
IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, XXXX XXXX 1

Heterogeneous Ensemble Based Infill Criterion for
Evolutionary Multi-objective Optimization of

Expensive Problems
Dan Guo, Yaochu Jin, Fellow, IEEE, Jinliang Ding, Senior Member, IEEE, and Tianyou Chai, Fellow, IEEE

Abstract—Gaussian processes are the most popular model used
in surrogate-assisted evolutionary optimization of computation-
ally expensive problems, mainly because Gaussian processes are
able to measure the uncertainty of the estimated fitness values,
based on which certain infill sampling criteria can be used to
guide the search and update the surrogate model. However,
the computation time for constructing Gaussian processes may
become excessively long when the number of training samples
increases, which makes it inappropriate to use them as surrogates
in evolutionary optimization. To address this issue, this paper
proposes to use ensembles as surrogates and infill criteria for
model management in evolutionary optimization. A heteroge-
neous ensemble consisting of a least square support vector
machine and two radial basis function networks is constructed to
enhance the reliability of ensembles for uncertainty estimation.
In addition to the original decision variables, a selected subset
of the decision variables and a set of transformed variables
are used as inputs of the heterogeneous ensemble to further
promote the diversity of the ensemble. The proposed hetero-
geneous ensemble is compared with a Gaussian process and a
homogeneous ensemble for infill sampling criteria in evolutionary
multi-objective optimization. Experimental results demonstrate
that the heterogeneous ensemble is competitive in performance
compared with Gaussian processes and much more scalable in
computational complexity to the increase in search dimension.

Index Terms—multi-objective optimization, surrogate-assisted
evolutionary algorithm, heterogeneous ensemble, Gaussian pro-
cess, feature selection, feature extraction.

I. INTRODUCTION

OVER the past two decades, evolutionary algorithms
(EAs) have become very popular to solve various multi-

objective optimization problems (MOPs). An unconstrained
MOP can be generally formulated as follows:

min f(x) = (f1(x), f2(x), ..., fM (x))

s.t. x ∈ D
(1)

where D ⊆ RN is the feasible decision space and RM is
the objective space. Since objectives are conflicting to each
other, there usually exists a set of optimal tradeoff solutions.

This work was supported in part by the National Natural Science Foundation
of China Projects under Grant 61525302 and Grant 61590922, and in part
by the Projects of Liaoning Province under Grant 2014020021 and Grant
LR2015021.

D. Guo, Y. Jin, J. Ding and T. Chai are with the State Key
Laboratory of Synthetical Automation for Process Industries, Northeast-
ern University, Shenyang 110819, China (e-mail: guodan717@163.com;
jlding@mail.neu.edu.cn; tychai@mail.neu.edu.cn). (Corresponding authors:
Yaochu Jin; Tianyou Chai)

Y. Jin is also with the Department of Computer Science, University of
Surrey, Guildford GU2 7XH, U.K. (e-mail: yaochu.jin@surrey.ac.uk).

The image formed by the tradeoff solutions (often also known
as Pareto optimal solutions) in the objective space is called
Pareto front, and the corresponding points in D are known as
Pareto optimal set.

EAs are well suited for multi-objective optimization as they
can deliver multiple optimal solutions in one run for users
to choose from. There are three main categories of multi-
objective evolutionary algorithms (MOEAs), namely, domi-
nance based, decomposition based and performance indicator
based approaches. The dominance based approaches include
SPEA2 [1] and NSGA-II [2], among many others. MOEA/D
[3] and its variants [4], [5] are the representative decomposi-
tion based approaches. IBEA [6] and SMS-EMOA [7] belong
to the performance indicator based approaches. However, EAs
typically require a large number of function evaluations (FEs).
EAs become impractical to be employed for solving MOPs
when FEs are expensive (either computationally intensive or
experimentally costly). Expensive optimization problems are
commonly seen in the real world. For example, in structural
optimization, no explicit mathematical objective functions are
available; instead, time-consuming finite element analysis or
computational fluid dynamic simulations must be performed
[8], [9].

Surrogates or metamodels are usually built based on his-
torical data to replace in part the real expensive FEs [10],
so that the computation time for evolutionary optimization of
expensive problems can be reduced. Many machine learning
models can be utilized to build surrogates, such as radial basis
function network (RBFN) [11], support vector machine (SVM)
[12], Gaussian process (GP) [13] and polynomial regression
(PR) [14]. Although a large body of research on surrogate-
assisted evolutionary algorithms (SAEAs) has been reported,
many challenges remain to be addressed, in particular how to
reduce the computational cost for constructing surrogates in
evolutionary optimization of large-scale and/or many-objective
optimization problems [15].

In SAEAs, model management or evolution control deter-
mines which individuals will be evaluated by the expensive
FEs [10]. Generally speaking, model management is cate-
gorized into individual-based, generation-based, population-
based or a hybrid of these methods [16]. SAEAs that allow
additional expensive FEs to be performed during the optimiza-
tion are known as on-line SAEAs [17].

In addition to the above model management strategies,
infill sampling criteria have been developed for GP-assisted
evolutionary optimization. Infill criteria, including expected

2 IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, XXXX XXXX

improvement (ExI) [18], probability of improvement (PoI)
[19], and lower confidence bound (LCB) [20], make use
of the uncertainty information provided by the GPs. Note
that GP-assisted optimization has different terminologies in
different areas, e.g., Kriging or design and analysis of com-
puter experiments [21] in geostatistics, or efficient global
optimization (EGO) [18] or Bayesian optimization [22] in
global optimization.

GPs have been equally popular in surrogate-assisted single
[23], [24] and multi-objective evolutionary optimization [25]–
[28]. However, most GP-assisted EAs have been tested only
on low-dimensional problems (up to 10 decision variables)
[15], mainly due to the fact that the computational cost of
constructing the GP is O(N3), where N is the number of
training data [29]. By contrast, SAEAs using neural networks
and other machine learning models as the surrogates have been
tested on problems with up to 30 decision variables. Most
recently, a surrogate-assisted cooperative swarm optimization
using the RBFN as the surrogate has been validated on single
objective optimization problems with 100 decision variables
[30].

Generally speaking, no one particular type of surrogate
models works well for all problems. Thus, one natural idea
is to use an ensemble surrogate consisting of a group of
individual models [31], [32]. In machine learning, it has
been theoretically proved that when a right balance between
diversity and accuracy is met, an ensemble can provide more
accurate predictions than any of its member alone [33]. En-
sembles are often categorized into homogeneous ensembles
(consisting of the same type of models typically generated
by manipulating the data, like random sampling [34]) and
heterogeneous ensembles (composed of different types of
models [35] or different input features [36]).

It should be emphasized that uncertainty information of the
predicted fitness plays an important role in model management
in SAEAs, as sampling the most uncertain solutions can not
only most efficiently enhance the model quality, but also
explore the unexplored regions of the search space. This
is one of the reasons why GPs are particularly popular in
SAEAs as they can provide uncertainty information together
with the predicted fitness value. Note, however, that other
methods for uncertainty estimation have also been proposed.
For example, Branke and Schmidt [37] utilized the distance
to the training data in the neighborhood to estimate the
uncertainty. In addition, it has been indicated that ensembles
are also able to provide a degree of uncertainty using the
discrepancies among the outputs of the ensemble members,
which has been shown to be effective for model management
[31], [38]. Although much work has been reported on using
ensembles [39]–[41] or multiple surrogates [13] in SAEAs,
most ensemble based SAEAs use ensembles to improve the
accuracy of fitness approximation and little has been done
to exploit the uncertainty information provided by ensembles
with few exceptions [31], [38]. Thus, use of ensemble as
surrogates deserves more attention in SAEAs [42].

The main motivation of this work is to take advantage of the
uncertainty information provided by ensembles so that infill
criteria can still be used for model management without using

GP as the surrogate. One major benefit of using ensembles
instead of GP as the surrogate is that the computational
complexity for constructing ensembles (without involving a
GP as a member) is relatively scalable to the increase in the
number of training samples, thereby enabling SAEAs to solve
high-dimensional MOPs. To this end, we propose a framework
for MOEA assisted by a heterogeneous ensemble, termed HeE-
MOEA, where the uncertainty of the approximated fitness is
estimated by the outputs of all ensemble members, based on
which an infill criterion is adopted for model management.
Different types of models with different input features are
generated as the ensemble members, so that the ensemble
members are highly diverse yet sufficiently accurate. Note that
any infill sampling criterion developed for GPs and any MOEA
can be adopted for the proposed HeE-MOEA framework.

The rest of the paper is organized as follows. Section II
and Section III provide the background knowledge about the
construction of the heterogeneous ensemble, together with a
brief account of the Gaussian processes so that the paper is
self-contained. The main components of HeE-MOEA are then
explained in Section IV. Simulation results are presented and
discussed in Section V. Section VI concludes the paper.

II. HETEROGENEOUS ENSEMBLES

In this section, we will first introduce feature selection
and feature extraction, two ways of manipulating features to
generate different inputs for the ensemble, followed by a brief
description of two machine learning models used as ensemble
members in this work, least square support vector machine
(LSSVM) and RBFN. Finally, the generation of heterogeneous
ensemble is briefly discussed.

A. Feature Selection and Feature Extraction

Feature selection and feature extraction are two popular
methods for dimension reduction. While feature selection aims
to select the smallest and most informative subset of the
existing features, feature extraction transforms the existing
features into a lower dimensional space so that the new
features are non-redundant and informative.

