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Spectral Clustering by Joint Spectral Embedding
and Spectral Rotation

Yanwei Pang

Abstract—Spectral clustering is an important clustering
method widely used for pattern recognition and image segmen-
tation. Classical spectral clustering algorithms consist of two
separate stages: 1) solving a relaxed continuous optimization
problem to obtain a real matrix followed by 2) applying K-means
or spectral rotation to round the real matrix (i.e., continuous
clustering result) into a binary matrix called the cluster indi-
cator matrix. Such a separate scheme is not guaranteed to
achieve jointly optimal result because of the loss of useful infor-
mation. To obtain a better clustering result, in this paper, we
propose a joint model to simultaneously compute the optimal
real matrix and binary matrix. The existing joint model adopts
an orthonormal real matrix to approximate the orthogonal but
nonorthonormal cluster indicator matrix. It is noted that only
in a very special case (i.e., all clusters have the same num-
ber of samples), the cluster indicator matrix is an orthonormal
matrix multiplied by a real number. The error of approximat-
ing a nonorthonormal matrix is inevitably large. To overcome the
drawback, we propose replacing the nonorthonormal cluster indi-
cator matrix with a scaled cluster indicator matrix which is an
orthonormal matrix. Our method is capable of obtaining better
performance because it is easy to minimize the difference between
two orthonormal matrices. Experimental results on benchmark
datasets demonstrate the effectiveness of the proposed method
(called JSESR).

Index Terms—Normalized cut (Ncut), spectral clustering, spec-
tral rotation.

I. INTRODUCTION

LUSTERING plays an important role in machine learn-

C ing, data mining, image segmentation, and pattern classi-

fication [1], [2]. The goal of clustering is to classify elements
into clusters on the basis of their similarity [3].

A large number of clustering methods have been brought

forward. Classical methods include hierarchical clustering [4];
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K-means clustering [5]; spectral clustering [3], [6]; support
vector clustering [7]; multiview clustering [8]; genetic clus-
tering [9]; etc., Among these clustering methods, spectral
clustering has become one of the popular methods because of
its robustness and effectiveness. Generally, the performance of
the spectral clustering is better than other methods. Spectral
clustering is able to seek the optimal partitioning of data based
on the spectral graph theory. Traditional clustering algorithms
such as K-means can only perform clustering with convex dis-
tribution. If the sample spaces are nonconvex, K-means would
fall into a local optimal solution. Compared with K-means,
spectral clustering can perform clustering with nonconvex
sphere of sample spaces and obtain the globally optimal
solution in a relaxed continuous domain.

Although many spectral clustering methods have been
proposed, such as Min Cut [10], Ratio Cut (Rcut) [11],
Normalized Cut (Ncut) [12], Min—-Max Cut [13], Spectral
Embedded Clustering [14], K-way Rcut [15], and K-way
Ncut [16], all of these methods adopt a two-stage process.
The first stage is to learn the relaxed continuous spectral vec-
tors and the second stage is usually to employ K-means or
spectral rotation to post-process the continuous spectral vec-
tors in order to obtain the final binary cluster indicator matrix.
In practice, the manner of separately performing the two stages
is not able to jointly obtain the optimal solution.

In this paper, in order to overcome the aforementioned
drawback of spectral clustering, we propose a new spectral
clustering framework (called JSESR) that jointly performs
spectral embedding and spectral rotation. That is, the real-
valued cluster indicator matrix usually obtained by conducting
spectral embedding in the intermediate stage and the binary
cluster indicator matrix usually obtained by conducting spec-
tral rotation in the last stage are iteratively computed in our
method.

Recently, Yang et al. [17] proposed a unified framework for
discrete spectral clustering (UFDSC). The UFDSC is able to
obtain the final clustering results by one step and results in sig-
nificant improvement of clustering performance. Nevertheless,
the objective function of UFDSC has a term which employs an
orthonormal matrix (in this paper, orthonormal matrix denotes
the matrix whose columns or rows are orthonormal vectors,'
that is, FTF = I or FFT = I, where I is an identity matrix.
The orthogonal matrix denotes the matrix whose columns or
rows are orthogonal vectors but not necessarily orthogonal
unit vectors) to approximate a nonorthonormal matrix. The

Lortho gonal unit vectors.
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approximation cannot be very precise in theory. As will be
shown in the toy example in Fig. 1, this method tends to gen-
erate incorrect clustering results for unbalanced data where
the underlying numbers of clusters are far from uniform. By
contrast, the proposed JSESR is capable of overcoming the
drawback because approximation is conducted in-between two
orthonormal matrices.

In summary, the novelty, contribution, and characteristic of
the proposed JSESR are as follows.

1) A joint model is proposed to simultaneously and itera-
tively perform spectral embedding and spectral rotation
with spectral embedding generating a real-valued cluster
indicator matrix and spectral rotation generating a binary
cluster indicator matrix. Compared to the classical spec-
tral clustering methods, the proposed joint model is able
to overcome the drawbacks of the information loss and
the risk of the discrete clustering deviation.

2) In the spectral rotation part of the proposed joint model,
approximation is conducted in-between two orthonormal
matrices: a) a matrix generated by spectral embedding
followed by a rotation operation and b) a scaled cluster
indicator matrix. Therefore, the proposed method is able
to obtain an accurate clustering result. In addition, the
proposed method is able to overcome the problem of the
unbalance of UFDSC.

3) The physical meaning of the scaled cluster indicator
matrix is interpreted. Moreover, the theoretical deriva-
tion of the scaled cluster indicator matrix is given. The
insight in the scaled cluster indicator matrix is helpful to
understand the proposed method and developing a new
method.

4) The proposed method cannot only achieve an accu-
rate clustering result but also be implemented very
efficiently. The optimization process of the proposed
convergences is in about three iterations.

The rest of this paper is organized as follows. In Section II,
the related work is discussed. Classical spectral embedding
and spectral rotation are described in Section III. The proposed
method is presented in Section IV. The experimental results
are presented in Section V. Finally, Section VI concludes this

paper.

II. RELATED WORKS

There are many clustering methods [18]. According to
different criterion, these clustering methods can be divided
into different categories. The categories may be overlapping
and a clustering method can belong to two or more cat-
egories. Generally, the clustering methods can be divided
into hierarchical methods [4]; partition methods [5]; den-
sity methods [19], [20]; kernel methods [21]; and spectral
methods [6].

The hierarchical methods produce a hierarchy of nested
clusterings. There are two main categories of hierarchical
methods: 1) the agglomerative methods and 2) the divisive
hierarchical methods.

Given the number of partitions, the partitioning method cre-
ates an initial partitioning. Then the method adopts an iterative
relocation technique that attempts to improve the partitioning
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by moving samples from one group to another group. K-
means and its variants [5], [22] are the typical instances of
partitioning methods. The performance of K-means is unsat-
isfactory when the problem of the curse-of-dimensionality is
severe. In addition, most of this kind of methods is sensitive
to initialization.

Density methods assume that the samples of each clus-
ter are drawn from the probability distribution. The main
tasks of the density method include determining and analyz-
ing local density of data points, the distribution parameters,
and identifying the clusters. DBSCAN [19] and OPTICS [20]
are two representative density methods. DBSCAN is sensitive
to parameters, such as the radius and the number of points
within the radius. In OPTICS, the clusters are identified as
local density maxima that are far away from any points of
higher density. Because the OPTICS depends on the relative
densities rather than their absolute values, OPTICS is more
robust than DBSCAN.

Kernel methods implicitly map the data into low dimen-
sional space where clustering is conducted. Many clustering
methods can be extended to their kernel versions by the kernel
technique [21], [23]. A representative method is kernel K-
means. As kernel methods in the fields of subspace analysis
and classifier learning, the kernel methods for clustering also
encounter the problem of determining the type of kernels and
the parameters of the selected kernel function.

