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A Directionally Selective Small Target Motion
Detecting Visual Neural Network in Cluttered

Backgrounds
Hongxin Wang, Jigen Peng, Shigang Yue, Senior Member, IEEE

Abstract—Discriminating targets moving against a cluttered
background is a huge challenge, let alone detecting a target
as small as one or a few pixels and tracking it in flight. In
the insect’s visual system, a class of specific neurons, called
small target motion detectors (STMDs), have been identified as
showing exquisite selectivity for small target motion. Some of
the STMDs have also demonstrated direction selectivity which
means these STMDs respond strongly only to their preferred
motion direction. Direction selectivity is an important property
of these STMD neurons which could contribute to tracking small
targets such as mates in flight. However, little has been done
on systematically modeling these directionally selective STMD
neurons. In this paper, we propose a directionally selective
STMD-based neural network for small target detection in a
cluttered background. In the proposed neural network, a new
correlation mechanism is introduced for direction selectivity
via correlating signals relayed from two pixels. Then, a lateral
inhibition mechanism is implemented on the spatial field for size
selectivity of the STMD neurons. Finally, a population vector
algorithm is used to encode motion direction of small targets.
Extensive experiments showed that the proposed neural network
not only is in accord with current biological findings, i.e., showing
directional preferences, but also worked reliably in detecting
small targets against cluttered backgrounds.

Index Terms—Cluttered backgrounds, direction selectivity, nat-
ural images, neural modeling, small target motion detection.

I. INTRODUCTION

INTELLIGENT robots have shown great potential in re-
shaping human life in the future. However, artificial visual

systems so far are still struggling to provide a robot with the
required capacity to respond to the dynamic visual world in
real-time, like many animal species do. Among many visual
functionalities, detecting small moving targets is one of the
most important abilities for many animal species, e.g., finding
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mates in the distance, and it is also critical for a robot to track
small targets in a cluttered background.

Small target motion detection in visual cluttered back-
grounds is always considered as a challenging problem for
artificial visual systems. The difficulty is reflected in two
aspects: first, when a target is far away from the observer,
it always appears as a small dim speckle whose size may vary
from one pixel to a few pixels in the field of view. In this size,
shape, color and texture information cannot be used for target
detection. Second, small targets are often buried in cluttered
backgrounds and difficult to separate from noise. In addition,
ego-motion may bring in further difficulties to small target
motion detection.

Nature has provided a rich source of inspiration for small
target motion detection. Detecting small targets in naturally
cluttered backgrounds is critical for many insect species to
search for mates or track prey. As the result of millions of
years of evolution, the small target motion detection visual
systems in insects are both efficient and reliable [1], [2].
For example, dragonflies can pursue small flying insects with
successful capture rates as high as 97% relying on their well
evolved vision system [3]. Compared to the visual systems
of primate animals, insects’ visual systems achieve amazing
capability using relatively simple structures and a small num-
ber of neurons. Insects’ visual pathways are practical models
for designing artificial vision systems for small target motion
detection.

In the insect’s visual system, a class of specific neurons,
called small target motion detectors (STMDs), have been
identified as showing exquisite selectivity for small targets
(size selectivity) [2], [4], [5]. To be more precise, the STMD
neurons give peak responses to targets subtending 1◦ − 3◦ of
the viusal region, with no response to larger bars (typically >
10◦) or to wide-field grating stimuli. In addition, some STMD
neurons are directionally selective (direction selectivity) [6],
[7]. They respond strongly to small target motion oriented
along a preferred direction, but show weak or no, even fully
opponent response to null-direction motion. Null direction is
180◦ from the preferred direction. Although the postsynaptic
pathways of the STMD neurons are still under investigation
[8], it is clear that knowing the small target motion and its
direction at the same time is an advantage in tasks such as
tracking mates or intercepting prey.

