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Abstract—This paper investigates the distributed event-based
consensus problem of switching networks satisfying the jointly
connected condition. Both the state consensus of homogeneous
linear networks and output consensus of heterogeneous net-
works are studied. Two kinds of event-based protocols based
on local sampled information are designed, without the need
to solve any matrix equation or inequality. Theoretical analysis
indicates that the proposed event-based protocols guarantee the
achievement of consensus and the exclusion of Zeno behaviors for
jointly connected undirected switching graphs. These protocols,
relying on no global knowledge of the network topology and
independent of switching rules, can be devised and utilized
in a completely distributed manner. They are able to avoid
continuous information exchanges for either controllers’ updating
or triggering functions’ monitoring, which ensures the feasibility
of the presented protocols.

Index Terms—Homogeneous network, heterogeneous network,
event-triggered control, jointly connected switching topologies,
consensus.

I. INTRODUCTION

Event-driven coordination has been widely studied and

started maturing to soon stand alone in the control area in the

last decade [1], [2], [3], [4], [5], [6], [7], [8], [9]. Compared

to classic continuous control approaches, event-based control

has numerous advantages especially in enhancing control

efficiency, such as avoiding continuously updating controllers

and continuous communications among neighboring agents.

The latter advantage is particularly evident when we focus on

Internet of Things and other large-scale networks where the

cyber operations, including processing, storage, and commu-

nication, must be viewed as a scare, globally shared resource

[10]. Due to these practical considerations, it is not surprising

that so many researchers are interested in event-triggered

control and present plenty of results. Applying event-driven

control in networked systems poses some new challenges that

do not exist in either area alone [10]. As pointed out in

[10], researchers must consider how to deal with the natural

asynchronism introduced into the systems and how to rule out
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the Zeno behavior. Another challenge is that the separation

principle cannot be used for event-triggered control systems

anymore [11].

Existing works have presented a large number of insights

into general coordination of networked systems with event-

triggered mechanisms. As a specific case study, event-triggered

consensus is a longstanding area of research in multi-agent

systems; see the references [12], [13], [14], [15], [16], [17],

[18], [19]. Many survey papers about event-driven control

were published, such as [10], [20], [21], [22]. Generally

speaking, existing consensus protocols are designed for either

state consensus of homogeneous networks or output consensus

of heterogeneous networks. Noting that for heterogeneous

networks, where even the dimensions of states may be dif-

ferent, output consensus is a more meaningful topic than state

consensus.

In the field of state consensus of homogeneous networks,

[23], [24], [25] presented event-based protocols for single-

integrator agents under undirected graphs. To remove the

limitation that continuous information was still required in

triggering functions of early works, [26] proposed triggering

functions only based on discrete sampled information. The

authors of [27], [28], [29] presented event-driven consensus

algorithms for general linear networks. Reference [30] studied

the event-driven consensus using output feedback control.

The event-based consensus control problem with external

disturbances was studied in [31], [32], [33]. Event-driven

output consensus of heterogeneous networks was studied in

[34], [35]. The authors of [36] studied event-based cooperative

output regulation problem of heterogeneous networks.

It should be noted that the proposed protocols in the above

works were only designed for fixed and connected topologies.

However, in many practical cases, the topologies may be

switching [37], [38], [39], [40] and do not satisfy the con-

nected condition. In [41], the authors proposed an event-driven

protocol for networks with switching communication graphs.

One limitation of the protocol in [41], that the triggering

functions were designed based on continuous information, may

limit its practical applicability. To avoid continuous interagent

communication, [42] proposed decentralized event-based con-

trollers for leader-follower networks under fixed or switching

graphs. The results of [42] relied on an assumption that the

(switching) topology is connected at every moment, which was

not always satisfied for general switching topologies. In partic-

ular, there were even no any connections among agents at some

special instants. This assumption was removed by the authors
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of [43], [44], in which similar problems were considered. The

designs of the protocols proposed in [43], [44], nevertheless,

required to solve two coupled inequalities, while the existence

of the solution is unclear in general cases. The switching

nature of topologies coupled with event-triggered communi-

cations makes it troublesome to propose distributed consensus

algorithms, and the existence of heterogeneity renders the task

for heterogeneous networks more challenging. How to devise

event-triggered consensus algorithms for linear homogeneous

(or heterogeneous) networks with general switching topologies

needs further investigation.

In the current paper, we study the event-driven consensus

control problems with switching graphs, including state con-

sensus of homogeneous linear networks and output consensus

of heterogeneous linear networks. For the homogeneous case,

we present an event-based protocol, composed of controllers

and triggering rules. Under this protocol, communications will

not take place until the topology switches or the designed mea-

surement error exceeds an appropriate threshold. It is shown

that state consensus is achieved and Zeno behaviors are ruled

out. The protocol can be explicitly constructed and do not need

to solve any matrix equation or inequality. We also consider

event-based output consensus of heterogeneous networks with

switching topologies and an exogenous signal that can be

viewed as a reference input or an external disturbance. For

this problem, we first devise distributed observers to estimate

the exogenous signal and then propose local control inputs.

The main contributions of this paper are listed as follows.

We have solved both the event-based state consensus control

problem of homogeneous networks and the event-based output

consensus control problem of heterogeneous networks. Differ-

ent from existing related papers, the proposed event-triggered

protocols of this paper can be used for any switching graphs

satisfying the jointly connected condition, including fixed

graphs as a special case. The proposed protocols, requiring

no global information associated with the whole network and

independent of the switching rules, can be devised and utilized

in a completely distributed manner. The Zeno behavior can

be excluded at any finite time by showing that the interval

between any different triggering instants is not less than a

strictly positive value. This feature ensures the feasibility of

the above protocols when they are implemented on practical

systems.

Here is the outline of this paper. In Section II, we consider

the event-driven state consensus of homogeneous networks.

We then study event-based output consensus of heterogeneous

networks in Section III. Numerical simulations and conclu-

sions are presented in Sections IV and V, respectively.

II. EVENT-BASED STATE CONSENSUS OF HOMOGENEOUS

MULTI-AGENT SYSTEMS

A. Problem Formulation

In this section, we consider N homogeneous linear agents,

whose dynamics satisfy

ẋi = Axi +Bui, i = 1, · · · , N, (1)

where xi ∈ R
n denotes the state, ui ∈ R

p represents the

control input, and A ∈ R
n×n, B ∈ R

n×p are constant

matrices.

Assumption 1: The pair (A,B) is stabilizable and A is

neutrally stable 1.

