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Funneled Bayesian Optimization for Design, Tuning
and Control of Autonomous Systems

Ruben Martinez-Cantin

Abstract—In this paper, we tackle several problems that
appear in robotics and autonomous systems: algorithm tuning,
automatic control and intelligent design. All those problems share
in common that they can be mapped to global optimization
problems where evaluations are expensive. Bayesian optimization
has become a fundamental global optimization algorithm in many
problems where sample efficiency is of paramount importance.
Bayesian optimization uses a probabilistic surrogate model to
learn the response function and reduce the number of samples
required. Gaussian processes have become a standard surro-
gate model for their flexibility to represent a distribution over
functions. In a black-box settings, the common assumption is
that the underlying function can be modeled with a stationary
Gaussian process. In this paper, we present a novel kernel
function specially designed for Bayesian optimization, that allows
nonstationary behavior of the surrogate model in an adaptive
local region. This kernel is able to reconstruct nonstationarity
even with the irregular sampling distribution that arises from
Bayesian optimization. Furthermore, tn our experiments, we
found that this new kernel results in an improved local search
(exploitation), without penalizing the global search (exploration)
in many applications. We provide extensive results in well-known
optimization benchmarks, machine learning hyperparameter tun-
ing, reinforcement learning and control problems, and UAV wing
optimization. The results show that the new method is able to
outperform the state of the art in Bayesian optimization both in
stationary and nonstationary problems.

Index Terms—Bayesian optimization, Gaussian processes,
Global optimization, Reinforcement learning

I. INTRODUCTION

MANY problems in autonomous systems and robotics
require to find the extremum of an unknown real

valued function usign as few evaluations as possible. In many
cases, those functions represent actual expensive processes like
building a prototype, physical trials like learning a controller
by experimentation, or time consuming computations and
simulations like tuning some deep learning architecture. The
optimization process must consider the actual budget and lim-
itations of gathering new evaluations. Then, sample efficiency
becomes the key element. Furthermore, those functions might
be highly multimodal, requiring a global solution.

Bayesian optimization, also found in the literature with
the names of Bayesian Sampling [1], Efficient Global Opti-
mization (EGO) [2], Sequential Kriging Optimization (SKO)
[3], Sequential Model-Based Optimization (SMBO) [4] or
Bayesian guided pattern search [5], is a classic optimization
method [6], [7] which has become quite popular recently for
being a sample efficient method of global optimization [2]. It
has been applied with great success to autonomous algorithm
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tuning [8], specially for machine learning applications [9],
[10], robot planning [11], control [12], task optimization [13],
reinforcement learning [14], [15], structural design [16], sensor
networks [17], [18], simulation design [19], circuit design
[5], ecology [20], biochemistry [21], dynamical modeling of
biological systems [22], etc. Recent works have found connec-
tions between Bayesian optimization and the way biological
systems adapt and search in nature, such as human active
search [23] or animal adaptation to injuries [24].

Bayesian optimization uses a Bayesian surrogate model, that
is, a distribution over target functions P (f) to incorporate the
information available during the optimization procedure, like
any prior information and the information from each observa-
tion. This model can be updated recursively as outcomes are
available from the evaluated trials yt = f(xt)

P (f |X1:t,y1:t) =
P (xt, yt|f)P (f |X1:t−1,y1:t−1)

P (xt, yt)
, (1)

∀ t = 2 . . . T where X1:t is a matrix with all the inputs X1:t =
[x1, . . . ,xt] and y1:t is a vector with all the outcomes y1:t =
[y1, . . . , yt]

T . By using this method, the information is always
updated. Therefore, the surrogate model provides a memory
[25] that improves the sample efficiency of the method by
considering the whole history of trials and evaluations during
the decision procedure of where to sample.

Bayesian optimization computes the optimal decision/action
u of selecting the next trial u = xt+1 by maximizing
(minimizing) a expected utility (loss):

uBO = arg min
u

∫
δt(f,u) dP (f |X1:t,y1:t) (2)

where δt(f,u) is the optimality criterion or regret function that
drives the optimization towards the optimum x∗. For example,
we can use the optimality gap δt(f,u) = f (u) − f(x∗)
to get the optimal outcome, the Euclidean distance error
δt(f,u) = ‖u− x∗‖2 to get the optimal input, or the relative
entropy δt(f,u) = H(x∗|X1:t)−H(x∗|X1:t,u) to maximize
the information about the optimum.

In summary, Bayesian optimization is the combination of
two main components: a surrogate model which captures
all prior and observed information and a decision process
which performs the optimal action, i.e.: where to sample
next, based on the previous model. These two components
also hide extra computational cost compared to other op-
timization methods. On one hand, we need to update the
surrogate model continuously. On the other hand, we need
to optimize the criterion function. However, this additional
cost can be compensated by the reduced number of target
function evaluations thanks to the sample efficiency of the
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method. Therefore, Bayesian optimization is specially suit-
able for expensive black-box functions, trial-and-error tuning
and experimental design. The methodology behind Bayesian
optimization also appears in other areas. In the way points
are selected, the optimization problem can be considered an
active learning problem on the estimation of the optimum
[26], [27]. Other authors have drawn connections between
Bayesian optimization and some reinforcement learning setups
such as multi-armed bandits [17], partially observable Markov
decision processes (POMDPs) [28] or active reinforcement
learning [14]. Surrogate models such as Gaussian processes
are also used in other optimization methods, like evolutionary
algorithms [29], [30], [31]. Some genetic algorithms even
use the decision (acquisition) functions used in Bayesian
optimization as preselection criteria [32].

For Bayesian optimization, the quality of the surrogate
model is of paramount importance as it also affects to the op-
timality of the decision process. Earliest versions of Bayesian
optimization used Wiener processes [6] or Wiener fields
[33] as surrogate models. Similar methods used radial basis
functions [34] or branch and bound with polynomials [35]. It
was the seminal paper of Jones et al. [2] that introduced the
use of Gaussian processes, also called Kriging, as a Bayesian
surrogate function. Jones also wrote an excellent review on
this kind of surrogate models [36]. Recently, other Bayesian
models have become popular like Student’s t processes [37],
[38], treed Gaussian processes [5], [39], random forests [4],
tree-structured Parzen estimators [40] or deep neural networks
[41]. In the case of discrete inputs, the Beta-Bernouilli bandit
setting provides an equivalent framework [42].

However, the Gaussian process (GP) is still the most popular
model due to its accuracy, robustness and flexibility, because
Bayesian optimization is mainly used in black or grey-box
scenarios. The range of applicability of a Gaussian process
is defined by its kernel function, which sets the family of
functions that is able to represent through the reproducing
kernel Hilbert space (RKHS) [43]. In fact, regret bounds for
Bayesian optimization using Gaussian processes are always
defined in terms of specific kernel functions [27], [17], [44].
From a practical point of view, the standard procedure is
to select a generic kernel function, such as the Gaussian
(square exponential) or Matérn kernels, and estimate the kernel
hyperparameters from data. One property of these kernels is
that they are stationary. Although it might be a reasonable
assumption in a black box setup, we show in Section III that
this reduces the efficiency of Bayesian optimization in most
situations. It also limits the potential range of applications.
On the other hand, nonstationay methods usually require
extra knowledge of the function (e.g.: the global trend or
the space partition). However, gathering this knowledge from
data usually requires global sampling, which is contrary to the
Bayesian optimization methodology.

