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Context-Aware Semantic Inpainting

Haofeng Li, Guanbin Li ™, Liang Lin

Abstract—In recent times, image inpainting has witnessed
rapid progress due to the generative adversarial networks (GANs)
that are able to synthesize realistic contents. However, most
existing GAN-based methods for semantic inpainting apply an
auto-encoder architecture with a fully connected layer, which
cannot accurately maintain spatial information. In addition, the
discriminator in existing GANs struggles to comprehend high-
level semantics within the image context and yields semantically
consistent content. Existing evaluation criteria are biased toward
blurry results and cannot well characterize edge preservation
and visual authenticity in the inpainting results. In this paper,
we propose an improved GAN to overcome the aforementioned
limitations. Our proposed GAN-based framework consists of a
fully convolutional design for the generator which helps to bet-
ter preserve spatial structures and a joint loss function with a
revised perceptual loss to capture high-level semantics in the
context. Furthermore, we also introduce two novel measures to
better assess the quality of image inpainting results. The exper-
imental results demonstrate that our method outperforms the
state-of-the-art under a wide range of criteria.

Index Terms—Convolutional neural network, generative adver-
sarial network (GAN), image inpainting.

I. INTRODUCTION

MAGE inpainting aims at synthesizing the missing or dam-
Iaged parts of an image. It is a fundamental problem in
low-level vision and has attracted widespread interest in the
computer vision and graphics communities as it can be used
for filling occluded image regions or repairing damaged pho-
tographs. Due to the inherent ambiguity of this problem and
the complexity of natural images, synthesizing content with
reasonable details for arbitrary natural images still remains a
challenging task.
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A high-quality inpainted result should be not only realistic
but also semantically consistent with the image context sur-
rounding the missing or damaged region at different scales.
First, colorization should be reasonable and spatially coherent.
Second, structural features such as salient contours and edges
should be connected inside the missing region or across its
boundary. Third, texture generated within the missing region
should be consistent with the image context and contain high-
frequency details. In addition, missing object parts need to
be recovered correctly, which is challenging and requires
capturing high-level semantics.

Deep convolutional neural networks are capable of learn-
ing powerful image representations and have been applied to
inpainting [3], [4] with varying degrees of success. Recently,
semantic image inpainting has been formulated as an image
generation problem and solved within the framework of gener-
ative adversarial networks (GANs) [5]. GAN trains a generator
against a discriminator and successfully generates plausi-
ble visual content with sharp details. The state-of-the-art
results [2], [6], [7] have been achieved.

However, all existing GAN-based solutions to inpainting
share common limitations. First of all, they utilize an encoder—
decoder architecture with fully connected (fc) layers as the
bottleneck structure in the middle of the network. The bot-
tleneck structure contains two fc layers. The first fc layer
converts the convolutional features with spatial dimensions to a
single feature vector and another fc layer maps the feature vec-
tor backward to features with spatial dimensions. The first fc
layer collapses the spatial structure of the input image so that
the location-related information cannot be accurately recov-
ered during the decoding process. Second, the discriminator
only takes a synthesized region without its image context as
an input. Thus, neither structural continuity nor texture consis-
tency can be guaranteed between the synthesized region and
its image context. Moveover, existing GANs struggle to under-
stand high-level semantics within the image context and yield
semantically consistent content.

To overcome the aforementioned limitations, we conceive
a novel fully convolutional generative network for seman-
tic inpainting. First, we adopt a fully convolutional design
without the bottleneck structure to preserve more spatial infor-
mation. Second, we composite the synthesized region and its
image context together as a whole, and measure the similar-
ity between this composite image and the ground truth. To
increase such a similarity, perceptual loss is computed for
the composite image. This perceptual loss defined in terms
of high-level deep features is promising in capturing the
semantics of the image context.

Furthermore, noticing that the L2 loss and PSNR are unable
to rate blurry results accurately and quantitative measures
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(d)

Fig. 1. Our proposed CASI with perceptual loss synthesizes content with a
more reasonable colorization and structure than Content-Aware Fill [1] and
Context Encoder [2]. (a) Input. (b) CASI. (c) Content-Aware Fill. (d) Context
Encoder.

do not exist for assessing how well the intended seman-
tics have been restored, we define a local entropy error
and a semantic error (SME) to resolve these two issues,
respectively. The SME is defined as the hinge loss for the
confidence that a composite image with a synthesized region
should be assigned the groundtruth label of its real counter-
part, where the confidence value is estimated by a pretrained
image classifier. In our experiments, images synthesized by our
inpainting model can successfully reduce the SME estimated
by a powerful image classifier. This indicates that our model is
capable of inferring semantically valid content from the image
context.

In summary, this paper has the following contributions.

1) We present a fully convolution GAN to restore images.
The proposed network discards fully connected layers
for better maintaining the original spatial information in
the input image, as shown in Fig. 1. This network can
process images with variable size.

2) We introduce a novel context-aware loss function,
including a perceptual loss term, which measures
the similarity between a composite image and its
corresponding groundtruth real image on the semantic
feature domain.

3) We propose two novel measures: 1) a local entropy
error based on middle-level statistics and 2) an SME
based on high-level features, for evaluating inpainting
results.