Denote θ : [0,+∞) → Θ as a switching signal with a

positive dwelling time τ . Let Gθ(t) , (V , Eθ(t)) represent an

undirected graph among the N agents, where V = {1, · · · , N}
and Eθ(t) ⊆ V × V denote the sets of nodes and edges,

respectively. Consider an infinite time sequence composed

of nonempty, bounded, and contiguous intervals [t̄0, t̄1), · · · ,
[t̄k, t̄k+1), · · · , with t̄0 = 0. Suppose t̄k+1 − t̄k ≤ T with

T being some positive constant and during each interval

[t̄k, t̄k+1), there are finite nonoverlapping subintervals

[t̄0k, t̄
1
k), [t̄

1
k, t̄

2
k), · · · , [t̄

mk−1
k , t̄mk

k ), t̄k = t̄0k, t̄k+1 = t̄mk ,

satisfying t̄j+1
k − t̄jk ≥ τ , j = 0, 1, · · · ,mk − 1. And Gθ(t) is

fixed during each subinterval. An edge of Eθ(t) is composed of

two distinct nodes of V . If (i, j) ∈ Eθ(t), i and j are neighbors

under graph Gθ(t). An undirected path between nodes i and j is

denoted as (i1, i2), (i2, i3), · · · , (iq, j). Denote the adjacency

matrix of graph Gθ(t) by A(t) = [aij(t)] ∈ R
N×N , where

aii(t) = 0, aij(t) = 1 if (j, i) ∈ Eθ(t) and aij(t) = 0 other-

wise. Denote the Laplacian matrix Lθ(t) = [lij(t)] ∈ R
N×N

of Gθ by lii(t) =
∑N

j=1 aij(t) and lij(t) = −aij(t), i 6= j.
Define the degree as di(t) = lii(t), i ∈ V . Then, define
⋃

t∈[t̄k,t̄k+1)
Gθ(t) as a union graph in the collection for time

t from t̄k to t̄k+1.

Assumption 2: The undirected graph Gθ(t) of the N agents

is jointly connected, i.e.,
⋃

t∈[t̄k,t̄k+1)
Gθ(t) is connected.

The objective here is to present distributed event-based

algorithms under which all subsystems described by (1) con-

verge to a common state trajectory and Zeno behaviors can be

eliminated.

Instead of using agents’ actual states, define the state

estimate as x̃i(t) , eA(t−tik)xi(t
i
k), ∀t ∈ [tik, t

i
k+1), i =

1, · · · , N , where tik denotes the k-th event instant of agent i.
The event instants ti0, ti1, · · · , are determined by the triggering

function to be designed later. Using the relative state estimates

of neighboring agents, we present a distributed event-based

controller as:

ui(t) = cG

N
∑

j=1

aij(t)(x̃i − x̃j), i ∈ V , (2)

where c > 0 and G ∈ R
p×n are design parameters.

Define ξ = [ξT1 , · · · , ξ
T
N ]T and ξ̃ = [ξ̃T1 , · · · , ξ̃

T
N ]T with

ξi , xi −
1
N

∑N
j=1 xj and ξ̃i , x̃i −

1
N

∑N
j=1 x̃j , i =

1, · · · , N . Letting x , [xT1 , · · · , x
T
N ]T gives ξ = (M ⊗ In)x

and ξ̃ = (M ⊗ In)x̃, where M = IN − 1
N
1N1

T
N . Noting that

ξ = 0 if and only if x1 = · · · = xN , we call ξ the consensus

error, whose dynamics is given by

ξ̇ = (IN ⊗A)ξ + (cLθ ⊗BG)ξ̃. (3)

1A matrix A ∈ C
n×n is neutrally stable in the continuous-time sense if it

has no eigenvalue with positive real part and the Jordan block corresponding
to any eigenvalue on the imaginary axis is of size one, while is Hurwitz if all
of its eigenvalues have strictly negative real parts [4].
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Note that the control law (2) is only updated according to

the information received at the latest event time instant, defined

by

tik+1 , inf{t > tik | fi(t) ≥ 0 or aij(t) 6= aij(t
i
k)

for some j ∈ V},
(4)

where ti0 , 0 and fi(t) is the triggering function defined as

follows:

fi(t) = 4di(t)‖G‖
2‖ei‖

2 − δ

N
∑

j=1

aij(t)‖G(x̃i − x̃j)‖
2

− µe−νt, i = 1, · · · , N,

(5)

with δ, µ, ν being positive constants, and ei , x̃i − xi being

the measurement error. Once fi triggers, agent i broadcasts

its current state to neighbors. The controllers (2) of i and its

neighbors update immediately, and ei(t) resets at the same

time.

B. Event-Based Consensus Conditions

Since A is neutrally stable, in light of Lemmas 22 and 23

of [4], we can choose E ∈ R
n1×n and F ∈ R

(n−n1)×n

satisfying
[

E
F

]

A

[

E
F

]−1

=

[

X 0
0 Y

]

,

where X ∈ R
n1×n1 is skew-symmetric and Y ∈

R
(n−n1)×(n−n1) is Hurwitz.

Remark 1: It should be pointed out that the matrices E
and F can be derived by rendering the matrix A into the real

Jordan canonical form [45].

Choose z =

(

IN ⊗

[

E
F

])

ξ and z̃ =

(

IN ⊗

[

E
F

])

ξ̃. The

derivative of z is given by

ż =

(

IN ⊗

[

X 0
0 Y

])

z +

(

cL ⊗

[

E
F

]

BG

[

E
F

]−1
)

z̃.

(6)

Let H = EB. According to Assumption 1, (X,H) is

controllable. Choose E+ ∈ R
n×n1 and F+ ∈ R

n×(n−n1)

satisfying
[

E+ F+
]

=

[

E
F

]−1

, with EE+ = I , FF+ = I ,

FE+ = 0, and EF+ = 0. Letting G = −BTETE, then we

have

ż =

(

IN ⊗

[

X 0
0 Y

])

z −

(

cLθ ⊗

[

EBBTET 0
FBBTET 0

])

z̃.

(7)

Define zI = (IN ⊗ E)ξ, z̃I = (IN ⊗ E)ξ̃, zII = (IN ⊗ F )ξ
and z̃II = (IN ⊗ F )ξ̃. Rewrite (7) as

żI = (IN ⊗X)zI − (cLθ ⊗HHT )z̃I , (8-1)

żII = (IN ⊗ Y )zII − (cLθ ⊗ FBBTET )z̃I . (8-2)

Lemma 1: (Cauchy’s Convergence Criterion [43]) The

sequence V (t̄k), k = 0, 1, 2, · · · converges if and only

if for ∀ε > 0, ∃Mε ∈ Z+ satisfying ∀k > Mε,

|V (t̄k+1)− V (t̄k)| < ε.