The main contribution of the paper is a new set of adaptive
kernels for Gaussian processes that are specifically designed to
model functions from nonstationary processes but focused on
the region near the optimum. Thus, the new model maintains
the global exploration/local exploitation trade off. This idea
results in an improved efficiency and applicability of any

Bayesian optimization based on Gaussian processes. We call
this new method Spartan Bayesian Optimization (SBO). The
algorithm has been extensively evaluated in many scenarios
and applications. Besides some standard optimization bench-
marks, the method has been evaluated in automatic algorithm
tuning for machine learning applications, optimal policy learn-
ing in reinforcement learning scenarios and autonomous wing
design of an airplane using realistic CFD simulations. In our
results, we have found that SBO reaches its best performance
in problems that are clearly nonstationary, where the local and
global shape of the function are different. However, our tests
have also shown that SBO can improve the results of Bayesian
optimization in all those scenarios. From an optimization point
of view, these new kernels result in an improved local search
while maintaining global exploration capabilities, similar to
other locally-biased global optimization algorithms [45].

II. BAYESIAN OPTIMIZATION WITH GAUSSIAN PROCESSES

We start describing the ingredients for a Bayesian optimiza-
tion algorithm using Gaussian processes as surrogate model.
Consider the problem of finding the minimum of an unknown
real valued function f : X→ R, where X is a compact space,
X ⊂ Rd, d ≥ 1. In order to find the minimum, the algorithm
has a maximum budget of N evaluations of the target function
f . The purpose of the algorithm is to select the best query
points at each iteration such as the optimization gap or regret
is minimum for the available budget.

A. Gaussian processes

Given a dataset at step t of points X = X1:t and its respec-
tive outcomes y = y1:t, the prediction of the Gaussian process
at a new query point xq , with a kernel or covariance function
kθ(·, ·) with hyperparameters θ is a normal distribution such
as yq ∼ N (µ, σ2|xq) where:

µ(xq) = k(xq,X)K−1y

σ2(xq) = k(xq,xq)− k(xq,X)K−1k(X,xq)
(3)

being k(xq,X) the corresponding cross-correlation vector of
the query point xq with respect to the dataset X

k(xq,X) = [k(xq,x1), . . . , k(xq,xn)]
T (4)

and K = K(X,X) is the Gram or kernel matrix:

K =

 k(x1,x1) . . . k(x1,xn)
...

. . .
...

k(xn,x1) . . . k(xn,xn)

+ σ2
nI (5)

where σ2
n is a noise or nugget term to represent stochastic

functions [3] or surrogate missmodeling [46].

B. Acquisition function

The regret functions that we introduced to select the next
point at each iteration with equation (2) assume knowledge of
the optimum x∗. Thus, they cannot be used in practice. Instead,
the Bayesian optimization literature uses acquisition functions,
like the expected improvement (EI) criterion [7] as a proxy of
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the optimality gap criterion. EI is defined as the expectation
of the improvement function I(x) = max(0, ρ−f(x)), where
ρ is the incumbent of the optimal. In many applications ρ is
considered to be the best outcome until the current iteration
ρ = ybest. Other incumbent values could be considered,
specially in the presence of noise, like the maximum predicted
value. Taking the expectation over the predictive distribution,
we can compute the expected improvement as:

EI(x) = Ep(y|x,θ) [I(x)] = (ρ− µ) Φ(z) + σφ(z) (6)

where φ and Φ are the corresponding Gaussian probabil-
ity density function (PDF) and cumulative density function
(CDF), being z = (ρ − µ)/σ. In this case, (µ, σ2) are the
prediction parameters computed with Equation (3). At each
iteration n, we select the next query at the point that maximizes
the corresponding expected improvement:

xn = arg max
x

EI(x) (7)

C. Kernel hyperparameters
The advantage of Gaussian process is that the posterior

can be computed in closed form due to the linear-Gaussian
properties of all the components involved. This is true for
known kernel hyperparameters. Uncertainty in the hyperpa-
rameters requires a nonlinear transformation which makes the
computation of the predictive distribution or the acquisition
function intractable. The most common approach is to use
a point estimate of the kernel hyperparameters based on the
maximum of the marginal likelihood p(y|X,θ) = N (0,K)
[43]. Sometimes a prior on the hyperparameters p(θ) is
defined, resulting in a maximum a posteriori point estimate.

Instead, we propose a fully-Bayesian treatment, where we
compute the integrated predictive distribution and the inte-
grated acquisition function:

ŷq =

∫
N (µ, σ|xq)p(θ|y,X)dθ

ÊI(x) =

∫
EI(x)p(θ|y,X)dθ

(8)

with respect to the posterior distribution on the hyperpa-
rameters p(θ|y,X) ∝ p(y|X,θ)p(θ). Those integrals are
directly intractable, thus, we use Markov chain Monte Carlo
(MCMC) to generate a set of samples Θ = {θi}Ni=1 with
θi ∼ p(θ|y,X). We use the slice sampling algorithm which
has already been used in Bayesian optimization [9], although
bootstraping could equally be used [47]. Compared to point
estimates of θ [2], MCMC has a higher computational cost,
but MCMC has shown to be more robust [9], [38] in Bayesian
optimization. Note that, because we use a sampling distribu-
tion of θ the predictive distribution at any point x is a sum of
Gaussians, that is:

ŷq =

N∑
i=1

N (µi, σi|xq)

ÊI(x) =

N∑
i=1

(ρ− µi) Φ(zi) + σiφ(zi)

(9)

where each (µi, σi, zi) is computed using the i-th sample of
the kernel hyperparameters θi using Equation (3).

D. Initialization

Finally, in order to avoid bias and guarantee global opti-
mality, we rely on an initial design of p points based on Latin
Hypercube Sampling (LHS) following the recommendation in
the literature [2], [44], [48]. Algorithm 1 summarizes the basic
steps in Bayesian optimization.

Algorithm 1 Bayesian optimization (BO)
Input: Total budget T , initialization budget p.

1: X← x1:p y← y1:p . Initial design with LHS
2: for t = p . . . T do . Available budget of N queries
3: Θ← SampleHyperparameters(X,y)

4: xt = arg maxx ÊI(x|X,y,Θ) from Eq. (9)
5: yt ← f(xt) X← add(xt) y← add(yt)

III. NONSTATIONARY GAUSSIAN PROCESSES

Many applications of Gaussian process regression, including
Bayesian optimization, are based on the assumption that
the process is stationary. This is a reasonable assumption
for black-box optimization as it does not assume any extra
information on the evolution of the function in the space.

Definition 1. Let f(x) ∼ GP(0, k(x,x′)) be a zero mean
Gaussian process. We say that f(x) is a stationary process
if the kernel function k(x,x′) is stationary, that is, it can be
written as k(x,x′) = k(τ) where τ = x− x′.