II. RELATED WORK

Recently, deep neural networks including GANs have exhib-
ited great performance in image generation, image transfor-
mation, and image completion. This section discusses the
previous work relevant to image inpainting and our proposed
method.
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A. Image Inpainting

Many algorithms on recovering holes in images or videos
have been proposed [8]-[14]. Some existing methods for
image completion are related to texture synthesis [15], [16]
or patch-based synthesis [17]-[19]. Efros and Leung [15]
proposed a method for predicting pixels from the context
boundary while [16] searches for matching patches and quilts
them properly. Drori et al. [20] computed a confidence map
to guide filling while Komodakis and Tziritas [21] proposed a
priority belief propagation method. However, these exemplar-
based approaches struggle to generate globally consistent
structures despite producing seamless high-frequency textures.
Hays and Efros [22] filled large missing regions using millions
of photographs and presented seamless results. However, in
this method, missing regions need to be prepared carefully by
completely removing partially occluded objects. Synthesizing
content for arbitrary missing regions remains a challenging
task (e.g., recovering body parts for a partially occluded
object).

B. Generative Adversarial Networks

GANSs, which estimate generative models by simultane-
ously training two adversarial models, were first introduced by
Goodfellow et al. [5] for image generation. Radford ef al. [23]
further developed a more stable set of architectures for training
GANS, called deep convolutional GANs (DCGAN). Recently,
GAN has been widely applied to image generation [24], image
transformation [25], image completion [2], and texture syn-
thesis [26]. Context Encoder [2] uses a novel channel-wise fc
layer for feature learning but keeps the traditional fc layer for
semantic inpainting. Yeh et al. [6] employed GAN with both
a perceptual loss and a contextual loss to solve inpainting.
Notice that the perceptual loss in [6] is essentially an adver-
sarial loss and the contextual loss which only considers the
context (excluding the synthesized region). Yang et al. [7] con-
ducted online optimization upon a pretrained inpainting model
primarily inherited from Context Encoder. The optimization
is too expensive for real-time or interactive applications.
Common disadvantages exist in these GAN-based approaches.
First, the fc layer in the encoder—decoder framework cannot
preserve accurate spatial information. Second, the discrimi-
nator in current GANs only evaluates the synthesized region
but not the semantic and appearance consistency between the
predicted region and the image context.

C. Fully Convolutional Networks

Fully convolutional networks (FCNs), which were first
proposed in [27] for semantic image segmentation, provide
an end-to-end learnable neural network solution for pixel-
level image comprehension. Without fc layers, FCNs occupy
less computational memory and can perform training and
inference more efficiently. Besides, FCNs preserve spatial
information and extract location-sensitive features. Recently,
FCNs have achieved excellent results on semantic segmenta-
tion [27], [28]; saliency detection [29]-[32]; automatic image
colorization [33]; as well other pixel-wise inferring-based
image restoration tasks [34]-[36]. In this paper, we exploit
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the idea of FCN in GAN-based inpainting to better capture
object contours, preserve spatial information in features, and
infer coherent visual content from context.

D. Context-Aware Perceptual Loss

Perceptual loss is a feature reconstruction loss defined by
the deep neural networks [37]. It guides neural models to
generate images visually similar to their corresponding tar-
gets (e.g., ground truth) and has been widely utilized in style
transfer [38]. Dosovitskiy and Brox [24] presented a simi-
lar concept, called DeePSiM, which successfully generates
images with sharp details. So far, perceptual loss has been
applied to style transfer [37], [38]; super resolution [37]; and
texture synthesis [39]. However, these topics primarily use the
“texture network,” a part of the VGG network [40] to extract
the middle-level features while high-level features from the fc
layers have not been investigated for image completion. In this
paper, we exploit high-level deep features in the definition of
perceptual loss to synthesize regions semantically consistent
with their contexts.

III. METHOD

As shown in Fig. 2(b), our proposed context-aware seman-
tic inpainting method (CASI) is composed of an inpainting
generation pipeline (on the left) and a joint loss function (on
the right). The fully convolutional generative network takes an
image context as the input, where the missing region is filled
with the mean pixel value. The missing region is generated by
point-wise multiplication (denoted as “mask operation”) with
a mask. The inverse operation turns one into zero, and zero
into one. The output of the generative network is a synthesized
image with the same size as the input. Then this output image
is cropped using the boundary of the missing region and placed
within the image context to form a composite image (denoted
as “prediction-context”), via a point-wise addition (denoted as
“compose operation”). The discriminator network receives the
synthesized content within the missing region and the ground
truth within the same region, respectively, and attempts to
classify the received content as either “real” or “fake.” The
classification error is formulated as the adversarial loss, one
of the components in the proposed loss. Our joint loss function
is a linear combination of a pixel-wise L2 loss, the adversarial
loss, and a perceptual loss.

A. Fully Convolutional Generative Network

The fully convolutional generative network consists of three
blocks: 1) down-sampling; 2) flatting; and 3) up-sampling.
First, the down-sampling block plays the role of an encoder,
which reduces the spatial dimension to 1/8 of the input size.
The flatting block discovers and maintains essential edges
without further changing the spatial size. Finally, the up-
sampling block plays the role of a decoder, which transforms
the feature map to an RGB image with the same resolution as
the input.

