙,Δ𝑑𝑢𝑘,𝑙]
𝑇 . 𝐷𝑠𝑘,𝑙 and

𝐷𝑢𝑘,𝑙 are positive diagonal matrices corresponding to the
slack variables and multipliers; while 𝜆 and 𝜇 are Lagrangian
multipliers and penalty factors related to equality constraints
and inequality constraints, respectively.

Solving the KKT system, the new iteration can be calcu-
lated by:

𝑑𝑥𝑘,𝑙+1 = 𝑑𝑥𝑘,𝑙 + 𝛼𝑘,𝑙Δ𝑑𝑥𝑘,𝑙
𝑑𝑢𝑘,𝑙+1 = 𝑑𝑢𝑘,𝑙 + 𝛼𝑘,𝑙Δ𝑑𝑢𝑘,𝑙
𝑑𝑠𝑘,𝑙+1 = 𝑑𝑠𝑘,𝑙 + 𝛼𝑘,𝑙Δ𝑑𝑠𝑘,𝑙
𝑑𝜆𝑘,𝑙+1 = 𝑑𝜆𝑘,𝑙 + 𝛼𝑘,𝑙Δ𝑑𝜆𝑘,𝑙

(10)

where the step length parameter 𝛼𝑘,𝑙 ∈ (0, 1] should be chosen
to ensure that the merit function achieves sufficient decrease
but the step is not too short. In this paper, the 𝑙∞-merit
function is implemented in order to measure the progress of
each iteration and it can be written as:

𝑀𝜇,𝑟(𝑥, 𝑠, 𝜆, 𝑢, 𝑑𝑥, 𝑑𝑠, 𝑑𝜆, 𝑑𝑢)
= 1

2𝑑𝑥
𝑇𝐻𝑑𝑥+∇𝑓(𝑥)𝑇 𝑑𝑥− 𝜇𝑘Σ

𝑚
𝑗=1𝑙𝑜𝑔(𝑠𝑗 + 𝑑𝑠𝑗)

+𝜆Σ𝑙𝑖=1(ℎ𝑖(𝑥) +∇ℎ𝑖(𝑥))𝑑𝑥
+𝑟‖𝑔(𝑥) +∇𝑔(𝑥)𝑑𝑥+ 𝑠+ 𝑒𝑇 𝑑𝑠‖∞

(11)
where 𝑟 is the penalty factor and 𝜇 is a barrier parameter.
The line search process shown in Eq.(10) should ensure that
there is a progress on the merit function for each iteration and
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therefore, the Goldstein conditions is applied.

𝑀𝜇,𝑟(𝑥𝑘, 𝑠𝑘, 𝜆𝑘, 𝑢𝑘) + 𝑐1𝛼𝑘∇𝑀𝑇
𝜇,𝑟Δ𝑑𝑘

≤𝑀𝜇,𝑟(𝑥𝑘 + 𝛼𝑘𝑑𝑥𝑘, 𝑠𝑘 + 𝛼𝑘𝑑𝑠𝑘,
𝜆𝑘 + 𝛼𝑘𝑑𝜆𝑘, 𝑢𝑘 + 𝛼𝑘𝑑𝑢𝑘)

≤𝑀𝜇,𝑟(𝑥𝑘, 𝑠𝑘, 𝜆𝑘, 𝑢𝑘) + 𝑐2𝛼𝑘∇𝑀𝑇
𝜇,𝑟Δ𝑑𝑘

(12)

with 0 < 𝑐1 < 𝑐2 < 1. Δ𝑑𝑘 denotes the directional derivative
(𝑑𝑥𝑘, 𝑑𝑠𝑘, 𝑑𝜆𝑘, 𝑑𝑢𝑘). The second term of the inequality is
the sufficient decrease condition while the first term of the
inequality is to control the step length so that it will not be
chosen too short.

In order to better show the structure of this two nest-
ed gradient optimization algorithm, the overall procedure is
illustrated in the Pseudocode (see Algorithm 2).

Algorithm 2 Pseudocode for the IPSQP method

1: procedure (Two nested structure)
2: Choose starting values 𝑧0 = (𝑥0, 𝑢0, 𝜆0, 𝑠0)
3: for 𝑘 := 0, 1, 2, ... do
4: (a). Check stopping criteria for the outer loop
5: (b). Choose 𝑑𝑥𝑘,0, 𝑑𝑢𝑘,0, 𝑑𝜆𝑘,0 and 𝑑𝑠𝑘,0
6: for 𝑙 := 0, 1, 2, ..., 𝑙𝑚𝑎𝑥 do
7: i. Determine 𝐷𝑢𝑘,𝑙, 𝐷𝑠𝑘,𝑙 and 𝜇𝑘,𝑙.
8: ii. Solve the KKT system described in Eq.(9).
9: iii. Apply the line search algorithm shown in