This is equivalent to say that the process is invariant to
translation, that is, the statistical properties of the set of points
{x1, . . . ,xn} are the same as for the points {x1+h, . . . ,xn+
h} for any real vector h. In practice, a process is only used for
limited distances. For example, in our definition of Bayesian
optimization, we already limited our search for the minimum
to a compact space X. Thus, if we define b as the diameter or
the longest distance enclosed in X, then, for practical reasons,
the process is stationary if it is invariant for |h| ≤ b. In other
circumstances, we might find that our process is translation
invariant in a smaller region Xc ⊂ X, with diameter bc. In
this case, we say that the process is locally stationary for
|h| ≤ bc. In the geostatistics community, this is also called
quasi-stationarity [49]. Note that a locally stationary process
is also stationary in any smaller subset Xs ⊆ Xc. Intuitively,
even for nonstationary process, the smaller the region defined
by distance bc, the more homogeneous would be process
relatively to larger regions, being closer to locally stationary
[50]. Finally, any locally stationary process is nonstationary
for any set Y ⊆ X which contains elements outside the locally
stationary region ∃ xf ∈ Y,xf /∈ Xc.

Bayesian optimization is a locally homogeneous process.
For most acquisition functions, it has a dual behavior of global
exploration and local exploitation. Typically, both sampling
and uncertainty estimation end up being distributed unevenly,
with many samples and small uncertainty near the local
optima and sparse samples and large uncertainty everywhere
else. Furthermore, many direct applications of Bayesian op-
timization are inherently nonstationary. Take for example the
reinforcement learning problems of Section V-D:
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Example 1. Let us consider a biped robot (agent) trying to
find the walking pattern (policy) that maximizes the walking
speed (reward). In this setup, there are some policies that reach
undesirable states or result in a failure condition, like the robot
falling or losing the upright posture. Then, the system returns a
null reward or arbitrary penalty. In cases where finding a stable
policy is difficult, the reward function may end up being almost
flat, except for a small region of successful policies where the
reward is actually informative in order to maximize the speed.

The reward function is directly nonstationary for this dual
behaviour between failure and success. Modeling this kind
of functions with Gaussian processes require kernels with
different length scales for the flat/non-flat regions or specially
designed kernels to capture that behavior.

There has been several attempts to model nonstationary
functions with Gaussian processes. For example, the use of
specific nonstationary kernels [43], space partitioning [51],
Bayesian treed GP models [52] or projecting (warping) the
input space to a stationary latent space [53]. The idea of treed
GPs was used in Bayesian optimization combined with an
auxiliary local optimizer [5]. A version of the warping idea
was applied to Bayesian optimization [54]. Later, Assael et al.
[39] built a treed GPs where the warping model was used in the
leaves. These methods try to model nonstationarity in a global
way. For Bayesian optimization the best fit for a global model
might end up being inaccurate near the minimum, where we
require more accuracy.

Before explaining our approach to nonstationarity, we are
going to review the most common stationary kernels and the
effect of the hyperparameters on the optimization process.
More details can be found in Appendix B.

A. Stationary kernels
Most popular stationary kernels include the squared expo-

nential (SE) kernel and the Matérn kernel family:

kSE(x,x′) = exp

(
−1

2
r2
)

(10)

kM,ν(x,x′) =
21−ν

Γ(ν)

(√
2νr
)ν
Kν

(√
2νr
)

(11)

where r2 = (x−x′)TΛ(x−x′) with some positive semidefinite
Λ. More frequently, Λ = diag(θ−1l ) where θl represents
the length-scale hyperparameters that capture the smoothness
or variability of the function. If θl is a scalar, the function
is isotropic. If θl is a vector we can estimate a different
smoothness per dimension, which also represents the relevance
of the data in that dimension. Thus, the later case is called
automatic relevance determination (ARD) [43].

In the Matérn kernel, Kν is a modified Bessel function [43].
The Matérn kernel is usually computed for values of ν that are
half-integers ν = p + 1/2 where p is a non-negative integer,
because the function becomes simpler. For example:

kM,ν=1/2(x,x′) = exp (−r) (12)

kM,ν=3/2(x,x′) = exp
(
−
√

3r
)(

1 +
√

3r
)

(13)

kM,ν=5/2(x,x′) = exp
(
−
√

5r
)(

1 +
√

5r +
5

3
r2
)

(14)

The value of ν is related to the smoothness of the functions
because it represents the ηth-differentiability of the underlying
process. That is, the process g(x) defined by the Matérn kernel
k(·, ·) is η-times mean square differentiable if and only if ν >
η [43]. Furthermore, for ν →∞, we obtain the SE kernel from
equation (10). In Bayesian optimization, the Matérn kernel
with ν = 5/2 is frequently used for its performance in many
benchmarks, because it can properly represents smooth and
irregular functions without imposing excessive restrictiveness
like the infinite differentiability of the SE kernel.

1) The effect of length-scales: For optimization, the anal-
ysis of the kernel length-scale plays an important role for
optimization. Thus, having multiple length-scales in a single
process opens new possibilities besides modeling nonstation-
arity. Small values of θl will be more suitable to capture
signals with high frequency components; while large values of
θl result in a model for low frequency signals or flat functions.
Therefore, for the same distance between points, a kernel with
smaller length-scale will result in higher predictive variance,
therefore the exploration will be more aggressive. This idea
was previously explored in Wang et al. [55] by forcing smaller
scale parameters to improve the exploration. More formally,
in order to achieve no-regret convergence to the minimum, the
target function must be an element of the reproducing kernel
Hilbert space (RKHS) characterized by the kernel k(·, ·) [44],
[17]. For a set of kernels like the SE or Matérn, it can be
shown that:

Proposition 1. Given two kernels kl and ks with large and
small length scale hyperparameters respectively, any function
f in the RKHS characterized by a kernel kl is also an element
of the RKHS characterized by ks [55].

Thus, using ks instead of kl is safer in terms of guaranteeing
no-regret convergence. However, if the small kernel is used
everywhere, it might result in unnecessary sampling of smooth
areas. Instead, we should combine both behaviors. The idea of
combining kernels with different length-scales was previously
hinted as a potential advantage for Bayesian optimization [26],
but this is the first work to exploit its advantages in practice.

B. Nonstationary combined kernels

Our approach to nonstationarity is based on previous works
where the input space is partitioned in different regions
[51], [56]. The resulting GP is the linear combination of
local GPs: ξ(x) =

∑
j λj(x)ξj(x). This approach was in-

spired by the concept of quasi-stationarity from geostatis-
tics [49], [50]. This is equivalent to having a single GP
with a combined kernel function of the form: k(x,x′|θ) =∑
j λj(x)λj(x

′)kj(x,x
′|θj). The final kernel is a valid kernel

function as the sum and vertical scaling of kernels are also
valid kernel functions [43]. Each local kernel kj has its own
specific hyperparameters θj and statistical properties associ-
ated with the region, making the final kernel nonstationary
even if the local kernels are stationary. A related approach of
additive GPs was used by Kandasamy et al. to optimize high
dimensional functions under the assumption that the actual
function is a combination of lower dimensional functions [48]
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Fig. 1. Representation of the Spartan kernel in SBO. In this case, the kernel is
just a combination of a single local and global kernels. Typically, the local and
global kernels have a small and large length-scale respectively. The influence
of each kernel is represented by the normalized weight at the bottom of the
plot. Note how the kernel with small length-scale produce larger uncertainties
which is an advantage for fast exploitation, but it can perform poorly for
global exploration as it tends to sample equally everywhere. On the other
hand, the kernel with large length-scale provides a better global estimate,
which improves focalized global exploration.