The down-sampling block consists of three convolutional
layers of 4 x 4 kernels and two convolutional layers using
3 x 3 kernels. The first layer of this block performs 4 x 4

convolution. Then these two types of convolutional layers
alternate and the block ends with a 4 x 4 convolutional
layer. The 4 x 4 convolutions use a stride of 2 and 1 pixel
padding to reduce the spatial size by half while doubling the
number of channels in the feature map. The reduced spatial
dimensions allow convolution kernels to have larger receptive
fields in the input image. The 3 x 3 convolutions use a stride
of 1 and 1 pixel padding to keep the same spatial size and
channel number. Such layers enhance the recognition capac-
ity of the network. The flatting block is composed of three
convolutional layers with kernel size 3 x 3 and two residual
blocks. These residual blocks enhance the prediction accuracy
for semantic inpainting. The middle layer doubles the num-
ber of channels while the last layer reduces it by half. Thus,
the flatting block keeps the number of channels the same in
the input and output feature maps. The up-sampling block has
three de-convolutional layers using 4 x 4 kernels and three
convolutional layers using 3 x 3 kernels. Similar to the down-
sampling block, the two types of layers alternate, and the first
layer performs 4 x 4 deconvolution. In the up-sampling block,
4 x 4 deconvolution acts as parameterized interpolation which
doubles the spatial size while each 3 x 3 convolutional layer
reduces the number of channels by half. The last layer of the
up-sampling block generates an RGB image with the same
size as the input.

Our proposed generative network does not have a bottleneck
fc layer, and enjoys the benefits of fully convolutional architec-
ture. It is capable of locating essential boundaries, maintaining
fine details and yield consistent structures in missing regions.

B. Discriminative Network

Our discriminator shares a similar but shallower struc-
ture with the down-sampling block in the generator network.
Compared with the down-sampling block, the discriminator
removes all 3 x 3 convolutional layers to avoid overfit-
ting. Otherwise, the capacity of the discriminator would be
so large that the generator does not have a chance to confuse
the discriminator and improve itself. A fc layer is employed to
perform binary classification at the end of the discriminator.

The normalization and nonlinear activations are used in
CASI. Except for the last layer, every convolutional layer in
the generator and the discriminator is followed with a batch
normalization (batchnorm) operation. Rectified linear units
(ReLLUs) are added following each batchnorm layer in the
generator while leaky-ReLUs are used in the discriminator
according to the architecture guidelines in DCGAN. A sig-
moid layer is adopted in the last layer of the generator and
the discriminator to map original pixel to its corresponding
confidence value.

C. Loss Function

Given the analysis in Section I, existing GAN-based seman-
tic inpainting methods fail to capture high-level semantics
and synthesize semantically consistent content for the missing
region. In this paper, we propose to composite the synthesized
region and its image context together as a whole, and mea-
sures the visual similarity between this composite image and
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Fig. 2. Network architecture. (a) Fully convolutional generative network. (b) Context-aware semantic inpainting pipeline.

the ground truth using a perceptual loss. Our overall loss func-
tion consists of a pixel-wise L2 loss, an adversarial loss, and
a perceptual loss. It can be formulated as follows:

Linp = )"pixlpix + Aadvladv + )hperlper (1)

where Ly, denotes the overall inpainting loss. lper, ladv, and
Ipix Tepresent our perceptual loss, adversarial loss, and pixel-
wise L2 loss, respectively, while Aper, Aagv, and Apix are the
weights of the respective loss terms.

Pixel-wise L2 loss, lyix, is a straightforward and widely used
loss in image generation. It measures the pixel-wise differ-
ences between the synthesized region and its corresponding
ground truth. i is defined as

Lix(x,2) = M © (x — )1, )

where M is a binary mask, where a value of 1 indicates
the missing region and a value of O indicates the known
context region, © is the element-wise product, x is the ground-
truth image, and z is the corresponding inpainting result
computed as

= -MOox)®&MOoG((—-M)Ox) 3

where @ is the element-wise addition, G is the CASI generator,
(1 — M) © x is the context region of x, and M © G(-) is the
missing region in the generator’s output. @ in (3) merges the
known context region and the synthesized missing region to
obtain the final inpainting result.

However, calculating loss within the image space cannot
guarantee to generate an image perceptually similar to the
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ground truth as neural networks tend to predict pixel values
close to the mean of the training data. In practice, the pixel-
wise L2 loss only produces blurred images without clear edges
or detailed textures. Thus, we exploit an adversarial loss and
a novel perceptual loss to overcome this problem.