The electrophysiological knowledge about the STMD neu-
rons and their afferent pathways revealed in the past few
decades makes it possible to propose quantitative STMD
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models, however, little has been done on systematically mod-
eling these directionally selective STMD neurons. As pioneers,
Wiederman et al. [9] developed elementary small target motion
detector (ESTMD) to account for size selectivity of the STMD
neurons. The ESTMD showed strong responses to small target
motion, but much weaker or even no responses to wide-field
motion. However, it did not consider direction selectivity and
showed no different responses to small target motion oriented
along different directions. Wiederman and O’Carroll [10]
mentioned that two hybrid models, i.e., elementary motion
detector (EMD)-ESTMD and ESTMD-EMD, could exhibit
both size and direction selectivities. In the further research
[11]–[13], these two models are successfully used for target
tracking. Although direction selectivity was noted in these
models, the direction selectivity in an STMD model should
be systematically investigated.

1) The existing STMD-based models, including ESTMD
[9], EMD-ESTMD [10], and ESTMD-EMD [10], have
not provided unified and rigorous mathematical descrip-
tion.

2) Wiederman and O’Carroll [10] and Bagheri et al. [11]–
[13] focused on the size selectivity, tracking mechanisms
and non-directionally selective properties, e.g., velocity
and contrast tuning. Since direction selectivity has not
been systematically studied, characteristics and perfor-
mance of the directionally selective STMD models, are
unclear.

3) The existing models have not shown the capacity for
encoding motion direction of small targets.

In this paper, we propose a neural network to model the spe-
cific STMD neurons with direction selectivity called DSTMD.
It can detect not only small target motion but also the mo-
tion direction in cluttered backgrounds. The proposed neural
network incorporates a new correlation mechanism which
correlates signals relayed from two pixels so as to introduce
directional selectivity. Then, a lateral inhibition mechanism
acting on correlation outputs is used for size selectivity.
Finally, a population vector algorithm is used to encode
motion direction of small targets. Systematic experiments are
carried out to validate the proposed neural network in complex
environments.

The main contributions of this paper can be summarized as
follows.

1) We develop a new directionally selective STMD-based
neural network (DSTMD) with unified and rigorous
mathematical description.

2) We systematically study and test both directionally se-
lective and non-directionally selective properties of the
developed neural network.

3) We propose a population vector algorithm to encode
motion direction of small targets.

The remainder of this paper is organized as follows. In
Section II, the related work will be reviewed. In Section III,
the proposed neural network is described in detail. In Section
IV, the experiments are carried out to test the performances of
the proposed neural network. We give further discussions in
Section V and finally in Section VI, we conclude this paper.

II. RELATED WORK

In this section, we review the related work on three motion
sensitive neurons, including the lobula giant movement de-
tector (LGMD) [14]–[16], lobula plate tangential cell (LPTC)
[17]–[19] and STMD [2], [4]–[7]. These three neurons are all
found in insects’ visual systems and have been extensively
studied.

A. Lobula Giant Movement Detector

LGMDs are collision sensitive neurons found in locusts
(certain species of short-horned grasshoppers) [14]–[16]. They
respond strongly to the objects approaching the insect on a
direct collision course while exhibiting little or no response
to receding objects. A great number of LGMD-based neural
networks [1], [20]–[24] have been developed. These neural
networks showed the same collision sensitivity as the LGMD
neuron and can detect collisions cheaply and reliably in
a complex background. Nevertheless, they are incapable of
detecting small target motion, and do not show size and
direction selectivities.

B. Lobula Plate Tangential Cell

LPTCs exhibit strong responses to wide-field motion, but
also to the motion of local, salient features [17]–[19]. The
first LPTC model which is the spatial integration of elemen-
tary motion detectors (EMDs), was originally inferred from
behavioral investigation of insects [25]. In the past decade,
considerable progress has been made in identifying the afferent
pathways and the characteristics of the LPTCs. To incorporate
these new biological findings, the EMD was adapted, giving
rise to several models, such as two-quadrant-detector (TQD)
[26], [27] and weighted-quadrant-detector [28]. The above-
mentioned models respond to objects’ motion, but they are
not size selective.