IV. SPARTAN BAYESIAN OPTIMIZATION

We present our new method, SBO, which combines a set of
moving local and global kernels. This allows different control
of the kernel length-scales in a local and global manner.
Therefore, it is intrinsically able to deal with nonstationarity,
but it also allows different local and global behaviors for
optimization as discussed in Section III-A1. For example,
it can be used to improve local exploration towards the
optimum without increasing global exploration. The intuition
behind SBO is the same of many acquisition functions in
Bayesian optimization: the aim of the surrogate model is not
to approximate the target function precisely in every point,
but to provide information about the location of the minimum.
Many optimization problems are difficult due to the fact that
the region near the minimum is different from the rest of the
function, e.g.: it has higher variability than the rest of the
space, like the function in Fig. 2. Also, it allows a better
estimate of the hyperparameters of the local kernels without
resulting in overconfidence of the hyperparameters globally.
In those cases, SBO greatly improves the performance of the
state of the art in Bayesian optimization.

We propose the combination of a kernel with global influ-
ence with several kernels with moving local influence. The
influence is determined by a weighting function (see Figure
1). The influence of the local kernels is centered in a single
point with multiple diameters, creating a funnel structure. We
have called this kernel, the Spartan kernel:

kS(x,x′|θS) = λg(x)λg(x
′)kg(x,x

′|θg)

+

M∑
l=1

λl(x|θp)λl(x′|θp)kl(x,x′|θl)
(15)

where the weighting function for the local kernel λl(x|θp)
includes the parameters to move the center of the local kernels
along the input space. In order to achieve smooth interpolation
between regions, each region have an associated weighting
function ωj(x), having the maximum in the corresponding

region j and decreasing its value with distance to region j

[56]. Then, we can set λj(x) =
√
ωj(x)/

∑
p ωp(x). The

unnormalized weights ω are defined as:

ωg = N
(
ψ, Iσ2

g

)
ωl = N

(
θp, Iσ

2
l

)
∀ l = 1 . . .M

(16)

where ψ and θp can be seen as the center of the influence
region of each kernel while σg and σl are related to the
diameter of the area of influence. Note that all the local
kernels share the same position (mean value) but different
size (variance), generating a funnel-like structure. The Spartan
kernel with a single local kernel can be seen in Fig. 1.

a) Global kernel parameters: Unless we have prior
knowledge of the function, the parameters of the global kernel
are mostly irrelevant. In most applications, we can use a
uniform distribution, which can be easily approximated by a
large σ2

g . For example, assuming a normalized input space
X = [0, 1]d, we can set ψ = [0.5]d and σ2

g = 10.
b) Local kernel parameters: For the local kernels, we

estimate the center of the funnel structure θp based on the
data gathered. We propose to consider θp as part of the
hyperparameters for the Spartan kernel, which also includes
the parameters of the local and global kernels, that is,

θS = [θg,θl1 , . . . ,θlM ,θp] (17)

The area of influence of each local kernel could also be
adapted including the terms {σ2

l }Ml=1 as part of the kernel
hyperparameters θS . In practice, we found that the algorithm
was learning the trivial cases of very small values of σ2

l in
many experiments. As discussed in Section III, for a small
enough region, the behavior is stationary. However, a very
small region ends up with not enough data points to properly
learn the length-scale hyperparameters. Haas [50] used a
automatic sizing strategy by combining multiple heuristic and
a minimum number of samples inside. Because we use a
funnel structure, we found simpler to fix the value of σ2

l

at different sizes. As can be seen in Section V, this simple
heuristic provide excellent results. Alternatively, we can define
σ2
l in terms of a fixed numbers of samples inside. This method

has the advantage that, while doing exploitation, as the number
of local samples increases, the funnel gets narrower, allowing
better local refinement.

As commented in Section II, when new data is available,
all the parameters are updated using MCMC. Therefore, the
position of the local kernel θp is moved each iteration to
represent the posterior. Due to the sampling behavior in
Bayesian optimization, we found that it intrinsically moves
more likely towards the more densely sampled areas in many
problems, which corresponds to the location of the function
minima. Furthermore, as we have N MCMC samples, there
are N different positions for the funnel of local kernels. On the
other hand, for ARD local and global kernels with one length-
scale per dimension d, the size of θS is (M + 2)d. Thus, the
cost of the MCMC is O(N(M + 2)d). Nevertheless, this cost
is still cheaper than alternative methods (see Section V-F).

Spartan Bayesian Optimization is simple to implement from
standard Bayesian optimization: it only requires to modify the
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Fig. 2. Left: Exponential 2D function from Gramacy [52]. The path below
the surface represents the location of the local kernel as being sampled by
MCMC. Clearly, it converges to the nonstationary section of the function. For
visualization, the path is broken in colors by the order in the path (blue →
black → green → red).

kernel function and hyperparameter estimation. However, as
we will see in Section V, the results show a large gain in terms
of convergence and sample efficiency for many problems.

It is important to note that, although we have implemented
SBO relying on Gaussian processes and expected improve-
ment, the Spartan kernel also works with other popular kernel-
based models such as Student-t processes [57], [58], treed
Gaussian processes [52] and other criteria such as upper con-
fidence bound [17], relative entropy [59], [26], etc. A similar
approach of using a moving local kernel was used in geostatics
previously for terrain modeling [50]. In that case, the local
kernel was always centered in the query point, creating a
sliding window approach to prediction. Therefore, even though
the model was nonstationary, there was no different behaviour
in different regions of the space.

V. EVALUATION AND RESULTS

We have selected a variety of benchmarks from different
applications to test our method. The purpose is twofold.
First, we highlight the potential applicability of Bayesian
optimization in many ways in autonomous systems, from
design, control, software tuning, etc. Second, we show that
in all those setups, our method outperforms the state of the
art in Bayesian optimization.

1) We have taken several well-known functions for testing
global optimization algorithms. The set of functions
includes both stationary and non-stationary problems.

2) For the algorithm tuning and perception problems, we
have selected a set of machine learning tuning bench-
marks. They include large image classification and clus-
tering problems.

3) For the control/reinforcement learning problems, we
have selected some classic problems and a highly com-
plex benchmark to control a hovering aerobatic heli-
copter.

4) Finally, we address the automatic design and embodi-
ment problem with the optimal design of a wing profile
for a UAV. This is a highly complex scenario, due to
the chaotic nature of fluid dynamics. Thus, this problem

is ubiquitous in global optimization and evolutionary
computation literature.

A. Implementation details

For evaluation purposes and to highlight the robustness of
SBO, we have simplified the funnel structure to a single local
and global kernel as in Fig. 1. We also took the simpler
approach to fix the variance of ωl. We found that a single
value of σ2

l = 0.05 was robust enough in all the experiments
once the input space was normalized to the unit hypercube.