The adversarial loss /,qy is defined on the objective function
of the discriminator. As the discriminator aims at distinguish-
ing synthesized content from its corresponding ground truth,
its objective is to minimize a binary categorical entropy e in

e(DM ©x), DM © 2)) = log(D(M © x))
+ log(1 -DM ©z) *)

where e denotes the binary categorical entropy and D is the
CASI discriminator. The discriminator D predicts the prob-
ability that the input image is a real image rather than a
synthesized one. If the binary categorical entropy is smaller,
the accuracy of the discriminator is better. Note that D is not a
pretrained or constant model during the training stage. Instead,
G and D are trained alternatively. As minimizing the binary
categorical entropy e is equivalent to maximizing the negative
of the binary categorical entropy, the final objective value of
the discriminator is described in the right hand side of (5). As
the generator acts as an adversarial model of the discrimina-
tor, it tends to minimize the negative of the binary categorical
entropy. Thus, the adversarial loss of the generator /4y can be
formally described as

lagy = mgX[log(D(MGX)) +log(1 =DM ©2)]. (5

l,gv makes the synthesized region deviate from the overly
smooth result obtained using the pixel-wise L2 loss as real
images are not very smooth, which typically have fine details.
Although, the adversarial loss promotes fine details in the
synthesized result, it is still far from perfect. First, existing
discriminators are unaware of the image context and do not
explicitly consider the composite image consisting of both
the synthesized region and the image context. Second, binary
classification is not challenging enough for the discriminator
to learn the appearance of different objects and parts. Note
that semantic inpainting needs to not only synthesize textures
consistent with the context but also recover missing object
parts, which requires high-level features extracted from the
image context. Thus, we propose a perceptual loss based on
high-level semantic features.

Our perceptual loss, lper, is defined as

lper(x, 2) = e(F(x), F(2))

1 2

ZQMMW“”_E@M (6)
where F is a pretrained feature network that extracts a generic
global feature from the input, F; denotes the activations of the
Jth layer of F, and Fj(x) and Fj(z) are a C; x H; x W; tensor,
respectively. In our experiments, we use ResNet-18 pretrained
over the ImageNet dataset [41] as the feature network F, and
the 512-D feature from the penultimate layer of ResNet-18
as Fj. Similar high-level features extracted by F give rise to
similar generated images, as suggested in [24]. In addition,
a perceptual loss based on high-level features makes up for

the missing global information typically represented in a fc
layer in the generator. Different from DeepSiM, our feature
is extracted from the composite image consisting of the syn-
thesized region and the image context rather than from the
synthesized region alone.

D. Post-Refinement for High-Resolution and
Irregular-Shape Case

This section introduces a post-refinement adapted from [7]
to extend the proposed neural network model to handle
with high-resolution, in-the-wild, or irregular-shape cases.
Before the refinement, the proposed model produces a coarse
inpainting result as a reference. Given an image with a
corrupted region that could be located at any position of
the image and may have irregular shape, a context box is
cropped and reshaped to match the input size of the proposed
model. The context box is the double size as the bounding box
of the corrupted region and centered on the bounding box. As
the context box may exceed the range of the image, the vacant
region (including the corrupted region) is filled with the mean
pixel value which is computed among all the training samples.

Afterward, the reshaped context box is fed into the
proposed CASI model to yield a coarse inpainting result.
Then, we formulate refining the initial coarse result as an
optimization problem. The optimization objective is the right
hand side of (7). Iy is the initial coarse reference while I is the
refined image. The first term is a pixel-wise difference between
the refined result and the coarse reference. The second term
is a TV loss term which helps to enhance the smoothness and
is defined by (8) where i and j denote the position of image
pixels. The third term in (7) encourages the similarity between
the refined result within the corrupted region and the image
patch surrounding the corrupted region. In detail, ' denotes a
pretrained neural network that takes an image as input and out-
puts a feature map which contains low-level and middle-level
visual features. We take the first three convolutional blocks of
VGG-19 [40] as the neural network F. F(I, i) is the extracted
feature of patch i/ in an image /. R denotes a region that con-
tains nonoverlapping patches and approximately covers the
corrupted region while N(i) is a set of patches adjacent to
the patch i

I =argmin ||l — Ip|)> + TV({)
1

1
+ > min NIF@)—FapIR} )
Iy %,;jezvu‘w@éze /
2 2
VO = 3 (g = 1) + Uy = 15)°). ®)
ij
The experimental results of the refinement on high-
resolution, in-the-wild, and irregular-shape cases are displayed
in Sections V-E and V-F. Notice that these cases have differ-
ent data source and different kinds of corruption, but they are
handled with the same implementation of the refinement.

IV. IMPLEMENTATION

Let us discuss the details of our inpainting pipeline. Training
images for CASI require no labels. As shown in Algorithm 1,
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Algorithm 1 Training CASI
1: F < LOADMODEL()
2: G < INITWEIGHT(), D < INITWEIGHT()
3: for i < 1, maxlterations do
x,z.M
for j < 1, Diters do
X <— SAMPLEBATCH()
Compute z using Eq. (3)
Compute /,4, using Eq. (4)
Update D
10: end for
11: lpix <= MSE(x, z)
12: fe < F(x),f; < F(2)
13: Compute [y, using Eq. (6)
14: Compute Ly, using Eq. (1)
15: Update G
16: end for

R AN A

the training stage consists of a limited number of iterations.
During each training iteration, the discriminator is updated
Diters times and the generator is trained once. In each iteration
that updates the discriminator, each training image is separated
into an image center and an image context. The image center
has the same size of the central region, and the image context
is the image filled with the mean pixel value in the central
region. The image center and the image context of a training
image form a training pair. The generator takes the image
context as the input and synthesizes the image center. The
discriminator attempts to distinguish the synthesized content
from the ground-truth image center. The adversarial loss is
calculated and then the parameters of the discriminator are
updated. In the rest of each training iteration, the pixel-wise L2
loss is computed, the feature network extracts a feature from
the composite image, and three loss functions are combined
to obtain the joint inpainting loss. The generator is finally
updated according to the joint loss. This process is repeated
until the joint loss converges. In the testing stage, each testing
image is first filled with the mean pixel value in the center and
then passed to the CASI generator. The central region of the
generator’s output is cropped and pasted back onto the testing
image to yield the final inpainting result.

