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Abstract

Neonatal magnetic resonance (MR) images typically have low spatial resolution and insufficient 

tissue contrast. Interpolation methods are commonly used to upsample the images for the 

subsequent analysis. However, the resulting images are often blurry and susceptible to partial 

volume effects. In this paper, we propose a novel longitudinally guided super-resolution (SR) 

algorithm for neonatal images. This is motivated by the fact that anatomical structures evolve 

slowly and smoothly as the brain develops after birth. We propose a strategy involving longitudinal 

regularization, similar to bilateral filtering, in combination with low-rank and total variation 
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constraints to solve the ill-posed inverse problem associated with image SR. Experimental results 

on neonatal MR images demonstrate that the proposed algorithm recovers clear structural details 

and outperforms state-of-the-art methods both qualitatively and quantitatively.

Index Terms

Guided bilateral filtering (GBF); image interpolation; image super-resolution (SR); magnetic 
resonance imaging (MRI); total variation (TV)

I. Introduction

AS a non-invasive imaging technology without damaging radiation, magnetic resonance 

imaging (MRI) is particularly suitable for imaging soft tissues. Although MRI technologies 

have progressed greatly over the past decades in terms of spatial resolution, signal-to-noise 

ratio (SNR), and acquisition speed, practical challenges still persist when it comes to 

neonatal imaging. Neonates have smaller brains that are developing dynamically. Given the 

limited acquisition time, very often only low-resolution (LR) [1] images can be acquired, 

despite the fact that high-resolution (HR) images are desired for revealing finer structural 

details [2].

In an LR image, a single voxel may contain several different types of tissues, causing partial 

volume effect (PVE) [3]. PVE is especially severe in neonatal brain imaging due to the 

smaller brain size. This poses significant challenges to subsequent image analysis, such as 

the quantification of volume and shape changes. Image super-resolution (SR) that aims to 

reconstruct an HR image from one or more LR images has received great attention over the 

last few decades. The SR techniques attempt to recover the HR image by reverting the image 

degradation process [1], [4]. Since different HR images could potentially degenerate to the 

same set of LR images, image SR often involves solving an ill-posed inverse problem.

A. Basic Interpolation Methods

In medical imaging, image interpolation methods [5] are commonly used to upsample LR 

images before further analysis, such as registration, segmentation, and classification. 

Conventional interpolation methods [5] include linear interpolation and cubic spline 

interpolation. These methods estimate voxel values from neighboring voxels using a 

polynomial fitting. Although they have the advantage of low computational complexity, 

these interpolation-based methods are usually prone to yield overly smooth images with 

edge halos, blurring, aliasing, and jagged artifacts as the upsampling factor increases. Recent 

interpolation-based methods [6], [7] make use of edge direction information to adapt to 

complex local structures to produce visually pleasing results. However, without modeling 

the image degeneration process, these methods introduce unwanted artifacts.

B. Advanced Super-Resolution Methods

Image SR methods explicitly model the relationship between LR images and HR images. To 

overcome the ill-posed nature of the SR problem, regularization terms are generally included 

in the objective function to obtain solutions with some desirable properties. In the past few 
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decades, various regularization techniques [8]–[13] have been proposed. These 

regularizations are constructed based on natural image priors, such as edge statistics [14], 

gradients [15], nonlocal self-similarity [8], [10], [16]–[18], and sparsity [9], [11], [12], [19]–

[22]. We classify contemporary SR techniques into three groups [23]: 1) single image SR; 2) 

multiple image SR; and 3) dynamic SR. Single image SR aims to reconstruct one HR image 

from only one LR image, whereas multiple image SR aims to reconstruct one HR image 

from multiple LR images. In contrast, dynamic SR is to restore a set of HR images from LR 

images available in the temporal domain. Due to the high computational complexity, the 

topic of dynamic SR is beyond the scope of this paper. Manjón et al. [24] proposed a 

nonlocal means upsampling (NLMU) method by exploiting image self-similarity. NLMU 

[24] first filters noise and uses the filtered similar patches to reconstruct an HR image. Then 

a mean correction step is applied to ensure that the downsampled version of the 

reconstructed HR image is close to the filtered LR image. The reconstruction and correction 

steps are iteratively repeated to achieve image upsampling until convergence. Rousseau [25] 

employed an example-based SR framework with a nonlocal regularization to enhance the 

resolution of a single LR T2 image under the guidance from an HR T1 image. Rueda et al. 
[26] developed a single image SR method using overcomplete dictionaries for brain 

magnetic resonance (MR) images. Trinh et al. [27] presented an example-based method for 