10: Eq.(10).
11: iv. If the inner loop solution can satisfy the
12: stopping condition of QP, break for-loop;
13: end for
14: (c). Find step length for the outer loop such that
15: the merit function can have a proper
16: improvement.
17: (d). Update the current searching point and go back
18: to line 3.
19: end for
20: Output the optimal solution
21: end procedure

Remark 2. It should be noted that commonly the first initial
guess and active set provided by the user are far from the opti-
mal solution. Therefore, the Lagrangian multipliers calculated
by using SQP are inaccurate. If the quadratic model is solved
using SQP and active set, it usually takes the solver a large
number of iteration to converge. However, by applying the
inner loop (controlled by the number of 𝑙𝑚𝑎𝑥) in the proposed
algorithm and the reference solution generated from Layer 1,
the identification of active set and the solution finding can be
more accurate. Moreover, the convergence ability can also be
improved and the computational burden can be decreased at
the same time (less Newton iteration).

C. Mesh refinement

For direct transcription methods (e.g. direct multiple
shooting and direct collocation), in general, the accuracy of
the solution depends largely on the mesh refinement procedure
[5], [29], [30]. The aim for carrying out mesh refinement is to
determine whether the current mesh grid is proper and update

the mesh grid so that the resulting mesh can contain a small
number of temporal points and the mesh distribution is dense
where the discontinuity order is high. Therefore, the third
layer of the designed hybrid optimal control solver is coupled
with the second layer (inner gradient-based optimizer) so as
to refresh the mesh grid. The idea applied to do the mesh
update is the ℎ𝑝-strategy. Detailed information including the
analytical formulation of the ℎ𝑝-strategy can be found in [22],
[30].

Let 𝜀 stand for an accuracy tolerance for the discrete
algebraic function constraint. The errors of the dynamic e-
quations and path constraints at the 𝑠th collocation point,
𝑘th time interval are 𝑎

(𝑘)
𝑠 and 𝑏

(𝑘)
𝑠 , respectively. Therefore,

the maximum error 𝑒(𝑘)𝑚𝑎𝑥 in the 𝑘th time interval can be
approximated as 𝑒

(𝑘)
𝑚𝑎𝑥 = 𝑚𝑎𝑥[𝑎

(𝑘)
𝑠 , 𝑏

(𝑘)
𝑠 ]. If the equation

𝑒
(𝑘)
𝑚𝑎𝑥 ≤ 𝜀 can be satisfied, then the algorithm will stop

the iteration because collocation points in the 𝑘𝑡ℎ interval
can reach the tolerance. Otherwise, it should be divided into
subintervals or add more collocation points.

Suppose 𝑘(𝑘)𝑚𝑎𝑥 and 𝑘
(𝑘)

are the maximum curvature and
average curvature of all the nodes, respectively. Furthermore,
let 𝑟(𝑘) =

𝑘(𝑘)
𝑚𝑎𝑥

𝑘
(𝑘) be the ratio of the maximum to the mean

curvature. Setting the tolerance of curvature as 𝑟𝑚𝑎𝑥 and
if 𝑟(𝑘) ≥ 𝑟𝑚𝑎𝑥, then the trajectory in this time interval
tends to have oscillations and it should be divided into new
subinterval. The number of the subinterval 𝑛𝑘 is determined
using 𝑛𝑘 = 𝑐𝑒𝑖𝑙(log(𝑒

(𝑘)
𝑚𝑎𝑥/𝜖)), where the function of 𝑐𝑒𝑖𝑙(·)

is to round a number to the next larger integer. On the
other hand, if the tolerance can satisfy 𝑟(𝑘) < 𝑟𝑚𝑎𝑥, the
trajectory tends to be flat in this time interval and the accuracy
can be improved by adding more collocation points. The
number of points that should be added is determined by
𝑁𝑘 = 𝑁𝑘 + 𝑐𝑒𝑖𝑙(log(𝑒

(𝑘)
𝑚𝑎𝑥/𝜖)).

Remark 3. In order to improve the efficiency of the proposed
solver, in the simulation, each refinement iteration will use
the previous mesh history as the start point to do the solution
finding. The stopping criteria depends on the maximum num-
ber of iteration and the accuracy tolerance. The algorithm will
carry on until one of the stopping criteria can be satisfied.

D. Algorithm framework

The framework of the proposed three-layer-hybrid opti-
mal control solver is presented in Fig.1.