Our CASI is implemented on top of DCGAN [23] and
Context Encoder [2] in Torch and Caffe [42]. ADAM [43]
is adopted to perform stochastic gradient descent. As in [2],
CASI predicts a larger region which overlaps with the context
region (by 4px). 10x weight is used for the pixel-wise L2 loss
in the overlapping area. Using a TITAN XP GPU, training on a
dataset of 20 000 images costs 3 to 4 days. Inpainting a single
image takes less than 0.2 s. Recovering a batch of 20 images
costs less than 1 s.

V. EVALUATION

This section evaluates our proposed deep neural
network architecture and joint loss function on a subset
of ImageNet [41] and the Paris StreetView dataset [2], [44].
This subset contains 20 randomly sampled categories,

IEEE TRANSACTIONS ON CYBERNETICS

TABLE I
QUANTITATIVE RESULTS ON IMAGENET-20. CASIS WITHOUT THE
ADVERSARIAL LOSS ACHIEVE LOWER MEAN L2 ERROR AND
HIGHER PSNR BUT BLURRY RESULTS, WHICH INDICATES
THAT MEAN L2 ERROR AND PSNR INACCURATELY
ASSESS OVER-SMOOTH CASES

Method mean L1 | mean L2 PSNR
error error

Context Encoder 12.15% 3.31% 15.59dB

CASI, L2 11.07% 2.57% 17.08dB

CASIL L2 + per 11.21% 2.64% 16.95dB

CASL L2 + adv 11.15% 2.93% 16.68dB

CASIL L2+adv+per | 10.89% 2.83% 16.81dB

denoted as “ImageNet-20.” ImageNet-20 consists of
25000 training images and 1000 testing images. Paris
StreetView contains 14 900 training samples and 100 testing
samples.

A. Effectiveness of Perceptual Loss

We first verify whether adding a perceptual loss improves
the results. CASI is trained using four different loss func-
tions, respectively, to compare their performance. For these
loss functions, the hyper-parameters of CASI are set in the
same way, and the perceptual loss is defined using the same
feature extracted using the same feature network. The four loss
functions are: 1) pixel-wise L2 loss; 2) L2 loss + perceptual
loss; 3) L2 loss + adversarial loss; and 4) L2 loss + adver-
sarial loss + perceptual loss. In the following we use 1)-4) to
refer to these loss functions.

Fig. 3 shows the qualitative results of the above loss func-
tions. The resolution of each images is 128 x 128. This result
includes four samples representing different cases. All the
missing regions are at the center of the image. From left
to right, each column corresponds to a loss function from
Fig. 3(a)—(d), respectively. As shown in Fig. 3, (a) and (b)
generate over-smooth results while (c) and (d) present sharper
details. This conforms that the adversarial loss indeed alleviate
the blurriness caused by the L2 loss. Between (a) and (b), (a) is
more blurry while subtle textures or wrinkles can be observed
in (b). Between (c) and (d), although they both preserve sharp
edges, (d) is more semantically consistent with the context
region. These results reveal that the adversarial loss works in
the middle level to yield patches with consistent sharp details
while the perceptual loss synthesizes consistent high-level
contents.

Table I shows the quantitative results from this experiment.
It presents numerical errors between the synthesized contents
and their ground truth using three commonly employed mea-
sures: 1) mean L1 error; 2) mean L2 error; and 3) PSNR.
Notations 1)—4) are used to denote four trained CASI mod-
els. As shown in Table I, 1) achieves the smallest mean L2
error and largest PSNR while 4) achieves the smallest mean
L1 error. Mean L2 error is smaller for solutions close to
the mean value but such solutions are overly smooth and
undesirable [see Fig. 3(a) and (b)]. Models trained without
the adversarial loss have advantage in mean L2 error due to
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Comparison among different combinations of loss functions and nearest-neighbor (NN)-inpainting. The adversarial loss promotes low-level sharp

details while the perceptual loss improves high-level semantic consistency. (a) L2 (b) L2 + per. (c) L2 + adv. (d) L2 + adv + per.

TABLE 11
INVESTIGATION OF PERCEPTUAL LOSS

Method mean L1 error | mean L2 error PSNR

Aper =0 11.15% 2.93% 16.68dB
Aper = 0.2 10.89 % 2.83% 16.81dB
Aper = 0.4 11.12% 2.93% 16.60dB
Aper = 0.7 11.43% 3.06% 16.44dB

their blurry results. Similar results have been reported in [24].
Between 3) and 4), 4) has smaller mean L2 error than 3). And
2) and 4) have smaller mean L1 error than 1) and 3), respec-
tively. Thus, the perceptual loss is effective in improving our
CASI model.