SR and denoising of medical images by the non-negative quadratic programming. Tourbier 

et al. [28] introduced an efficient total variation (TV) method with adaptive regularization 

for fetal brain image SR, where TV arose from inhomogeneous diffusion processes [29], 

[30]. By exploiting both global and local image information, Shi et al. [31] proposed a 

united SR reconstruction model with low-rank and TV regularizations. Although these SR 

methods have been shown to be effective with very promising results, a comprehensive 

exploration of complementary image priors from one or multiple images may help improve 

reconstruction accuracy of image SR.

By simulating neuron layers of the neocortex in artificial neural networks, deep learning has 

been shown to be effective for image SR. Typical architectures of deep learning include 

convolutional neural networks [32]–[34], generative adversarial networks [35], and recurrent 

neural networks [36], [37]. Specifically, Dong et al. [32], [33] introduced a deep 

convolutional neural network (CNN) for image SR. Subsequently, they employed a 

deconvolution layer, improved mapping layers and smaller filter sizes for a faster algorithm 

[34]. Wang et al. [38] combined the conventional sparse coding model with key ingredients 

of deep learning to achieve further improvements. Mao et al. [39] proposed skip-layer 

connections to symmetrically link convolutional and deconvolutional layers to accelerate 

training convergence. Johnson et al. [40] presented perceptual loss functions to train feed-

forward networks for real-time image SR. Ledig et al. [35] also proposed a perceptual loss 

function consisting of an adversarial loss and a content loss to construct a generative 

adversarial network for photo-realistic image SR. Lai et al. [41] proposed a Laplacian 

pyramid SR network with a robust Charbonnier loss function to progressively reconstruct the 

high-quality images. Kim et al. [36] introduced recursive-supervision and skip-connection to 

improve the recursive convolutional network. Tai et al. [37] adopted residual learning in 

global and local manners to construct a deep recursive residual network. However, a 

limitation of deep learning methods is that they require a large amount of training data. In 
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practice, big training data is not always available, especially in medical imaging. For 

example, in our case, we do not have enough training data in our SR reconstruction of 

neonatal MR images, which usually exhibit severe PVE, very low SNR and a spatially 

varying noise distribution in parallel imaging. In contrast, in this paper, we focus on the 

model-based methods (e.g., LRTV [31] and the new one) with prior knowledge (i.e., 

longitudinal prior), which work without big training data. Therefore, the competing methods 

we chose are not deep learning-based methods (e.g., SRCNN [32], [33], and FSRCNN [34]) 

that need big training data, but the state-of-the-art model-based methods without needed 

training.

C. Proposed Method for Longitudinal Super-Resolution

MRI technologies have provided a powerful tool for investigating structural and functional 

brain changes across the human life span. In longitudinal studies, a subject is scanned at 

multiple time points (e.g., birth and age two years). A followup image of the subject at a 

later scan is called a longitudinal image. In this paper, we are particularly interested in super-

resolving brain MR images of infants scanned from birth to two years of age. To tackle the 

challenges associated with the low tissue contrast of neonatal images, their longitudinal 

follow-up images are used for guidance. This strategy has been shown to be effective in the 

context of tissue segmentation [42], [43]. This idea is inspired by the fact that gross brain 

gyrification patterns are mostly established before birth and the fine-tuning happens after 

birth [44]. As an example, Fig. 1 shows the neonatal image and 2-year-old image of a 

subject after nonlinear alignment [45], [71]. Despite the differences in image contrast 

between the two images, structural brain patterns remain consistent longitudinally.

In the longitudinal studies of early brain development [72]–[74], all the high-quality MR 

images at different stages are needed to analyze brain growth trajectory and diagnose its 

health status for preventative care and treatment. For example, we know that autistic children 

have early brain overgrowth while the precise timing and magnitude of the overgrowth is not 

fully clear, and there are studies trying to address this question by measuring the size of 

brain structures at birth as well as other follow-up time points. However, small size and 

immature tissues of the neonatal brain result in poor spatial resolution, low SNR and severe 

blur of MR images in pediatric imaging. In this paper, we propose a novel longitudinally 

guided SR (LGSR) method for recovering an HR image from an LR neonatal image. The 