Spectral clustering methods are closely related to this paper
and were successfully applied in segmentation [12], [16];
semisupervised learning [24]; multitask learning [25]; scene
detection [26]; and so on [27]-[29]. Representative spec-
tral clustering methods include Min Cut [10], Rcut [11],
Ncut [12], and Min—Max Cut [13]. Generally speaking, spec-
tral clustering methods employ spectral graph theory [30]
and formulate the clustering task as an eigen-decomposition
problem [31], [32]. The core of the spectral clustering meth-
ods is optimally partitioning a graph with a criterion under
some constraints. Different spectral clustering methods adopt
different objective functions and/or different constraints. The
goal of Min Cut is to partition a graph into k-subgraphs such
that the maximum cut across the subgroups (the maximum
cut problem is to find a subgroup of the vertex to make
the number of edges between the subgroup and the comple-
mentary subgroup is as large as possible) is minimized [10].
However, the minimum cut criterion favors cutting small sets
of isolated nodes in the graph that bisect the existing seg-
ments. Ncut [12] overcomes the drawback of Min Cut by
computing the cut cost as a fraction of the total edge con-
nections to all the nodes in the graph. Rcut allows freedom
to find natural partitions: the numerator captures the Min Cut
criterion and the denominator favors an even partition [11].
In Min—-Max Cut, the similarity between two subgraphs is
minimized and at the same time the similarity within each
subgraph is maximized [13]. When clusters overlap heavily,
Min-Max Cut tends to give more compact and balanced
clusters.

Though many variants of Min Cut, Rcut, Ncut, and Min—
Max Cut were developed [15], [16], these methods first
conduct spectral embedding to form a real-valued cluster
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indicator matrix and binarize the real-valued cluster indicator
matrix to form the final binary cluster indicator matrix. These
methods cannot directly compute the final clustering result.

As mentioned in Section I, the UFDSC [17] can directly
obtain the binary cluster indicator matrix. Despite its success,
the accuracy of the method is limited because it employs an
orthonormal matrix to approximate a nonorthonormal matrix.
Our method is able to overcome the drawback and achieves
more accurate clustering results.

III. CLASSICAL NORMALIZED CUT
AND THE SPECTRAL ROTATION

The classical spectral clustering called k-way Ncut [16] and
spectral rotation [33] are the basis of the proposed method. In
this section, we describe the two methods. Spectral embed-
ding (k-way Ncut) yields real-valued cluster indicator matrix.
Taking the real-valued cluster indicator matrix as input, the
spectral rotation results in discrete-valued indicator matrix.

A. Spectral Embedding

Let the dataset X = {xi,X3,...,Xy} be clustered into K
distinct clusters. Suppose that X contains N samples x; € RY,

i = 1,...,N . The N samples form a data matrix X =
(X1, X0, ..., xn]T € RV*M_ The K clusters Cj,...,Cx meet
three conditions: U1K=1 Ci=X;C #9,i=1,...,K; and

CiCi=@,i#j,i,j=1,...,K. Let the cluster indica-
tor matrix Y = [y1,¥2,.--, iN]T e BV*K with each vector
¥; € BX be a cluster indicator of the corresponding sample
x; € RM_If x; is considered in the k cluster Cy, then the kth
element y; of y; is 1 and other elements are all 0.

Let a;; be the similarity between samples x; and x;. The set
of a;; defines the affinity matrix A € RV*N A common choice
of a; is

ex _Ixi=xily if x; and Xx; are neighbors
a;; = p t \J g
iji=

6]
otherwise

where ¢ is a real-valued parameter. The degree matrix D is

derived from the affinity matrix A. The off-diagonal elements

of D are zero and the ith element d; of the diagonal is
N

di = Zj:l aj. 2)

The value of d; measures the significance of a sam-

ple x;. The degree matrix can be expressed as D =
diag{d,, d>, ..., dn}.

The goal of minimum k-way Ncut is to simultaneously

minimize the sum f(Y)
fo) =373 ay 3)
xiECk Xjéck
and maximize the sum g(Y) of weighted volume V(Cy) of
each cluster Cj

K
>3 by )

k=1 x;eCy

g(Y) =

where D;; = Z;vzl a;; measures the significance of a sample x;.

The effect of minimizing the sum of similarity [i.e., (3)] is
to let samples in different clusters have the least similarity.
Defining the Laplacian matrix L

L=D-A. ®)

Equation (3) can be written as

o> ay= ZykT(D Ay

x,€Ck x;¢Cy

f(Y) =

= Z v Ly 6)

where yj is the kth column of Y.

The effect of maximizing the sum of weighted volume
[i.e., (4)] is to let samples in the same clusters have the largest
similarity. g(Y) can be equivalently expressed in the matrix
form

g(Y) =

Z > D= ZYkTDYk (7)

k=1 x;€Cy,
Therefore, the problem of k-way Ncut can be formulated as
minimizing J(Y)
yi' Ly
—
K = Yi' Dyi
Define scaled partition matrix Z

Z=Y(Y'DY)

J(Y) =

®)

—1/2

(€))

then (8) becomes
K

1 _
e Z v Ly (v Dyx) 1
k=1

w((YLY)(Y'DY) )

J(Y) =

o (Y'DY) " *YLY (Y DY) %)
w(Y(Y'DY) 2>TLY(YTDY)_1/ 2)

= —u(2'LZ)
= J(Z).

Defining F = D'/2Y(Y’DY)
D~ '/2F. Therefore, it holds that

Nl= x| =X~

(10)

-2 _ D'/2Z, we have Z =

J(Y) =J(Z) = tr(ZTLZ)

tr (D—1/2F D—‘/QF)>

-5
-yl
&

D-!/2LD"! /2F>

F)

J(F) (11)

where L = D™'/2LD1/2 = 1 — D~'/2AD~'/2 is known as
the normalized Laplacian matrix and T € RV*¥ is the identity
matrix.

Note that, J(F) = (1/K)t(FTLF) [i.e., (11)] is hard to
solve, because the elements of F are constrained to be discrete
values. The solution of this problem is to relax the matrix F
from discrete values to continuous ones. Then the problem (11)
becomes

tr

A>=|~>=|~m~><|

J(F) = %tr(FTI:F) (12)
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where F € RV*K,
Accordingly, the problem of spectral clustering can be
formulated as

F* = arg min tr(FTﬂF). (13)

FTF=I
The optimal F* of F consists of the eigenvectors of L.
The process of computing F* is called spectral embedding
because it makes use of the spectrum of the affinity (simi-
larity) matrix of the data to perform dimensionality reduction
before clustering.

B. Classical Spectral Rotation

The optimal F* which is obtained by solving the
optimization problem (13) is not a zero-one valued matrix.
Therefore, to get the final clustering result, it is common to
apply K-means or spectral rotation [33] to transform F* to a
zero-one valued matrix so that it approaches the underlying
cluster indicator matrix. It is known that the underlying clus-
ter indicator matrix Y is binary and its element is either O or
1.

Spectral rotation [33] is an algorithm for optimally trans-
forming the real-valued cluster indicator matrix F* to a binary
matrix Y.

Prior to describing the spectral rotation method, it should
be noted that the optimal F* is not unique in the sense of
minimizing the trace tr(FTI:F ) expressed in (13).

Theorem 1: If F* is an optimal solution for minimizing
tr(FTI:F) [i.e., (13)] and R € RE*K ig a rotation matrix (non-
singular matrix) satisfying R’R = I, then F*R is also an
optimal solution for minimizing tr(FTLF)

u| (FR)'L(FR) | = u(F7LF). (14)

Proof: Because (F'R)L(F*R) = RI(F'LFY)R =
R™!(F*'LF"R, it holds that R~'(F*’LF*)R and F*'LF*
are similar. It is known that similar matrices have the same
trace. Therefore, tr[R’l(F*TLF*)R] = a[F*TLF*], meaning
that both F*R and F* are optimal estimators. |

Taking into account that both F*R and F* are optimal esti-
mators, the goal of spectral rotation is to minimize the distance
between F*R and a binary matrix Y € Ind

min  [F*R - Y% 15
RTR=1,Yelnd ” I (1)
Y € Ind denotes Y is an indicator matrix, Y =
[¥1,¥2, ..., yn17 € BV*K and the unique 1 in y; indicate the

cluster membership of the corresponding sample x;.