Lemma 2: (Barbalat’s Lemma [46]) If limt→∞ g(t) = a (a
is bounded) and g′′(t) is also bounded, then limt→∞ g′(t) = 0.

Next, we introduce the main results of this section.

Theorem 1: State consensus of the homogeneous subsystems

(1) is achieved under the event-driven algorithm composed of

(2) and (5) with c > 0, 0 < δ < 1, µ > 0, ν > 0, and

G = −BTETE 2.

Proof 1: Let

V1 =
1

2
zTI zI . (9)

In light of (8-1), differentiating V1 with respect to t gives

V̇1 =
1

2
zTI [IN ⊗ (X +XT )]zI − zTI (cLθ ⊗HHT )z̃I .

(10)

Since X is skew-symmetric, zTI [IN⊗(X+XT )]zI = 0. Then,

we have

V̇1 = −
1

2
zTI (cLθ ⊗HHT )zI −

1

2
z̃TI (cLθ ⊗HHT )z̃I

+
1

2
eT (cLθ ⊗GTG)e.

(11)

Let

V2 =
1

2
zTII(IN ⊗ P )zII , (12)

where P satisfies

PY + Y TP + 2I = 0. (13)

In light of (8-2), differentiating V2 with respect to t gives

V̇2 =
1

2
zTII [IN ⊗ (PY + Y TP )]zII

− zTII(cLθ ⊗ PFBBTET )z̃I .
(14)

Using the Young’s Inequality [10] gives

− zTII(cLθ ⊗ PFBBTET )z̃I ≤
1

2
zTIIzII

+
c2λN (Lθ)

2
z̃TI (Lθ ⊗ EBBTFTPPFBBTET )z̃I

≤
1

2
zTIIzII +

cα1

2
x̃T (Lθ ⊗GTG)x̃,

(15)

where α1 = cλN (L)‖PFB‖2 and λN (L) denotes the largest

eigenvalue of Lθ(t) for all t > 0.

Construct the Lyapunov function candidate as

V3 =
α1

1− δ
V1 + V2. (16)

Evidently, V3 is positive definite, whose derivative is given by

V̇3 ≤
cα1

2(1− δ)
[−zTI (Lθ ⊗HHT )zI

+ eT (Lθ ⊗GTG)e − x̃T (Lθ ⊗GTG)x̃]

+
1

2
zTII [IN ⊗ (PY + Y TP + I)]zII

+
cα1

2
x̃T (Lθ ⊗GTG)x̃

≤ −α2z
T
I (Lθ ⊗HHT )zI −

1

2
zTIIzII

+ α2[e
T (Lθ ⊗GTG)e− δx̃T (Lθ ⊗GTG)x̃],

(17)

2The matrix E can be obtained according to Remark 1.
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where α2 = cα1

2(1−δ) . Because aij(t) = aji(t), we have

eT (Lθ ⊗GTG)e =

N
∑

i=1

N
∑

j=1

aij(t)e
T
i G

TG(ei − ej)

≤ 2
N
∑

i=1

N
∑

j=1

aij(t)e
T
i G

TGei

≤ 2

N
∑

i=1

di(t)‖G‖
2‖ei‖

2,

(18)

and

x̃T (Lθ ⊗GTG)x̃

=

N
∑

i=1

N
∑

j=1

aij(t)x̃
T
i G

TG(x̃i − x̃j)

=
1

2

N
∑

i=1

N
∑

j=1

aij(t)(x̃i − x̃j)
TGTG(x̃i − x̃j)

=
1

2

N
∑

i=1

N
∑

j=1

aij(t)‖G(x̃i − x̃j)‖
2.

(19)

By substituting (5), (18), and (19) into (17), we have

V̇3 ≤ −α2z
T
I (Lθ ⊗HHT )zI −

1

2
zTIIzII

+
α2

2

N
∑

i=1

{4di(t)‖G‖
2‖ei‖

2 − δ

N
∑

j=1

aij(t)‖G(x̃i − x̃j)‖
2}

≤ −α2z
T
I (Lθ ⊗HHT )zI −

1

2
zTIIzII +

µα2N

2
e−νt.

(20)

Define Ṽ3(t) = V3(t) +
µα2N
2ν e−νt. Then, we have

˙̃V3 ≤ −α2z
T
I (Lθ ⊗HHT )zI −

1

2
zTIIzII . (21)

Combining with
˙̃V3(t) ≤ 0 and Ṽ3(t) ≥ 0, we have Ṽ3 is

bounded and limt→+∞ Ṽ3(t) exists. Based on Lemma 1, for

∀ε > 0, ∃Mε ∈ Z+ satisfying ∀k ≥Mε,

∣

∣

∣Ṽ3(t̄k+1)− Ṽ3(t̄k)
∣

∣

∣ < ε,

or
∣

∣

∣

∣

∣

∫ t̄k+1

t̄k

˙̃V3(t)dt

∣

∣

∣

∣

∣

< ε.

It follows that

∣

∣

∣

∣

∣

∫ t̄1k

t̄0
k

˙̃V3(t)dt

∣

∣

∣

∣

∣

+ · · ·+

∣

∣

∣

∣

∣

∫ t̄
mk
k

t̄
mk−1

k

˙̃V3(t)dt

∣

∣

∣

∣

∣

< ε. (22)

In light of (21), for each subinterval [t̄jk, t̄
j+1
k ), j =

0, 1, · · · ,mk − 1, we have

∣

∣

∣

∣

∣

∫ t̄
j+1

k

t̄
j

k

˙̃V3(t)dt

∣

∣

∣

∣

∣

≥ α2

∫ t̄
j+1

k

t̄
j

k

zTI (t)(Lθ(t̄j
k
) ⊗HHT )zI(t)dt

+
1

2

∫ t̄
j+1

k

t̄
j

k

zTII(t)zII(t)dt

≥ α2

∫ t̄
j

k
+τ

t̄
j

k

zTI (t)(Lθ(t̄j
k
) ⊗HHT )zI(t)dt

+
1

2

∫ t̄
j

k
+τ

t̄
j

k

zTII(t)zII(t)dt.