By removing the irrelevant and redundant features, feature
selection can simplify the structure of the model, improve
the generalization capacity, and enhance the efficiency in
training and responding [43]. Feature selection is non-trivial,
as it is essentially a combinatorial optimization problem [44].
According to the way in which a feature selection strategy is
combined with a learning machine, feature selection meth-
ods can be categorized into wrapper, embedded and filter
approaches [45]. Although the resulting learning performance
of filter methods is typically worse than that of the other two
methods, they usually have the lowest computational cost,
highest generality and robustness [46]. In [47], seven types
of evaluation functions in filter methods are reviewed, where
feature selection methods are also categorized into individual
and subset evaluation methods.

Generally speaking, feature extraction can be divided into
linear or nonlinear methods [48], [49]. Among linear ap-
proaches, principal component analysis (PCA) is probably the

DAN GUO et al.: HETEROGENEOUS ENSEMBLE BASED INFILL CRITERION 3

most popular, which uses an orthogonal coordinate system to
re-describe the original data, and the principal components are
selected according to their importance [50]. However, PCA
assumes that data are of a Gaussian distribution.

B. Least Square Support Vector Machine

LSSVM [51] is a modified version of standard SVM.
LSSVM has good generalization performance and low com-
putational cost [52]. Building a LSSVM model based on data
X = [x1, x2, . . . , xK]T and Y = [y1, y2, . . . , yK]T can be
regarded as an optimization problem

min
w,b,e

J(w, e) =
1

2
wTw + γ

1

2

K∑
k=1

e2k

s.t. yk = wTϕ(xk) + b+ ek, k = 1, 2, . . . ,K

(2)

The estimation of LSSVM at a new sampling point xnew can
be given by

f̂L(xnew) =

K∑
k=1

λkΨ(xnew, xk) + b (3)

where λk is the Lagrange multiplier, and Ψ is the sigmoid
kernel.

C. Radial Basis Function Networks

RBFNs are feedforward neural networks with one hidden
layer that uses radial-basis-function as the activation function.
In RBFNs, input nodes are directly connected to hidden
ones, and the output of the RBFN at xnew has the following
expression

f̂R(xnew) = φ× w (4)

which is a linear combination of the outputs of J hidden
neurons. φ(xnew) = [φ1(xnew), . . . , φJ(xnew)] is a vector
of basis function values and w is the weight vector. When
Gaussian kernel is adopted as the basis function, we get

φj(xnew) = exp(−
‖xnew − µj‖2

2δ2j
), j = 1, 2, . . . , J (5)

where µj and δ2j are the center and the variance of the j-
th hidden neuron, respectively. Suppose that function values
of K training points X = [x1, x2, . . . , xK]T are Y =
[y1, y2, . . . , yK]T , one way to determine the weights is to use
the least square method

w = (ΦT Φ)−1ΦTY (6)

where Φ is a K × J matrix, and the (k, j)-th element of Φ
is φj(xk), the j-th basis function evaluated at the point xk.
Backpropagation is another way to estimate the weights. If
Ek represents the error of the k-th training sample,

Ek =
1

2
(yk − f̂R(xk))2 (7)

then the change in weights can be formulated as

∆w = −η ∂Ek

∂w
(8)

where η is the learning rate. In backpropagation, centers and
variances of the hidden units are updated in a similar way as
weights. In the above description, the RBFN has one output
node, which can be easily extended to multiple outputs.

D. Heterogeneous Ensemble Generation

Constructing diverse and accurate ensemble members is
essential and challenging. Various techniques can be used to
create diversity in ensembles. These techniques are categorized
into explicit and implicit methods depending on whether
optimization of a diversity metric is applied in ensemble
construction [53]. Most of these techniques belong to the
implicit type, such as training data manipulation including
bagging [34], [54], feature selection and feature extraction
[55], or use of different initial parameters, different train-
ing algorithms and different architectures of learners [56],
while boosting [57] and negative correlation learning [58]
belong to the explicit type. Heterogeneous ensembles have
the natural advantages in structural diversity by using different
architectures or different learning types of models [42], [55],
[59]. An illustrative example of a heterogeneous ensemble
is shown in Fig. 1. Heterogeneous ensembles that use both

Input

Input(1)

Model(1):

Structure 1

Model(2):

Structure 2

Model(K):

Structure K

Input(2) Input(K)

Output

Data

Manipulation

Individual

Prediction

Aggregation

Fig. 1. The generation framework of conventional heterogeneous ensembles.

different types of models and different input features created
by feature selection and feature extraction have shown better
performance than those using single type of inputs [60], [61],
partly due to the inherent better ability to create diversity
[36]. Therefore, this work also employs different features and
different types of models for promoting ensemble diversity
without impairing accuracy, hoping to enhance the ability of
the ensemble surrogate in uncertainty estimation.

III. INFILL CRITERIA FOR GAUSSIAN PROCESS ASSISTED
OPTIMIZATION

A. Gaussian Processes

In GP, it is assumed that the function value fG(xnew) ∈ R
is an observation of the following stochastic process

µ+ ε(xnew) (9)

where xnew ∈ RN , µ is the mean of the stochastic process and
the error term ε(xnew) is a Gaussian distribution of N(0, σ2).
It is also assumed that the errors of two points, for example,

4 IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, XXXX XXXX

ε(xi) and ε(xj), are only related to the distance between them,
and the correlation can be expressed as

c[ε(xi), ε(xj)] = exp[−d(xi, xj)] (10)

The weighted distance below is often used as the distance
function,

d(xi, xj) =

N∑
n=1

θn|xin − xjn|pn (11)

where θn > 0, 1 ≤ pn ≤ 2 [18]. θn quantifies the extent to
which the n-th dimension of the variables contributes to the
correlation, and pn controls the smoothness of the function in
this dimension. If K training points X = [x1, x2, . . . , xK]T

and their function values Y = [y1, y2, . . . , yK]T have been
collected, a K ×K correlation matrix C will be formed, and
the (i,j)-th entry in C is c(xi, xj). Then the likelihood function
can be formulated as follows:

lik(θ1, . . . , θN , p1, . . . , pN) = −(Kln(σ̂2) + lndet(C)) (12)

where

σ̂2 =
(Y − 1µ̂)TC−1(Y − 1µ̂)

K
(13)

µ̂ =
1TC−1Y

1TC−11
(14)

1 represents a K×1 vector of ones. By maximizing the likeli-
hood function, the suitable parameters θ1, . . . , θN , p1, . . . , pN ,
σ̂2 and µ̂ will be obtained. Let R represent the K × 1
correlation vector for xnew and each element in X , and then
the best linear unbiased predictor of f(xnew) and its variance
estimate will be expressed as

f̂G(xnew) = µ̂+RTC−1(Y − 1µ̂) (15)

ŝ2G(xnew) = σ̂2

[
1−RTC−1R+

(1− 1TC−1R)2

1TC−11

]
(16)

B. Infill Sampling Criteria
Infill criteria make use of the estimates of fitness and

confidence to assess the value of a solution with respect to
the optimality and uncertainty. If a solution is expected to be
promising according to an infill criterion, it will be selected
to be evaluated using the real expensive fitness function.
Although infill criteria are developed and mostly used for
GPs, they are in fact applicable to any surrogate models that
are able to provide uncertainty information of the predicted
fitness. In this paper, we consider two infill criteria, lower
confidence bound (LCB) [20] and expected improvement (ExI)
[18], which have been shown to be most robust [28]. Suppose
that the predicted mean and standard deviation at an unknown
point x are f̂(x) and ŝ(x), then the merit functions of LCB
and ExI are as follows:

LCB(x) = f̂(x)− wŝ(x) (17)

where w is positive for minimization problems,

ExI(x) =

(ymin − f̂(x))Φ

(
ymin − f̂(x))

ŝ(x)

)
+ ŝ(x)ϕ

(
ymin − f̂(x)

ŝ(x)

)
(18)

where Φ and ϕ are standard normal distribution and probabil-
ity density function, respectively, and ymin is the minimum
of objective values of the existing real data. In Equation
(18), ExI increases as f̂H decreases and ŝH increases [18],
so the maximum ExI is pursued. On some level, ExI and
LCB both can balance the exploitation and exploration in the
optimization.

C. Discussions

The computational cost for building a GP model can become
prohibitively high as the number of training data increases.
When the maximal likelihood function is searched, the inverse
of K-dimensional square matrix C will be calculated for every
set of trial hyperparameters to find the most suitable ones.
Furthermore, the search process is needed in each iteration
with the update of training data. The situation will become
worse when the dimension of decision variables is large,
because more training samples are required for higher dimen-
sional problems. In the search for the optimal hyperparameters,
some algorithms adopt a traditional mathematical optimization
method to reduce the computational complexity [15], [25],
whereas others use an evolutionary algorithm [7], [27] because
the likelihood function is multimodal. In this research, we
apply the DACE toolbox [21] to construct GPs, where the
Hookes and Jeeves algorithm is employed for optimizing the
hyperparameters of GPs.

IV. HETEROGENEOUS ENSEMBLE-ASSISTED MOEAS

A. Main Loop

The proposed heterogeneous ensemble-assisted MOEA
(HeE-MOEA) distinguishes itself from the other surrogate-
assisted MOEAs mainly in that HeE-MOEA uses a heteroge-
neous ensemble instead of the GP for fitness approximation.
Besides, the differences among the ensemble members in HeE-
MOEA are used to estimate the confidence intervals, which
is important for an infill criterion to locate the solutions for
expensive FEs. The ensemble surrogate used in HeE-MOEA
consists of different types of models with different input
features, so the accuracy of the ensemble is enhanced and
the diversity of the ensemble members are promoted.