IV. PROPOSED METHOD

As stated in Section III, spectral embedding followed by
spectral rotation yields the clustering result. Spectral embed-
ding yields real-valued cluster indicator matrix which is then
used to obtain cluster indicator matrix by spectral rotation.
However, successively and independently performing spec-
tral embedding and spectral rotation are not guaranteed to
yield globally optimal solution. To obtain better result, in this
paper, we propose a new framework to simultaneously perform
spectral embedding and a variant of spectral rotation.

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 50, NO. 1, JANUARY 2020

A. Objective Function

A straightforward method for simultaneously obtaining real-
valued cluster indicator matrix and discrete-valued cluster
indicator matrix is combining (13) and (15)

[tr(FTiF) + a|FR — Y||,%] (16)

min ’
FTF=I,R"R=IYelnd F
where o is a weight parameter. In fact, (16) is the mathemat-
ical formulation of the UFDSC proposed in [17]. However,
it is challenging for the spectral rotation part ||[FR — Y||%
to approximate the zero-one discrete matrix Y with the real
matrix FR. The reason is as follows. It can be proved that FR
is an orthonormal matrix. It means that not only the columns
of FR are orthogonal but also the magnitude of each col-
umn is one. However, Y is very different from FR. The main
difference is that Y is not necessarily an orthonormal matrix
though it is an orthogonal matrix. It is difficult to approximate
an orthonormal matrix to a nonorthonormal matrix. Note that,
the cluster indicator matrix Y can be an orthogonal matrix
with a constant scale only when all the clusters contain the
same number of samples. For example, the following Y given
in (17) consists of three clusters with the first, second, and
third cluster containing 3, 2, and 1 samples

I 0 O
1 0 O
1 0 0
Y=\, | ol 7)
0 1 0
0 0 1

In this case, Y is not a scaled orthonormal matrix. It is
impossible to perfectly approximate such Y with any orthonor-
mal matrix. The matrix Y given in (18) is an orthonormal
matrix divided by scaler

1 0 0 JIZ 0 0
1 0 0 72 0 0
o1 oof 0 JVIZ 0
Y=10 1 o|=Y2 o iz o |U®
0 0 1 0 0 JI2
0 0 1 0 0 Ji2Z

where each cluster contains two samples. Only in this special
case, it is possible to approximate the cluster indicator matrix
with an orthonormal matrix.

To overcome the above-mentioned difficulty, we propose to
replace ||FR — Y||2 with |[FR — DV2Y(Y'DY)"V2||2. The
term DY/2Y(YTDY) 12 is called the scaled cluster indicator
matrix Y

1/2

Y, =F= DI/ZY(YTDY)_ (19)

Theorem 2: The scaled cluster indicator matrix Yy =
DY2Y(YTDY) /2 is an orthonormal matrix.
Proof: The product of Y,! and Y is

Y, 7Y, = (Dl/zY(YrDY)—1/2>T (Dl 2y (YTDY) -1 /2)

_ <(YTDY> 71/2) yr (Dl/ 2) ! (DI/ZY (YTDY) 71/2)
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_ ((YTDY) - 2) TYT(<D1/2>TD1/2)Y<YTDY)_1/2>
- ((YTDY> 71/2) T(YTDY) (Y'pY) 1/2)

=L (20)

|

Because both FR and Y, (i.e, DV2Y(Y'DY)™"?) are

orthonormal matrices, it is reasonable to approximate Y, with

FR. It is relatively easy to minimize the difference between FR

and D/2Y(YTDY) V2. Formally, in our method the spectral

clustering is formulated as the following optimization problem:

r(FTLF)

min “12)2 |-

F'F=LR"R=LYelnd | 4 ¢ HFR — DI/ZY(YTDY) ”
F
21

The Physical Meaning of the Scaled Cluster Indicator
Matrix: Now, we describe the physical meaning of the
scaled cluster indicator matrix Y; = DY2Y(YTDY) 12,
Equation (2) shows how the degree d; of the degree matrix
is computed. Denote the degree vector d € RY by d =
ldi, d>, . ..,dN]T. Let y; be the kth column of Y and yj
is the ik-entry of Y. Then, it can be verified that the ik-entry
vi, of Yy is

Yik = ik @ Yiky| di
' Zjva djyjk dly;

Equation (22) means that the ik-entry of Y; is the degree
d; normalized by the sum of weighted degrees. Intuitively,
the larger the y3, is, the larger probability for the sample i
to belong to cluster k. For example, suppose that the cluster
indicator matrix Y and the degree matrix D are, respectively,

(22)

7+9

—

1 0 O
1 0 O
1 0 O
Y = 0 1 0 (23)
0O 1 O
[0 0 1
1 0 0 0 0 O
0O 3 0 0 0 O
0O 0 5 0 0 O
D=19 0 0 7 0 o 24
O 0 0 0 9 0
(0 0 0 0 0 11
then the scaled indicator matrix is
_ 1 _
14345 0 0
3
14345 0 0
5
0 0
_ 1+3+5
Y, = 0 \/I 0 (25)
749
0 /7 0
0 0

|
=

From (25), one can find that the scaled cluster indicator
matrix is a real-valued and orthonormal matrix. It is easy to
minimize the difference between FR and the scaled cluster
indicator matrix.

The Relationship Between F and the Scaled Cluster
Indicator Matrix: DV2Y(YTDY)~1/2. Suppose that F* is com-
posed of the eigenvectors of the normalized Laplacian matrix
L (i.e., F* is the solution to minimize tr(F’LF). In theory,
F* is closely related to DI/ZY(YTDY)_I/Z. The relation-
ship can be discovered by analyzing the objective function
[i.e., (11) and (12)] of the spectral embedding. It is noted
that the matrix F is the relaxed solution to the scaled cluster
indicator matrix Y.

B. Optimization

The proposed optimization formulation [i.e., (21)] contains
not only real variables (i.e., F and R) but also a zero-one
variable (i.e., Y). It is challenging to find the globally optimal
solution to the complex problem. We propose an alternative
algorithm to solve the optimization problem. Specifically, the
proposed algorithm iteratively performs three steps: R-step,
Y-step, and F-step.

R-Step: The goal of R-step is to seek the optimal rotation
matrix R when F and Y are fixed. Omitting terms irrelevant
to solve R, the problem expressed in (21) is reduced to the
following optimization problem:

2
min

26
R7R=I (20)

—12
FR — DI/ZY(YTDY)

F
The minimum problem (26) is equivalent to

~12
max Tr(RTFTDl/zY(YTDY> ) = max Tr(R"M)
RTR=I RTR=I

27

where M £ FTD1/2y(YTDY) 1/2.

Theorem 3 tells how to obtain the optimal solution R*
to (27).

Theorem 3: Let the single value decomposition (SVD) of M
be M = USV’. Then the optimal solution R* to the problem
of maxgrg_; Tr(R"M) [i.e., (27)] is

R* = UV’. (28)
Proof:
tr(R"M) = tr(R"USV)
= tr(SV'R"U)
= tr(SG)
=) sigii (29)

where G = VIRTU, s;; and g;; are the (i, i) elements of S and
G. Because GGT = VIRTU(V'RTU)" = VIRTUUTRV =1,
it is true that G is an orthonormal matrix. According to the
property of orthonormal matrix, one can find —1 < g; < L.
Moreover, s;; > 0 holds because s;; is a non-negative singular
value. Therefore, it is true that

tr(RTM) = Zsiigii < Zsii-
i

i

(30)
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Investigating (30), one can find that tr(RTM) equals to its
upper bound Y ;s; (i.e., r(RTM) = Y;s;) when g; = 1
(i.e., G is an identity matrix). Therefore, R gets its optimal
value when

G=VRU=1 (31)

holds.
Equation (31) means that the optimal R is R* = UV’. m
Y-Step: The goal of Y-step is to seek the optimal Y when
R and F are fixed. When R and F are fixed, the optimization
problem (21) is reduced to

. 1/2 T -172 :
min |FR — DV Y(Y DY)
Yelnd F
. Vv (T V20 |
— min |F — DV Y(Y DY) R (32)
Yelnd F
The minimum of (32) is zero when F =
D'/2Y(YTDY) V2R, According to (22), the ikth ele-

ment of DI/ZY(YTDY)A/2 is yir\/di/dTyy . Therefore, the

optimal element of Y is
2
[—d;
fi — ary " H

where f; is the ith row of the matrix F and ry is the kth row
of the matrix R.