(23)

Combining (22) with (23) gives

ε > α2

{∫ t̄0k+τ

t̄0
k

zTI (t)(Lθ(t̄0
k
) ⊗HHT )zI(t)dt + · · ·

+

∫ t̄
mk−1

k
+τ

t̄
mk−1

k

zTI (t)(Lθ(t̄
mk−1

k
)
⊗HHT )zI(t)dt

}

,

which implies that for ∀k > Mε,

∫ t̄
j

k
+τ

t̄
j

k

zTI (t)(Lθ(t̄j
k
) ⊗HHT )zI(t)dt <

ε

α2
,

j = 0, 1, · · · ,mk − 1.

(24)

From (24), we have

lim
t→∞

∫ t+τ

t

zTI (s)(Lθ(t̄j
k
) ⊗HHT )zI(s)ds = 0,

j = 0, 1, · · · ,mk − 1.

Since only finite switches take place during [t̄k, t̄k+1), we

obtain that

lim
t→∞

∫ t+τ

t

{

zTI (s)(Lθ(t̄0
k
) ⊗HHT )zI(s) + · · ·

+ zTI (s)(Lθ(t̄
mk−1

k
)
⊗HHT )zI(s)

}

ds = 0,

which can be rewritten as

lim
t→∞

∫ t+τ

t

{

zTI (s)(LΣ ⊗HHT )zI(s)

}

ds = 0, (25)

where LΣ = Lθ(t̄0
k
) + · · ·+L

θ(t̄
mk−1

k
)
. According to Assump-

tion 2, LΣ is connected. We can find an orthogonal matrix

TΣ such that TΣLΣT
T
Σ = ΛΣ , diag(0, λ2Σ, · · · , λ

N
Σ ), where

λiΣ > 0, i = 2, · · · , N , are the eigenvalues of LΣ. Define

ρ = [ρT1 , · · · , ρ
T
N ]T = (TΣ ⊗ HT )zI . It is not difficult to

verify that ρ1 ≡ 0. Then, (25) implies that

lim
t→∞

∫ t+τ

t

{ N
∑

i=2

λiΣρ
T
i (s)ρi(s)

}

ds = 0.

Because Ṽ3 ≥ 0 is bounded and 0 ≤ V3 ≤ Ṽ3, we conclude

that V3 is bounded. In light of (16), ρ(t) is bounded. Noting

that ˙̃z = (IN×A)z̃ and Assumption 1, we have z̃I is bounded.
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According to (8-1), we further get that ρ̇(t) is bounded.

Furthermore,

d2

dt2

∫ t+τ

t

{ N
∑

i=2

λiΣρ
T
i (s)ρi(s)

}

ds = 2
N
∑

i=2

λiΣρ
T
i (t)ρ̇i(t),

which is also bounded. According to Lemma 2, we have

limt→∞

{

∑N
i=2 λ

i
Σρ

T
i (t)ρi(t)

}

= 0, which further indicates

that limt→∞ ρi = 0, ∀i ∈ V , i.e., limt→∞(IN⊗HT )zI(t) = 0.

Similarly, we can show that limt→∞ zII = 0.

In the following, we aim at showing that limt→∞ zI(t) = 0.

We first get from the triggering function (5) and the trig-

gering rule that

eT (Lθ ⊗GTG)e ≤ δx̃T (Lθ ⊗GTG)x̃+
Nµ

2
e−νt

≤
δ

1− δ
xT (Lθ ⊗GTG)x+

1 + δ

2
eT (Lθ ⊗GTG)e

+
Nµ

2
e−νt,

where we have used the Young’s inequality to get the last

inequality. Then, it follows that 1−δ
2 eT (Lθ ⊗ GTG)e ≤

δ
1−δ

zTI (Lθ ⊗ HHT )zI + Nµ
2 e−νt. Since limt→∞(IN ⊗

HT )zI = 0, we further get that limt→∞ eT (Lθ⊗G
TG)e = 0,

which implies that limt→∞(Lθ ⊗ HHTE)e = 0. We can

rewrite (8-1) as

żI = (IN ⊗X)zI + θ(t), (26)

where θ(t) = −(cLθ ⊗HHT )zI − (cLθ ⊗HHTE)e. In light

of the fact that limt→∞(IN ⊗ HT )zI = 0, shown as above,

it is not difficult to find that limt→∞ θ(t) = 0. According to

(26), we have

zI(t) = e(IN⊗X)(t−t̄k)zI(t̄k)+

∫ t

t̄k

e(IN⊗X)(t−r)θ(r)dr. (27)

We still consider V1 = 1
2z

T
I zI as in (9) and by using the

triggering function (5) can get that

V̇1 ≤ −
c

2
zTI (Lθ ⊗HHT )zI +

Nµ

4
e−νt. (28)

According to this, both V1 and zI are always bounded.

Considering a time interval [t̄k, t̄k+1] and noting the switching

rule of the topologies described in Section II-A, we have

V1(t̄k+1)− V1(t̄k) =

∫ t̄k+1

t̄k

V̇1dt

≤ −
c

2

∫ t̄k+1

t̄k

zTI (Lθ ⊗HHT )zIdt+
Nµ

4

∫ t̄k+1

t̄k

e−νtdt

= −
c

2

[

∫ t̄1k

t̄0
k

zTI (Lθ(t̄0
k
) ⊗HHT )zIdt+ · · ·

+

∫ t̄
mk
k

t̄
mk−1

k

zTI (Lθ(t̄
mk−1

k
)
⊗HHT )zIdt

]

+ β1

≤ −
c

2

∫ t̄k+τ

t̄k

zTI (LΣ ⊗HHT )zIdt+ β1

≤ −
c

2
λ2Σ

∫ t̄k+τ

t̄k

zTI (IN ⊗HHT )zIdt+ β1,

where τ is the dwelling time, λ2Σ is the smallest nonzero

eigenvalue of LΣ defined in (25), and β1 = β1(t̄k, t̄k+1) ,
Nµ
4ν (e−νt̄k − e−νt̄k+1). Obviously, limt̄k,t̄k+1→∞ β1 = 0.