B. Investigation of Perceptual Loss

This section investigates how the parameter of perceptual
loss effect the performance of our method. We set the hyper-
parameters in our algorithm as follows. The summation of the
weights of all loss terms is 1.0. The weight of the adversarial
loss is 0.001, as suggested by [2]. We determine the weight of
the perceptual loss Aper by cross validation on the ImageNet-
20 dataset. As shown in Table II, setting the weight of the
perceptual loss to 0.2 results in the lowest mean L1 error, mean
L2 error, and the highest PSNR value among four different
parameter settings.

TABLE III
EFFECTIVENESS OF FULLY CONVOLUTIONAL
ARCHITECTURE
Method ‘ mean L1 error | mean L2 error PSNR
CASI+fc 9.70% 1.71% 18.83dB
CASI 7.49% 1.37% 20.37dB

C. Effectiveness of Fully Convolutional Architecture

This section investigates whether applying fully convolu-
tional architecture benefits semantic inpainting. We design a
CASI4-fc model by inserting two fc layers after the third layer
of the CASI flatting block [described in Fig. 2(a)]. The first fc
layer takes a convolutional feature map as input and outputs
a 2048-D feature vector which is followed by a Tanh layer.
The second fc layer takes the output of the activation layer
as input and outputs a feature map with spatial dimensions.
Then the fourth layer of the CASI flatting block takes the fea-
ture map as input. We compare CASI+fc model and CASI
model on Paris StreetView dataset. As Table III shows, CASI
outperforms CASI+fc by 2.21% in mean L1 error, 0.34% in
mean L2 error, and 1.54 dB in PSNR although CASI+fc con-
tains more parameters than CASI. The result suggests applying
fully convolutional architecture is more conducive for genera-
tive network as the fc layers could collapse the spatial structure
of the image features.
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Input Image EBIR NeuralPatch CASI+ Ground-Truth
Fig. 4. High-resolution cases on Paris StreetView.
TABLE IV TABLE V
EFFECTIVENESS OF RESIDUAL BLOCK HIGH-RESOLUTION CASE ON PARIS STREETVIEW

Method | mean L1 error | mean L2 error PSNR Method mean L1 error | mean L2 error PSNR

CASI- 11.09% 2.93% 16.31dB ContextEncoder 9.04% 1.82% 18.90dB

CASI 10.89% 2.83% 16.81dB CASI 8.04% 1.53% 19.79dB

CASI- 7.79% 1.43% 20.14dB EBIR 11.08% 2.76% 17.59dB

CASI 7.49 % 1.37% 20.37dB NeuralPatch 9.59% 2.07% 18.42dB
CASI+ 8.62% 1.73% 19.18dB

D. Effectiveness of Residual Block

This section verifies whether adding the residual blocks
enhance the performance. We design a CASI-model by remov-
ing the two residual blocks in CASI model and demonstrate
comparison results between them. As shown in the upper
part of Table IV, CASI outperforms CASI-by 0.2% in mean
L1 error, 0.1% in mean L2 error, and 0.5 dB in PSNR,
on the ImageNet-20 dataset. As shown in the lower part of
Table IV, CASI presents better performance than CASI- in
mean L1 error, mean L2 error, and PSNR value, on the Paris
StreetView dataset. The above results suggest that adding
residual blocks improves the prediction accuracy for the
CASI model.

E. High-Resolution Case

This section investigates how our method performs on
high-resolution cases. The motivation of investigation on high-
resolution cases is that most existing neural network-based
inpainting methods can only deal with input images not larger
than 128 x 128. This section demonstrates how the proposed
method perform with input images of 512 x 512. Two groups
of experiments are presented. The first group compare our
method to [2] by scaling image to match with the input size
of [2]. As shown in the upper part of Table V, our CASI model
presents lower mean L1 error, lower mean L2 error, and higher
PSNR value than Context Encoder [2] in high-resolution Paris

StreetView dataset. The second group investigates whether
adding a post-optimization based on our model deals with
high-resolution cases. One concurrent work, Neural Patch
Synthesis (NeuralPatch) [7], trains its network to synthesize
content at the image center and presents high-resolution object
removal results during testing. We have integrated our method
with post-optimization in [7] (denoted as CASI+) and demon-
strate better performance than NeuralPatch [7]. As shown
in the lower part of Table V, the CASI+ method achieves
lower mean L1 error, lower mean L2 error, and higher PSNR
value in comparison to NeuralPatch [7], which suggests that
the proposed CASI can provide more accurate reference con-
tent for post-optimization-based image completion methods.
Besides, CASI+ also outperforms a nonlearnable method,
edge-based image restoration [10], which indicates that neural
network learns important prior to reconstruct edges from train-
ing data. Fig. 4 is a qualitative comparison among [7] and [10]
and CASI+. As Fig. 4 shows, CASI+ extends more reasonable
edges and preserves more details than [7] and [10].