longitudinal follow-up images afford higher resolution and tissue contrast (see Fig. 1) for 

guiding resolution enhancement. The method proposed in this paper can help enhance the 

neonatal image quality for more accurate brain structure measurements. Although we have a 

more recent HR image of the subject, we still need to process the earlier image since the 

brain changes over time. Longitudinal analysis is useful for understanding normal and 

abnormal brain developmental process. The main contribution of this paper is twofold: 1) 

structural information from the longitudinal image is incorporated as a prior using guided 

bilateral filtering regularization (GBFR) and 2) GBF, low-rank, and TV regularizations are 

incorporated into an image SR framework for accurate estimation of the HR neonatal image. 

Our LGSR was evaluated in comparison with the state-of-the-art methods both qualitatively 

and quantitatively on a set of neonatal images.
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In our previous work, we proposed an LRTV method [31] for MR image SR and then 

generalized it to LGSR by introducing a longitudinal prior as a nonlocal guided penalty in 

our published conference paper [46]. The nonlocal guided penalty is constructed based on 

the difference between the desired HR neonatal image and its nonlocal means (NLM) [16] 

jointly weighted by the high-quality longitudinal image. This paper serves two purposes. 

One is to provide additional method details, examples, results, discussion, and insights that 

are not presented in our conference publication [46]. The other is to introduce a modification 

for computation acceleration, which uses bilateral filtering (BF), instead of NLM filtering 

[16], because BF has lower computational cost. In experiments, we found the performance 

was similar for NLM [16] and BF used in this paper. The remainder of this paper is 

organized as follows. Section II describes LGSR in detail. Section III provides the 

experimental results and discussion. Section IV concludes this paper.

II. Method

In this section, we flesh out the LGSR method, which outputs an HR neonatal image from 

an LR neonatal image with its longitudinal follow-up image. We briefly review relevant 

works in Section II-A, describe the GBF-based longitudinal prior in Section II-B, and 

elaborate on the proposed SR model in Section II-C. We provide a numerical solution to the 

optimization problem in Section II-D.

A. Super-Resolution Model

In the SR problem, a physical model [1], [12] for describing the degradation process from an 

HR image to an LR image is generally given by

T = DSX + n (1)

where T is the observed LR image, D is a downsampling operator, S is a blurring operator, X 
is the original HR image, and n denotes the noise. According to the observation model in 

(1), the goal of image SR is to recover an HR image from an observed LR image. Due to the 

ill-posed nature of the inverse problem, the regularization is introduced to eliminate the 

uncertainty of recovery. In the case of image SR, the HR image can be estimated by 

minimizing the objective cost function in the following form:

X = min
X

T − DSX 2 + λΦ(X) (2)

where ‖T − DSX‖2 is the data fidelity term for penalizing the difference between the 

observed LR image T and the degraded version of HR image X, Φ(X) is a regularization 

term often defined on prior knowledge for stabilizing the solution, and the parameter λ is 

used to balance the tradeoff between the data fidelity term and the regularization term. The 

classical regularization methods reported in the literature includes the Tikhonov 

regularization [47], TV [48], [49], the nonlocal regularization [50], the sparsity 

regularization [9], [11], [12], and the nuclear norm regularization [31], [51], [52].
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B. Guided Bilateral Filtering

Longitudinal images of an identical subject have very similar structural patterns. We borrow 

similar structural information from a longitudinal image to guide neonatal image SR. GBF is 

used to capture structural relationship. First, the spline interpolation is used to initialize the 

HR image X from an input LR neonatal image T. Then for each voxel ν in X, the similarity 

between the voxel ν and its neighbor κ in a cubic neighborhood Ω(ν) centered at ν is 

calculated based on the Euclidean distance ‖ν − κ‖ and the intensity difference ‖x(ν) − x(κ)‖ 
of the voxel ν and its neighbor κ in the HR image X. Using Gaussian functions, these 

distances are used to construct a weight map wx to encode the relationship between voxel ν 
and voxel κ. Like wx, the longitudinal weight map wl for voxel ν with respect to the 

longitudinal follow-up image L is also generated based on the Euclidean distance ‖ν − κ‖ 
and the intensity difference ‖l(ν) − l(κ)‖. Weight maps wx and wl are combined to form a 

weight map w through element-wise multiplication. From X, GBF estimates the filtered HR 

neonatal image Y via weighted averaging

y(v) = 1
W p

∑κ ∈ Ω(v) x(κ)w(v, κ)