For the experiments reported here we used a Gaussian
process with unit mean function like in [2]. Although SBO
allows for any combination of local and global kernels, for
the purpose of evaluation, we used the Matérn kernel from
equation (14) with automatic relevance determination for both
–local and global– kernels. Furthermore, the kernel hyperpa-
rameters were initialized with the same prior for the both
kernels. Therefore, we let the data determine which kernel
has smaller length-scale. We found that the typical result is the
behavior from Fig. 1. However, in some problems, the method
may learn a model where the local kernel has a larger length-
scale (i.e.: smoother and smaller variance) than the global
kernel, which may also improve the convergence in plateau-
like functions. Besides, if the target function is stationary, the
system might end up learning a similar length-scale for both
kernels, thus being equivalent to a single kernel. We can say
that standard BO is a special case of SBO where the local and
global kernels are the same.

Given that for a single Matérn kernel with ARD, the
number of kernel hyperparameters is the dimensionality of the
problem, d, the number of hyperparameters for the Spartan
kernel in this setup is 3d. As we will see in the experiments,
this is the only drawback of SBO compared to standard BO,
as it requires running MCMC in a larger dimensional space,
which results in higher computational cost. However, because
SBO is more efficient, the extra computational cost can be
easily compensated by a reduced number of samples. For the
MCMC part, we used the slice sampling algorithm with a
small number of samples (10), while trying to decorrelate
every resample with larger burn-in periods (100 samples) as
in Snoek et al. [9].

We implemented Spartan Bayesian Optimization (SBO)
using the BayesOpt library [38] as codebase. For comparison,
we also implemented the input warping from Snoek et al.
[54], which we called WARP. To our knowledge, this is
the only Bayesian optimization algorithm that has dealt with
nonstationarity using Gaussian processes in a fully correlated
way. However, as presented in Section V-F, WARP is much
more expensive than SBO in terms of computational cost. For
the warping function we used the cumulative density function
of a Beta distribution or Beta CDF. The (α, β) parameters of
the Beta CDF were also computed using MCMC.

We also did some preliminary tests with random forests
(RF) [4] and treed GPs [5], [39], which for clarity we have not
included in the plots. For RF, we verified previous results in the
literature which show their poor performance for continuous
variables compared to GPs [38], [60]. For treed GPs, we found
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that they required a larger nugget or noise term σ2
n to avoid

numerical instability. This is primarily due to the reduced
number of samples per leaf and reduced global correlation.
Increasing the noise term reduced considerably the accuracy
of the results. Furthermore, single nonstationary GPs like the
input warping method or our Spartan kernel can be used as tree
leaves [39]. Thus, our method can be used as an enhancement
of treed GPs.

All plots are based on 20 experiments using common
random numbers between methods. As commented in Section
II, the number of function evaluations in each plot includes
the initial design generated using latin hypercube sampling.

B. Optimization benchmarks

We evaluated the algorithms on a set of well-known test
functions for global optimization both smooth or with sharp
drops (see Appendix C). Figs. 3 and 4 show the results for the
optimization benchmarks. Clearly, functions with sharp drops
or flat regions benefits from nonstationary methods, while in
the case of smooth surfaces, the advantage is not as important.

Bayesian optimization is well know to behave extremely
well for smooth functions with wide valleys like the Branin
and Hartmann function. In this case, even plain BO preforms
well in general. Therefore, there is barely room from im-
provement. However, even in this situation, SBO is equal or
better than stationary BO. For the Branin function, there is no
penalty for the use of SBO. However, the WARP method may
get slower convergence due to the extra complexity. For the
Hartmann function, nonstationary methods (SBO and WARP)
achieve slightly better results and they are more robust as
the variance on the plot is also reduced. We also use this
case to show the potential of funneled kernels by adding an
intermediate local kernel with σl = 0.1.

For nonstationary functions with sharp drops or flat regions,
our method (SBO) provides excellent results. As can bee seen
in Fig. 3, in the case of the Gramacy function, it reaches
the optimum in less than 25 iterations (35 samples) for all
tests. Because the function is clearly nonstationary, the WARP
method outperforms standard BO, but its convergence is much
slower than SBO. The Michalewicz function is known to be
a hard benchmarks in global optimization. The function has
a parameter to define the dimensionality d and the steepness
m. It has many local minima (d!) and steep drops. We used
d = 10 and m = 10, resulting in 3628800 minima with very
steep edges. For this problem, SBO clearly outperforms the
rest of the methods by a large margin.

C. Machine learning hyperparameter tuning

Our next set of experiments was based on a set of problems
for automatic tunning of machine learning algorithms. The
results of the optimization can be seen in Fig. 5.

The first problem consists on tuning the 4 parameters of a
logistic regression classifier to recognize handwritten numbers
from the MNIST dataset [40]. As can be seen in Fig. 5, it is
an easy problem for Bayesian optimization. Even the standard
BO method were able to reach the minimum in less than 50
function evaluations. In this case, the warped method was the

fastest one, with almost 20 evaluations. The proposed method
had similar performance in terms of convergence, but with one
order of magnitude lower execution time (see Section V-F).

The second problem is based on the setup defined in
Snoek et al [9] for learning topics of Wikipedia articles using
online Latent Dirichlet Allocation (LDA). It requires to tune
3 parameters. Both the standard BO and the WARP method
got stuck while our method was able escape from the local
minimum and outperform other methods by a large margin.
Again, SBO required much lower computational cost than
WARP.

Finally, we evaluated the HP-NNET problem, based on a
deep neural network written by Bergstra et al. [40] to classify
a modified MNIST dataset. In this case, the handwritten
numbers were arbitrarily rotated and with random background
images as distractors [40]. The new database is called MRBI,
for MNIST Rotated and with Background Images. In this case,
due to the high dimensionality and heterogeneity of the input
space (7 continuous + 7 categorical parameters) we tested
two approaches. First, we applied a single fully-correlated
model for all the variables. The categorical variables were
mapped to integer values that were computed by rounding
the query values. In this case, similarly to the Hartmann
function, our method (SBO) is more precise and robust, having
lower average case and smaller variance. We also tested a
hierarchical model (see Appendix E for the details)

For these benchmarks a single evaluation can take hours or
days of wall-time as a result of the complexity of the training
process and the size of the datasets. In order to simplify
the comparison and run more tests, we used the surrogate
benchmarks provided by Eggensperger et al. [60]. They built
surrogate functions of the actual behavior of the tuning process
based on actual trials of the algorithms with real datasets. Each
surrogate function can be evaluated in seconds, compared to
the actual training time of each machine learning algorithm.
The authors provide different surrogates [60]. We selected the
Gradient Boosting as it provides the lowest prediction error
(RMSE) with respect to the actual data from each problem.
We explicitly rejected the Gaussian Process surrogate to avoid
the advantage of perfect modeling.