IV. OPTIMALITY VERIFICATION

Since the SMV trajectory planning problem is formu-
lated as an optimal control problem, to judge the quality
of the solution generated by the proposed three-layer-hybrid
optimal control solver, the first-order necessary conditions
should be used. According to the problem formulation given
by Eq.(1), the Hamiltonian function 𝐻𝑎𝑚 is constructed as
𝐻𝑎𝑚 = Φ(𝑥, 𝑢, 𝑡; 𝑡0, 𝑡𝑓 ) + 𝜆𝑇 (𝑡)𝑓(𝑥, 𝑢, 𝑡; 𝑡0, 𝑡𝑓 ). Taking into
account the path constraints, the augmented Hamiltonian is
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Fig. 1: Flow chart of the designed solver

defined as:

𝐻𝑎𝑚(𝑥, 𝜆, 𝑢, 𝜇, 𝑡; 𝑡0, 𝑡𝑓 ) = Φ(𝑥, 𝑢, 𝑡; 𝑡0, 𝑡𝑓 )
+𝜆𝑇 (𝑡)𝑓(𝑥, 𝑢, 𝑡; 𝑡0, 𝑡𝑓 )
−𝜇𝑇 (𝑡)𝐶(𝑥, 𝑢, 𝑡; 𝑡0, 𝑡𝑓 )

(13)
where Φ is the Lagrange form cost function, 𝑓 is the
right hand side of the equations of motion, 𝜆(𝑡) =
[𝜆𝑟, 𝜆𝜃, 𝜆𝜑, 𝜆𝑉 , 𝜆𝛾 , 𝜆𝜓, 𝜆𝑚, 𝜆𝛼, 𝜆𝜎, 𝜆𝑇 ]

𝑇 ∈ ℜ10 is the costate
corresponding to the dynamic equations and 𝜇(𝑡) ∈ ℜ3 is the
Lagrange multiplier associated with the path constraints.

A. First order necessary conditions

The continuous-time first-order necessary conditions in
terms of costate and hamiltonian can be written as:

𝜆(𝑡0) = − 𝜕𝐽
𝜕𝑥(𝑡0)

+ 𝜐𝑇 𝜕𝜑
𝜕𝑥(𝑡0)

𝜆(𝑡𝑓 ) = − 𝜕𝐽
𝜕𝑥(𝑡𝑓 )

+ 𝜐𝑇 𝜕𝜑
𝜕𝑥(𝑡𝑓 )

𝐻𝑎𝑚(𝑡0) =
𝜕𝐽
𝜕𝑡0

− 𝜐𝑇 𝜕𝜑
𝜕𝑡0

𝐻𝑎𝑚(𝑡𝑓 ) =
𝜕𝐽
𝜕𝑡𝑓

− 𝜐𝑇 𝜕𝜑
𝜕𝑡𝑓

(14)

where 𝜑 is the boundary condition and 𝜐 is the Lagrange
multiplier associated with the boundary condition. Besides,
the first-order Hamiltonian minimization condition is based
on the minimum principle such that the optimal control
𝑢* = [𝛼*

𝑐 , 𝜎
*
𝑐 , 𝑇

*
𝑐 ] must minimize the Hamiltonian with respect

to control variables.

𝜕𝐻𝑎𝑚

𝜕𝑢
=
𝜕𝑔

𝜕𝑢
+

(︂
𝜕𝑓

𝜕𝑢

)︂𝑇
𝜆−

(︂
𝜕𝐶

𝜕𝑢

)︂𝑇
𝜇 = 0 (15)

It is obvious that the first term 𝜕𝑔
𝜕𝑢 = 0 and therefore, Eq.(15)

can be rewritten as:⎧⎪⎨⎪⎩
𝜕𝜆𝛼[𝐾𝛼(𝛼𝑐−𝛼)]

𝜕𝛼𝑐
− 𝑞𝛼𝑐

= 0, (with respect to 𝛼𝑐) ;
𝜕𝜆𝜎 [𝐾𝜎(𝜎𝑐−𝜎)]

𝜕𝜎𝑐
− 𝑞𝜎𝑐

= 0, (with respect to 𝜎𝑐) ;
𝜕𝜆𝑇 [𝐾𝑇 (𝑇𝑐−𝑇 )]

𝜕𝑇𝑐
− 𝑞𝑇𝑐

= 0, (with respect to 𝑇𝑐)
(16)

where 𝑞𝑢 = [𝑞𝛼𝑐 , 𝑞𝜎𝑐 , 𝑞𝑇𝑐 ]
𝑇 is the Lagrange multiplier with

respect to the control path constraints. Also, based on the
KKT complementary condition, the control multipliers should

satisfy the following equation:

𝑞𝑢

⎧⎨⎩ ≤ 0 𝑖𝑓, 𝑢 = 𝑢𝑚𝑖𝑛;
= 0 𝑖𝑓, (𝑢𝑚𝑖𝑛 < 𝑢 < 𝑢𝑚𝑎𝑥;
≥ 0 𝑖𝑓, 𝑢 = 𝑢𝑚𝑎𝑥.