FE. General and In-the-Wild Case

This section investigates how the proposed method perform
on general and in-the-wild cases. The first experiment in this
section is to test the proposed method on high-resolution real
images that are collected out of ImageNet and Paris StreetView
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Input Image

Fig. 5. High-resolution in-the-wild case.

dataset. The qualitative results of the first experiment are
shown in Fig. 5. The resolution of the input images in Fig. 5
are 430 x 645, 708 x 1062, and 426 x 570. The results verify
that our proposed method could perform well on in-the-wild
cases.

The second experiment in this section is to test the proposed
method on real images with irregular corrupted region. The
qualitative results of the second experiment are displayed in
Fig. 6. These input images are also collected in-the-wild out
of ImageNet and Paris StreetView dataset and their resolu-
tions are 357 x 500, 332 x 450, and 332 x 450, respectively.
The results suggest that the proposed algorithm is capable of
repairing images with irregular corrupted region.

G. Investigation of Generalization Ability

This section investigates the generalization ability of the
CASI model. If the CASI model has weak generalization
ability and overfits the training data, it may predict what it
memorize from the training data. Thus, we conduct a nearest
neighbor inpainting (NN-inpainting) experiment. For each test-
ing input image, we search for the most matching patch from
the training dataset to complete the image, using the algorithm
proposed in [22]. The qualitative results of NN-inpainting
are displayed in Fig. 3. The CASI results [in Fig. 3(d)] are
quite different from the NN-inpainting results and demonstrate
the superiority in preserving both appearance and structure

CASI+

Ground-Truth

coherence, which indicates that the CASI model does not sim-
ply copy or memorize patch from the training dataset while
repairing the input images.

H. Comparison With the State-of-the-Art

We compare our proposed CASI model trained using
the joint loss with other four state-of-the-art image
inpainting methods, including Content-Aware Fill [45],
StructCompletion [8], ImageMelding [19], and Context
Encoder [2]. As shown in Fig. 7, methods [8], [45], and [19]
without using neural network fail to recover the dog face in
the first sample, extend the bus window in the second sam-
ple, and connect the snake body in the third sample. These
methods fail to recover high-level semantics. Context Encoder
struggles to display clear structure while the proposed CASI
shows visually acceptable results in Fig. 7.

The second experiment in this section compares
our method with other state-of-the-art inpainting
methods [1], [2], [7], [8], [19], [45] on the Paris StreetView
dataset. Table VI shows the quantitative results. Results
from PatchMatch [45], NeuralPatch, and Context Encoder are
collected from [7] and [2], respectively. As shown in Table VI,
our results exceed others by a considerable margin under all
three measures. Our method outperforms the second best by
1.58% in mean L1 error, 0.53% in mean L2 error, and 1.56 dB
in PSNR.
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Fig. 7. Comparison on ImageNet-20 dataset.

L. Investigation of Criteria for Inpainting

In this section, we use more criteria to evaluate CASI
and Context Encoder, and propose two new criteria for
semantic inpainting. There are three major experiments. In

the first experiment, we evaluate inpainting methods using
structural similarity index (SSIM) [46] and feature similar-
ity index (FSIM) [47]. These indices are originally applied
to image quality assessment (IQA) that attempts to quantify
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TABLE VI
QUANTITATIVE RESULTS ON PARIS STREETVIEW

Method mean L1 | mean L2 PSNR
error error
PatchMatch 12.59% 3.14% 16.82dB
NeuralPatch 10.01% 2.21% 18.00dB
StructCompletion 9.67% 2.07% 18.03dB
ImageMelding 9.55% 2.19% 18.05dB
Context Encoder 9.37% 1.96% 18.58dB
CASI 7.49 % 1.37% 20.37dB
TABLE VII
SIMILARITY INDICES ON IMAGENET-20
Method | SSIM | FSIM | FSIMc
Context Encoder 0.2579 | 0.6977 | 0.6899
CASL L2 0.5196 | 0.6255 | 0.6202
CASL L2 + per 0.4927 | 0.6843 | 0.6779
CASL L2 + adv 0.5141 | 0.7202 | 0.7148
CASI, L2+adv+per | 0.5198 | 0.7239 | 0.7187
Aper =0 0.5141 | 0.7202 | 0.7148
Aper = 0.2 0.5198 | 0.7239 | 0.7187
Aper = 0.4 0.5093 | 0.7203 | 0.7149
Aper = 0.7 0.4951 | 0.7163 | 0.7108

the visibility of differences between the two images. Here, we
investigate the visual differences between the inpainting results
and their corresponding ground truth. Thus, we test inpainting
methods using the two IQA indices. SSIM is a classical index
defined by structural similarity while FSIM is the state-of-the-
art based on two low-level features: 1) phase congruency (PC)
and 2) gradient magnitude. FSIM is defined in

2. Spc(x) - SG(x) - PCy (x)
> PCp(x)

where Spc(x) and Sg(x) are PC similarity and gradient simi-
larity, respectively, at position x, and PC,,(x) is the PC value
of x as a weight. As shown in Table VII, all CASI models
achieve higher similarity with the ground truth than Context
Encoder under SSIM, FSIM, and FSIM for color image. It
indicates that our method not only recovers more consistent
structures but also synthesizes content with higher visual qual-
ity. However, SSIM and FSIM are still biased toward blurry
results of CASI, L2 (+lper).