F-Step: The goal of F-step is to seek the optimal F when
R and Y are fixed. When R and Y are fixed, the optimization
problem (21) becomes

1, j= argmkin

Y= 33)

0, else

tr FTﬂF)
min _12
FE=1| 4 o|FR - D'2Y(YTDY) /H
w(FTLF)

T

+a(tr((FR D'y (Y"DY) %)

(FR - D'2Y(Y™DY) %) ))
u(FTLF) }

—2a(tr((FR)TD1/2Y YTDY) 1/2)

= min
FTF=I

= min
FTF=I

= min

[ u(FTLF) — 2a(tr(FTDV2Y (YTDY)
FTF=I

) ]

(34)

= min

tr(FTLF _ 2aFTC)].
FTF=I L

In the last line of (34), the matrix C is defined as

-1/2

C= DI/ZY(YTDY) R’ (35)

The problem of (34) can be further relaxed into

max [tr(FTBF) + 2 (tr(FTC)] (36)
FTF=I

where B = A — L € RV*N_ 1 is an arbitrary constant to
ensure that B is a positive definite matrix. Theorem 4 tells
how to obtain the optimal solution F* to (36).
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Algorithm 1: Algorithm to Solve the Problem (36)
Input

: The matrix Y. The matrix R. The affinity matrix
A. The degree matrix D. The parameter «. The
maximum number of iteration 77.

Output: F

Initialization:

Compute the parameter A via power method [34], the
normalized Laplacian matrix L=1-D2AD"1/2 C
according to (35), and B = Al — L.

Randomly initialize F.

while convergence criteria not satisfied and number of
iteration < T1 do

Update E = BF + «C.

Calculate USV? = E via compact SVD of E.
Update F = UV7.

end

Algorithm 2: Proposed Clustering Algorithm

: The N samples X = [x1, X2, ..., Xy]
The number of clusters K. The parameter «. The
maximum number of iteration 7>, T3.
Output: Cluster indicator matrix Y.
Initialization:
Compute the affinity matrix A according to (1) and the
degree matrix D according to (2).
Randomly initialize F and Y.
while convergence criteria not satisfied and number of
iteration < T3 do
For fixed F and Y, compute the rotation matrix R
according to R* = UV7 (i.e., eq. (28)).
For fixed Y and R, update F according to
Algorithm 1.
while convergence criteria not satisfied and number
of iteration < T, do

| For fixed F and R, update Y according to (33)
end

Input T e RVM,

end

Theorem 4: Let the compact SVD of E=BF+aC be E =
USVT, where U € RVXK ' § ¢ REXK and V € RE*K Then
the optimal solution F* to the problem maxgrp_y [tr(F? BF) 4
2u(tr(FTO)] [i.e., (36)] is

F* = UV, (37)

The detailed proof can be found in Appendix A.

Algorithm 1 gives the details of the solution to the
problem (36).

Algorithm 2 gives the proposed algorithm, where the R-step,
Y-step, and F-step are iteratively conducted.

C. Complexity Analysis

The traditional spectral clustering method consists of spec-
tral embedding and spectral rotation. The time computational
complexity of spectral embedding is O(n®), and the time
cost of spectral rotation is O(K3+mK?), where n is the number
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Fig. 1. Comparison of UFDSC and the proposed JSESR on the toy data.

(a) UFDSC. (b) Proposed JSESR.

of samples, K is the number of clusters, and ¢ is the number
of iteration of spectral rotation. The time cost of traditional
spectral clustering is O(n® + K> + mK?).

The time cost of the proposed Algorithm 1 is O(r;nk?).
The time computational complexity of the proposed JSESR is
O(13(t1nK?2 + K3+ 1hnK?)), where #; is the number of iteration
of Algorithm 1, #, is the number of iteration to update Y, and
13 is the number of iteration of the proposed JSESR.

For large scale data, the number of data is much larger than
the number of clusters (i.e., n >> K). Therefore, the time cost
of the proposed JSESR is O(t3(t1nK? + Hhnk?)) and the time
cost of the traditional spectral clustering method is O(n® +
mK?). From Figs. 2 and 3, we can find that the proposed
method can converge very fast, 71, t2, and t3 are usually small.
In addition, we know that n > K. Therefore, compared with
traditional spectral clustering methods, JSESR has much less
computation complexity for large scale data.

D. Convergence Analysis

The convergence of Algorithm 1 has been proved in [34].
We introduce the convergence proof of Algorithm 1 accord-
ing to [34]. Next, we prove the convergence of proposed
Algorithm 2.

Theorem 5: Algorithm 1 will monotonically increase the
objective of the problem (36) in each iteration until the
algorithm converges.

The detailed proof of Theorem 5 is in Appendix B.

Theorem 6: Algorithm 2 will monotonically decrease the
objective of the problem (21) in each iteration until the
algorithm converges.

The detailed proof of Theorem 6 can be found in
Appendix C.

V. EXPERIMENTAL RESULTS

In this section, we compare the proposed JSESR with
K-means [5], Ncut [12], [16], Rcut [11], and UFDSC [17].
Note that, spectral rotation is employed to transform the
relaxed continuous results of Ncut and Rcut to binary cluster
indicator matrices. Therefore, we denote the Ncut and Rcut
algorithms as Ncut4SR and Rcut4SR, respectively.

We begin by giving a toy example in order to show the
superiority of the proposed JSESR against the UFDSC.

A. Toy Example for Comparison of UFDSC and the
Proposed JSESR

The toy example shown in Fig. 1 contains three clusters.
In the top left of Fig. 1(a) [also Fig. 1(b)], there is a cluster
consisting of only 1 sample. In the bottom left of Fig. 1(a)
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Fig. 2. (a) and (c) Curves of the objective function in (34) versus iteration
number 1. (b) and (d) Curves of the objective function in (32) versus iteration
number 7;.

[also Fig. 1(b)], there is a cluster consisting of 20 samples.
The cluster in the right of Fig 1(a) [also Fig. 1(b)] consists of
30 samples. It is obvious that the number of each cluster is of
unbalance.

Fig. 1(a) and (b) shows the clustering results of the UFDSC
and the proposed JSESR, respectively. The samples that are
classified as the same cluster are marked with a unique color.
From Fig. 1(a), one can find that the UFDSC incorrectly clas-
sifies the single sample in the top left of Fig. 1(a) and the five
samples in the top left corner of the right of Fig. 1(a) as the
same cluster. It is noted that the Ncut itself is able to solve
such unbalanced samples. However, the UFDSC is not able
to deal with such severely unbalanced situation. The reason
is as follows. In the spectral rotation part of the UFDSC, the
nonorthonormal cluster indicator matrix Y is used for approx-
imating the orthonormal matrix FR. When the samples are
extremely unbalanced, the degree of orthonormalization of
Y is very low, resulting in large approximation error. From
Fig. 1(b), it is observed that the proposed JSESR is capable
of perfectly dealing with the unbalanced problem.