(17)

Eq.(17) implies when the control constraints become active,
the corresponding multipliers become nonzero.

B. Terminal transversality conditions

The following proposition illustrates the property of
costate variables at the terminal time instant.

Proposition 1. Consider the time-optimal spacecraft trajectory
optimization problem has a feasible optimal solution: The
costate value [𝜆𝜃, 𝜆𝜑, 𝜆𝑉 , 𝜆𝜓, 𝜆𝑚, 𝜆𝛼, 𝜆𝜎, 𝜆𝑇 ] must be zero
when 𝑡 = 𝑡𝑓 .

Proof: Based on the Eq.(14), the transversality condition
at the final time instant has the following form

𝜆(𝑡𝑓 ) +
𝜕𝐽

𝜕𝑥(𝑡𝑓 )
− 𝜐𝑇

𝜕𝜑

𝜕𝑥(𝑡𝑓 )
= 0

For the time-optimal spacecraft trajectory planning problem,
there are no constraints for 𝜃, 𝜑, 𝑉, 𝜓, 𝛼, 𝜎, 𝑇 at 𝑡𝑓 . Therefore,
the costate value for each state variable at the final time should
hold Eq.(18). ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜆𝜃(𝑡𝑓 ) =
𝜕𝐽
𝜕𝜃 |𝑡=𝑡𝑓= 0

𝜆𝜑(𝑡𝑓 ) =
𝜕𝐽
𝜕𝜑 |𝑡=𝑡𝑓= 0

𝜆𝑉 (𝑡𝑓 ) =
𝜕𝐽
𝜕𝑉 |𝑡=𝑡𝑓= 0

𝜆𝜓(𝑡𝑓 ) =
𝜕𝐽
𝜕𝜓 |𝑡=𝑡𝑓= 0

𝜆𝑚(𝑡𝑓 ) =
𝜕𝐽
𝜕𝑚 |𝑡=𝑡𝑓= 0

𝜆𝛼(𝑡𝑓 ) =
𝜕𝐽
𝜕𝛼 |𝑡=𝑡𝑓= 0

𝜆𝜎(𝑡𝑓 ) =
𝜕𝐽
𝜕𝜎 |𝑡=𝑡𝑓= 0

𝜆𝑇 (𝑡𝑓 ) =
𝜕𝐽
𝜕𝑇 |𝑡=𝑡𝑓= 0

(18)

which completes the proof.
Applying the terminal transversality condition can give

some indications of the final value of the dual variables 𝜆 that
can be used later to verify the numerical results.
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C. Hamiltonian function condition

The following proposition gives the nature of the Hamil-
tonian function with respect to time.

Proposition 2. Assume 𝑥*(𝑡), 𝑢*(𝑡) are the optimal state
and control variables, the corresponding Hamiltonian function
should satisfy 𝐻𝑎𝑚(𝑥*(𝑡), 𝑢*(𝑡)) = −1 for 𝑡 ∈ [𝑡0, 𝑡𝑓 ].

Proof: Since the final time is a free variable, there is a
stationary condition for the 𝐻𝑎𝑚 function. This condition is
obtained by applying the endpoint Lagrangian equation (e.g.
𝐻𝑎𝑚(𝑡𝑓 )− 𝜕𝐽

𝜕𝑡𝑓
+𝜐𝑇 𝜕𝜑

𝜕𝑡𝑓
= 0). For the problem studied in this

paper, this equation can be rewritten as:

𝐻𝑎𝑚(𝑋(𝑡𝑓 ), 𝑡𝑓 , 𝜐) = − 𝜕𝐽
𝜕𝑡𝑓

+ 𝜐𝑟
𝜕(𝑟𝑓−𝑟(𝑡𝑓 ))

𝜕𝑡𝑓

+𝜐𝛾
𝜕(𝛾𝑓−𝛾(𝑡𝑓 ))

𝜕𝑡𝑓

= −1

(19)

Eq.(19) implies that the final value of the Hamiltonian
function should be -1 for this problem. Then the Hamiltonian
evolution equation is used to demonstrate the behaviour of the
Hamiltonian with respect to time such that:

𝜕𝐻𝑎𝑚

𝜕𝑡
= 0 (20)

Eq.(20) means 𝐻𝑎𝑚 is not explicitly a function of time
and 𝐻𝑎𝑚 = 𝑐, where 𝑐 is a constant. Combining Eq.(19)
and Eq.(20), it is clear that the following equation should be
satisfied.

𝐻𝑎𝑚(𝑥*(𝑡), 𝑢*(𝑡)) = −1, ∀𝑡 ∈ [𝑡0, 𝑡𝑓 ] (21)

Therefore, it is obvious that the Hamiltonian function
should be -1 during the entire time history. The aim of the
analysis carried-out in this subsection is to verify the first-
order quality of the numerical solution calculated using the
designed optimal control solver.