In HeE-MOEA, there is a cycle between the update of
heterogeneous ensemble and the selection of solutions for
expensive FEs, and the pseudocode of the main framework
of HeE-MOEA is presented in Algorithm 1. Initially, 11N−1
training data points are generated using Latin hypercube sam-
pling. A filter method based on particle swarm optimization
[62] is used to select input features for the generation of
different inputs. The selection function is defined by the
redundancy of the selected features and their relevance with
the function values, and Algorithm 2 details the procedure.
In addition to feature selection, PCA is used to extract the
principle components from input features. As a result, each
member in the heterogeneous ensemble has three different
sets of training data, the original data, the data with selected
features only, and the data with extracted features only. With
these different data sets, different ensemble members are built.
In the optimization, the ensemble surrogates replace the real

DAN GUO et al.: HETEROGENEOUS ENSEMBLE BASED INFILL CRITERION 5

Algorithm 1 HeE-MOEA
Input: Dimension of parameter space N ; Expensive real

functions f; Maximum iterations iter1; Upper limit of
training data l;

Output: Solutions X and Y ;
1: X are generated by Latin hypercube sampling;
2: for i = 1 to 11N − 1 do
3: Y [i]← evaluate X[i] by f;
4: end for
5: id← Filter-feature-selection(X,Y);
6: for i = 1 to iter1 do
7: Use PCA on X to obtain principle component coeffi-

cients rp;
8: if the number of training data is less than l then
9: Xtr ← X , Y tr ← Y ;

10: else
11: Select Xtr, Y tr from X and Y ;
12: end if
13: model← Heterogeneous-ensemble(Xtr, Y tr, id, rp);
14: solutions← MOEA(model, id, rp);
15: Xnew are selected from solutions by k-means;
16: X ← X ∪Xnew;
17: Ynew ← evaluate Xnew by f;
18: Y ← Y ∪ Ynew;
19: end for

objective functions to evaluate candidate solutions found by
the MOEA, and LCB or ExI is used to calculate the merit
values of these solutions. The goal of the optimization is to
minimize Equation (17) or to maximize Equation (18). In the
phase of selecting solutions for real expensive FEs, solutions
close to the evaluated points will be firstly deleted, and then
k-means clustering is used to pick km solutions. When the
Euclidean distance of two points in decision space is smaller
than 10−5, the two points are considered to be close. After
that, these new km data will be used to update the ensemble
surrogates. This process repeats until a stopping criterion is
satisfied.

HeE-MOEA takes two measures to reduce the computa-
tional complexity. One is the restriction of the number of
training data. When the number of points in X exceeds an
upper bound l, a selection strategy similar to [25] will be
activated: the first bl/2c training data are the optimal ones
chosen by non-dominated sorting and crowding distance [2],
and the other half are randomly sampled without replacement.
The second measure is that feature selection is performed
off-line only once based on the initial training data and the
selected features will be used for the whole optimization
process. However, feature extraction by PCA is performed in
each iteration as PCA is computationally very cheap.

It should be noted that any machine learning model can
replace the heterogeneous ensemble (line 5, 7, and 13 of
Algorithm 1), and any MOEA and any infill sampling criterion
can be applied in selecting samples for evaluation (line 14 of
Algorithm 1). In the following subsection, we will describe in
more detail the filter based feature selection method and the
construction of the heterogeneous ensemble.

B. A Filter Based Feature Selection

In this filter method, the selection function is defined to
minimize the redundancy and maximize the relevance to the
outputs (the function values) [47]. Any measure of dependence
between random vectors is able to describe the degree of
redundancy in the selected features Xs = [x1s, x2s, . . . , xK

s]T

(xks ∈ RN1 , N1 < N) and the relevance of Xs to the function
values Y = [y1, y2, . . . , yK]T (yk ∈ RM). In this work,
distance correlation suggested in [63] is adopted. Distance
correlation is based on distance covariance, which is analogous
to product-moment correlation and covariance. Xs and Y can
be seen as K samples of random variables (xs, y), and then
two K ×K distance matrices A and B will be obtained by

ai,j = ‖xis − xjs‖2, bi,j = ‖yi − yj‖2,
Ai,j = ai,j − āi· − ā·j − ā··,
Bi,j = bi,j − b̄i· − b̄·j − b̄··,
i, j = 1, 2, . . . ,K

(19)

where āi· and ā·j are the mean of i-th row and j-th column,
respectively, and ā·· is the grand mean of matrix a. Distance
covariance is actually an average of the dot product of A and
B:

dCov2(Xs, Y) =
1

K2

K∑
i=1

K∑
j=1

Ai,jBi,j (20)

Finally, the distance correlation of Xs and Y can be expressed
by

dCor(Xs, Y) =
dCov(Xs, Y)√

dCov(Xs, Xs)dCov(Y, Y)
(21)

where dCov(Xs, Xs) and dCov(Y, Y) have a similar expres-
sions to Equation (20).

The selected features should have the maximal relevance
to the expensive functions and minimal redundancy to each
other, so the fitness in feature selection can be defined as an
aggregation function [64]

min Fitness = α ∗R1 − (1− α) ∗R2 (22)

where R1 and R2 represent the redundancy in Xs and the
correlation between Xs and Y , respectively. α is a constant
ranging from 0 to 1, and a larger α indicates more emphasis on
the relevance. Every feature of the original input set and every
regression function are regarded as discrete random variables.
By distance correlation, the formulations of R1 and R2 are

R1 =
1

N1

N1∑
i=1

dCor(xi, {Xs
xi)

R2 = dCor(Xs, Y)

(23)

where N1 is the number of features in Xs, and xi is the i-th
feature of Xs. R1 calculates the mean of distance correlations
between every feature in Xs and others to indicate the redun-
dancy contained in the selected features, while R2 uses the
distance correlation of Xs and Y to denote the dependency of
all selected features on all functions.

The entire feature selection process is described in Algo-
rithm 2. The filter method makes use of a standard particle

6 IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, XXXX XXXX

swarm optimization (PSO) [62] to find the best combination
of features. Each particle represents a combination, and a
threshold T = 0.5 is introduced to make every position value
in particles be 0 or 1. As it is impossible that all features
are redundant, infinity is assigned to a fitness value when no
features are chosen. The index of every selected feature is
kept in id and output, and then it will be applied in ensemble
building and predicting.

Algorithm 2 Filter-feature-selection
Input: Input X and output Y of data; Input dimension N ;

The number of particles m; Maximum iterations iter2;
Threshold T ;

Output: Indices of the selected features id;
1: Randomly initialize the position array Pm×N and velocity

array Vm×N to describe all particles, and initialize an
empty array id;

2: while not reach iter2 do
3: for each position p in P do

4: p =

{
0, p < T

1, p ≥ T
5: end for
6: for i = 1 to m do
7: for j = 1 to N do
8: Select the j-th dimension vector of X and put it

in Xi
s when P (i, j) = 1;

9: end for
10: Calculate the fitness value of Xi

s by Equation (22)
and (23), and the value is set to infinity when Xi

s is
empty;

11: end for
12: Update personal best position pbest of each particle and

global best position gbest;
13: Update V and P ;
14: end while
15: for i = 1 to m do
16: if gbest(i) = 1 then
17: id← id ∪ i;
18: end if
19: end for

C. Ensemble Construction

Indices id of the selected features and principle com-
ponent coefficients rp are obtained after feature selection
and extraction. When id and rp are applied to the training
data (Xtr,Y tr), there will be another two sets of data, i.e.,
(Xtr

s ,Y tr) and (Xtr
e ,Y tr). Three modeling methods are applied

in HeE-MOEA, LSSVM, RBFN1 and RBFN2, where RBFN1
refers to the RBFN whose weights are obtained by the least
square method (Equation (6)), while RBFN2 refers to one
using backpropagation to train weights (Equation (8)). The
resulting structure of the heterogeneous ensemble is shown in
Fig. 2.

The heterogeneous ensemble is composed of nine members.
Each ensemble member is assigned a weight wi when estimat-
ing the objective values, and the sum of these weights is one.

LSSVM

RBFN2 (Backpropagation)

RBFN1 (Least square)

Input

Feature selection

Feature extraction

 Feature manipulation Modeling

Ensemble

output

LSSVM

RBFN2 (Backpropagation)

RBFN1 (Least square)

LSSVM

RBFN2 (Backpropagation)

RBFN1 (Least square)

Fig. 2. Structure of the heterogeneous ensemble in HeE-MOEA.

The estimated function value f̂H and variance ŝ2H of a new
candidate solution xnew is expressed as

f̂H(xnew) =

N2∑
i=1

wif̂Hi,

N2∑
i=1

wi = 1

ŝ2H(xnew) =
1

N2 − 1

N2∑
i=1

(f̂Hi − f̂H)2, N2 = 9

(24)

where f̂Hi represents the output of the i-th member in the
ensemble. Note that xnew will firstly be transformed into xnews

or xnewe by id or rp when the objective value is estimated by
the learners that are trained on a set of reduced features. Given
the estimated fitness and the variance, Equation (17) or (18)
can be used to assess the merit value of the candidate solution.

V. NUMERICAL EXPERIMENTS

In this section, the performance of HeE-MOEA is examined
on two widely used test suites, DTLZ [65] and WFG [66].
For each test instance, 10, 20, 40 and 80 decision variables
are considered while the number of objectives remains three.
The heterogeneous ensemble is compared with a homogeneous
ensemble and a GP using a same infill criterion and a
same MOEA, which is termed HoE-MOEA and GP-MOEA,
respectively. The homogeneous ensemble in HoE-MOEA is
generated using bagging, and each member is an RBFN whose
weights are trained by the least square method. The homoge-
neous ensemble also consists of nine members. In addition, we
compare HeE-MOEA with a MOEA without using surrogates
to demonstrate the importance of surrogates in optimization
of expensive problems. Note that any MOEA can be used in
the HeE-MOEA framework to solve problems with different
properties, and we take NSGA-II [2] and MOEA/D [3] as
examples in this work.