In light of (27), we have

−

∫ t̄k+τ

t̄k

zTI (IN ⊗HHT )zIdt

= −

∫ t̄k+τ

t̄k

[

e(IN⊗X)(t−t̄k)zI(t̄k) +

∫ t

t̄k

e(IN⊗X)(t−r)θ(r)dr
]T

· (IN ⊗HHT )
[

e(IN⊗X)(t−t̄k)zI(t̄k) +

∫ t

t̄k

e(IN⊗X)(t−r)θ(r)dr
]

dt

≤ −
1

2

∫ t̄k+τ

t̄k

[

e(IN⊗X)(t−t̄k)zI(t̄k)
]T

(IN ⊗HHT )

·
[

e(IN⊗X)(t−t̄k)zI(t̄k)
]

dt+

∫ t̄k+τ

t̄k

[

∫ t

t̄k

e(IN⊗X)(t−r)θ(r)dr
]T

· (IN ⊗HHT )
[

∫ t

t̄k

e(IN⊗X)(t−r)θ(r)dr
]

dt

≤ −
1

2
zTI (t̄k)WzI(t̄k) + ‖HHT‖β2,

where W ,
∫ t̄k+τ

t̄k

[

e(IN⊗X)(t−t̄k)
]T

(IN ⊗

HHT )
[

e(IN⊗X)(t−t̄k)
]

dt, β2 =
∫ t̄k+τ

t̄k

[

∫ t

t̄k
e(IN⊗X)(t−r)θ(r)dr

]T [
∫ t

t̄k
e(IN⊗X)(t−r)θ(r)dr

]

dt,

and to get the first inequality we have used the Young’s

inequality. On one hand, we have shown that (X,H) is

controllable. In other words, (HT , X) is observable, which

implies that W is positive definite. Without loss of generality,

assume that there is a positive constant s1 such that W ≥ s1I .

On the other hand, using the well-known Cauchy-Schwartz

inequality [47] gives

β2 ≤

∫ t̄k+τ

t̄k

(t− t̄k)

∫ t

t̄k

[

e(IN⊗X)(t−r)θ(r)
]T

·
[

e(IN⊗X)(t−r)θ(r)
]

drdt

=

∫ t̄k+τ

t̄k

(t− t̄k)

∫ t

t̄k

‖θ(r)‖2drdt,

where to get the last equality we have used the fact that X
is skew-symmetric. Since limt→∞ θ(t) = 0, for ∀ǫ > 0, there

exists t̄ > 0 such that for ∀t ≥ t̄, ‖θ‖ ≤ ǫ. Then, we have

β2 ≤ ǫ2
∫ t̄k+τ

t̄k
(t − t̄k)

∫ t

t̄k
drdt = 1

3ǫ
2τ3 for ∀t̄k ≥ t̄, which

further implies that limt̄k→∞ β2 = 0. Thus, it holds that

V1(t̄k+1)− V1(t̄k) ≤ −
c

2
s1λ

2
ΣV1(t̄k) + β1 + β3, (29)

where β3 = c
6λ

2
Σ‖HH

T‖ǫ2τ3, in which limt̄k→∞ β3 = 0.

Without loss of generality, we can find a constant s2 ∈ (0, 1)
such that s2 ≤ c

2s1λ
2
Σ and rewrite (29) as

V1(t̄k+1)− V1(t̄k) ≤ −s2V1(t̄k) + β1 + β3. (30)

Then, we can rewrite (30) as

V1(t̄k+1) ≤ sV1(t̄k) + β(t̄k). (31)
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where s = 1 − s2 ∈ (0, 1) and β(t̄k) = β1 + β3, in which

limt̄k→∞ β(t̄k) = limk→∞ β(t̄k) = 0. Therefore, we have

V1(t̄k) ≤ sV1(t̄k−1) + β(t̄k−1)

≤ s2V1(t̄k−2) + sβ(t̄k−2) + β(t̄k−1)

...

≤ skV1(t̄0) + sk−1β(t̄0) + sk−2β(t̄1) + · · ·

+ sβ(t̄k−2) + β(t̄k−1).

Because t̄0 = 0, we further get that

V1(t̄k) ≤ skV1(0) + sk−1β(t̄0) + sk−2β(t̄1) + · · ·

+ sβ(t̄k−2) + β(t̄k−1).
(32)

Since s ∈ (0, 1) and limk→∞ β(t̄k) = 0, we must have

limt̄k→∞ V1(t̄k) = 0 according to (32).

According to (28), for ∀t ∈ [t̄k, t̄k+1], there exists that

V1(t̄k+1) + β1(t, t̄k+1) ≤ V1(t) ≤ V1(t̄k) + β1(t̄k, t). Not-

ing that limt→∞ β1(t̄k, t) = 0, we have limt→∞ V1(t) =
limt̄k→∞ V1(t̄k) = 0, implying that limt→∞ zI = 0.

Until now, we have proved the convergence of zI . Conse-

quently, state consensus is achieved. �

Remark 2: It should be mentioned that the above derivations

are partly inspired by the proofs of Theorem 8.5 in [48] and

Proposition 1 in [49]. In light of Remark 1, the feedback matrix

G is easy to determine such that the event-based protocol (2)

and (5) satisfies Theorem 1. Contrary to [43], [44], where the

designs of the event-based protocols rely on a solution to two

coupled matrix inequalities, the existence of which is unclear

in general cases, the protocol proposed in this paper can be

explicitly constructed, without the need to solve any matrix

equality or inequality. Besides, our protocol, requiring neither

the switching rule of topologies nor nonzero eigenvalues of the

Laplacian matrix, can be devised and utilized in a completely

distributed manner.

Theorem 2: The closed-loop system (3) exhibits no Zeno

behaviors and the interval between two consecutive triggering

instants for any agent is strictly positive in finite time.

Proof 2: To exclude Zeno behaviors, we consider the

following four cases.

i) In the first case, both tik and tik+1 are determined by the

triggering function (5). Under Assumption 2, we only need to

exclude Zeno behaviors for the network (3) when di(t) > 0.

Combining with (1) and (2) gives

ėi = Aei − c
N
∑

j=1

aij(t)BG(x̃i − x̃j),

which implies that

d‖ei‖

dt
≤ ‖A‖‖ei‖+ c

N
∑

j=1

aij(t)‖BG‖‖x̃i − x̃j‖. (33)

Theorem 1 shows that ξ is bounded. Since A is neutrally sta-

ble (by Assumption 1), it is easy to see that ξ̃ is also bounded.

Combing (1) and (2) gives ẋ = (IN ⊗ A)x + (cLθ ⊗ BG)ξ̃.

Thus, x is bounded, which further indicates the boundedness

of x̃. Then, it follows from (33) that

d‖ei‖

dt
≤ ‖A‖‖ei‖+ cσi, (34)

where σi denotes the upper bound of
∑N

j=1 aij(t)‖BG‖‖x̃i−

x̃j‖ for t from tik to tik+1.