D. Properties of the control variable

Similarly, the optimal control variable has the following
property.

Proposition 3. If the time-optimal spacecraft trajectory opti-
mization problem has the optimal control solution 𝑢*(𝑡), then
𝑢*(𝑡) can be expected to have a “bang-bang” behaviour for
all 𝑡 ∈ [𝑡0, 𝑡𝑓 ].

Proof: The control variables should be chosen such that
the augmented Hamiltonian function can be minimized. Since
the rate constraint of the control variable is achieved using the
first order lag equations (shown in Eq.(3)), the path constraints
do not involve the control variables explicitly, which means the
optimal solution may contain corners. Moreover, according to
Eq.(3), the demanded control appears linearly in the differen-
tial equations. Therefore to minimize the Hamiltonian function
𝐻𝑎𝑚 with respect to the demanded control, taking into account
the control variable constraints, the demanded control variables
should move from one point from the boundary of the feasible
control region to another point on the boundary, which can be

expressed as

𝑢*(𝑡) =

{︂
𝑢𝑚𝑖𝑛 𝑖𝑓, 𝜌 < 0;
𝑢𝑚𝑎𝑥 𝑖𝑓, 𝜌 > 0. (22)

In Eq.(22), 𝜌 is the switching function with the expression 𝜌 =
−𝜆′

𝐾 − 𝑞𝑢, where 𝜆
′
= [𝜆𝛼, 𝜆𝜎, 𝜆𝑇 ] and 𝐾 = [𝑘𝛼, 𝑘𝜎, 𝑘𝑇 ],

respectively. The sign of the switching function dominates the
magnitude of the controls according to Eq.(22).

Consequently, as for the SMV model considered in this
paper, it can be expected to experience a switching structure in
terms of the demanded angle of attack, bank angle and thrust
profiles.

E. Bellman’s principle

Another way to verify the optimality is Bellman’s princi-
ple. The main idea of this principle is that the optimal result
will not change if several points on the original optimal trajec-
tory are selected as the initial condition to a new problem. This
principle is also the main theory of Dynamic Programming
(DP) in terms of optimality. If several time points on the
original trajectory are selected as initial conditions and the
results show that there is no better or different solutions, then
the Bellman’s optimality principle can be satisfied.

V. SIMULATION RESULTS

A. Parameter setting

All the mission-dependent and vehicle-dependent param-
eters including the initial, terminal boundary conditions, box
constraints and aerodynamic coefficients of the skip problem
can be found in [22]. Regarding the path constraints for
mission 1, the maximum allowable heating, dynamic pressure
and load factor are set as: 𝑄𝑚𝑎𝑥 = 200𝐵𝑇𝑈 ; 𝑃𝑑𝑚𝑎𝑥 =
13406.4583𝑃𝑎; 𝑛𝑙𝑚𝑎𝑥 = 2.5, respectively.

B. Optimal solution

According to the dynamic model, objective function and
path constraints that were given in Section II, the numerical
solutions obtained using the VLDE-based initial guess genera-
tor and the hybrid solver are shown in Fig.2. The characteristic
arcs of the obtained trajectories are analyzed in this subsection.
The trajectory is split into two subintervals: descent and climb.
In the descent phase, to reach the minimum predetermined
altitude (around 50km above sea level) and minimize the
objective function (final time), Fig.2 shows that the SMV
descends directly at the start of the mission. The angle of
attack increases to slow down the vehicle so that the heating
and dynamic pressure do not increase significantly, hence to
avoid the path constraints from becoming active. While rapid
descent is necessary, it should be noted that there is a slight
dip in terms of the curvature of the altitude (a small hop)
before reaching the minimum altitude point. This is because
if the spacecraft descends without increasing the flight path
angle, then the dynamic pressure and load factor constraints
may become active. To preserve kinetic energy and satisfy the
path constraints, the curvature of the altitude is decreased such
that the SMV can have sufficient time to use the drag force
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Fig. 2: Time history for states and controls (Mission 1: 𝑄𝑚𝑎𝑥 = 200𝐵𝑇𝑈 ; 𝑃𝑑𝑚𝑎𝑥 = 13406.4583𝑃𝑎; 𝑛𝑙𝑚𝑎𝑥 = 2.5)

(i.e. slow its speed down). Therefore, the structure integrity of
the vehicle can be guaranteed at the expense of the objective
function.

In the climb phase, the SMV fires it engine so that the
vehicle can accelerate and have enough kinetic energy to return
back to orbit. The trend for the angle of attack can be seen in
Fig.2, where the angle of attack is increased during the whole
climbing phase. The reason is that in the climbing phase,
without violating the path constraints it can have positive
influences in terms of acceleration.