A. Performance Metrics

As both hypervolume (HV) [67] and inverted generational
distance (IGD) [68] can capture diversity and convergence
properties of a set of non-dominated solutions, they are
adopted as the performance indicators for comparisons in
this work. HV in a two-dimensional objective space can be

DAN GUO et al.: HETEROGENEOUS ENSEMBLE BASED INFILL CRITERION 7

interpreted as the area enclosed by a reference point and
the non-dominated solutions, and the higher HV values, the
better the solutions. In this paper, the maximum and minimum
objective values of non-dominated solutions found by all
compared algorithms are used to specify the reference point
of HV, i.e., max + δ(max − min), δ = 0.01 [25]. IGD
calculates the Euclidean distance between a set of reference
points sampled, typically sampled from the theoretical Pareto
front (PF), and the non-dominated solution set achieved by an
algorithm. The smaller the IGD value, the better the solution
set is. As the number of objectives in all benchmark tests
are three, in this work, 1000 uniformly distributed reference
points along the PF are sampled for IGD calculation. We use
the PlatEMO toolbox [69] to calculate HV and IGD.

The Wilcoxon rank sum is employed to conduct a sig-
nificance test in comparing HeE-MOEA with one of the
three compared algorithms at a significance level of 5%,
where symbol ‘+’ indicates that HeE-MOEA is statistically
better, while ‘−’ means that the compared algorithm performs
statistically better, and ‘=’ indicates that there is no significant
difference between the results obtained by the two algorithms.

B. Test Problems

Two sets of three-objective test problems are used in the
experimental studies, namely, DTLZ1 to DTLZ7 and WFG1
to WFG9. In the DTLZ test suite, the number of position
parameters must be one less than the number of objectives,
and the number of distance parameters is scalable. All decision
variables of DTLZ are within [0, 1]. DTLZ1 and DTLZ3 have
many local PFs, causing difficulties for MOEAs to converge
to the global PF. In DTLZ4, the mapping from the Pareto
set to the PF is biased, as a result, it is much challenging
to achieve evenly distributed solutions in the objective space.
As suggested in [65], the parameter α of DTLZ4 is set
to 100. The PFs of DTLZ5 and DTLZ6 are degenerate,
and DTLZ7 has disconnected Pareto optimal regions. The
WFG test suite is more flexible than DTLZ, allowing many
characteristics to be combined and introduced into both the
objective space (e.g. linear, convex, disconnected or mixed
shape functions) and the decision space (e.g. bias, deceptive,
multi-modal or non-separable transformation functions). In
WFG, the number of position parameters k must be divisible
by M − 1, where M is the number of objectives, and the
number of distance parameters must be a multiple of two in
WFG2 and WFG3. In our experiments associated with NSGA-
II, the values of k are set to 6, 10, 10, 40 for the dimension
of search space N = 10, 20, 40, 80, respectively, and k = 2
for the experiments associated with MOEA/D. The ranges of
decision variables in the WFG test problems are of different
magnitudes, i.e., [0, 2n], n = 1, 2, . . . , N .

C. Parameter Settings

Suppose M and N represent the objective number and the
number of decision variables in all test instances, respectively.
We have the following settings:

1) The number of independent runs is 20 for test problems
with N = 10, 20, 40, while it is set to 10 when N = 80.

In each run, the initial training data are newly generated,
and they are the same for all compared algorithms.

2) In Algorithm 1, the upper limit of the training data l
takes the value of 11N −1+25, and the number of FEs
at each iteration km = 5.

3) In Algorithm 1, when NSGA-II is taken as the base
MOEA, the population size and the generation number
of NSGA-II are both 50, and the maximum iterations
iter1 = 24, so the maximal FEs in a run are 11N −
1+120. For NSGA-II without surrogates, the maximum
number of FEs in a run is set to 11N + 120: the pop-
ulation size is 46, 34, 40, 40 when N = 10, 20, 40, 80,
respectively.

4) In Algorithm 1, when MOEA/D is adopted as the base
MOEA, the population size of MOEA/D is 45 (H =
8, T = 5) and the generation number is 55, and the
maximum number of expensive FEs in a run is set to
359 when N = 20. For MOEA/D without surrogates,
the population size is also set to 45 and the maximum
number of FEs in a run is 360 for N = 20.

5) There are two RBFNs in HeE-MOEA, i.e., RBFN1
and RBFN2. RBFN1 uses the least square method
to determine its weights, and its number of hidden
neurons is set by

⌈√
M +N + 3

⌉
. Each RBFN1 in

HoE-MOEA adopts the same settings. RBFN2 uses the
backpropagation algorithm (a gradient method) to train
the weights, and the mean square error is set according

to c
√∑M

i=1(yimax − yimin)2, where yimax and yimin

are the maximum and the minimum of the training data
in the i-th objective, and the constant c = 0.05, 0.5, 5, 50
are used for N = 10, 20, 40, 80, respectively.

6) In PSO for feature selection, the number of particles m
and the number of iterations iter2 of Algorithm 2 are
20 and 30, respectively. The constant α in Equation (22)
is set to 0.8 as recommended in [64]. The accumulative
contribution of principal components is required to be
no less than 95% in PCA.

7) Equal weights are assigned to ensemble members, and
the parameter w in Equation (17) is set to 2 as recom-
mended in [19].

In our experiments, LSSVM is implemented by LIBSVM
[70] and we use the newrb function in MATLAB to create
RBFN2. All simulations are implemented using MATLAB
R2014a on an Intel Core i7 with 3.4 GHz CPU, running on the
Microsoft Windows 7 Enterprize SP1 64-bit operating system.

D. Comparison with GP-MOEA

In this section, NSGA-II is taken as the base MOEA for
comparison. Table I presents the statistical results of HV
obtained by HeE-MOEA and GP-MOEA on 40-dimensional
test problems using two infill sampling criteria, ExI and LCB,
and Table II summarizes the statistical results in terms of
IGD values obtained by the two algorithms using LCB. In
each table, the better results are highlighted and all results
are summarized as ‘win/lose/tie’ at the end of each table.
Generally speaking, the advantage of HeE-MOEA becomes
clear as the search dimension increases, although HeE-MOEA

8 IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, XXXX XXXX

TABLE I
MEAN (FIRST LINE) AND STANDARD DEVIATION VALUES (SECOND

LINE) OF HV OBTAINED BY HEE-MOEA AND GP-MOEA USING EXI
AND LCB ON 40-DIMENSIONAL DTLZ AND WFG TEST INSTANCES

Problem ExI LCB
HeE-MOEA GP-MOEA HeE-MOEA GP-MOEA

DTLZ1 0.9468 0.9459 = 0.9319 0.9311 =

2.3e-03 1.9e-03 2.4e-03 3.3e-03

DTLZ2 0.9637 0.9436 + 0.9571 0.9386 +

4.7e-03 8.0e-03 5.9e-03 5.2e-03

DTLZ3 0.8864 0.8865 = 0.8797 0.8706 +

7.3e-03 8.8e-03 5.9e-03 6.9e-03

DTLZ4 0.8779 0.8530 + 0.8729 0.8391 +

2.6e-02 2.9e-02 3.0e-02 3.3e-02

DTLZ5 0.9305 0.8852 + 0.9258 0.8905 +

4.0e-03 9.1e-03 4.9e-03 6.9e-03

DTLZ6 0.5230 0.5204 = 0.5174 0.5147 +

6.9e-03 5.1e-03 3.4e-03 2.0e-03

DTLZ7 0.4784 0.4949 = 0.4512 0.4765 −

2.1e-02 2.6e-02 1.6e-02 1.8e-02

WFG1 0.2008 0.2039 = 0.1776 0.1356 +

3.0e-02 3.0e-02 2.4e-02 4.1e-02

WFG2 0.5807 0.4887 + 0.5319 0.4800 +

1.5e-02 1.3e-02 2.1e-02 1.1e-02

WFG3 0.4166 0.3934 + 0.3870 0.3649 +

5.6e-03 5.0e-03 9.4e-03 4.5e-03

WFG4 0.2499 0.2611 − 0.2385 0.2266 +

1.0e-02 7.7e-03 1.1e-02 8.2e-03

WFG5 0.2468 0.2747 − 0.2493 0.2609 −

7.0e-03 5.9e-03 4.2e-03 1.5e-02

WFG6 0.2691 0.2864 − 0.2568 0.2493 +

7.8e-03 8.3e-03 7.2e-03 5.4e-03

WFG7 0.3168 0.3051 + 0.3133 0.2927 +

8.2e-03 4.5e-03 7.3e-03 6.1e-03

WFG8 0.3024 0.3151 − 0.3056 0.2908 +

8.9e-03 8.0e-03 7.2e-03 5.1e-03

WFG9 0.2943 0.2663 + 0.2916 0.2753 +

1.7e-02 5.7e-03 1.1e-02 7.2e-03

win/lose/tie 7/4/5 13/2/1

has almost equal performance with the compared algorithm on
80-dimensional instances, which might attribute to the number
of runs is small when the search dimension is 80. The statis-
tical results of HV and IGD on 40-dimensional problems are
almost the same when the LCB criterion is used. It can be seen
from the two tables that HeE-MOEA significantly outperforms
GP-MOEA on DTLZ2, DTLZ5, WFG1, WFG2, WFG3 and
WFG9, however it loses on DTLZ7 and WFG5. On two multi-
modal problems, DTLZ1 and DTLZ3, HeE-MOEA and GP-
MOEA perform similarly, except that HeE-MOEA performs
better on 10-dimensional instances of DTLZ3. The results on
DTLZ6 indicate that there is no difference between the two
algorithms. The results vary greatly on DTLZ4 and WFG7,
so it is hard to conclude which surrogate performs better on
the two problems: although GP-MOEA is able to compete
with HeE-MOEA on 10-dimensional instances, it performs
worse on 40-dimensional instances. It should be noted that