C. Small Target Motion Detector

Small target motion detectors are characterized by exquisite
size selectivity [2], [4], [5], some of which are also direc-
tionally selective [6], [7]. Wiederman et al. [9] proposed
the ESTMD, to model an STMD neuron with spatially in-
tegrated multiple ESTMDs. Although the ESTMD shows size
selectivity, it is not directionally selective.Wiederman and
O’Carroll [10] and Bagheri et al. [11]–[13] mentioned that
two hybrid models, i.e., EMD-ESTMD and ESTMD-EMD,
could exhibit both size and direction selectivities. However,
characteristics and performance of these directionally selective
STMD models, are unclear, since direction selectivity has not
been systematically studied.

III. FORMULATION OF THE MODEL

Following the typical multi-stage view of motion detection
in the insect’s visual system (schematically illustrated in Fig.
1), we devised a DSTMD in this paper. Fig. 2(a) shows the
schematic of one DSTMD cell and its presynaptic neural net-
work. The proposed neural network is composed of four neural
layers including the retina, lamina, medulla, and lobula. These
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Fig. 1. Schematic illustration of the insect’s visual system. The insect’s visual
system consists of four neural layers, including retina, lamina, medulla and
lobula (from top to bottom). Each neural layer contains numerous specialized
neurons illustrated by colored circular nodes. Luminance signals are first
perceived by ommatidia, further processed by LMCs (i.e., L1 and L2) and
medulla neurons (Mi1, Tm1, Tm2, Tm3), finally integrated in STMD neurons.
Note that the connection between the four medulla neurons and the STMD
neuron is speculative.
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Fig. 2. Schematic illustration of the proposed DSTMD and the existing
ESTMD models which exhibit selectivity for dark small targets. (a) Schematic
illustration of one DSTMD located at (x, y) with a preferred direction
θ. (b) Schematic illustration of one ESTMD located at (x, y). The most
significant difference between the DSTMD and ESTMD is that the DSTMD
integrates signals from two different positions (x, y) and (x′, y′) where
x′ = x + α1 cos θ, y′ = y + α1 sin θ, α1 is a constant. However, the
ESTMD integrates signals from a single position (x, y). Therefore, for each
position (x, y), the DSTMD has multiple model outputs corresponding to
different preferred directions θ while the ESTMD just has a single output
without direction selectivity. Abbreviation, GB: Gaussian blur, BPF: band-
pass filter, LI: lateral inhibition, ON/OFF: ON/OFF signals, D: time delay,
M and

∑
: multiplier and adder, S-LI: second-order lateral inhibition, θ-LI:

lateral inhibition implemented on θ.

four sequentially arranged neural layers have specific functions
and cooperate together for small target motion detection. In the
following sections, we will elaborate on the components and
functions of each layer.

A. Retina Layer

In the insect’s visual system, the retina layer contains a
great number of ommatidia (see Fig. 1). Each ommatidium is
composed of eight photoreceptors. Each photoreceptor views
a small region of the whole viusal filed and supplies a ’pixel’
of luminance information to ommatidia [29].

In the proposed neural network, image sequences are net-
work inputs, so we first construct a mapping from pixels
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Fig. 3. Schematic illustration of the mapping from pixels to photoreceptors.
Each small square denotes a pixel, corresponding to a photoreceptor. Each red
dotted rectangle which contains multiple pixels (photoreceptors), represents
the visual region of an ommatidium.

to photoreceptors. As depicted in Fig. 3, each small square
denotes a pixel, corresponding to a photoreceptor. The red dot-
ted rectangle which contains multiple pixels (photoreceptors),
represents the visual region of an ommatidium.

Specifically, let I(x, y, t) ∈ R denote varying luminance
values captured by photoreceptors where x, y and t are spatial
and temporal field positions. Then the response of an omma-
tidium is approximated by Gaussian blur. That is, the output of
an ommatidium with viusal region centered at (x, y) denoted
by P (x, y, t) is given by,

P (x, y, t) =

∫∫
I(u, v, t)Gσ1(x− u, y − v)dudv (1)

where Gσ1(x, y) is a Gaussian function, defined as

Gσ1
(x, y) =

1

2πσ2
1

exp(−x
2 + y2

2σ2
1

). (2)

B. Lamina Layer
In the insect’s visual system, large monopolar cells (LMCs),

such as L1 and L2, are postsynaptic neurons of the ommatidia
(see Fig. 1). They receive signals from the ommatidia and
show strong responses to luminance increments and decre-
ments, i.e., luminance changes [30], [31].