B. Datasets

Besides the above-mentioned toy example, 19 benchmark
datasets are used for evaluation. Among the 19 datasets,
there are 16 image datasets: 1) AR face dataset [35];
2) AT&T [36]; 3) Binalpha [37]; 4) COIL20 [38];
5) COIL100 [39]; 6) Jaffe [40]; 7) MPEG7 [41];
8) MSRA [42]; 9) GeorgiaTech [43]; 10) PIE [44];
11) UMIST [45]; 12) Yale [46]; 13) Extended Yale Face
Database B (Yale B) [46]; 14) C-Cube [47]; 15) FERET [48];
and 16) MNIST [49]. The other ones are from UCI machine
learning repository [50]: 1) control; 2) dermatology; and
3) movements. Table I summarizes the characteristics (number
of samples, dimension, number of classes) of datasets used in
the experiments.

C. Parameter Setting and Convergence Property

The self-tuning spectral clustering method [51] is adopted
to determine the parameter 7 in (1). The number of nearest
neighbors used in (1) is set to be five for all the algorithms. In
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(f) Movements datasets.

TABLE 1
DESCRIPTION OF DATASETS

Datasets Num of Instances | Dimensions | Classes
AR 2600 792 100
AT&T 400 168 40
Binalpha 1404 320 36
COIL20 1440 1024 20
COIL100 7200 1024 100
Jaffe 213 1024 10
Mpeg7 1400 6000 70
MSRA 1499 256 12
GeorgiaTech 750 1800 50
PIE 3332 256 68
UMIST 360 168 20
Yale 165 256 15
YaleB 2414 2016 38
Control 600 60 6
Dermatology 366 34 6
Movements 360 90 15
C-Cube 38160 34 46
FERET 1400 6400 200
MNIST 70000 784 10

our method, the tradeoff parameter « balances the part of spec-
tral embedding and the part of spectral rotation. The value of «
is chosen from the set {1073, 1072, 1071, 10°, 10', 10%, 10%},
for different «, the best performance is reported. All the clus-
tering algorithms run 20 times and the average results are
reported. The maximum number of iterations 77, T3, T3 are
set to be 100, 20, 10, respectively.

Before comparison with different clustering methods, the
convergence property of Algorithm 1 and updating Y accord-
ing to (33) are shown in Fig. 2. The results are obtained when
the tradeoff parameter is set to be « = 0.1. The convergence
property of the proposed JSESR is shown in Fig. 3. The results
on the Binalpha, Coil100, Mpeg7, UMIST, Dermatology, and
Movements datasets are obtained when the tradeoff param-
eter « is set to be 0.1. It is observed that the proposed

method convergences in about three iterations. The fast con-
vergence property implies that the proposed JSESR is of high
efficiency.

D. Parameter Sensitivity

As mentioned before, we tune tradeoff parameter « in the
range of {1073,1072,107",10°, 10", 10%, 10%}. The effects
of « is shown in Fig. 4. As shown in Fig. 4, it can be found
that the clustering accuracy on all eight datasets can get better
performance when a small value is used for «. In addition,
when o = 1072, our proposed JSESR on all eight datasets
can get relatively great performance.

E. Comparison With Other Methods

The experimental results of different methods on the 18
benchmark datasets are given in Tables II-VI. Table II gives
the ACC performance. It can be seen from Table II that the
proposed JSESR achieves the highest ACC for all the 18
datasets.

Table III compares the proposed JSESR with K-means,
Ncut+SR, and Rcut+SR in terms of NMI. It can be seen
from Table III that the proposed JSESR achieves the highest
NMI performance for all the 18 datasets.

In Table IV, the Purity of different methods is given. For
all the 18 datasets, similar to the phenomena observed from
Tables II and III, the proposed method performs better than
K-means, Ncut+SR, and Rcut+SR.

Tables V and VI give the Homogeneity [52] and Jaccard
Index performance of different methods. As shown in
Tables V and VI, the proposed JSESR achieves the highest
Homogeneity and Jaccard Index performance of all the 18
datasets.

In addition to the K-means, Ncut+SR, and Rcut+SR meth-
ods, the proposed JSESR is also compared with the UFDSC on
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Fig. 4. Clustering accuracy of the proposed JSESR with different o on (a) AR, (b) C-cube, (c) FERET, (d) GeorigiaTech, (e) Jaffe, (f) MNIST, (g) MSRA,
and (h) UMIST datasets.

TABLE I
COMPARISON IN TERMS OF ACC (%) AND THEIR VARIATIONS. THE NUMBER IN BRACKETS IS THE STANDARD DEVIATION (%)

Datasets AR AT&T Binalpha COIL20 COIL100 GeorgiaTech Jaffe Mpeg7 MSRA
K-means 10.26(0.56)  57.65(3.77)  41.36(2.1)  54.84(5.20) 41.83(1.50) 42.11 (2.14)  73.10(8.74  47.18(2.56)  45.85(2.83)
Ncut+SR 13.83(0.21)  73.46(3.32)  43.53(0.93)  80.44(6.05) 72.34(2.23)  62.88(1.04)  90.28(8.94)  50.98(0.30)  47.29(1.66)
Rcut+SR 13.66(0.39)  73.63(1.89) 45.83(0.93) 78.01(6.95)  70.74(1.76)  62.11(1.07)  92.35(5.28)  50.76(0.59)  46.50(2.47)

Ours (JSESR)  18.53(0.40)  76.40(1.21)  47.42(0.71) 82.93(4.48) 83.49(1.75)  63.87(0.60)  96.06(0.42) 52.60(1.12)  53.85(1.75)
Datasets PIE UMIST Yale YaleB Control Dermatology C-cube FERET MNIST
K-means 11.13(0.68)  46.42(1.98) 53.88(4.48)  9.36(0.51)  58.22(3.41)  74.67(7.00)  33.03(1.45) 24.14(0.46)  51.19(4.74)
Ncut+SR 40.33(0.82)  53.42(0.70)  66.45(0.95) 34.79(0.76)  56.33(7.34)  77.13(7.69)  42.77(0.96)  25.50(0.39)  58.01(0.18)
Reut+SR 40.66(0.55)  53.15(0.94)  65.61(2.41) 34.38(0.36) 59.90(6.81)  81.26(4.53)  44.98(0.97) 25.86(0.41)  57.88(0.21)

Ours (JSESR)  42.79(0.01) 57.44(3.41) 66.79(0.27)  36.26(0.86) 71.63(7.86)  83.64(3.48)  47.11(0.75)  27.01(0.21)  61.70(0.57)

TABLE I

COMPARISON IN TERMS OF NMI (%) AND THEIR VARIATIONS. THE NUMBER IN BRACKETS IS THE STANDARD DEVIATION (%)

Datasets AR AT&T Binalpha COIL20 COIL100 GeorgiaTech Jaffe Mpeg7 MSRA
K-means 37.43 (0.36) 77.11 (0.48) 56.99(1.04) 70.63(3.10)  73.36(0.65)  50.43(1.97) 85.59(0.56)  68.25(1.34)  53.43(2.18)
Ncut+SR 37.52(0.17) 88.08(1.57)  60.55(0.32)  90.05(2.80) 90.47(0.69)  72.01(0.46)  92.30(5.60)  70.54(0.13)  63.72(2.05)
Rcut+SR 37.85(0.25) 88.13(0.93)  60.13(0.38)  89.84(3.30) 89.98(0.58)  71.64(0.55)  93.42(3.39) 70.40(0.19)  61.10(4.39)

Ours (JSESR)  39.32(0.18) 89.12(0.44)  61.91(0.22) 90.95(1.93) 93.38(0.38)  75.67(0.22)  95.24(0.38)  71.56(0.48)  68.17(0.92)
Datasets PIE UMIST Yale YaleB Control Dermatology C-cube FERET MNIST
K-means 61.55(1.59) 55.93(2.94) 61.36(3.82) 12.31(0.74)  69.14(2.08) 81.15(6.49)  44.59(0.30)  65.21(0.23)  47.82(2.64)
Ncut+SR 55.77(0.46) 72.25(0.32)  68.14(1.11)  42.71(0.50)  70.08(7.41)  78.51(7.15)  55.44(0.50) 66.71(0.39)  62.13(0.52)
Rcut+SR 55.91(0.52) 72.01(0.64)  68.83(1.47) 42.24(0.61)  73.90(6.99) 82.48(5.69)  55.85(0.58)  66.85(0.33)  61.95(0.06)