= 1
W p

∑κ ∈ Ω(v) x(κ)w(v, κ)wl(v, κ)

(3)

where y(ν) is the intensity of voxel ν in Y. The weights are defined as

wx(v, κ) = exp − x(v) − x(κ) 2/2hx
2 − v − κ

2
/2σx

2 (4)

wl(v, κ) = exp − l(v) − l(κ) 2/2hl
2 − v − κ

2
/2σl

2 (5)

where exp(·) is the Gaussian function, and σl, σx, hl, and hx are the parameters that control 

the decay rates of the Gaussian functions. The normalizing factor

W p = ∑κ ∈ Ω(v)wx(v, κ)wl(v, κ) (6)

makes sure that the weights sum to unity.

Combining the weights determined by the neonatal image and its longitudinal image 

increases robustness to structural misalignments. To illustrate this, we generate a degraded 

version of the neonatal image by Gaussian blurring with the blur kernel width of 1 and 

downsampling with the scaling factor of 2. Both the upsampled HR image X and the 

longitudinal image L as described above are used to estimate the weight map. The benefit of 

utilizing longitudinal information is illustrated in Fig. 2. Based on X, the neighboring weight 
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map for a voxel near the anterior horn is shown in Fig. 2(a). This weight map does not truly 

reflect the local pattern of the anterior horn. The longitudinal image provides additional 

information as shown in Fig. 2(b). The two weight maps are merged into one weight map, 

shown in Fig. 2(c), which closely resembles the result given by the original HR neonatal 

image, shown in Fig. 2(d).

C. Longitudinally Guided Super-Resolution

The LGSR algorithm uses information from longitudinal data for neonatal image SR. The 

associated problem involves three regularization terms

X = min
X

T − DSX 2 + λGBF X − Y 2

+ λLRRank(X) + λTV∫ ∇X dxdydz

(7)

where λGBF, λLR, and λTV are the regularization parameters, Y as defined in (3) is the 

filtered HR neonatal image obtained from the desired HR neonatal image X and its 

longitudinal image L, Rank(·) denotes the rank of 3-D image matrix, |·| denotes the ℓ2 norm, 

and ∇ is the gradient operator. Starting from the second term on the right side of (7) are 

GBF, low-rank, and TV regularization terms. These regularization terms are described 

below.

1) GBFR—Bilateral filter is a simple nonlinear filtering approach to smooth images while 

preserving strong edges by weighting the neighboring pixels based on their intensity 

similarity and spatial distance [53]. It has been widely used in image processing 

applications, such as image denoising [54] and fusion [55]. Petschnigg et al. [56] presented a 

joint bilateral filter to synthesize a high-quality image from a pair of flash and no-flash 

images. Inspired by their work, we extend the bilateral filter to include longitudinal 

information to regularize the SR problem. GBFR exploits structural redundancy between a 

neonatal image and its longitudinal image for reducing estimation uncertainty.

2) Low-Rank Regularization—Low-rank assumption is often used in matrix completion 

problems [52], where the task is to fill missing entries of an incomplete matrix. We use low-

rank regularization to correct the corrupted structures by exploiting the inherent redundancy 

in the neonatal image. The rank of 3-D image matrix is defined as [57]: 

Rank(X) = ∑i = 1
3 αi X(i) tr, where the rank is computed as the sum of trace norms of all 

matrices unfolded along each dimension. ‖·‖ denotes the trace norm of a 2-D matrix. The 

parameters {αi|i = 1, 2, 3} satisfy the condition that αi ≫ 0 and ∑i = 1
3 αi = 1. The 2-D 

matrix X(i) is the unfolded version of the 3-D image X along the ith dimension.

3) TV Regularization—The TV of a differentiable function can be defined as an integral 

of the absolute gradients [48]. The TV regularization [48], [49] has shown powerful ability 

to simultaneously preserve edges whilst smoothing noise in flat regions.
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D. Optimization Solution

We employ the alternating direction method of multipliers (ADMM) algorithm [58] to solve 

the minimization problem (7). In order to facilitate solving this optimization problem, we 

introduce an auxiliary variable Mi i = 1
3  and an equality constraint X(i) = Mi(i). Equation (7) 

can be reformulated as the augmented Lagrangian function [58]

min
X, Mi i = 1

3 , Ui i = 1
3 T − DSX 2 + λGBF X − Y 2

+ ∑i = 1
3 ρ

2 X − Mi + Ai
2 − Ai

2

+ λLR∑i = 1
3 αi Mi(i) tr + λTV∫ ∇Xi dxdydz

(8)

where the parameter ρ > 0, and Ai i = 1
3  is the Lagrangian dual variable to integrate the 

equality constraint into the cost function. Note that we can keep the guided bilateral filtered 

image Y fixed so that the optimization problem (8) is convex. By using the scaled dual 

variable, we can express ADMM for the cost function in (8) as three subproblems.