Define a function ψ : [0,∞) → R+, satisfying

ψ̇ = ‖A‖ψ + cσi, ψ(0) = ‖ei(t
i
k)‖ = 0. (35)

Then, we obtain that ‖ei(t)‖ ≤ ψ(t − tik), where ψ(t) is the

analytical solution to (35), given by ψ(t) = cσi

‖A‖

(

e‖A‖t − 1
)

.

On the other hand, the triggering function (5) satisfies

fi(t) ≤ 0, if we have the following condition:

‖ei‖
2 ≤

µe−νt

di(t)‖G‖2
. (36)

Then, the interval between two triggering instants tik and tik+1

for agent vi can be lower bounded by the time for ψ2(t− tik)
evolving from 0 to the right hand of (36). Thus, a lower bound

of tik+1 − tik, denoted as τ ik, can be obtained by solving the

following inequality

c2σ2
i

‖A‖2

(

e‖A‖t − 1
)2

≥
µe−νt

di(t)‖G‖2
, (37)

from which, we have

τ ik ≥
1

‖A‖
ln



1 +
‖A‖

cσi‖G‖

√

µe−ν(ti
k
+τ i

k
)

di(t)



 . (38)

ii) In the second case, tik is determined by the switch of the

topology, while tik+1 is determined by the triggering function

(5). Since the measurement error ei is reset to zero at tik, this

case is similar to the first case and the details are omitted here

for brevity.

iii) In the third case, both tik and tik+1 are determined by

the switches of the topology. It is obvious that the interval is

not less than the dwelling time τ .

iv) In the last case, tik is determined by the triggering

function (5), while tik+1 is determined by the switch of the

topology. Note that in finite time, there is only a finite number

of switches. Therefore, the minimum of the finite interval

τ ik = tik+1 − tik is nonzero, and there exists a minimum inter-

event time, while its value is not available in this case.

In conclusion, Zeno behaviors are excluded and the interval

between two consecutive triggering instants is strictly positive

in finite time. �

Remark 3: Generally speaking, the Zeno behavior is ex-

cluded if there does not exist infinite triggers within a finite pe-

riod of time. However, as pointed out in [10], even though the

Zeno behavior is ruled out theoretically, it is still troublesome

from an implementation viewpoint, if the physical hardware

cannot match the speed of actions required by the protocol.

In other words, ensuring a system does not exist the Zeno

behavior may not be enough to guarantee the protocol can be

implemented on a physical system. As an expected feature,

the triggering rule (5) designed in this paper guarantees that

the interval between different triggering instants in finite

time is not less than a strictly positive constant. Besides,

the hybrid triggering functions (5) including the state term

−δ
∑N

j=1 aij(t)‖G(x̃i − x̃j)‖
2 and the time term −µe−νt are

more propitious to reduce communication frequency compared
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to the ones in [27] when the time t becomes very long or even

as t→ ∞.

Remark 4: Theorems 1 and 2 show that the presented

event-triggered algorithm is applicable to switching networks

satisfying the jointly connected condition. According to the

triggering rule (4), communications only take place when the

triggering function (5) is violated or the topology switches. It

should be noted when τ → +∞, the event-based protocol here

is reduced to the one for fixed graphs as a special case. If τ is

too small, there is no need to check whether the triggering

function (5) is violated or not and communications is not

required until the next switch of the topologies takes place.

III. EVENT-BASED OUTPUT CONSENSUS OF

HETEROGENEOUS MULTI-AGENT SYSTEMS

A. Problem Formulation

In this section, we consider N heterogeneous linear agents,

whose dynamics can be described by

ẋi = Aixi +Biui + Eiw0,

yi = Cixi + Fiw0, i = 1, · · · , N,
(39)

where xi ∈ R
ni denotes the state, ui ∈ R

mi represents the

control input, yi ∈ R
pi is the output, and Ai ∈ R

ni×ni ,

Bi ∈ R
ni×mi , Ci ∈ R

pi×ni , Ei ∈ R
ni×q, and Fi ∈ R

pi×q

are constant matrices. The exogenous signal w0 ∈ R
q, which

can be treated as a reference input or an external disturbance,

satisfies the following dynamics:

ẇ0 = Sw0, (40)

where S ∈ R
q×q .

The objective here is to design distributed event-based

algorithms under which all subsystems described by (39)

converge to a common output and Zeno behaviors can be

eliminated.

Similarly as in [38], we can view the exosystem

(40) as a leader, indexed by 0, and the N subsystems

(39) as followers, indexed by 1, · · · , N . Denote ∆θ ,

diag{a10(t), · · · , aN0(t)}, where ai0(t) = 1 if the leader is a

neighbor of i currently and ai0(t) = 0 otherwise. Use Ḡθ to

denote the leader-follower graph and let Hθ = Lθ +∆θ . The

leader has directed pathes to all followers during [t̄k, t̄k+1), if

the union graph
⋃

t∈[t̄k,t̄k+1)
Ḡθ(t) contains a directed spanning

tree with the leader as the root node.

Assumption 3: The pairs (Ai, Bi), ∀i ∈ V , are stabilizable.

Assumption 4: S has no eigenvalues with positive real parts.

Assumption 5: For all λ ∈ σ(S), where σ(S) represents the

spectrum of S, rank

([

Ai − λI Bi

Ci 0

])

= ni + pi.

Assumption 6: There exist solutions R ∈ R
pi×q such that

the following regulator equations have solutions Πi ∈ R
ni×q

and Ui ∈ R
mi×q:

ΠiS = AiΠi +BiUi + Ei,

R = CiΠi + Fi, i = 1, · · · , N.
(41)

Assumption 7: The leader has directed pathes to all follow-

ers in the union graph
⋃

t∈[t̄k,t̄k+1)
Ḡθ(t).

Remark 5: Assumptions 3-6 are often used in the output

consensus or regulation control of heterogeneous networks

[34], [36], [50], [51]. According to Assumption 5, the trans-

mission zeros of the system (39) do not coincide with the

eigenvalues of the matrix S, which is often called the trans-

mission zeros condition [51]. Assumption 6 gives a character-

ization of the control objective in terms of the solvability of

a set of linear matrix equations. This characterization allows

the linear output consensus problem to be studied using the

familiar mathematic tool of linear algebra.