Ours (JSESR)  63.93(0.47) 73.62(1.27)  69.29(0.43)  44.36(0.52) 74.93(3.62)  83.71(1.76)  56.50(0.99)  67.66(0.16)  62.65(0.54)

TABLE IV

COMPARISON IN TERMS OF PURITY (%) AND THEIR VARIATIONS. THE NUMBER IN BRACKETS IS THE STANDARD DEVIATION (%)

Datasets AR AT&T Binalpha COIL20 COIL00 GeorgiaTech Jaffe Mpeg7 MSRA
K-means 10.52(0.82)  60.51(0.98)  44.34(1.77)  58.31(4.81) 50.75(1.30)  44.81(1.60)  74.93(5.63) 50.19(2.14)  47.84(2.38)
Ncut+SR 18.56(0.23)  77.53(3.46)  46.75(0.80)  84.23(6.04)  76.30(2.21)  64.23(1.03)  90.54(8.75)  55.66(0.28)  53.30(2.66)
Rcut+SR 18.28(0.40)  77.79(1.96)  48.49(0.83)  82.61(7.11) 74.80(1.83)  64.40(1.08)  92.35(5.28) 55.36(0.53) 51.83(4.05)
Ours (JSESR)  18.96(0.42)  80.25(0.73)  50.09(0.88) 85.60(3.45) 86.41(1.02)  66.00(0.37)  96.06(0.42) 57.33(1.14) 57.03(1.79)
Datasets PIE UMIST Yale YaleB Control Dermatology C-Cube FERET MNIST
K-means 11.61(0.71)  49.85(2.84) 55.30(3.64) 10.08(0.54) 66.85(2.12)  83.52(5.89)  42.74(1.17)  26.71(0.42)  55.16(3.51)
Ncut+SR 43.12(1.11)  56.86(0.75)  66.56(0.95) 35.93(0.77) 62.92(6.93)  79.54(6.95)  52.12(0.82) 26.50(0.46) 67.39(0.41)
Rcut+SR 43.35(0.87)  56.64(0.86)  66.21(2.53)  35.84(0.39)  66.50(6.53)  83.06(5.15)  53.71(0.85)  26.86(0.42)  67.13(0.07)
Ours (JSESR)  44.18(0.99)  60.06(1.88) 67.27(0.00)  37.12(0.93)  75.20(5.19)  86.01(2.58)  54.39(0.97) 28.29(0.19)  68.60(1.06)

the AR, Control, Dermatology, Movements, and Yale datasets.
The results are shown in Fig. 5 where Fig. 5(a)-(c) adopts
ACC, NMI, and Purity for comparison. One can find that
the proposed JSESR is superior to UFDSC no matter which
evaluation metrics are employed.

VI. CONCLUSION

In this paper, we have presented a novel spectral clus-
tering method called JSESR. The method simultaneously
performs spectral embedding (i.e., computing a real-valued
cluster indicator matrix) and spectral rotation (transforming the
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TABLE V

COMPARISON IN TERMS OF HOMOGENEITY (%) AND THEIR VARIAT

TONS. THE NUMBER IN BRACKETS IS THE STANDARD DEVIATION (%)

Datasets AR AT&T Binalpha COIL20 COIL00 GeorgiaTech Jaffe Mpeg7 MSRA
K-means 36.36(0.54)  74.62(1.65)  56.36(0.78)  74.32(2.11)  73.36(0.65)  65.49(1.15)  79.09(6.05)  65.34(1.19)  59.28(3.78)
Ncut+SR 36.52(0.19)  82.62(2.16)  60.26(0.43)  87.56(2.77)  88.80(0.73)  74.63(0.31)  94.73(6.20)  69.04(0.31)  63.49(2.27)
Rcut+SR 36.31(0.21)  86.09(1.28)  59.65(0.63)  87.26(2.67)  88.61(0.85)  73.85(0.49)  95.55(3.87) 67.59(0.51)  63.38(2.51)

Ours (JSESR)  36.87(0.30)  89.72(0.77)  61.44(0.83)  88.86(3.55)  91.40(0.72)  74.73(0.66)  96.23(0.45) 69.81(0.91)  65.18(1.56)
Datasets PIE UMIST Yale YaleB Control Dermatology C-cube FERET MNIST
K-means 35.61(0.86)  64.94(1.65)  59.96(3.33) 13.450.58 66.331.77 80.766.55 46.49(0.69)  65.68(0.23)  47.82(2.64)
Ncut+SR 55.18(0.41)  71.93(1.32)  65.51(2.67) 42.980.46 67.265.93 85.634.57 55.85(0.53)  66.71(0.36)  60.76(0.52)
Rcut+SR 55.71(0.46)  71.96(0.71)  66.43(1.03) 42.230.42 71.090.99 84.135.67 55.95(0.65)  66.85(0.33)  61.83(0.06)

Ours (JSESR)  56.06(0.50) 75.80(1.32)  69.90(0.70) 43.63(0.45)  71.95(0.91)  88.17(1.86)  56.44(0.99) 67.66(0.16)  62.65(2.06)

TABLE VI

COMPARISON IN TERMS OF JACCARD INDEX (%) AND THEIR VARIATIONS. THE NUMBER IN BRACKETS IS THE STANDARD DEVIATION (%)

Datasets AR AT&T Binalpha COIL20 COIL00 GeorgiaTech Jaffe Mpeg7 MSRA
K-means 5.960.41 40.872.66 26.57(1.71)  42.05(3.31)  30.591.29 29.18(1.26) 53.92(9.92)  28.94(1.63) 28.91(3.54)
Ncut+SR 10.24(0.12) 56.335.43 28.24(0.76)  66.25(8.15)  56.07(3.01)  45.20(0.70) 85.95(9.29)  34.43(0.43)  31.05(0.43)
Rcut+SR 10.21(0.07) 57.713.57 28.96(1.01)  67.07(7.88)  55.76(2.55)  45.50(1.55) 89.06(9.89)  34.23(0.47)  30.79(1.49)
Ours(JSESR)  10.26(0.05) 61.951.07 29.46(0.49)  67.86(4.89)  60.71(2.35) 45.92(0.44) 93.63(1.02)  35.01(0.61) 34.45(2.11)
Datasets PIE UMIST Yale YaleB Control Dermatology C-cube FERET MNIST
K-means 8.49(0.28) 29.01(2.56) 33.50(4.08) 5.18(0.41) 43.714.91 60.219.03 19.09(0.60)  13.73(0.30)  34.52(4.19)
Ncut+SR 25.49(0.51)  36.11(1.96)  43.45(1.21)  21.08(0.28)  41.164.57 69.255.77 27.20(0.79)  14.61(0.26)  40.86(0.18)
Rcut+SR 25.51(0.38)  35.93(0.95)  49.47(1.66)  20.87(0.09)  42.860.90 69.275.56 29.02(0.83)  14.85(0.27)  40.53(0.21)
Ours(JSESR)  26.28(0.59) 40.91(1.21) 51.01(0.54)  21.14(0.25) 49.93(3.78)  76.56(7.72) 30.81(1.27)  15.61(0.14)  44.61(0.59)
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Fig. 5. Comparison of the proposed JSESR and the UFDSC on the AR, Control, Dermatology, Movements, and Yale datasets. (a) ACC. (b) NMIL. (c) Purity.

real-valued cluster indicator matrix into binary cluster indica-
tor matrix). The objective function is a tradeoff between the
spectral embedding (k-way Ncut) and a variant of spectral rota-
tion. The proposed method employs a scaled cluster indicator
matrix to approximate the rotated embedding matrix. Because
both the scaled cluster indicator matrix and the embedding
matrix are orthonormal matrices, the approximation is precise.
We have developed an effective and efficient algorithm to solve
the corresponding optimization problem.