219 279 339
0.26

0.61

0.96

Function evaluation number

IG
D

(a) DTLZ2

219 279 339
1025

1075

1125

Function evaluation number

IG
D

(b) DTLZ3

219 279 339
0.95

1.1

1.25

Function evaluation number

IG
D

(c) DTLZ4

219 279 339
0.15

0.5

0.85

Function evaluation number

IG
D

(d) DTLZ5

219 279 339
13.5

14.5

15.5

Function evaluation number

IG
D

(e) DTLZ6

219 279 339
1.72

2.27

2.82

Function evaluation number

IG
D

(f) WFG1

219 279 339
0.5

0.66

0.82

Function evaluation number

IG
D

(g) WFG3

219 279 339
0.91

1.13

1.35

Function evaluation number

IG
D

(h) WFG5

219 279 339
1

1.25

1.5

Function evaluation number

IG
D

(i) WFG7

219 279 339
1.05

1.16

1.27

Function evaluation number

IG
D

(j) WFG9

Fig. 3. The mean IGD values versus the number of function evaluations
when number of decision variables is 20. The red lines with “o” are for
HeE-MOEA-ExI, and the blue lines with “+” are for GP-MOEA-ExI.

the statistical results of HV in terms of ExI and LCB on some
40-dimensional test problems are conflicting with each other,
e.g., WFG4, WFG6 and WFG8. This implies that the reference
point for calculating the HV might not have been properly set.
On WFG4 and WFG6, GP-MOEA achieves better IGD values
on low-dimensional instances while the two algorithms behave
almost the same on higher dimensional problems. On WFG8,
HeE-MOEA exhibits absolute advantages over GP-MOEA on
10-dimensional and 40-dimensional instances. Overall, we can
conclude that the performance of HeE-MOEA is comparable
to or better than GP-MOEA.

Fig. 3 shows the change of the mean IGD of HeE-MOEA-
ExI and GP-MOEA-ExI over the number of FEs for N = 20.
The mean IGD of HeE-MOEA-ExI improves faster than

DAN GUO et al.: HETEROGENEOUS ENSEMBLE BASED INFILL CRITERION 9

TABLE II
MEAN (STANDARD DEVIATION) OF IGD OBTAINED BY HEE-MOEA AND GP-MOEA USING LCB INFILL CRITERION

Algorithm N DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6

HeE-MOEA

10 109.60 (2.1e+01) 0.2017 (2.7e-02) 252.84 (5.5e+01) 0.7400 (7.0e-02) 0.1138 (3.1e-02) 5.8597 (5.5e-01)
20 351.20 (4.5e+01) 0.3623 (2.8e-02) 1047.5 (1.3e+02) 0.9595 (2.5e-02) 0.2153 (3.2e-02) 14.708 (8.6e-01)
40 883.29 (5.6e+01) 0.7843 (7.5e-02) 2779.2 (1.7e+02) 1.2197 (5.2e-02) 0.6444 (7.2e-02) 32.304 (5.3e-01)
80 2006.7 (7.7e+01) 2.0726 (2.6e-01) 6260.5 (3.8e+02) 2.5253 (2.4e-01) 1.8144 (3.7e-01) 67.409 (1.0327)

GP-MOEA

10 118.27 (2.3e+01) = 0.2612 (1.7e-02) + 324.32 (5.8e+01) + 0.6840 (9.9e-02) − 0.1424 (3.2e-02) + 5.7859 (3.7e-01) =

20 351.88 (3.3e+01) = 0.5415 (4.5e-02) + 1081.3 (1.3e+02) = 0.9864 (1.5e-01) = 0.4367 (5.4e-02) + 14.532 (6.3e-01) =

40 886.66 (5.1e+01) = 0.9798 (1.1e-01) + 2822.2 (1.6e+02) = 1.8094 (1.7e-01) + 0.8999 (1.1e-01) + 32.554 (5.5e-01) =

80 2008.1 (8.2e+01) = 1.9835 (2.7e-01) = 6320.8 (2.6e+02) = 2.7071 (2.2e-01) = 1.7611 (1.9e-01) = 68.099 (5.1e-01) =

Algorithm N DTLZ7 WFG1 WFG2 WFG3 WFG4 WFG5

HeE-MOEA

10 2.0033 (7.4e-01) 1.9043 (1.8e-01) 0.6286 (7.5e-02) 0.3576 (8.2e-02) 0.9058 (1.5e-01) 0.7911 (7.9e-02)
20 4.3576 (8.2e-01) 1.8883 (1.2e-01) 0.6801 (5.3e-02) 0.4477 (3.9e-02) 1.2296 (1.8e-01) 1.1416 (6.9e-02)
40 6.4813 (5.2e-01) 1.8677 (1.6e-01) 0.7947 (5.3e-02) 0.6118 (2.6e-02) 1.2694 (1.4e-01) 1.2119 (3.3e-02)
80 8.3088 (7.7e-01) 2.3588 (1.4e-01) 1.0860 (1.1e-01) 0.6674 (2.5e-02) 2.1010 (7.9e-02) 1.8386 (3.3e-02)

GP-MOEA

10 1.0787 (3.8e-01) − 2.1390 (2.0e-01) + 0.7512 (8.3e-02) + 0.3246 (5.7e-02) = 0.8213 (9.6e-02) − 0.6603 (3.8e-02) −

20 3.4536 (6.5e-01) − 2.1305 (2.5e-01) + 0.9076 (8.0e-02) + 0.5869 (2.5e-02) + 1.1804 (1.2e-01) = 0.9564 (9.8e-02) −

40 5.9949 (6.3e-01) − 2.2466 (2.9e-01) + 0.9013 (3.0e-02) + 0.6634 (1.4e-02) + 1.2950 (1.3e-01) = 1.0657 (1.0e-01) −

80 7.6487 (3.2e-01) − 2.5560 (1.2e-01) + 1.2244 (1.2e-01) + 0.8413 (1.9e-02) + 2.1548 (6.6e-02) = 1.7100 (7.2e-02) =

Algorithm N WFG6 WFG7 WFG8 WFG9 win/lose/tie

HeE-MOEA

10 0.8578 (8.1e-02) 0.9152 (1.1e-01) 0.9852 (7.6e-02) 0.9486 (6.5e-02)

26/12/26

20 1.0869 (5.5e-02) 1.0111 (4.6e-02) 1.1506 (6.4e-02) 1.0607 (8.3e-02)
40 1.1691 (3.2e-02) 0.9590 (5.5e-02) 1.0791 (3.2e-02) 1.1702 (4.0e-02)
80 1.5723 (2.5e-02) 1.6098 (7.1e-04) 1.6459 (3.9e-02) 1.5153 (8.0e-02)

GP-MOEA

10 0.8004 (3.9e-02) − 0.8028 (4.0e-02) − 1.0226 (5.3e-02) + 0.9507 (5.1e-02) =

20 1.0507 (5.0e-02) − 1.0690 (3.9e-02) + 1.1796 (5.1e-02) = 1.1844 (5.8e-02) +

40 1.1733 (4.7e-02) = 1.0256 (5.3e-02) + 1.1360 (3.2e-02) + 1.2327 (4.4e-02) +

80 1.6172 (2.7e-02) = 1.7070 (8.6e-02) = 1.7803 (4.9e-02) = 1.5936 (5.4e-02) +

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

T
ra

in
in

g
 t

im
e

(s
ec

)

(a) HeE-MOEA (N = 10)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

T
ra

in
in

g
 t

im
e

(s
ec

)

(b) GP-MOEA (N = 10)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

3.5

7

T
ra

in
in

g
 t

im
e

(s
ec

)

(c) HeE-MOEA (N = 20)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

3.5

7

T
ra

in
in

g
 t

im
e

(s
ec

)

(d) GP-MOEA (N = 20)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

35

70

T
ra

in
in

g
 t

im
e

(s
ec

)

(e) HeE-MOEA (N = 40)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

35

70

T
ra

in
in

g
 t

im
e

(s
ec

)

(f) GP-MOEA (N = 40)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

500

1000

1500

T
ra

in
in

g
 t

im
e

(s
ec

)

(g) HeE-MOEA (N = 80)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

500

1000

1500

T
ra

in
in

g
 t

im
e

(s
ec

)

(h) GP-MOEA (N = 80)

Fig. 4. The boxplot of training time of the surrogates in HeE-MOEA and GP-MOEA using LCB infill criterion. Number 1 to 16 represent the benchmark
problems used in the comparisons: DTLZ1 to DTLZ7 and WFG1 to WFG9.

10 IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, XXXX XXXX

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
30

60

90

120
T

o
ta

l
ti

m
e
 (

se
c
)

(a) HeE-MOEA (N = 10)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
30

60

90

120

T
o

ta
l

ti
m

e
 (

se
c
)

(b) GP-MOEA (N = 10)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
90

160

230

T
o

ta
l

ti
m

e
 (

se
c
)

(c) HeE-MOEA (N = 20)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
90

160

230

T
o

ta
l

ti
m

e
 (

se
c
)

(d) GP-MOEA (N = 20)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
300

1000

1700

T
o

ta
l

ti
m

e
 (

se
c
)

(e) HeE-MOEA (N = 40)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
300

1000

1700

T
o

ta
l

ti
m

e
 (

se
c
)

(f) GP-MOEA (N = 40)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.2

1

1.8
x 10

4

T
o

ta
l

ti
m

e
 (

se
c
)

(g) HeE-MOEA (N = 80)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.2

1

1.8
x 10

4

T
o

ta
l

ti
m

e
 (

se
c
)

(h) GP-MOEA (N = 80)

Fig. 5. The boxplot of the total time for a run in HeE-MOEA and GP-MOEA using LCB infill criterion. Number 1 to 16 represent the benchmark problems
used in the comparisons: DTLZ1 to DTLZ7 and WFG1 to WFG9.