1) Subproblem 1—Keep Mi i = 1
3  and Ai i = 1

3  fixed, and update X(k+1) by minimizing 

the subproblem

X(k + 1) = min
X

T − DSX 2 + λGBF X − Y 2

+ ∑i = 1
3 ρ

2 X − Mi
(k) + Ai

(k) 2

+ λTV∫ ∇X dxdydz .

(9)

This subproblem can be solved by the gradient descent method, where the spatial gradient of 

the image X for the TV regularization can be obtained by the related Euler–Lagrange 

equation in the iterative solution [59].

2) Subproblem 2—Keep X and Ai i = 1
3  fixed, and update

Mi
(k + 1)

i = 1
3 = min

Mi i = 1
3 λLR∑i = 1

3 αi Mi(i) tr

+ ∑i = 1
3 ρ

2 X(k + 1) − Mi + Ai
(k) 2 .

(10)
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According to the singular value thresholding (SVT) [52], an iterative converged solution to 

(10) is given by

(U, ∑, V) = svd X(i)
(k + 1) + Ai(i)

(k)

∑ j j = max (∑ j j − 2λLRαi/ρ, 0)

Mi(i)
(k + 1) = U∑VT

(11)

where svd denotes the singular value decomposition operator, and Σjj is the singular value at 

location (j, j) that is shrinked as ∑ j j at the iteration k.

3) Subproblem 3—Keep X and Mi i = 1
3  fixed, and update Ai

(k + 1)
i = 1
3

 by minimizing 

the subproblem

Ai
(k + 1) = Ai

(k) + X(k + 1) − Mi
(k + 1) . (12)

These three subproblems are separately solved and updated until convergence. The 

convergence condition is that an iterative difference of the cost function in (8) is less than the 

allowable error ε. LGSR is summarized in Algorithm 1.

III. Experiments

A. Test Data

MR images of 28 healthy infants were obtained from a large study of early brain 

development in normal children [60].

Algorithm 1

Pseudocode of the LGSR Algorithm.

Input: LR neonatal image T and HR longitudinal image L.

Output: Reconstructed HR neonatal image X.

 Initialize the desired HR neonatal image X by upsampling T with spline-based interpolation. Set auxiliary variables 
Mi = 0, Ai = 0, i = 1, 2, 3.

 Repeat

  Update Y based on Eqs. (3) to (6);

  Repeat

   Update X via Eq. (9) by the gradient descent method;

   Update M based on Eqs. (10) and (11) by SVT [52];

   Update A based on Eq. (12);

  End

  Until convergence;

 End
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The experimental protocols were approved by the institutional review board of the 

University of North Carolina, School of Medicine. These infants consist of 11 males and 17 

females. They were first scanned at birth, and then a follow-up scan was performed at two 

years of age, by the 3T MRI head-only scanner (Siemens MAGNETOM Tim Trio) with a 

circular polarized 32-channel head coil. The two most common types of MR images (i.e., T1 

and T2 images) were generated as test data. T1 images were acquired by using short echo 

time (TE) and repetition time (TR). Conversely, T2 images were produced by using long TE 

and TR times. For a subject, T1 images were acquired with 144 sagittal slices at the 

resolution of 1 × 1 × 1 mm3, while T2 images were obtained with 58 axial slices at the 

resolution of 1.25 × 1.25 × 1.95 mm3. These images were preprocessed by a standard image 

processing pipeline including bias correction and skull stripping [61]. The longitudinal 

follow-up images were aligned to their neonatal images with the affine registration [45] 

followed by the nonlinear diffeomorphic demons registration [62]. T2 images were also 

linearly aligned to their corresponding T1 images.