D. Reinforcement learning and control

We evaluated SBO with several reinforcement learning
problems. Reinforcement learning deals with the problem of
how artificial agents perform optimal behaviors. An agent
is defined by a set of variables st that capture the current
state and configuration of the agent in the world. The agent
can then perform an action at that modifies the agent state
st+1 = T (st,at). At each time step, the agent collects the
reward signal associated with its current state and action
rt(st,at). The actions are selected according to a policy
function that represents the agent behavior at+1 = π(st). The
states, actions and transitions are modeled using probabilities
to deal with uncertainty. Thus, the objective of reinforcement
learning is to find the optimal policy π∗ that maximizes the
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Fig. 3. Optimization benchmarks. From left to right: Results on the Branin-Hoo, Gramacy and Michalewicz functions. For smooth functions (Branin), the
advantage of nonstationary methods (SBO and WARP) is minimal, although it is significant in the Hartmann function. For the nonstationary functions (Gramacy
and Michalewicz) clearly there is an advantage of using nonstationary methods with SBO taking the lead in every test.
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Those results are improved with a Spartan kernel with a funnel structure (local
σl = 0.05, local σl = 0.1 and global) named as SBO-2.

expected accumulated reward

π∗ = arg max
π

Es0:T ,a1:T

[
T∑
t=1

rt

]
(18)

The problems we have selected are all episodic problems
with a finite time horizon. However, the methodology can be
extended to infinite horizon by adding a discount factor γt.
The expectation is evaluated using Monte Carlo, by sampling
several episodes for a given policy.

Reinforcement learning algorithms usually rely on variants
of the Bellman equation to optimize the policy step by step
considering each instantaneous reward rt separately. Some
algorithms also rely on partial or total knowledge of the
transition model st+1 = T (st,at) in advance. Direct policy
search methods [61] tackle the optimization problem directly,
considering equation (18) as an stochastic optimization prob-
lem. The use of Bayesian optimization for reinforcement
learning was previously called active policy search [14] for its
connection with active learning and how samples are carefully
selected based on current information.

The main advantage of using Bayesian optimization to
compute the optimal policy is that it can be done with very
little information. In fact, as soon as we are able to simulate

scenarios and return the total reward
∑T
t=1 rt, we do not

need to access the dynamics, the instantaneous reward or the
current state of the system. There is no need for space or
action discretization, building complex features or tile coding
[62]. For many problems, a simple, low dimensional, controller
is able to achieve state-of-the-art performance if properly
optimized.

A frequent issue for applying general purpose optimization
algorithms for policy search is the occurrence of failure
states or scenarios which produces large discontinuities or flat
regions due to penalties. This is opposed to the behavior of
the reward near the optimal policy where small variations on
a suboptimal policy can considerably change the performance
achieved. Therefore, the resulting reward function presents a
nonstationary behavior with respect to the policy.

We have compared our method in three well-known bench-
marks with different level of complexity. The first problem is
learning the controller of a three limb robot walker presented
in Westervelt et al. [63]. The controller modulates the walking
pattern of a simple biped robot. The desired behavior is a fast
upright walking pattern, the reward is based on the walking
speed with a penalty for not maintaining the upright position.
The dynamic controller has 8 continuous parameters. The
walker problem was already used as a Bayesian optimization
benchmark [59].

The second problem is the classic mountain car problem
[62]. We have used a simple perceptron policy with 7 pa-
rameters to compute the action based on position, speed and
acceleration (see Appendix D).

The third problem is the hovering helicopter from the RL-
competition1. This is one of the most challenging scenarios
of the competition, being presented in all the editions. This
problem is based on a simulator of the XCell Tempest aero-
batic helicopter. The simulator model was learned based on
actual data from the helicopter using apprenticeship learning
[64]. The model was then used to learn a policy for the real
robot. The simulator included several difficult wind conditions.
The state space is 12D (position, orientation, translational
velocity and rotational velocity) and the action is 4D (forward-
backward cyclic pitch, lateral cyclic pitch, main collective

1http://www.rl-competition.org/
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Fig. 6. Total reward for the three limb walker (left), the mountain car and the hovering helicopter problem. For the first problem, SBO is able to achieve
higher reward, while other methods get stuck in a local maxima. For the mountain car, SBO is able to achieve maximum performance in all trials after just
27 policy trials (17 iterations + 10 initial samples). For the helicopter problem, BO and WARP have slow convergence, because many policies results in an
early crash. Providing almost no information. However, SBO is able to exploit good policies and quickly improve the performance.

pitch and tail collective pitch). The reward is a quadratic
function that penalizes both the state error (inaccuracy) and the
action (energy). Each episode is run during 10 seconds (6000
control steps). If the simulator enters a terminal state (crash),
a large negative reward is given, corresponding to getting the
most negative reward achievable for the remaining time.

We also used a weak baseline controller that was included
with the helicopter model. This weak controller is a simple
linear policy with 12 parameters (weights). In theory, this
controller is enough to avoid crashing but is not very robust.
We show how this policy can be easily improved within few
iterations. In this case, initial exploration of the parameter
space is specially important because the number of policies
not crashing in few control steps is very small. For most
policies, the reward is the most negative reward achievable.
Thus, in this case, we have used Sobol sequences for the
initial samples of Bayesian optimization. These samples are
deterministic, therefore we guarantee that the same number
of non-crashing policies are sampled for every trial and every
algorithm. We also increased the number of samples to 40.

Fig. 6 shows the performance for the three limb walker,
the mountain car and the helicopter problem. In all cases,
the results obtained by SBO were more efficient in terms on
number of trials and accuracy, with respect to standard BO
and WARP. Furthermore, we found that the results of SBO

were comparable to those obtained by popular reinforcement
learning solvers like SARSA [62], but with much less informa-
tion and prior knowledge about the problem. For the helicopter
problem, other solutions found in the literature require a larger
number of scenarios/trials to achieve similar performance [65],
[66].

E. Automatic wing design using a CDF software

Computational fluid dynamics (CDF) software is a powerful
tool for the design of mechanical and structural elements
subject to interaction with fluids, such as aerodynamics, hy-
drodynamics or heating systems. Compared to physical design
and testing in wind tunnels or artificial channels, the cost of
simulation is almost negligible. Because simulated redesign
is simple, CDF methods have been used for autonomous
design of mechanical elements following principles from ex-
perimental design. This simulation-based autonomous design
is a special case of the design and analysis of computer experi-
ments (DACE) [67]. Nevertheless, the computational cost of an
average CDF simulation can still take days or weeks of CPU
time. Therefore, the use of a sample efficient methodology
like BO is mandatory. We believe this methodology has an
enormous potential in the field for autonomous design.

The experiment that we selected is the autonomous design
of an optimal wing profile for a UAV [16]. We simulated a
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Fig. 7. Vorticity plots of two different wing shapes. The left wing barely
affect the trajectory of the wind, resulting in not enough lift. Meanwhile the
right wing is able to provide enough lift with minimum drag.
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Fig. 8. Results for the wing design optimization. Each plot is based on 10
runs.

wind tunnel using the xFlowTMCDF software. The objective
of the experiment was to find the shape of the wing that
minimizes the drag while maintaining enough lift. We assumed
a 2D simulation of the fluid along the profile of the wing.
This is a reasonable and common assumption for wings with
large aspect ratio (large span vs. chord), and it considerably
reduces the computation time of each simulation from days to
hours. For the parametrization of the profile, we used Bezier
curves; however, note that Bayesian optimization is agnostic of
the geometric parametrization and any other parametrization
could also be used. The Bezier curve of the wing was based
on 7 control points, which resulted in 14 parameters. However,
adding some physical and manufacturing restrictions resulted
in 5 degrees of freedom.