10 20 30 40
0

500

1000

T
ra

in
in

g
 t

im
e
 (

se
c
)

The number of
decision variables

(a) DTLZ2

10 20 30 40
0

500

1000

The number of

decision variables

(b) DTLZ3

10 20 30 40
0

600

1200

The number of

decision variables

(c) WFG2

10 20 30 40
0

500

1000

The number of

decision variables

(d) WFG3

Fig. 6. Mean of training time of the surrogates in HeE-MOEA-LCB (the
red solid lines with “o”) and GP-MOEA-LCB (the blue dashed lines with
“+”) versus the number of decision variables on DTLZ2, DTLZ3, WFG2 and
WFG3.

GP-MOEA-ExI on almost all problems except for DTLZ6,
WFG5 and WFG7. The training time of the surrogates in
each iteration and the total time of an optimization run for
HeE-MOEA and GP-MOEA are plotted in Fig. 4 and Fig.
5, respectively. Although both algorithms are implemented
in MATLAB, the computation time of the two algorithms
for the same search dimension are not directly comparable
due to different programming techniques, and the increase
in computation time over the increase in search dimension
is more important. We can observe that the training time of
GP-MOEA increases much more rapidly than that of HeE-
MOEA as the number of decision variables increases, so
does the total time of the optimization runs. Four examples
(DTLZ2, DTLZ3, WFG2 and WFG3) of the training time
of the heterogeneous ensemble and GP versus the number
of decision variables are plotted in Fig. 6. Thus, we can

conclude that heterogeneous ensembles are computationally
more efficient and scalable than GPs as we have discussed in
Section I. The training time of the heterogeneous ensemble in
DTLZ1 and DTLZ3 are slightly more than that in other test
problems, which can be attributed to the increase in training
time of RBFN2. We surmise that many local PFs may bring
difficulties in the convergence of weights in RBFN2.

E. Discussions

1) Influence of the Ensemble Aggregation Method: Here
we investigate three aggregation methods for calculating the
final output of the ensemble, i.e., simple averaging, weighted
aggregation (termed WTA1) [32] and partial least squares
regression (PLSR) [71]. Both WTA1 and PLSR determine
the weights by the estimated fitness values of each ensemble
member for all training data. However, the root mean square
error is used in WTA1 while latent components are involved in
PLSR. The comparative results in terms of IGD are provided
in Table I in Supplementary materials, which show that there
is hardly any difference in the performances for the three
aggregation methods. Thus in the following studies, we will
use the simple averaging method only for calculating the
output of the ensemble in HeE-MOEA.

2) Influence of the Number of the Initial Samples: Not
much work has been reported on the influence of the alloca-
tion of computational budget (expensive function evaluations)
between the offline training of the surrogate and the online
sampling of the points found by SAEAs. Shi et al. [72]
concluded that 3N (N is the search dimension) initial samples

DAN GUO et al.: HETEROGENEOUS ENSEMBLE BASED INFILL CRITERION 11

for offline training were sufficient, while in [73], it was found
that more samples for offline training were necessary to obtain
good performance and 32N initial samples were used. Here
we conduct some comparative experiments on the performance
of HeE-MOEA using different initial samples to investigate
the influence of the number of the initial samples. The results
are listed in Table II in Supplementary materials. From these
results, we can conclude that there are no significant differ-
ences among the performances of different cases. Thus, in this
work, we use 11N−1 samples as recommended in many other
surrogate-assisted evolutionary algorithms [25], [27], [28].

3) Performance Differences between HeE-MOEA and GP-
MOEA: Theoretically, if the heterogeneous ensemble (HeE)
can estimate the fitness and uncertainty information exactly as
the GP, the final optimization results should be very similar.
From the above-presented comparative results, however, it is
clear that the effectiveness of HeE and GP varies on different
test problems. To gain deeper insights into the reason for the
performance differences, we conduct additional experiments
on four DTLZ test problems to examine the performance of
the two models for fitness and uncertainty estimation. For this
purpose, the two models are trained using the same 11N − 1
training data and the estimated function values f̂ and variances
ŝ2 of 500 randomly generated points are used to compute the
mean square error (MSE) and the standard deviation of ŝ,
respectively.

The experimental results are plotted in Fig.1 in Supple-
mentary materials. From Fig. 1, we can see that the standard
deviation of ŝ of GP is smaller in four test instances, indicating
that the estimated variances of GP for different sample points
do not change as dramatically as those of HeE. We surmise that
the ineffective uncertainty estimation of GP leads to the poor
performance of GP-MOEA on some MOPs, such as DTLZ5.
By contrast, the mean square error (MSE) of HeE is larger
than that of GP, so the inaccurate fitness estimates may be
the reason why GP-MOEA sometimes performs better than
HeE-MOEA. For example, although the standard deviation of
ŝ obtained by GP on DTLZ7 is almost zero, its MSE also
approaches to zero. This may explains why HeE-MOEA is
outperformed by GP-MOEA on DTLZ7. Note that the infill
criteria assess the value of a solution according to both its
fitness estimates and variance. On DTLZ1 and DTLZ3, HeE-
MOEA has poorer approximation performance than GP while
GP has poor uncertainty estimation, and this may lead to
the fact that HeE-MOEA and GP-MOEA using ExI or LCB
perform similarly on these two test instances.

F. Comparison with HoE-MOEA and MOEA without Surro-
gates

Two MOEAs, NSGA-II and MOEA/D, and ExI infill cri-
terion are taken as examples in this section. The statistics
of the HV values of the solutions obtained by HeE-MOEA,
HoE-MOEA and NSGA-II on DTLZ test suite are listed
in Table III. In HeE-MOEA and HoE-MOEA of Table III,
NSGA-II is the base MOEA. We also use ‘win/lose/tie’ to
summarize the overall results. HeE-MOEA shows the most
competitive performance on DTLZ2, DTLZ6 and DTLZ7,

and NSGA-II shows the best performance on DTLZ1 and
DTLZ3. This observation agrees with the results found in [15]
showing that a surrogate-assisted MOEA performs worse than
the MOEA itself on DTLZ1 and DTLZ3 probably because
of the difficulties in approximating the fitness landscapes for
multi-modal problems. Compared with NSGA-II, HeE-MOEA
is also significantly better on DTLZ5, and is no worse on
DTLZ4. HoE-MOEA is significantly outperformed by HeE-
MOEA on DTLZ1 and DTLZ3, while the performances of
the two algorithms on DTLZ4 and DTLZ5 are similar. The
non-dominated solutions obtained by HeE-MOEA and HoE-
MOEA are provided in Fig. 2 in Supplementary materials,
from which we can see that the non-dominated solutions
obtained by HeE-MOEA show a better distribution than those
obtained by HoE-MOEA. Table IV presents the statistical
results in terms of IGD obtained by MOEA/D and HeE-
MOEA (which uses MOEA/D as the base MOEA) on the
20-dimensional WFG test problems. HeE-MOEA shows sig-
nificant advantages over MOEA/D on almost all test instances.
Overall, HeE-MOEA shows the best performance among
the four compared algorithms on the test problems for the
dimensions studied in this work.

VI. CONCLUSION

In many real-world optimization problems, it is common
that function evaluations are time-consuming, and on-line
SAEAs are often resorted to for efficient search of optimal
solutions. While GPs based on infill criteria have shown to be
particularly competitive on low-dimensional problems, their
computational complexity may become prohibitive for high-
dimensional problems as more training samples are required
to train the GP. In this study, we propose to use heterogeneous
ensembles to replace GPs as surrogates in that ensembles
are also able to estimate the uncertainty in approximating
the objective values and are computationally more scalable
to the increase in training samples. To enhance the diversity
and accuracy of the ensemble, both feature selection and
extraction are adopted to manipulate inputs, and different types
of machine learning models, LSSVM and RBFN, are used to
build ensemble members in this work. Our empirical results
confirm that the heterogeneous ensemble assisted MOEAs are
comparable to or better than the GP assisted MOEAs, and the
computation time of the former remains very attractive when
the search dimension increases.

Although the computational time for the heterogeneous
ensemble is computationally more efficient than GP on high-
dimensional problems, PSO based feature selection can be-
come computationally intensive. Our next step will be to
develop a more efficient ensemble construction method that
does not rely on feature selection. In addition, it might of
interest to develop more effective infill criteria that take into
account the more properties of ensembles.

REFERENCES

[1] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength
Pareto evolutionary algorithm,” in Proc. EUROGEN 2001. Evolutionary
Methods for Design, Optimization and Control with Applications to
Industrial Problems, 2001, pp. 95–100.