To further test and analyze the performance of the
proposed hybrid strategy, another mission scenario, which
contains more strict limits on the path constraints was carried
out using the designed hybrid optimal solver. In this case,
the maximum allowable heating, dynamic pressure and load
factor for mission 2 are restricted to: 𝑄𝑚𝑎𝑥 = 150𝐵𝑇𝑈 ;
𝑃𝑑𝑚𝑎𝑥 = 11970.05𝑃𝑎; 𝑛𝑙𝑚𝑎𝑥 = 2.0, respectively. The time
history of the optimization variables and path constraints are
shown in Fig.3 and Fig.4.

As can be seen from Fig.3 and Fig.4, the proposed
hybrid strategy can still generate high quality solutions without
violating path constraints and box constraints. Compared with
the results shown in Fig.2, the solution obtained in Fig.3 and
Fig.4 shows a slight difference. The reason of the additional
hop in the altitude profile after around 400s is to prevent the
load factor constraint from becoming active. Therefore, based
on there observations and results, it can be concluded that the
initial guess generator embedded in the algorithm framework
can have positive influences for the inner gradient-based solver
in terms of increasing convergence ability and getting rid of
infeasibility.

Regarding to the mesh refinement process, the way that
this strategy adds points in a specific time interval or divides an

interval into subintervals was described in Section III.C. Using
the ℎ𝑝 strategy, the time history for the states and controls can
be much smoother. This can be seen in Fig.2 to 4, where the
distribution of grid points tends to be dense at the areas having
a high value of curvature (the trajectory at those areas tends
to have more oscillations), while the distribution of temporal
points tends to be sparse at those flat areas. It is important to
combine the mesh refinement with a specific optimal control
solver since for most real-world problems, the optimal state
and control profiles may contain discontinuous points or non-
smooth segments. If a fixed temporal set is used, it is usually
hard to detect all the discontinuity or non-smoothness, and the
obtained solution may fail to describe the true behaviours of
the state and control variables.

C. Verification of optimality

After generating all the state and control profiles using
the proposed solver, the next step is to verify the optimality
of the obtained solutions. The conditions used to analyze the
optimality were presented in Section IV. For the simulation
results shown in Fig.2, the corresponding actual and demanded
control profiles including angle of attack, bank angle, and
thrust are plotted in Fig.5. As discussed in Section IV, since
the demanded control variables that appear on the right hand
side of the equations of motion are linear and do not appear in
the path constraints, a “bang-bang” behaviour with respect to
the demanded control profile can be expected. This behaviour
can be used partly to show the optimality of the calculated
trajectories. Moreover, by introducing the three lag equations
(Eq.(3)), the actual controls become much smoother (no dis-
continuous point), which can offer more flexibilities in terms
of the design of online guidance law.
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Fig. 3: Time history for states and controls (Mission 2: 𝑄𝑚𝑎𝑥 = 150𝐵𝑇𝑈 ; 𝑃𝑑𝑚𝑎𝑥 = 11970.05𝑃𝑎; 𝑛𝑙𝑚𝑎𝑥 = 2.0)
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Moreover, to check the Terminal transversality
conditions, the final values of the costate (𝜆) corresponding to
the state obtained from the optimization process are calculated,
such that 𝜆𝜃(𝑡𝑓 ) = −5.33× 10−10, 𝜆𝜑(𝑡𝑓 ) = −2.28× 10−9,
𝜆𝑉 (𝑡𝑓 ) = −4.93 × 10−2, 𝜆𝜓(𝑡𝑓 ) = 7.52 × 10−10,
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Fig. 5: Actual and demanded control profiles (Mission 1)

𝜆𝛼(𝑡𝑓 ) = 6.09 × 10−21, 𝜆𝜎(𝑡𝑓 ) = 2.17 × 10−17 and
𝜆𝑇 (𝑡𝑓 ) = −3.14× 10−23.

The Hamiltonian value condition shows that the Hamil-
tonian function should be -1 at the final time (i.e. 𝐻𝑎𝑚(𝑡𝑓 ) =
−1), see Section IV.C. From the Hamiltonian evolution e-
quation, it can be shown that the Hamiltonian is constant
during the whole time history. Therefore, combining these two
conditions, the Hamiltonian should keep -1, as illustrated in
Fig.6.

Fig.6 and the final costate values illustrate the optimality
of the obtained solutions. Specifically, the value of the Hamil-
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Fig. 6: Hamiltonian function for Mission Scenario 1

tonian function generated using the proposed approach tends
to remain flat around -1 with small variance, while the final
costate values for states which have free final conditions are
equal to 0 or approximately 0. That means the performance
of the designed strategy is closer to the theoretical behaviour
and it further confirms that the newly designed solver is fea-
sible and effective for handling SMV trajectory optimization
problem.