Directly minimizing the drag presents the problem that the
best solutions tends to generate flat wings that do not provide
enough lift for the plane. Fluid dynamics also have chaotic
properties: small changes in the conditions may produce a
large variability in the outcome. For example, the flow near
the trailing edge can transition from laminar to turbulent
regime due to a small change in the wing shape. Thus, the
resulting forces are completely different, increasing the drag
and reducing the lift. Fig. 7 shows comparison of a wing
with no lift and the optimal design. Although there has been
some recent work on Bayesian optimization with constraints
[68], [69] we decided to use a simpler approach of adding
a penalty with two purposes. Firts, the input space remains
unconstrained, improving the performance of the optimization
of the acquisition function. Second, safety is increased because
points in the constrain boundary get also partly penalized as a
result of GP smoothing. Under this conditions, Fig. 8 shows
how both BO and WARP fail to find the optimum wing shape.

However, SBO finds a better wing shape. Furthermore, it does
it in few iterations.

F. Computational cost

Table III shows the average CPU time of the different ex-
periments for the total number of function evaluations. Due to
the extensive evaluation, we had to rely on different machines
for running the experiments, although all the algorithms for
a single experiment were compared on the same machine.
Thus, CPU time of different experiments might not be directly
comparable.

The main difference between the three methods in terms of
the algorithm is within the kernel function k(·, ·), which in-
cludes the evaluation of the weights in SBO and the evaluation
of the warping function in WARP. The rest of the algorithm
is equivalent, that is, we reused the same code.

After some profiling, we found that the time differences be-
tween the algorithms were mainly driven by the dimensionality
of the hyperparameter space because MCMC was the main
bottleneck. Note that, for all algorithms and experiments, we
used slice sampling as recommended by the authors of WARP
[54]. On one hand, the likelihood of the parameters for the
Beta CDF was very narrow and the slice sampling algorithm
spent many iterations before founding a valid sample. Some
methods could be applied to alleviate the issues such as hybrid
Monte Carlo, or sequential Monte Carlo samplers; but that
remains an open problem beyond the scope of the paper. On
the other hand, the evaluation of the Beta CDF was much more
involved and computationally expensive than the evaluation of
the Matérn kernel or the Gaussian weights for the Spartan
kernel. That extra cost became an important factor as the
kernel function was being called billions of times for each
Bayesian optimization run.

It is important to note that, although Bayesian optimization
is intended for expensive functions and the cost per iteration is
negligible in most applications (for example: CDF simulations,
deep learning algorithm tuning, etc.), the difference between
methods could mean hours of CPU time for a single iteration,
changing the range of potential applications.

VI. CONCLUSIONS

In this paper, we have presented a new algorithm called
Spartan Bayesian Optimization (SBO) which combines local
and global kernels in a single adaptive kernel to deal with
the exploration/exploitation trade-off and the inherent nonsta-
tionarity in the search process during Bayesian optimization.
We have shown that this new kernel increases the conver-
gence speed and reduces the number of samples in many
applications. For nonstationary problems, the method provides
excellent results compared to standard Bayesian optimization
and the state of the art method to deal with nonstationarity.
Furthermore, SBO also performs well in stationary problems
by improving local refinement while retaining global explo-
ration capabilities. We evaluated the algorithm extensively in
standard optimization benchmarks, automatic wing design and
machine learning applications, such as hyperparameter tuning
problems and classic reinforcement learning scenarios. The
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TABLE I
AVERAGE TOTAL CPU TIME IN SECONDS.

Time (s) Gramacy Branin Hartmann Michalewicz Walker Mountain Car Log Reg Online LDA HPNNET
#dims 2 2 6 10 8 7 4 3 14
#evals 60 40 70 210 40 40 50 70 110
BO 120 171 460 8 360 47 38 28 112 763
SBO 2 481 3 732 10 415 225 313 440 797 730 2 131 28 442
WARP 13 929 28 474 188 942 4 445 854 20 271 18 972 9 149 21 299 710 974

results have shown that SBO outperforms the state of the art
in Bayesian optimization for all the experiments and tests. It
requires less samples or achieves smaller optimization gap.
In addition to that, we have shown how SBO was much
more efficient in terms of CPU usage than other nonstationary
methods for Bayesian optimization.

The results in reinforcement learning also highlight the po-
tential of the active policy search paradigm for reinforcement
learning. Our method is specially suitable for that paradigm.
This fact opens a new opportunity for Bayesian optimization
as an efficient and competitive reinforcement learning solver,
without relying on the dynamics of the system, instantaneous
rewards or discretization of the different spaces.
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APPENDIX A
ORIGIN OF SPARTAN BAYESIAN OPTIMIZATION

The algorithm is called Spartan as it follows the same
intuition and analogous strategy as the Greek forces at the end
of the Battle of Thermopylae. The most likely theory claims
that, the last day of the battle, a small group of forces led
by spartan King Leonidas stood in the narrow pass of the
Thermopylae to block the Persian cavalry, while the rest of
the forces retreated to cover more terrain and avoid being
surrounded by the Persian moving through a mountain path
[70]. This dual strategy of allocate global resources sparsely
while maintaining a local dense vanguard at a strategic location
is emphasized within Spartan Bayesian Optimization.

APPENDIX B
EFFECT OF KERNEL LENGTH-SCALES FOR BAYESIAN

OPTIMIZATION

Like many global optimization and bandit setups, Bayesian
optimization requires to control the bounds of the function
space to drive exploration efficiently. In probabilistic terms,
the upper and lower bounds defined by the Gaussian process
in Bayesian optimization play the same role as the Lipschitz
constant in classical optimization [27]. Wang and de Freitas
[71] pointed out that, in the case of unknown kernel hyperpa-
rameters, estimation procedures for those hyperparameters like
MAP or MCMC, become overconfident as new data points
become available. Thus, length-scale hyperparameters might
become extremely wide, resulting in a poor exploration and
slow convergence towards the optimum. This behavior is in
part due to the uneven distribution of queries from Bayesian
optimization. They propose adaptive bounds on the kernel
hyperparameters to guarantee that the length-scale remains
narrow enough to provide enough exploration. However, this
approach might result in excessive global exploration when a
limited budget is considered.

APPENDIX C
DEFINITIONS OF BENCHMARK FUNCTIONS

We evaluated the algorithms on a set of well-known test
functions for global optimization both smooth or with sharp
drops. The functions are summarized in Table II.