12 IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, XXXX XXXX

TABLE III
MEAN (STANDARD DEVIATION) VALUES OF HV OBTAINED BY HEE-MOEA, HOE-MOEA AND NSGA-II USING EXI INFILL CRITERION

Algorithm N DTLZ1 DTLZ2 DTLZ3 DTLZ4

HeE-MOEA

10 0.9846 (2.9e-03) 0.9341 (4.8e-03) 0.9828 (5.2e-03) 0.7805 (6.0e-02)
20 0.9705 (2.6e-03) 0.9672 (3.5e-03) 0.9334 (7.4e-03) 0.7642 (2.5e-02)
40 0.9403 (2.6e-03) 0.9621 (4.9e-03) 0.8702 (8.3e-03) 0.8770 (2.6e-02)
80 0.9187 (7.2e-04) 0.9357 (7.9e-03) 0.7972 (6.2e-03) 0.8615 (2.5e-02)

HoE-MOEA

10 0.9724 (4.7e-03) + 0.9137 (1.1e-02) + 0.9577 (1.1e-02) + 0.7725 (6.5e-02) =

20 0.9612 (3.3e-03) + 0.9476 (5.5e-03) + 0.9033 (8.8e-03) + 0.7640 (2.3e-02) =

40 0.9356 (2.2e-03) + 0.9528 (6.2e-03) + 0.8572 (6.9e-03) + 0.8795 (2.8e-02) =

80 0.9161 (1.2e-03) + 0.9368 (6.0e-03) = 0.7929 (5.5e-03) = 0.8634 (1.7e-02) =

NSGA-II

10 0.9819 (7.0e-03) = 0.8803 (1.7e-02) + 0.9634 (1.4e-02) + 0.7998 (8.9e-02) =

20 0.9714 (5.2e-03) = 0.8987 (1.8e-02) + 0.9485 (9.7e-03) − 0.7265 (1.0e-01) =

40 0.9488 (5.5e-03) − 0.8884 (2.1e-02) + 0.9000 (1.2e-02) − 0.8706 (8.9e-02) =

80 0.9326 (4.2e-03) − 0.8448 (1.3e-02) + 0.8566 (1.1e-02) − 0.8558 (7.4e-02) =

Algorithm N DTLZ5 DTLZ6 DTLZ7 win/lose/tie

HeE-MOEA

10 0.8329 (6.4e-03) 0.5581 (2.7e-02) 0.6974 (4.5e-02)
20 0.9047 (3.8e-03) 0.5204 (1.1e-02) 0.5595 (4.5e-02)
40 0.9305 (4.0e-03) 0.5249 (6.9e-03) 0.4779 (2.1e-02)
80 0.9242 (5.3e-03) 0.5028 (1.1e-03) 0.3562 (1.9e-02)

HoE-MOEA

10 0.8345 (4.3e-03) = 0.4900 (5.2e-03) + 0.5699 (2.0e-02) +

19/0/920 0.8893 (8.1e-03) + 0.4988 (3.3e-03) + 0.4738 (1.6e-02) +

40 0.9269 (7.8e-03) = 0.5023 (1.5e-03) + 0.4046 (1.2e-02) +

80 0.9155 (9.4e-03) = 0.4980 (1.0e-03) + 0.3373 (4.3e-03) +

NSGA-II

10 0.7817 (1.6e-02) + 0.5288 (2.6e-02) + 0.5567 (3.5e-02) +

15/5/820 0.8055 (1.9e-02) + 0.5157 (2.0e-02) = 0.4533 (2.3e-02) +

40 0.8437 (1.3e-02) + 0.5012 (1.8e-02) + 0.3973 (1.3e-02) +

80 0.8244 (1.6e-02) + 0.5035 (9.0e-03) = 0.3380 (1.1e-02) +

TABLE IV
MEAN (STANDARD DEVIATION) VALUES OF IGD OBTAINED BY
HEE-MOEA AND MOEA/D USING EXI INFILL CRITERION ON

20-DIMENSIONAL WFG TEST INSTANCES

Problem HeE-MOEA MOEA/D

WFG1 2.0431 (1.2e-01) 2.3831 (2.2e-01) +

WFG2 0.8040 (5.4e-02) 0.8663 (6.3e-02) +

WFG3 0.6497 (4.5e-02) 0.7307 (6.1e-02) +

WFG4 0.5434 (3.2e-02) 0.6812 (9.9e-02) +

WFG5 0.7037 (4.0e-02) 0.7833 (3.8e-02) +

WFG6 0.8496 (3.3e-02) 0.9253 (5.1e-02) +

WFG7 0.7112 (1.7e-02) 0.7870 (5.3e-02) +

WFG8 0.7993 (1.9e-02) 0.9043 (6.1e-02) +

WFG9 0.9459 (3.6e-02) 0.9700 (8.4e-02) =

win/lose/tie 8/0/1

[2] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, 2002.

[3] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 712–731, 2007.

[4] H.-L. Liu, F. Gu, and Q. Zhang, “Decomposition of a multiobjective
optimization problem into a number of simple multiobjective subprob-
lems,” IEEE Trans. Evol. Comput., vol. 18, no. 3, pp. 450–455, 2014.

[5] K. Li, Q. Zhang, S. Kwong, M. Li, and R. Wang, “Stable matching-based
selection in evolutionary multiobjective optimization,” IEEE Trans. Evol.
Comput., vol. 18, no. 6, pp. 909–923, 2014.

[6] E. Zitzler and S. Künzli, “Indicator-based selection in multiobjective
search,” in Int. Conf. Parallel Problem Solving from Nature. Springer,
2004, pp. 832–842.

[7] N. Beume, B. Naujoks, and M. Emmerich, “SMS-EMOA: Multiobjective
selection based on dominated hypervolume,” Eur. J. Oper. Res., vol. 181,
no. 3, pp. 1653–1669, 2007.

[8] Y. Jin and B. Sendhoff, “A systems approach to evolutionary multiob-

jective structural optimization and beyond,” IEEE Comput. Intell. Mag.,
vol. 4, no. 3, pp. 62–76, 2009.

[9] Y. S. Ong, P. B. Nair, and A. J. Keane, “Evolutionary optimization of
computationally expensive problems via surrogate modeling,” AIAA J.,
vol. 41, no. 4, pp. 687–696, 2003.

[10] Y. Jin, “A comprehensive survey of fitness approximation in evolutionary
computation,” Soft comput., vol. 9, no. 1, pp. 3–12, 2005.

[11] H. Nakayama, K. Inoue, and Y. Yoshimori, “Approximate optimization
using computational intelligence and its application to reinforcement of
cable-stayed bridges,” in Proceedings of Integrated Intelligent Systems
for Engineering Design. IOS Press, 2006, pp. 289–304.

[12] W. Kong, T. Chai, S. Yang, and J. Ding, “A hybrid evolutionary
multiobjective optimization strategy for the dynamic power supply
problem in magnesia grain manufacturing,” Appl. Soft Comput., vol. 13,
no. 5, pp. 2960–2969, 2013.

[13] D. Lim, Y. Jin, Y.-S. Ong, and B. Sendhoff, “Generalizing surrogate-
assisted evolutionary computation,” IEEE Trans. Evol. Comput., vol. 14,
no. 3, pp. 329–355, 2010.

[14] K. Rasheed, X. Ni, and S. Vattam, “Comparison of methods for devel-
oping dynamic reduced models for design optimization,” Soft Comput.,
vol. 9, no. 1, pp. 29–37, 2005.

[15] T. Chugh et al., “A surrogate-assisted reference vector guided evolution-
ary algorithm for computationally expensive many-objective optimiza-
tion,” IEEE Trans. Evol. Comput., 2016, to be published.

[16] Y. Jin, “Surrogate-assisted evolutionary computation: recent advances
and future challenges,” Swarm Evol. Comput., vol. 1, no. 2, pp. 61–70,
2011.

[17] H. Wang, Y. Jin, and J. O. Janson, “Data-driven surrogate-assisted multi-
objective evolutionary optimization of a trauma system,” IEEE Trans.
Evol. Comput., vol. 20, no. 6, pp. 939–952, 2016.

[18] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimiza-
tion of expensive black-box functions,” J. Global Optim., vol. 13, no. 4,
pp. 455–492, 1998.

[19] M. T. Emmerich, K. C. Giannakoglou, and B. Naujoks, “Single-and
multiobjective evolutionary optimization assisted by Gaussian random
field metamodels,” IEEE Trans. Evol. Comput., vol. 10, no. 4, pp. 421–
439, 2006.

[20] V. Torczon and M. Trosset, “Using approximations to accelerate engi-

DAN GUO et al.: HETEROGENEOUS ENSEMBLE BASED INFILL CRITERION 13

neering design optimization,” in 7th AIAA/USAF/NASA/ISSMO Sympo-
sium on Multidisciplinary Analysis and Optimization, 1998, p. 4800.

[21] S. N. Lophaven, H. B. Nielsen, and J. Søndergaard, “DACE: a Matlab
Kriging toolbox,” Tech. Rep., 2002.

[22] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas,
“Taking the human out of the loop: A review of bayesian optimization,”
Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2016.

[23] M. Emmerich, A. Giotis, M. Uezdenir, T. Baeck, and K. Giannakoglou,
“Metamodelassisted evolution strategies,” in Parallel Problem Solving
from Nature, ser. LNCS, 2002, pp. 371–380.

[24] L. Willmes, T. Bck, Y. Jin, and B. Sendhoff, “Comparing neural
networks and kriging in fitness approximation in evolutionary optimiza-
tion,” in Congress on Evolutionary Computation. Canberra, Australia:
IEEE, 2003, pp. 663–670.

[25] J. Knowles, “ParEGO: a hybrid algorithm with on-line landscape ap-
proximation for expensive multiobjective optimization problems,” IEEE
Trans. Evol. Comput., vol. 10, no. 1, pp. 50–66, 2006.

[26] W. Ponweiser, T. Wagner, D. Biermann, and M. Vincze, “Multiobjective
optimization on a limited budget of evaluations using model-assisted S-
metric selection,” in Int. Conf. Parallel Problem Solving from Nature.
Springer, 2008, pp. 784–794.