B. Event-Based Estimates of the Exogenous Signal

Since the exogenous signal (40) is available to only a subset

of followers, we first design a distributed event-based observer

for each follower as

ẇi = Swi + c

N
∑

j=0

aij(t)(w̃i − w̃j), ∀i ∈ V , (42)

where c > 0, wi(t) represents the estimate of the exogenous

signal w0(t), and w̃i(t) = eS(t−tik)wi(t
i
k). Denote zi = wi −

w0 and z̃i = w̃i − w̃0, i = 1, · · · , N . Let z = [zT1 , · · · , z
T
N ]T

and z̃ = [z̃T1 , · · · , z̃
T
N ]T . Let z0 = 0 and z̃0 = 0. Then, it

follows that z = 0 if and only if w0 = w1 = · · · = wN . Thus,

zi satisfies the following dynamics:

żi = Szi − c

N
∑

j=0

aij(t)(z̃i − z̃j), ∀i ∈ V . (43)

Rewrite (43) as

ż(t) = (IN ⊗ S)z − (cHθ ⊗ Iq)z̃. (44)

Let ϕ = [ϕT
1 , · · · , ϕ

T
N ]T = (IN ⊗ e−St)z and ϕ̃ =

[ϕ̃T
1 , · · · , ϕ̃

T
N ]T = (IN ⊗ e−St)z̃ with ϕ(0) = z(0) and

ϕ̃(0) = z̃(0). It then follows from (44) that

ϕ̇ = −(IN ⊗ Se−St)z + (IN ⊗ e−St)ż

= −(cHθ ⊗ Iq)ϕ̃.
(45)

Lemma 3: If ϕ(t) converges to 0 exponentially, so does z(t).

Proof 3: Based on the convergency of ϕ, we can choose

constants µ1 and µ2 such that

‖ϕ(t)‖ ≤ µ1‖ϕ(0)‖e
−µ2t.

According to Assumption 4, there exists a polynomial Ω(t)
satisfying

‖(IN ⊗ eSt)‖ ≤ Ω(t).

Since ϕ = (IN ⊗ e−St)z, we get

‖z(t)‖ ≤ ‖(IN ⊗ eSt)‖ · ‖ϕ(t)‖ ≤ µ1‖z(0)‖Ω(t)e
−µ2t.

This means if ϕ(t) converges to 0 exponentially, so does z(t).
�

Define the measurement error as

ei , w̃i − wi, i = 1, · · · , N. (46)
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Let ǫ = [ǫT1 , · · · , ǫ
T
N ]T with ǫi , e−Stei(t), i = 1, · · · , N .

Event triggering instants are determined by (4) where

fi(t) = di(t)‖ǫi‖
2 −

1

4

N
∑

j=0

aij(t)‖w̃i − w̃j‖
2 − µe−νt,

(47)

with w̃0 , w0 and di(t) being the degree of agent i associated

with the subgraph Gθ(t).

Theorem 3: The observers (42) with c > 0 can track the

exogenous signal w0(t) under the triggering function (47).

Moreover, there does not exist the Zeno behavior.

Proof 4: Construct the Lyapunov function candidate as

V4 =
1

2
ϕTϕ. (48)

Evidently, V4 is positive definite, whose derivative is given by

V̇4 = −ϕT (cHθ ⊗ Iq)ϕ̃

= −c

N
∑

i=1

ai0(t)ϕ
T
i ϕ̃i − c

N
∑

i=1

N
∑

j=1

aij(t)ϕ
T
i (ϕ̃i − ϕ̃j).

(49)

It is easy to verify that

−

N
∑

i=1

ai0(t)ϕ
T
i ϕ̃i = −

1

2

N
∑

i=1

ai0(t)ϕ
T
i ϕi

−
1

2

N
∑

i=1

ai0(t)ϕ̃
T
i ϕ̃i +

1

2

N
∑

i=1

ai0(t)ǫ
T
i ǫi,

(50)

and

−

N
∑

i=1

N
∑

j=1

aij(t)ϕ
T
i (ϕ̃i − ϕ̃j)

= −
1

4

N
∑

i=1

N
∑

j=1

aij(t)(ϕi − ϕj)
T (ϕi − ϕj)

−
1

4

N
∑

i=1

N
∑

j=1

aij(t)(ϕ̃i − ϕ̃j)
T (ϕ̃i − ϕ̃j)

+
1

4

N
∑

i=1

N
∑

j=1

aij(t)(ǫi − ǫj)
T (ǫi − ǫj).

(51)

Using the Young’s Inequality gives

N
∑

i=1

N
∑

j=1

aij(t)(ǫi − ǫj)
T (ǫi − ǫj)

≤ 2

N
∑

i=1

N
∑

j=1

aij(t)ǫ
T
i ǫi + 2

N
∑

i=1

N
∑

j=1

aij(t)ǫ
T
j ǫj

= 4

N
∑

i=1

N
∑

j=1

aij(t)ǫ
T
i ǫi.

(52)

Denote ϕ̃0 = 0. Substituting (43), (50), (51), and (52) into

(49) yields

V̇4 ≤ −
c

2
ϕT (Hθ ⊗ Iq)ϕ−

c

2

N
∑

i=1

ai0(t)‖ϕ̃i‖
2

+
c

2

N
∑

i=1

ai0(t)‖ǫi‖
2 −

c

4

N
∑

i=1

N
∑

j=1

aij(t)‖ϕ̃i − ϕ̃j‖
2

+ c

N
∑

i=1

N
∑

j=1

aij(t)‖ǫi‖
2

≤ −
c

2
ϕT (Hθ ⊗ Iq)ϕ

+ c
N
∑

i=1







di(t)‖ǫi‖
2 −

1

4

N
∑

j=0

aij(t)‖ϕ̃i − ϕ̃j‖
2







≤ −
c

2
ϕT (Hθ ⊗ Iq)ϕ+ cµNe−νt,

(53)

where we have used the triggering function (47) to get the last

inequality.

Similarly as in the proof of Theorem 1, we can prove that

limt→∞ ϕ(t) = 0. According to Lemma 3, the observers (42)

can track the exogenous signal w0(t).

Zeno behaviors can be similarly eliminated as in proof of

Theorem 2. �

C. Distributed Control Inputs

Upon the basis of the designed observer (42), we present

the following controller

ui = K1ixi +K2iwi, i = 1, · · · , N, (54)

where wi is defined in (42), and K1i and K2i are feedback

matrices to be designed. Substituting (54) into (39) gives the

following closed-loop dynamics:

ẋi = (Ai +BiK1i)xi +BiK2iwi + Eiw0,

yi = Cixi + Fiw0, i = 1, · · · , N.
(55)

Theorem 4: Select K1i such that Ai + BiK1i are Hurwitz

and K2i = Ui−K1iΠi, i = 1, · · · , N , where (Xi,Πi, Ri) are

unique solutions to regulator equations (41). Output consensus

is achieved under the event-based observer (42), the triggering

function (47), and the local controller (54).