In the second experiment, we introduce a novel local
entropy error to rate blurry predictions more accurately.
Entropy in texture analysis is a statistic characterizing the tex-
ture within an image region, as defined in [48]. The local
entropy at a pixel is defined as the entropy within a 9 x 9
neighborhood of the pixel. We define local entropy error as
the mean squared error (LEMSE) or the mean absolute error
(LEMAE) of local entropy within the synthesized region. As
shown in Table VIII, our proposed CASI delivers the low-
est LEMSE and LEMAE among all methods. In addition,
CASI with L2 loss and CASI with L2 + per loss achieve

FSIM = )
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TABLE VIII
LocAL ENTROPY ERRORS ON IMAGENET-20

Method LEMSE | LEMAE
Context Encoder 0.5872 0.5391
CASI, L2 1.8926 1.0795
CASL L2 + per 0.8454 0.7219
CASL L2 + adv 0.4869 0.4945
CASIL L2+adv+per | 0.4611 0.4847
Aper =0 0.4869 0.4945
Aper = 0.2 0.4611 0.4847
Aper = 0.4 0.4470 0.4759
Aper = 0.7 0.4492 0.4771

the largest and second largest errors under both LEMSE and
LEMAE, which is consistent with most of the visual results
(a subset is given in Fig. 3) and confirms that our proposed
local entropy error is capable of rating over-smooth results
accurately.

In the third experiment, we propose a high-level criterion,
SME, which aims at measuring how successful an inpainting
method recovers the semantics. SME is defined with respect to
a pretrained image classifier that outputs a probability of the
image being part of each possible category. SME is based on
two probabilities that the groundtruth image and the synthe-
sized image belong to the groundtruth category, respectively.
It is formulated as follows:

1 < -
SME = =3 max(0, P} — P) (10)

i=1

where n is the number of testing samples, x;, z;, and y; are
the groundtruth image, synthesized image (with real context),
and the groundtruth category of the ith sample. P}i is the
probability that image x; belongs to category y;, estimated
by a pretrained classifier (e.g., residual network [49] or VGG
network [40]). Here, we associate the probability of assign-
ing the correct label with our SME because we focus on to
what extent a corruption “makes a dog unlike a dog” and to
what extent the restored content “makes a dog look like a dog
again.” A baseline model simply fills the missing region with
the mean pixel value. The SME of this baseline measures how
much a corrupted region harms the semantic information of
an image. In Table IX, SME-rL represents the SME achieved
by applying an L-layer residual network as the classifier while
SME-vL represents the SME achieved by adopting an L-layer
VGG network as the classifier. Notice that our feature network
is simpler than the ResNets used for estimating SME, which
implies that harvesting knowledge using a low-capacity model
can reduce the SME estimated by a high-capacity classifier. As
shown in Table IX, our proposed network outperforms other
inpainting methods by achieving the smallest SME.
Perceptual loss weight is also investigated on the above new
criteria for semantic inpainting, as shown in the lower part
of Tables VII-IX. Aper = 0.7 performs better on similarity
indices and SMEs while Aper = 0.4 demonstrates better results
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TABLE IX
SMES ON IMAGENET-20
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Method SME-r50 | SME-r101 | SME-r152 | SME-r200 | SME-v16 | SME-v19
baseline 0.2063 0.1735 0.1852 0.2063 0.1794 0.2086
Context Encoder 0.1467 0.1462 0.1442 0.1467 0.1001 0.1123
CASLL2 0.1862 0.1908 0.1886 0.1877 0.1444 0.1652
CASLL2 + per 0.1542 0.1631 0.1671 0.1626 0.1213 0.1384
CASLL2 + adv 0.1276 0.1359 0.1349 0.1362 0.0846 0.0952
CASI, L2+adv+per 0.1070 0.1180 0.1201 0.1200 0.0721 0.0775
Aper =0 0.1276 0.1360 0.1350 0.1363 0.0846 0.0952
Aper = 0.2 0.1070 0.1180 0.1201 0.1200 0.0721 0.0775
Aper = 0.4 0.1074 0.1125 0.1218 0.1215 0.0704 0.0767
Aper = 0.7 0.0994 0.1126 0.1117 0.1131 0.0632 0.0702

CASI

Input Image Ground-Truth

Fig. 8. Limitation of our method.

on local entropy error. To compromise different criteria, A is
chosen from 0.2 to 0.4.

VI. CONCLUSION

In this paper, we have presented a fully convolutional GAN
with a context-aware loss function for semantic inpainting.
This network employs a fully convolutional architecture in
the generator, which does not have a fc layer as the bottle-
neck layer. The joint loss includes a perceptual loss to capture
semantic information around the synthesized region. In addi-
tion, we have developed two new measures for evaluating
sharpness and semantic validity, respectively. In summary, our
method delivers state-of-the-art results in qualitative compar-
isons and under a wide range of quantitative criteria. As shown
in Fig. 8, the proposed method has limitation that it struggles
to restore a corrupted region with dense strongly curved lines.
We aim to address the problem in the future work.
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