[27] Q. Zhang, W. Liu, E. Tsang, and B. Virginas, “Expensive multiobjective
optimization by MOEA/D with Gaussian process model,” IEEE Trans.
Evol. Comput., vol. 14, no. 3, pp. 456–474, 2010.

[28] D. Horn, T. Wagner, D. Biermann, C. Weihs, and B. Bischl, “Model-
based multi-objective optimization: taxonomy, multi-point proposal,
toolbox and benchmark,” in Int. Conf. Evol. Multi-Criterion Optim.
Springer, 2015, pp. 64–78.

[29] D. Büche, N. N. Schraudolph, and P. Koumoutsakos, “Accelerating
evolutionary algorithms with Gaussian process fitness function models,”
IEEE Trans. Syst., Man, Cybern. C, vol. 35, no. 2, pp. 183–194, 2005.

[30] C. Sun, Y. Jin, R. Cheng, J. Ding, and J. Zeng, “Surrogate-assisted co-
operative swarm optimization of high-dimensional expensive problems,”
IEEE Trans. Evol. Comput., vol. 21, no. 4, pp. 644–660, 2017, in press.

[31] Y. Jin and B. Sendhoff, “Reducing fitness evaluations using clustering
techniques and neural network ensembles,” in Genet. Evol. Comput.
Conf. Springer, 2004, pp. 688–699.

[32] T. Goel, R. T. Haftka, W. Shyy, and N. V. Queipo, “Ensemble of
surrogates,” Struct. Multidiscip. Optim., vol. 33, no. 3, pp. 199–216,
2007.

[33] G. Brown, J. L. Wyatt, and P. Tiňo, “Managing diversity in regression
ensembles,” J. Mach. Learn. Res., vol. 6, no. Sep, pp. 1621–1650, 2005.

[34] L. Breiman, “Bagging predictors,” Mach. learn., vol. 24, no. 2, pp. 123–
140, 1996.

[35] S. Gu and Y. Jin, “Multi-train: A semi-supervised heterogeneous ensem-
ble classifier,” Neurocomputing, vol. 249, pp. 202–211, 2017.

[36] W. Albukhanajer, Y. Jin, and J. A. Briffa, “Classifier ensembles for image
identification using multi-objective pareto features,” Neurocomputing,
vol. 238, pp. 317–327, 2017.

[37] J. Branke and C. Schmidt, “Faster convergence by means of fitness
estimation,” Soft Computing-A Fusion of Foundations, Methodologies
and Applications, vol. 9, no. 1, pp. 13–20, 2005.

[38] H. Wang, Y. Jin, and J. Doherty, “Committee-based active learning for
surrogate-assisted particle swarm optimization of expensive problems,”
IEEE Trans. Cybern., vol. PP, no. 99, pp. 1–1, 2017.

[39] Rosales-Pérez et al., “A hybrid surrogate-based approach for evolution-
ary multi-objective optimization,” in Congr. Evol. Comput. IEEE, 2013,
pp. 2548–2555.

[40] S. Zapotecas Martı́nez and C. A. Coello Coello, “MOEA/D assisted by
RBF networks for expensive multi-objective optimization problems,” in
Genet. Evol. Comput. Conf. ACM, 2013, pp. 1405–1412.

[41] N. Azzouz, S. Bechikh, and L. Ben Said, “Steady state IBEA assisted
by MLP neural networks for expensive multi-objective optimization
problems,” in Genet. Evol. Comput. Conf. ACM, 2014, pp. 581–588.

[42] Y. Ren, L. Zhang, and P. N. Suganthan, “Ensemble classification
and regression-recent developments, applications and future directions,”
IEEE Comput. Intell. Mag., vol. 11, no. 1, pp. 41–53, 2016.

[43] B. Tran, B. Xue, and M. Zhang, “Overview of particle swarm optimi-
sation for feature selection in classification,” in Asia-Pacific Conference
on Simulated Evolution and Learning. Springer, 2014, pp. 605–617.

[44] S. Gu, R. Cheng, and Y. Jin, “Feature selection for high-dimensional
classification using a competitive swarm optimizer,” Soft Comput., pp.
1–12, 2016.

[45] J. R. Vergara and P. A. Estévez, “A review of feature selection methods
based on mutual information,” Neural Comput. Appl., vol. 24, no. 1, pp.
175–186, 2014.

[46] G. Chandrashekar and F. Sahin, “A survey on feature selection methods,”
Comput. Elect. Eng., vol. 40, no. 1, pp. 16–28, 2014.

[47] V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betanzos, “A
review of feature selection methods on synthetic data,” Knowl. Inf. Syst.,
vol. 34, no. 3, pp. 483–519, 2013.

[48] D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor, “Canonical correlation
analysis: an overview with application to learning methods,” Neural
Comput., vol. 16, no. 12, pp. 2639–2664, 2004.

[49] B. Schölkopf, A. Smola, and K.-R. Müller, “Kernel principal component
analysis,” in Int. Conf. Artificial Neural Networks. Springer, 1997, pp.
583–588.

[50] J. Shlens, “A tutorial on principal component analysis,” arXiv preprint
arXiv:1404.1100, 2014.

[51] J. A. Suykens and J. Vandewalle, “Least squares support vector machine
classifiers,” Neural processing letters, vol. 9, no. 3, pp. 293–300, 1999.

[52] Z. Mustaffa and Y. Yusof, “LSSVM parameters tuning with enhanced
artificial bee colony,” Int. Arab J. Inf. Technol., vol. 11, no. 3, pp. 236–
242, 2014.

[53] G. Brown, J. Wyatt, R. Harris, and X. Yao, “Diversity creation methods:
a survey and categorisation,” Information Fusion, vol. 6, no. 1, pp. 5–20,
2005.

[54] R. Tibshirani, “A comparison of some error estimates for neural network
models,” Neural Comput., vol. 8, no. 1, pp. 152–163, 1996.

[55] S. Gu, R. Cheng, and Y. Jin, “Multi-objective ensemble generation,”
Wiley Interdisciplinary Reviews: Data Min. Knowl. Discov., vol. 5, no. 5,
pp. 234–245, 2015.

[56] A. J. Sharkey, Combining artificial neural nets: ensemble and modular
multi-net systems. Springer Science & Business Media, 2012.

[57] H. Drucker, “Improving regressors using boosting techniques,” in Int.
Conf. Mach. Learn., vol. 97, 1997, pp. 107–115.

[58] H. Chen and X. Yao, “Multiobjective neural network ensembles based
on regularized negative correlation learning,” IEEE Trans. Knowl. Data
Eng., vol. 22, no. 12, pp. 1738–1751, 2010.

[59] Y. Jin and B. Sendhoff, “Pareto-based multi-objective machine learning:
An overview and case studies.” IEEE Transactions on Systems, Man,
and Cybernetics, Part C: Applications and Reviews, vol. 38, no. 3, pp.
397–415, 2008.

[60] S. Gu and Y. Jin, “Multi-train: A semi-supervised heterogeneous ensem-
ble classifier,” Neurocomputing, pp. 202–211, 2017.

[61] ——, “Heterogeneous classifier ensembles for EEG-Based motor imag-
inary detection,” in 12th UK Workshop on Computational Intelligence.
IEEE, 2012, pp. 1–8.

[62] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Int. Conf.
Neural Netw., vol. 4. IEEE, 1995, pp. 1942–1948.

[63] G. J. Székely, M. L. Rizzo, and N. K. Bakirov, “Measuring and testing
dependence by correlation of distances,” The Annals of Statistics, vol. 35,
no. 6, pp. 2769–2794, 2007.

[64] L. Cervante, B. Xue, M. Zhang, and L. Shang, “Binary particle swarm
optimisation for feature selection: A filter based approach,” in Congr.
Evol. Comput. IEEE, 2012, pp. 1–8.

[65] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multi-
objective optimization test problems,” in Congr. Evol. Comput., vol. 1.
IEEE, 2002, pp. 825–830.

[66] S. Huband, P. Hingston, L. Barone, and L. While, “A review of
multiobjective test problems and a scalable test problem toolkit,” IEEE
Trans. Evol. Comput., vol. 10, no. 5, pp. 477–506, 2006.

[67] L. While, P. Hingston, L. Barone, and S. Huband, “A faster algorithm
for calculating hypervolume,” IEEE Trans. Evol. Comput., vol. 10, no. 1,
pp. 29–38, 2006.

[68] P. A. Bosman and D. Thierens, “The balance between proximity and
diversity in multiobjective evolutionary algorithms,” IEEE Trans. Evol.
Comput., vol. 7, no. 2, pp. 174–188, 2003.

[69] Y. Tian, R. Cheng, X. Zhang, and Y. Jin, “PlatEMO: A MATLAB
platform for evolutionary multi-objective optimization,” arXiv preprint
arXiv:1701.00879, 2017.

[70] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, p. 27, 2011.

[71] S. Li, P. Wang, and L. Goel, “A novel wavelet-based ensemble method
for short-term load forecasting with hybrid neural networks and feature
selection,” IEEE Trans. Power Syst., vol. 31, no. 3, pp. 1788–1798, 2016.

[72] L. Shi, R. J. Yang, and P. Zhu, “A method for selecting surrogate models
in crashworthiness optimization,” Struct. Multidiscip. Optim., vol. 46,
no. 2, pp. 159–170, 2012.

[73] P. Heiningen, B. Stein, and T. Bäck, “A framework for evaluating meta-
models for simulation-based optimization,” in Computational Intelli-
gence (SSCI), 2016 IEEE Symposium Series on. IEEE, 2016, pp. 1–8.