B. Experimental Setting

We simulated a set of LR neonatal images by applying Gaussian blurring with a blur kernel 

of 1 voxel wide and downsampling to the original neonatal images (Fig. 3), similar to LRTV 

[31]. For downsampling with a factor 2, every 8 voxels in a 3-D HR image were averaged to 

generate a corresponding voxel in the simulated LR image. The reconstructed HR images 

were compared with the original neonatal images regarded as the ground truth. For 

quantitative assessment, both full-reference and no-reference image quality assessment 

(IQA) metrics were employed to evaluate the SR performance of LGSR quantitatively. The 

similarity between the reconstructed image and the original image was measured by SNR, 

defined as SNR = 20 log(‖IO‖/‖IO − IE‖), where IO and IE are the ground truth and the 

reconstructed image, respectively. In our experiments, the basic parameters of the proposed 

algorithm were set as follows: λGBF = 0.02, λLR = 0.01, α1 = α2 = α3 = 1/3, ρ = 0.04, λTV 

= 0.01, dt = 0.1, σl = σx = 20, hl = 0.01RL, and hx = 0.01RX. Here, RL and RX denoted the 

intensity ranges of images L and X, respectively. The 3-D neighboring domain was 7 × 7 × 7 

voxels. The program stopped when the difference between iterations was less than the 

allowable error ε = 10−5 or the maximum iteration number 200 was reached. To verify the 

robustness of LGSR, we treated the SNR values of reconstructed HR images as a function of 

a parameter change while keeping all other parameters at their default values. Fig. 4 shows 

SNR values given by LGSR against the changes of the regularization parameters λGBF, λLR, 

and λTV. Our LGSR method is sensitive to small variations of λGBF, but robust to relatively 

large changes of the other parameters (less than 0.1 dB difference in SNR) around the 

default values.

C. Results on Simulated Images

T1 and T2 imaging modalities were used in the following experiments. For these two 

modalities, the HR neonatal images with an upsampling factor of 2 were reconstructed from 

the input LR neonatal images with their corresponding longitudinal images. The proposed 

method was compared using the test data with the competing methods, including nearest 

neighbor (NN) interpolation, spline interpolation (spline) [5], NLMU [24], and LRTV [31], 

[63]. We adopted the code for NLMU [24]1 and LRTV [31]2 provided on the authors’ 
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websites. The spline interpolation was used for the initialization of NLMU [24], LRTV [31], 

[63], and LGSR.

To evaluate the impact of the proposed GBFR on the SR performance, we chose a set of 

neonatal and longitudinal images from 28 subjects to test our method by setting one 

regularization parameter λGBF to the default value and the other parameters ρ, λLR, and λTV 

to zero. Given that there were two modalities and two time points, there were four possible 

combination of images to be used for SR: neonatal T1/longitudinal T1 (T1/T1), neonatal T1/

longitudinal T2 (T1/T2), neonatal T2/longitudinal T1 (T2/T1), and neonatal T2/longitudinal 

T2 (T2/T2). For these test images, as one part of LGSR, GBFR was compared between 

LGSR and LRTV [31] to verify its superiority for SR improvement of LGSR. Fig. 5 gives 

compared SNR results of LRTV [31], the proposed GBFR and LGSR for four pairs of input 

test images from 28 subjects. For a random selection of four pairs of test data, the visual 

comparison of the axial results produced by LRTV [31], our GBFR and LGSR are shown in 

Fig. 6. As can be seen from Figs. 5 to 6, LGSR achieved great gain for image SR by 

incorporating the proposed GBFR. This improvement verified that the GBFR was beneficial 

and necessary to LGSR.

For further qualitative assessment, we show the results of two randomly selected subjects in 

Fig. 7 (intramodality) and Fig. 8 (intermodality). From the figures, the results of NN and 

spline show severe blurring artifacts. The results of NLMU [24] also appear blurry to a 

certain extent due to the lack of explicit modeling of image degradation. LGSR is effective 

for neonatal image SR and achieves higher SNR than LRTV [31] and other compared 

methods. It can also be observed that the choice of longitudinal T1 or T2 image has little 

impact on the performance of the proposed algorithm. Therefore, we chose to use 

longitudinal images of the same modality in subsequent experiments.