Proof 5: Let φi = xi − Πiw0. Noting that (41) and K2i =
Ui −K1iΠi, we can rewrite (55) as

φ̇i = (Ai +BiK1i)φi − (Ei −ΠiS)zi,

yi = Cixi + Fiw0, i = 1, · · · , N.
(56)

According to Theorem 3, we have limt→∞ zi(t) = 0. Thus,

if we choose K1i, i = 1, · · · , N , such that Ai + BiK1i
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are Hurwitz, it is not difficult to obtain the result that

limt→∞ φi(t) = 0, which further leads to

lim
t→∞

(yi(t)− yj(t))

= lim
t→∞

[(Cixi + Fiw0)− (Cjxj + Fjw0)]

= lim
t→∞

[(CiΠi + Fi)w0 − (CjΠj + Fj)w0]

+ lim
t→∞

Ciφi − lim
t→∞

Cjφj

= lim
t→∞

(R−R)w0

= 0.

In conclusion, output consensus of heterogeneous systems (39)

is achieved. �

Remark 6: Theorems 3 and 4 show that the proposed

protocol (42), (47), and (54) is able to solve the event-driven

output consensus control problem of heterogeneous networks.

In particular, the state consensus of homogeneous agents

considered in Section III can be treated as a special case here,

if we let Ai = A, Bi = B, Ci = I , Ei = 0, and Fi = 0,

∀i ∈ V .

Remark 7: Compared to [38], where output consensus of

heterogeneous networks with continuous communications is

considered, the event-based protocol given in this paper does

not require continuous communications either between sensors

and controllers or among neighboring agents. For each agent,

both the control input and the triggering function are only

based on state estimates of neighboring agents w̃j (or x̃j) but

not their real state wj (or xj). As for ei(t) = w̃i(t) − wi(t)
(or ei(t) = x̃i(t)−xi(t)), it can be computed according to its

own information rather than neighbors’ one. In other words,

discrete information of neighbors at event instants rather than

continuous one is required for control laws’ updating and

triggering functions’ monitoring. Thus, the event-based proto-

cols proposed in this paper are able to reduce communication

frequency when implemented on practical systems.

IV. SIMULATION EXAMPLES

In this section, numerical simulations are introduced to

demonstrate the effectiveness of the presented algorithms.

Example 1: The dynamics are described by (1) with A =
[

0 1
−1 0

]

and B =
[

0 1
]T

. All initial values of the agents

are randomly chosen. Denote the network graph as Gθ with

possible interaction graphs {G1,G2,G3,G4} shown in Fig. 5.

Note that there exist no any connections among these nodes in

G2. The interaction graphs are switched as G1 → G2 → G3 →
G4 → G1 → · · · , and each graph is active for 0.5 s. The union

graph associated with the agents is given in Fig. 2, which is

connected, implying that Assumption 2 holds [52].

To solve the consensus control problem, we use the event-

based protocol (2) and (5) with parameters chosen as c = 5,

δ = µ = ν = 0.5, and G =
[

0 −1
]

. The states xi, i =
1, · · · , 6, are depicted in Fig. 3, implying that consensus is

achieved. The triggering instants of all agents are presented in

Fig. 4, which shows that Zeno behaviors are ruled out.

Example 2: The leader’s dynamics satisfies (40) with S =
[

0 1
−1 0

]

and the dynamics of followers are described by (39)

1 6

2 5

3 4

(a) G1

1 6

2 5

3 4

(b) G2

1 6

2 5

3 4

(c) G3

1 6

2 5

3 4

(d) G4

Fig. 1: Possible interaction topologies among the agents.

1 6

2 5

3 4

Fig. 2: The union graph associated with the agents.

Fig. 3: The state of each agent.

with Ai =

[

−1 1
0 −i

]

, Bi =

[

0
i

]

, Ci =

[

i
0

]

, Ei = I2, Fi =
[

1
0

]

, i = 1, · · · , 4. All agents’ initial values are randomly

chosen. Suppose that possible interaction topologies shown in
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Fig. 4: Triggering instants of each agent.

Fig. 5 switches as Ḡ1 → Ḡ2 → Ḡ3 → Ḡ4 → Ḡ1 → · · · , with

the dwelling time τ = 0.5s. Note that node 0 represents the

leader and nodes 1-4 denote followers. It is not difficult to

find that Assumptions 3-7 are satisfied.

0

1 4

2 3

(a) Ḡ1

0

1 4

2 3

(b) Ḡ2

0

1 4

2 3

(c) Ḡ3

0

1 4

2 3

(d) Ḡ4

Fig. 5: Possible interaction topologies.

To achieve output consensus, we utilize the event-triggered

protocol (42), (47), and (54). Solving the regulation equa-

tion (41) gives Πi =

[

1/i 1/i
−1 2/i

]

, Ui =
[

−1− 2/i2 0
]

,

and R =
[

2 1
]

, i = 1, · · · , 4. Other parameters in this

protocol are chosen as c = 2, K1i =
[

−1 −1
]

, and

K2i =
[

−2− 1/i− 2/i2 3/i
]

, i = 1, · · · , 4.

The estimate errors wi − w0, i = 1, · · · , 4, for t from 0s
to 30s, are depicted in Fig. 6, implying that the observers

(42) can track the exogenous signal w0(t). Event instants of

all followers are shown in Fig. 7, indicating that there exist

no Zeno behaviors. The output errors yi − y1, i = 2, 3, 4,

are depicted in Fig. 8, implying the achievement of output

consensus.

Fig. 6: The estimate errors wi − w0, i = 1, · · · , 4.

0 5 10 15 20 25 30

1

2

3

4

Fig. 7: Triggering instants of each follower.

0 5 10 15 20 25 30
-2

-1

0

1

2

3

4

5

6

Fig. 8: The output errors yi − y1, i = 2, 3, 4.

V. CONCLUSION

In this paper, distributed event-driven consensus algorithms

have been proposed for homogeneous and heterogeneous

linear networks with jointly connected switching topologies.

These protocols can be explicitly constructed and utilized in a

completely distributed manner. It is shown that the proposed

protocols are able to guarantee the achievement of consensus

and a strictly positive lower bound for the interval between
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different triggering instants. Extending these results to general

directed switching graphs or fixed-time consensus [53], [54]

is an interesting work in the future.
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