APPENDIX A
PROOF OF THEOREM 4

With the technique of Lagrangian multiplier, the constrained
maximum optimization problem expressed in (36) can be con-
verted to an unconstrained problem with its objective function
being L(F, B, C, A)

L(F,B, C, A) = tr(F"BF) + 2a(tr(F' C))

— tr(A(F'F - 1)). (38)

In (38), the symmetric matrix A is the Lagrangian
multipliers. Computing the derivative of L(F,B, C, A) and

then setting the derivative to zero yields

L
~~ = 2BF + 2aC — 2FA = 0.

oF (39)

First derive how to compute the matrix A of the Lagrangian
multipliers and then we describe how to compute the optimal
matrix F.

Compute A: Defining E = BF +«C, (39) can be written as

FA =BF +aC =E. (40)
The matrix E can be constructed by compact SVD
E = USV’ (41)

where U € RV*K § ¢ REXK and V € RE*K,

Multiplying (FA) on the left-hand side of (40) and simul-
taneously multiplying E” on the right-hand side of (40)
result in

(FAT(FA) = ETE
o~~~ T /on~
ATFTFA = (USVT) (USVT)
ATA = V§*VT. (42)
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Because A is symmetric, A = AT and ATA = A? hold.
Therefore, A can be obtained according to the last line of (42)

A =VSVT, (43)
Compute F: Substitute (43) and (41) into (40), we have

F(VSVT) — USV7T (44)

and

F* = UV, (45)

Equation (45) gives the optimal solution of F.

APPENDIX B
PROOF OF THEOREM 5
The solution to the problem (36) can be solved by following
the problem maxgrp_y tr(FE), where E = BF + oC.
Suppose F is the optimized solution of the problem (36),
then

tr(FTE) > tr(FTE). (46)

We substitute E = BF 4+ «C into (46), then
tr(FTBF) - 2tr(ﬁTBF) + tr(F7BF) > 0. (47)
B is positive definite, so we could find B = LTL vis

Cholesky factorization. Because || o ||12E > 0, we have

HLF _ LFHi >0

= tr((LF - LF)T<LF - LF)) >0
= tr(F7BF) - 2ur(F"BF) + w(F'BF) = 0. (48)
Based on (47) and (48), we could infer that
tr(FTBF) + 20tr(FC) = tr(F7BF) + 20(F'C). (49)

Therefore, Algorithm 1 increases the value of the objec-
tive function in (36) monotonically in each iteration until it
converges.

APPENDIX C
PROOF OF THEOREM 6

Suppose F, R, and Y are the optimized solution of the
problem (21).

Based on Theorem 5, we substitute B = Al — L and
C =D'2Y(YTDY) '2R” into (49). Equation (49) can be
rewritten as

tr(fi‘T(AI — E)F) + 2Oétr<FTD1/2Y(YTDY)_I/ZRT>
> u(F'(A\I - L)F) + Zatr(FTDl/zY(Ypr)*I/ZRT)
= —tr<ﬁTfj) _ aHFTR D2y (Y"DY) ”i
> —tr(F'LF) — « HFTR — D2y (Y"DY) Hi

ETT T = 1212
- tr(FTLF> ta HFTR _p2y(yTpy) 2 HF

< u(FLF) + o [F'R - D2y (Y'DY) /2 Hi (50)

According to (33), the problem (50) becomes

2

~ o~ ~ -/~ ~\—1/2
tr<FTLF) + | FTR — D1/2Y<YTDY)

F
< u(F'LF) + | F'R - DV2Y(Y'DY) " Hi 51)

As proved in Theorem 3, R is the optimal solution to the
problem (27). The problem (51) becomes

2

~ o~ J -/~ ~\—1/2
tr<FTLF) + o FTR — D1/2Y<YTDY)

F
< u(F'LF) + | F'R - D'2Y(Y'DY) " Hi (52)

Therefore, Algorithm 2 decreases the value of the objec-
tive function in (21) monotonically in each iteration until it
converges.

REFERENCES

[11 L. Guo et al., “Two-stage local constrained sparse coding for fine-
grained visual categorization,” Sci. China Inf. Sci., vol. 61, no. 1, 2018,
Art. no. 018104.

[2] Y. Pang, L. Ye, X. Li, and J. Pan, “Incremental learning with saliency
map for moving object detection,” IEEE Trans. Circuits Syst. Video
Technol., vol. 28, no. 3, pp. 640-651, Mar. 2018.

[3] G. Cui, X. L. Li, and Y. Dong, “Subspace clustering guided convex
nonnegative matrix factorization,” Neurocomputing, vol. 292, pp. 38-48,
May 2018.

[4] S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika,
vol. 32, no. 3, pp. 241-254, 1967.

[5] J. MacQueen, “Some methods for classification and analysis of multi-
variate observations,” in Proc. Berkeley Symp. Math. Stat. Probab., 1967,
pp- 281-297.

[6] U. von Luxburg, “A tutorial on spectral clustering,” Stat. Comput.,
vol. 17, no. 4, pp. 395-416, 2007.

[71 A. Ben-Hur, D. Horn, H. T. Siegelmann, and V. Vapnik, “Support vector
clustering,” J. Mach. Learn. Res., vol. 2, no. 2, pp. 125-137, 2002.

[8] S. Bickel and T. Scheffer, “Multi-view clustering,” in Proc. 4th IEEE
Int. Conf. Data Min., 2004, pp. 19-26.

[91 F. Huang, X. Li, S. Zhang, and J. Zhang, “Harmonious genetic
clustering,” IEEE Trans. Cybern., vol. 48, no. 1, pp. 199-214, Jan. 2018.

[10] Z. Wu and R. Leahy, “An optimal graph theoretic approach to data clus-
tering: Theory and its application to image segmentation,” /EEE Trans.
Pattern Anal. Mach. Intell., vol. 15, no. 11, pp. 1101-1113, Nov. 1993.

[11] L. Hagen and A. B. Kahng, “New spectral methods for ratio cut par-
titioning and clustering,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 11, no. 9, pp. 1074-1085, Sep. 1992.

[12] J. Shi and J. Malik, “Normalized cuts and image segmentation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888-905,
Aug. 2000.

[13] C. H. Q. Ding, X. He, H. Zha, M. Gu, and H. D. Simon, “A min-max
cut algorithm for graph partitioning and data clustering,” in Proc. IEEE
Int. Conf. Data Min., San Jose, CA, USA, 2001, pp. 107-114.

[14] F. Nie, Z. Zeng, 1. W. Tsang, D. Xu, and C. Zhang, “Spectral embed-
ded clustering: A framework for in-sample and out-of-sample spectral
clustering,” IEEE Trans. Neural Netw., vol. 22, no. 11, pp. 1796-1808,
Nov. 2011.

[15] P. K. Chan, M. D. E. Schlag, and J. Y. Zien, “Spectral K-way ratio-cut
partitioning and clustering,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 13, no. 9, pp. 1088-1096, Sep. 1994.

[16] S. X. Yu and J. Shi, “Multiclass spectral clustering,” in Proc. 9th IEEE
Int. Conf. Comput. Vis., 2003, pp. 313-319.

[17] Y. Yang, F. Shen, Z. Huang, and H. T. Shen, “A unified framework for
discrete spectral clustering,” in Proc. Int. Joint Conf. Artif. Intell., 2016,
pp. 2273-2279.

[18] R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Trans.
Neural Netw., vol. 16, no. 3, pp. 645-678, May 2005.



258

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]
[31]
[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” in Proc.
Int. Conf. Knowl. Disc. Data Min., 1996, pp. 226-231.

M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “OPTICS:
Ordering points to identify the clustering structure,” ACM SIGMOD
Rec., vol. 28, no. 2, pp. 49-60, 1999.