Quantitative evaluation was performed with three metrics: 1) SNR; 2) SSIM [64]; and 3) 

IFC [65] reported to be more consistent with perceptual scores [66]. Figs. 9 and 10 show, 

respectively, the box plots of SNR, SSIM, and IFC results of 28 reconstructed neonatal T1 

and T2 images. The central line of each box is the median, the edges mark the 25th and 75th 

percentiles, and the whiskers extend to the minimum and the maximum. LGSR achieves the 

highest SNR, SSIM, and IFC among all methods for both T1 and T2 images. As a statistical 

inference tool, the two-sample t-test [67] was also used to assess whether or not LGSR 

exceeds the competing methods in SNR, SSIM, and IFC. The null hypothesis for this testing 

is that the mean values of SNR, SSIM and IFC obtained by LGSR are equal to those 

obtained by a competing method. The alternative hypothesis is that the mean values of SNR, 

SSIM, and IFC obtained by LGSR are larger than those obtained by a competing method. 

For the two groups of SNR, SSIM, or IFC results separately obtained by LGSR and a 

competing method, a test statistic (t-value) following a t-distribution is calculated with the 

appropriate degrees of freedom. After the t-value and the degrees of freedom are determined, 

a p-value is found by using a table of values from the t-distribution. If this p-value is below 

the significance level αt (typically αt = 0.05), then the null hypothesis is rejected in favor of 

1Monomodal MRI SR, March 31, 2016, https://sites.google.com/site/pierrickcoupe/.
2LRTV for Image SR, March 31, 2016, https://bitbucket.org/fengshi421/superresolutiontoolkit.
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the alternative hypothesis. Otherwise, there is no statistically significant difference between 

the two groups of SNR, SSIM, or IFC results. In Table I, the asteroid marks the p-values that 

are less than the threshold αt = 0.05 chosen for statistical significance. These values imply 

that the means of SNR, SSIM and IFC results obtained by LGSR are significantly larger 

than those obtained by the competing methods, judging based on two-sample t-tests.

Fig. 11 shows the axial, sagittal, and coronal views of the reconstructed HR neonatal T1 

images, indicating that LGSR recovers more anatomical details than the competing methods.

Considering that both the blur kernel width and scaling factor have a great impact on the SR 

performance, we also implemented another experiment to validate the proposed algorithm 

with different settings of blur kernel and scaling factors around their default values. For a 

randomly selected neonate, Fig. 12 provides SNR, SSIM, and IFC results obtained by NN, 

spline, NLMU [24], LRTV [31], and LGSR with different blur kernel widths σS and fixed 

scaling factor 2. Fig. 13 shows SNR, SSIM, and IFC results of these SR methods for the 

fixed blur kernel width (i.e., σS = 1) and different scaling factors. From the results, both the 

blur kernel width and scaling factor affect the SR performance greatly, but the proposed 

algorithm still generally outperforms the competing methods, and can achieve the best 

results by choosing the proper value of the blur kernel width for a given scaling factor.

D. Tissue Segmentation

We performed further evaluation based on brain tissue segmentation of the 28 reconstructed 

HR neonatal images using a patch-driven level set method [68], where the brain tissues were 

separated into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). These 

segmentation results were assessed by the Dice similarity coefficient (DSC) [69]. Fig. 14 

gives example results generated based on reconstructed HR neonatal T2 images obtained by 

the various methods. Fig. 15 shows the box plots of DSC metrics for three brain tissues 

(GM/WM/CSF). The segmentation results of the original HR neonatal brain images were 

used as the benchmark. Figs. 14 and 15 show that the segmentation results of LGSR are 

closer to the benchmark than the competing methods.

E. Results on Real Images

Besides the experiments on the simulated LR images mentioned above, we also performed 

another experiment on real neonatal images to validate the SR performance of the proposed 

LGSR method. Without loss of generality, in this paper, we gave the visual results of LGSR 

and the baseline methods [24], [31] by randomly selecting a real neonatal image and its 

longitudinal image of the same modality from an identical subject. Figs. 16 and 17 show the 

visual comparison of SR results by NN, spline, NLMU [24], LRTV [31] and our LGSR for 

T1 and T2 images, respectively. From Figs. 16 to 17, the SR results of our LGSR have clear 

anatomical structures with fine details, whereas those of NN, spline, NLMU [24] and LRTV 

[31] are blurred with smooth edges. This experiment on real images further verified that our 

LGSR is superior to the state-of-the-art methods for neonatal brain image SR.
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F. Discussion

Besides the full-reference IQA on the SR results from simulated MR images using three 

metrics (i.e., SNR, SSIM [64], and IFC [65]) in the quantitative evaluation, we also adopted 

the perception-driven no-reference metric (PNM) [70] to assess the SR results from real MR 

images due to the lack of the ground-truth images in practice. Fig. 18 gives box plots of 

PNM results of reconstructed SR images with the upscaling factor 2 from 28 real LR 

neonatal T1/T2 images. From Fig. 18, PNM score of NN is better than that of spline, but 

both Figs. 16 and 17 show that NN is worse than spline in visual quality assessment. Even 

though PNM [70] achieves great success for no-reference IQA of natural images, the 

inconsistent evaluation from Figs. 16 to 18 implies that PNM [70] cannot be directly applied 

to quantitative quality assessment of real MR images due to their noise and blur.