For the mission scenario containing strict path constraints,
the control profiles are plotted in Fig.7. It is clear that the nu-
merical solution can still satisfy the control profile conditions
discussed in Section IV. In terms of the Hamiltonian profile
shown in Fig.8, again, the theoretical behaviours discussed in
Section IV can be satisfied.

In order to verify Bellman’s principle described in [31],
and presented in Section IV of this paper, 15 time points
on the obtained trajectory were selected randomly as initial
conditions for the simulation. The results show that there is
no better or different solution for both mission cases.
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Fig. 7: Actual and demanded control profiles (Mission 2)

Remark 4. It is clear from Fig.6 and Fig.8 that the Hamiltonian
profiles do not stay flat during the entire time period and con-
tain some oscillations. For example, in Fig.6, there are some

Fig. 8: Hamiltonian function for Mission Scenario 2

fluctuations around 500s, while in Fig.8, the trajectory tend
to oscillate in the [100𝑠, 200𝑠] and [550𝑠, 650𝑠] regions. This
is because during these time periods, the path constraints (see
Fig.4) become active. That is, in the Hamiltonian equation, the
multipliers 𝜇𝑇 (𝑡) associated with 𝐶 (path constraints) become
non-zero. More precisely, at these time periods, the numerical
solutions will lose some optimality.
Remark 5. One main advantage of the proposed optimal
control solver is that it is possible for the user to analyze the
optimality of the obtained solution. Since the inner solver is
based on gradient-based optimization methods, it is possible
to calculate the information about the Lagrange multipliers,
which implies that the adjoint variable associated with each s-
tate can then be calculated via the mapping principle discussed
in [7]. Therefore, the first-order necessary conditions for the
general optimal control problems can be verified numerically.

D. Comparison with existing evolutionary solvers

In this subsection, comparative studies were performed
to analyze the optimal trajectories achieved by applying the
VLDE evolutionary solver with other typical heuristic strate-
gies. For example, the PSO method reported in [19], and a
DE design studied in [32]. These strategies use stochastic
optimization processes and were shown as promising methods
to calculate the optimal state and control trajectories. For the
purpose of comparison, all the methods are applied to solve
the first mission scenario. Fig.9 illustrates the time history
with respect to the state variable calculated using different
evolutionary algorithms, whereas Fig.10 gives the control and
path constraint trajectories.

As can be seen from Fig.9 and Fig.10, all the solutions
calculated by applying these three methods can be accepted
as feasible solutions. The VLDE approach can perform better
than its counterparts in terms of achieving better fitness values
for this mission case. Moreover, it is obtained that the final
boundary error values calculated using different global opti-
mization methods are 𝑒𝑟 𝑉 𝐿𝐷𝐸 = 0.08ft, 𝑒𝑟 𝑃𝑆𝑂 = 14.16ft
and 𝑒𝑟 𝐷𝐸 = 203.88ft, respectively. This further confirms that
the VLDE method investigated in this work can better lead
the boundary error to a small value without violating various
path constraints for the SMV trajectory planning problem.
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Fig. 9: Results obtained using different heuristic solvers

Time (s)
0 200 400 600 800 1000

H
ea

di
ng

 a
ng

le
 (

de
g)

0

20

40

60

80

100

Time (s)
0 200 400 600 800 1000

B
an

k 
an

gl
e 

(d
eg

)

-80

-75

-70

-65

-60

-55
VLDE-solution
DE-solution
PSO-solution

Time (s)
0 200 400 600 800 1000

H
ea

tin
g 

(B
T

U
)

0

50

100

150

200

Time (s)
0 200 400 600 800 1000

D
yn

am
ic

 p
re

ss
ur

e 
(P

a)

0

5000

10000

15000

Fig. 10: Results obtained using different heuristic solvers

E. Dispersion models

The aim of dispersion simulations is to illustrate the
stability of the proposed three-layer-hybrid optimal control
solver in the presence of significant deviations in trajectory
initial state variables (𝑥0) and vehicle uncertainties [33]. All
the random initialization data used in the dispersion model
are tabulated in Table.I. Furthermore, the vehicle mass was
perturbed uniformly up to 5% with the nominal mass, which
gives a range of value of 95%𝑚0 to 105%𝑚0.