M. Filippone, F. Camastra, F. Masulli, and S. Rovetta, “A survey of
kernel and spectral methods for clustering,” Pattern Recognit., vol. 41,
no. 1, pp. 176-190, 2008.

H.-S. Park and C.-H. Jun, “A simple and fast algorithm for K-medoids
clustering,” Expert Syst. Appl., vol. 36, no. 2, pp. 3336-3341, 2009.
K.-R. Muller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf, “An
introduction to kernel-based learning algorithms,” IEEE Trans. Neural
Netw., vol. 12, no. 2, pp. 181-201, Mar. 2001.

S. Mehrkanoon, C. Alzate, R. Mall, R. Langone, and J. A. K. Suykens,
“Multiclass semisupervised learning based upon kernel spectral cluster-
ing,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 4, pp. 720-733,
Apr. 2015.

Y. Yang, Z. Ma, Y. Yang, F. Nie, and H. T. Shen, “Multitask spec-
tral clustering by exploring intertask correlation,” /[EEE Trans. Cybern.,
vol. 45, no. 5, pp. 1083-1094, May 2015.

R. Panda, S. K. Kuanar, and A. S. Chowdhury, “Nystrom approximated
temporally constrained multisimilarity spectral clustering approach
for movie scene detection,” IEEE Trans. Cybern., vol. 48, no. 3,
pp. 836-847, Mar. 2018.

Y. Pang, S. Wang, and Y. Yuan, “Learning regularized LDA by clus-
tering,” IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 12,
pp. 2191-2201, Dec. 2014.

Z. Li, J. Zhang, K. Zhang, and Z. Li, “Visual tracking with weighted
adaptive local sparse appearance model via spatio-temporal context
learning,” IEEE Trans. Image Process., vol. 27, no. 9, pp. 4478-4489,
Sep. 2018.

C. Luo, Z. Li, K. Huang, J. Feng, and M. Wang, “Zero-shot learning
via attribute regression and class prototype rectification,” IEEE Trans.
Image Process., vol. 27, no. 2, pp. 637-648, Feb. 2018.

F. R. K. Chung, Spectral Graph Theory, Amer. Math. Soc., 1997.

W. E. Donath and A. J. Hoffman, “Lower bounds for the partitioning
of graphs,” IBM J. Res. Develop., vol. 17, no. 5, pp. 420-425, 1973.
M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Math. J.,
vol. 23, no. 2, pp. 298-305, 1973.

J. Huang, F. Nie, and H. Huang, “Spectral rotation versus K-means
in spectral clustering,” in Proc. 27th AAAI Conf. Artif. Intell., 2013,
pp. 431-437.

F. Nie, R. Zhang, and X. Li, “A generalized power iteration method for
solving quadratic problem on the Stiefel manifold,” Sci. China Inf. Sci.,
vol. 60, no. 11, 2017, Art. no. 112101.

A. M. Martinez, “The are face database,” CVC, New Delhi, India,
Rep. #24, 1998.

F. S. Samaria and A. C. Harter, “Parameterisation of a stochastic model
for human face identification,” in Proc. IEEE Workshop Appl. Comput.
Vis., 1994, pp. 138-142.

Binary Alphadigits Database. Accessed: Sep. 10, 2015. [Online].
Available: https://cs.nyu.edu/~roweis/data.html.

S. A. Nene, S. K. Nayar, and H. Murase, “Columbia object image library
(COIL-20),” Dept. Comput. Sci., Columbia Univ., New York, NY, USA,
Rep. CUCS-006-96, 1996.

S. A. Nene, S. K. Nayar, and H. Murase, “Columbia object image library
(COIL-100),” Dept. Comput. Sci., Columbia Univ., New York, NY, USA,
Rep. CUCS-006-96, 1996.

M. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba, “Coding facial
expressions with Gabor wavelets,” in Proc. 3rd IEEE Int. Conf. Autom.
Face Gesture Recognit., 1998, pp. 200-205.

L. J. Latecki, R. Lakamper, and T. Eckhardt, “Shape descriptors for non-
rigid shapes with a single closed contour,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., vol. 1, 2000, pp. 424-429.

X. He, S. Yan, Y. Hu, P. Niyogi, and H.-J. Zhang, “Face recognition
using Laplacianfaces,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27,
no. 3, pp. 328-340, Mar. 2005.

Georgia Tech Face Database. Accessed: Feb. 1, 2001. [Online].
Available: http://www.anefian.com/research/face_reco.htm

T. Sim, S. Baker, and M. Bsat, “The CMU pose, illumination, and
expression database,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25,
no. 12, pp. 1615-1618, Dec. 2003.

D. B. Graham and N. M. Allinson, “Characterising virtual eigensigna-
tures for general purpose face recognition,” in Face Recognition.
Heidelberg, Germany: Springer, 1998, pp. 446-456.

[46]

[47]

[48]

[49]

[50]
[51]

[52]

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 50, NO. 1, JANUARY 2020

A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, “From few
to many: Illumination cone models for face recognition under variable
lighting and pose,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23,
no. 6, pp. 643-660, Jun. 2001.

F. Camastra, M. Spinetti, and A. Vinciarelli, “Cursive character chal-
lenge: A new database for machine learning and pattern recognition,”
in Proc. Int. Conf. Pattern Recognit., 2006, pp. 385—411.

P. J. Phillips, H. Wechsler, J. Huang, and P. J. Rauss, “The FERET
database and evaluation procedure for face-recognition algorithms,”
Image Vis. Comput., vol. 16, no. 5, pp. 295-306, 1998.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278-2324, Nov. 1998.

D. Dheeru and E. K. Taniskidou. (2017). UCI Machine Learning
Repository. [Online]. Available: http://archive.ics.uci.edu/ml

L. Zelnik-Manor and P. Perona, “Self-tuning spectral clustering,” in
Proc. Adv. Neural Inf. Process. Syst., 2005, pp. 1601-1608.

A. Rosenberg and J. Hirschberg, “V-measure: A conditional entropy-
based external cluster evaluation measure,” in Proc. Joint Conf. Empir.
Methods Nat. Lang. Process. Comput. Nat. Lang. Learn., 2007,
pp. 410-420.

Yanwei Pang (M’07-SM’09) received the Ph.D.
degree in electronic engineering from the University
of Science and Technology of China, Hefei, China,
in 2004.

He is currently a Professor with Tianjin
University, Tianjin, China. He has published
over 100 scientific papers, including over 30
IEEE TRANSACTIONS papers. His current research
interests include object detection, image recogni-
tion, image processing, and deep learning and their
applications in self-driving cars, unmanned surface

vessel, visual surveillance, human—machine interaction, and biometrics.

Jin Xie received the B.S. degree in electronic engi-
neering from Tianjin University, Tianjin, China, in
2016, where he is currently pursuing the Ph.D.
degree under the supervisor of Prof. Y. Pang.

His current research interests include machine
learning and computer vision.

Feiping Nie received the Ph.D. degree in computer
science from Tsinghua University, Beijing, China,
in 2009.

He has published over 100 papers in the top
journals and conferences, including the IEEE
TRANSACTIONS ON PATTERN ANALYSIS AND
MACHINE  INTELLIGENCE, the International
Journal  of  Computer  Vision, the IEEE
TRANSACTIONS ON  IMAGE  PROCESSING,
the IEEE TRANSACTIONS ON NEURAL
NETWORKS AND LEARNING SYSTEMS, the

TEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, ICML,
NIPS, KDD, IJCAI, AAAI ICCV, CVPR, SIGIR, and ACM MM. His
current research interest includes machine learning and its application fields.

Dr. Nie is serving as an associate editor or a program committee member
for several prestigious journals, such as the IEEE TRANSACTIONS ON
NEURAL NETWORKS AND LEARNING SYSTEMS and conferences in the
related fields.

Xuelong Li (M’02-SM’07-F’12) is a Full Professor with the Xi’an Institute
of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an,
China.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