IV. Conclusion

In this paper, we addressed the neonatal image SR problem by incorporating a longitudinal 

image prior, in combination with the low-rank constraint and the TV regularization. The 

ADMM method is used to solve the associated optimization problem. The experimental 

results demonstrate that the proposed LGSR algorithm outperforms existing state-of-the-art 

methods both qualitatively and quantitatively. Besides, the images from more than two time 

points will be included for further improving performance and efficiency of neonatal image 

SR reconstruction.
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Fig. 1. 
T1 MR image of a neonate (left) and its follow-up at two years of age (right). The 2-year-old 

image was aligned to the neonatal image by the nonlinear registration [45], [71]. Two brain 

regions marked with green and red blocks are zoomed in for closer comparison.

Zhang et al. Page 17

IEEE Trans Cybern. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Advantages of the combined weight map. (a) Degraded neonatal image T and the upsampled 

HR image X, (b) longitudinal image L, (c) combined weight w from (a) wx and (b) wl, and 

(d) original HR neonatal image. The reference voxel is marked by green.
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Fig. 3. 
Simulation of an LR image from an original neonatal image. (a) Original neonatal image, (b) 

blurred image, (c) generated LR image, (d) aligned longitudinal image, and (e) recovered 

HR image.
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Fig. 4. 
SNR values given by our LGSR in relation to various key parameters for a randomly 

selected neonate.
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Fig. 5. 
Impact of GBFR.
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Fig. 6. 
SR results obtained by LRTV [31], GBFR, and LGSR for four pairs of images.
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Fig. 7. 
Intramodality SR results of LGSR in comparison with the competing methods for two 

neonatal subjects.
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Fig. 8. 
Intermodality SR results of LGSR in comparison with the competing methods for two 

neonatal subjects.
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Fig. 9. 
Box plots for SNR, SSIM, and IFC results of 28 reconstructed neonatal T1 images.
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Fig. 10. 
Box plots for SNR, SSIM, and IFC results of 28 reconstructed neonatal T2 images.
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Fig. 11. 
Visual comparison of axial, sagittal, and coronal views of reconstructed HR neonatal T1 

images with close-up views of specific regions (the upscaling factor 2).
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Fig. 12. 
SNR, SSIM, and IFC results of a random neonate obtained by NN, spline, NLMU, LRTV, 

and LGSR with different blur kernel widths and the fixed scaling factor 2. (a) SNR for T1. 

(b) SSIM for T1. (c) IFC for T1. (d) SNR for T2. (e) SSIM for T2. (f) IFC for T2.
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Fig. 13. 
SNR, SSIM, and IFC results of a random neonate obtained by NN, spline, NLMU, LRTV, 

and LGSR with the fixed blur kernel width 1 and different scaling factors. (a) SNR for T1. 

(b) SSIM for T1. (c) IFC for T1. (d) SNR for T2. (e) SSIM for T2. (f) IFC for T2.
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Fig. 14. 
Tissue segmentation results by LGSR and the competing methods. From top to bottom: 

reconstructed HR neonatal T2 images, segmentation results, and close-up views.
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Fig. 15. 
DSC values for tissue segmentation of reconstructed HR neonatal T2 brain images by LGSR 

and the competing methods. (a) GM. (b) WM. (c) CSF.
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Fig. 16. 
Visual comparison of the results obtained by the different methods for a real neonatal T1 

image with its longitudinal T1 image from an identical subject (the scaling factor 2).
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Fig. 17. 
Visual comparison of the results obtained by the different methods for a real neonatal T2 

image with its longitudinal T2 image from an identical subject (the scaling factor 2).
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Fig. 18. 
Box plots of PNM results of reconstructed SR images from 28 real LR neonatal T1/T2 

images. (a) T1. (b) T2.
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