The dispersion simulation was carried out for the Mission
scenario 1 and 1000 Monte-Carlo simulations were performed.
Simulation results show that most of the cases can successfully
converge to the optimal solution and it is not sensitive with
respect to the random initialization. The time histories of 100
dispersed trajectories in terms of the state variables obtained
using the proposed hybrid optimal control algorithm are plot-
ted in Fig.10. Correspondingly, Fig.11 shows the Hamiltonian
profile in order to illustrate the optimality of the calculated

TABLE I: Dispersions in the entry initial conditions

State/parameter Distribution 3-𝜎 range
Altitude,ft Zero-mean Gaussian 500
Longitude,deg Zero-mean Gaussian 0.0749
Latitude,deg Zero-mean Gaussian 0.3202
Velocity,ft/s Zero-mean Gaussian 100
Flight-path angle,deg Zero-mean Gaussian 0.1084
Heading angle,deg Zero-mean Gaussian 0.0973
Vehicle’s mass,slug Uniform ±5%

solutions. As can be seen from Fig.10, all the trajectories can
be accepted as feasible solutions. Moreover, based on the time
history of the Hamiltonian function demonstrated in Fig.11,
the optimality of the dispersion simulation can be guaranteed.

A comparative study was made in order to compare the
convergence ability and stability of the proposed hybrid solver
with other typical optimal control solvers such as GPOPS
(e.g. orthogonal collocation method) and ICLOCS (direct
collocation or multiple shooting method). By setting the max-
imum number of Newton iterations as 3000, the convergence
results are tabulated in Table.II. The table summarises the
times of optimal solution found, infeasible point detected and
maximum iterations exceeded for different solvers. It is worth
noting that the term “infeasible point detected” in Table.II
means that the algorithm is stuck at a locally infeasible point.

As can be seen from Table.II based on the same disper-
sion model, the proposed hybrid solver can perform a higher
probability in terms of finding optimal solutions compared
with other typical strategies. A comparison between the al-
gorithm with and without the layer 1 was also performed. The
results show that the use of the layer 1 can effectively improve
the convergence ability of the proposed hybrid algorithm.
Moreover, the number of Newton iterations required for the
proposed method is also smaller than its counterparts. The
results not only confirm that the design philosophy of the
proposed solver can have positive influences in terms of
improving the convergence ability and convergence speed, but
also indicate that the method designed in this study can have a
better performance over other typical optimal control methods.

Remark 6. It is worth noting that the stochastic optimization
approach used in this paper can be a feasible way to generate
skip entry trajectories. This can be seen from the reference
trajectories shown in Figs.2-4. Clearly, all the obtained so-
lutions can be accepted as feasible solutions. If there is no
accuracy requirement, then the initial guess can be accept as a
near-optimal solution. In addition, when the nonlinearity of the
cost functions or path constraints become higher, which means
it is difficult to calculate the gradient information for gradient
techniques, the stochastic method can also be an efficient way
to generate a high quality reference trajectory.

Remark 7. It should be mentioned that the hybrid solver de-
veloped in this study can be easily extended and implemented
in other control optimization problems. For instance, recent
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TABLE II: Convergence results for different optimal control solvers

Different methods Optimal solution found Infeasible point detected Maximum iterations exceeded Successful rate (%)
Proposed hybrid strategy
(With layer 1) 907 24 69 90.7

Proposed hybrid strategy
(Without layer 1) 811 33 56 81.1

GPOPS
(Orthogonal collocation) 798 53 149 79.8

ICLOCS
(Direct collocation) 663 69 268 66.3

ICLOCS
(Multiple shooting) 691 77 232 69.1
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Fig. 11: 100 dispersed trajectories for the state variables
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Fig. 12: 100 dispersed trajectories for the Hamiltonian function

research [34] has demonstrated the capability to utilize optimal
control-based solver in dealing with agent/robot obstacle-
avoidance path planning problems [35]. If the proposed solver
is applied to solve such a problem, some adjustments should
be made in the optimization process. Firstly, different obstacles
should be reformulated as a series of path constraints entailed
in the optimization model. Besides, since the nonlinearity of
the dynamics and constraints in these problems is usually
high, the problem tends to be more sensitive with respect to
the optimization parameters. Therefore, the proposed solver
should start with a relatively small temporal set.

VI. CONCLUSION

In this work, a three-layer-hybrid optimal control solver
was constructed and applied to solve the Space Maneuver
Vehicle trajectory optimization problem. In order to effectively
evaluate a reference trajectory, an initial guess generator using
V-based adaptive differential evolution algorithm was applied.
Since it is hard to use a large temporal set for stochastic-based
algorithms, a specific discretization scheme is implemented
to tackle this problem. In addition, a new gradient-based
algorithm is used as the inner solver, thereby allowing the
designer more flexibility to control the optimization process.
Comparative simulations show that the proposed method can
have better performance in terms of convergence ability and
stability than other typical optimal control solvers. Moreover,
it was verified that the obtained solution can satisfy all the
optimality conditions, which illustrates the effectiveness of the
proposed solver.

Our follow-up research will focus on extending the pro-
posed design such that it can be applied in handling stochastic
trajectory planning problems. In addition, it would be also
worthwhile to use the proposed method for other path planning
applications, especially in the multi-agent path planning with
collision avoidance.
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