TABLE II
OPTIMIZATION BENCHMARK FUNCTIONS

Name Function and Domain

Branin-Hoo

f(x) =
(
x2 − 5.1

4π2 x
2
1 + 5

π
x1 − 6

)2
+ 10

(
1− 1

8π

)
cos(x1) + 10

x1 ∈ [−5, 10], x2 ∈ [0, 15]

Hartmann
f(x) = −

∑4
i=1 αi exp

(
−
∑6
j=1 Aij (xj − Pij)

2
)

x ∈ [0, 1]6 see Section C-A for α, A and P
Gramacy [52] f(x) = x1 exp

(
−x21 − x22

)
x1, x2 ∈ [−2, 18]2

Michalewicz
f(x) = −

∑d
i=1 sin(xi) sin

2m

(
ix2i
π

)
d = 10, m = 10, x ∈ [0, π]d

goal

car

wall

atanhΣx

vx

1

v̇x tanh

w7

w3

w2

w4

w1

w5

w6

Fig. 9. Left: Mountain car scenario. The car is underactuated and cannot climb
to the goal directly. Instead it requires to move backwards to get inertia. The
line in the left is an inelastic wall. Right: Policy use to control the mountain
car. The inputs are the horizontal position xt, velocity vt = xt − xt−1 and
acceleration at = vt−vt−1 of the car. The output is the car throttle bounded
to [−1, 1].

A. Parameters of the Hartmann 6D function

The parameters of the Hartmann 6D function are:

α = (1.0, 1.2, 3.0, 3.2)
T
,

A =


10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

 ,

P = 10−4


1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381


APPENDIX D

MOUNTAIN CAR

The second problem is the classic mountain car problem
[62]. The state of the system is the car horizontal position.
The action is the horizontal acceleration a ∈ [−1, 1]. Contrary
to the many solutions that discretize both the state and action
space, we can directly deal with continuous states and actions.
The policy is a simple perceptron model inspired by Brochu et
al. [72] as can be seen in Figure 9. The potentially unbounded
policy parameters w = {wi}7i=1 are computed as

w = tan
(

(π − επ) w01 −
π

2

)
where w01 are the policy parameters bounded in the [0, 1]7

space. The term επ ∼ 0 was used to avoid wi →∞.

APPENDIX E
DISCUSSION ON MIXED INPUT SPACES IN BAYESIAN

OPTIMIZATION

Although Bayesian optimization started as a method to solve
classic nonlinear optimization problems with box-bounded
restrictions, its sample efficiency and the flexibility of the sur-
rogate models have attracted the interest of other communities
and expanded the potential applications of the method.

In many current Bayesian optimization applications, like
hyperparameter optimization, it is necessary to simultaneously
optimize different kinds of input variables, for example: con-
tinuous, discrete, categorical, etc. While Gaussian processes
are suitable for modeling those spaces by choosing a suit-
able kernel [73], [74], Bayesian optimization can become
quite involved as the acquisition function (criterion) must
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Algorithm 2 Hierarchical Bayesian Optimization
1: Total budget N = Nc ·Nd . Discrete iterations times continuous iterations
2: Split the discrete and continuous components of input space x = [xc,xd]T

3: Initial samples for xc

4: for n = 1 . . . Nc do . Outer loop
5: Update model (e.g.: Gaussian process) for xc

6: Find continuous component of next query point xcn (e.g.: maximize EI)
7: Initial samples for xd

8: for k = 1 . . . Nd do . Inner loop
9: Update model (e.g.: Random forest) for xd | xcn

10: Find discrete component of next query point xdk | xcn
11: Combine queries and evaluate function: yk ← f([xcn,x

d
k])

12: Return optimal discrete query for current continuous query: xd∗ | xcn
13: Return optimal continuous query and corresponding discrete match: x∗ = [xc∗,x

d
∗ | xc∗]T

TABLE III
AVERAGE TOTAL CPU TIME IN SECONDS.

Time (s) HPNNET HPNNET (h)
#dims 14 7+7
#evals 110 200 (20)
BO 763 20
SBO 28 442 146
WARP 710 974 2 853

be optimized in the same mixed input space. Available im-
plementations of Bayesian optimization like Spearmint [9]
use grid sampling and rounding tricks to combine different
input spaces. However, this reduces the quality of the final
result compared to proper nonlinear optimization methods
[38]. Other authors have proposed some heuristics specially
designed for criterion maximization in Bayesian optimization
[27], but its applicability to mixed input spaces still remains
an open question.

We propose a hierarchical Bayesian optimization model,
where the input space X is partitioned between homogeneous
variables, for example: continuous variables xc and discrete
variables xd. That is:

X = X c∪X d .
= {x = [xc,xd]T : xc ∈ X c∨xd ∈ X d} (19)

Therefore, the evaluation of an element higher in the hierar-
chy implies the full optimization of the elements lower in the
hierarchy. In principle, that would require many more function
evaluations but, as the input space has been partitioned, the
dimensionality of each separate problem is much lower. In
practice, for the same number of function evaluations, the
computational cost of the optimization algorithm is consid-
erably reduced. We can also include conditional variables in
the outer loop to select which computations to perform in the
inner loop.

An advantage of this approach is that we can combine differ-
ent surrogate models for different levels of the hierarchy. For
example, using Random Forests [4] or tree-structured Parzen
estimators [40] could be more suitable as a surrogate model for
certain discrete/categorical variables than Gaussian processes.
We could also use specific kernels like the Hamming kernel
as we used in this paper.
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Fig. 10. Deep neural network problem using the fully correlated model
(top) and the hierarchical model (bottom). Although the number of function
evaluations is higher for the hierarchical model, the computational cost of
the Bayesian optimization process was considerably reduced. As in the other
examples, SBO performance was the best.

In contrast, we loose the correlation among variables in
the inner loop, which may be counterproductive in certain
situations. A similar alternative in the case where the target
function is actually a combination of lower spaces, could be
to use additive models, such as additive GPs [48].

For the HPNNET problem, we applied the hierarchical
model to split the continuous and categorical variables in a
two layer optimization process. In this case, the nonstationary
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algorithms (SBO or WARP) were only applied on the con-
tinuous variables (outer loop). For the categorical variables in
inner loop we used a Hamming kernel [74]:

kH(x,x′|θ) = exp

(
−θ

2
g (s(x), s(x′))

2
)

(20)

where s(·) is a function that maps continuous vectors to
discrete vectors by scaling and rounding. The function g(·, ·)
is defined as the Hamming distance g(x,x′) = |{i : xi 6= x′i}|
so as not to impose an artificial ordering between the values
of categorical parameters.

The results of the hierarchical model can be seen in Fig.
10. Note that the plots are with respect to target function
evaluations. However, the results of the hierarchical model
are based on only 20 iterations of the outer loop, as each
iteration requires 10 function evaluations in the inner loop. At
early stages, SBO was trying to find a good location for the
local kernel and the performance was slightly worse. However,
after some data was gathered, the local kernel jumped to
a good spot and the convergence was faster. Fig. 10 shows
how the method requires more function evaluations to achieve
similar results than the fully correlated approach. Table III
shows the average CPU time of the different experiments for
the total number of function evaluations. HPNNET (h) is the
HPNNET problem using the hierarchical model. Although it
is tested with 200 function evaluations, only 20 iterations of
the optimization loop are being computed. Thus, it is faster
than HPNNET with a single model, which might open new
applications. A similar approach has been recently proposed
to deal with high dimensional problems where evaluations are
not expensive [22].
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