In the proposed neural network, each LMC is modeled
as a temporal band-pass filter to extract luminance changes
from input signals. Let L(x, y, t) denote the output of a LMC
located at (x, y). Then L(x, y, t) is defined by convolving the
ommatidium output P (x, y, t) with a temporal band-pass filter
H(t). That is,

L(x, y, t) =

∫
P (x, y, s)H(t− s)ds (3)

H(t) = Γn1,τ1(t)− Γn2,τ2(t) (4)

where Γn,τ (t) is a Gamma kernel, defined as

Γn,τ (t) = (nt)n
exp(−nt/τ)

(n− 1)!τn+1
. (5)

The illustration of the Gamma kernel Γn,τ (t) and temporal
band-pass filter H(t) is presented in Fig. 4.

In the insect’s visual system, the LMC receives lateral
inhibition from adjacent neurons before relaying its output
to the next layer. In the proposed neural network, L(x, y, t)
is convolved with an inhibition kernel W1(x, y, t) so as to
implement the lateral inhibition mechanism. That is,

LI(x, y, t) =

∫∫∫
L(u, v, s)W1(x− u, y − v, t− s)dudvds

(6)
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Fig. 4. (a) Gamma kernel Γn,τ (t) where n = 6, τ = 9. (b) Temporal
band-pass filter H(t) where n1 = 2, τ1 = 3, n2 = 6, τ2 = 9.

where LI(x, y, t) is the signal after lateral inhibition and
W1(x, y, t) is defined as,

W1(x, y, t) = WP
S (x, y)WP

T (t) +WN
S (x, y)WN

T (t) (7)

where WP
S (x, y), WN

S (x, y), WP
T (t), WN

T (t) are set as

WP
S = [Gσ2(x, y)−Gσ3(x, y)]+ (8)

WN
S = [Gσ2

(x, y)−Gσ3
(x, y)]−, σ3 = 2 · σ2 (9)

WP
T =

1

λ1
exp(− t

λ1
) (10)

WN
T =

1

λ2
exp(− t

λ2
), λ2 > λ1. (11)

Here, [x]+, [x]− denote max(x, 0) and min(x, 0), respectively.

C. Medulla Layer

In the insect’s visual system, medulla neurons including
Tm1, Tm2, Tm3 and Mi1, are downstream neurons of the
LMCs (see Fig. 1). The Mi1 and Tm3 respond selectively to
luminance increments, with the response of the Mi1 delayed
relative to the Tm3 [31]. Conversely, the Tm1 and Tm2 re-
spond selectively to luminance decrements, with the response
of the Tm1 delayed relative to the Tm2 [32].

In the proposed DSTMD and the existing ESTMD [9],
the modeling methods for these four medulla neurons, are
different. These two modeling methods are introduced as
follows, respectively.

1) Medulla Neuron Modeling of DSTMD: As the Tm3 and
Tm2 neurons respond strongly to luminance increments and
decrements, we use the positive and negative parts of the LMC
output LI(x, y, t) to define the outputs of the Tm3 and Tm2,
denoted by STm3 and STm2, respectively. That is,

STm3(x, y, t) = SON(x, y, t) (12)

STm2(x, y, t) = SOFF(x, y, t) (13)

where SON and SOFF represent the positive and negative parts
of LI(x, y, t), respectively. That is,

SON(x, y, t) = [LI(x, y, t)]
+ (14)

SOFF(x, y, t) = −[LI(x, y, t)]
− (15)

where S
ON

(x, y, t) and S
OFF

(x, y, t) are also called ON and
OFF signals (see the ON and OFF in Fig. 2), which reflect
luminance increase and decrease, respectively.

Since the Mi1 (or Tm1) is a temporally delayed version of
the Tm3 (or Tm2), the output of the Mi1 (or Tm1) is defined
by convolving STm3(x, y, t) (or STm2(x, y, t)) with a Gamma
kernel. That is,

SMi1
D(nN ,τN )(x, y, t) =

∫
STm3(x, y, s)ΓnN ,τN (t− s)ds (16)

STm1
D(nF ,τF )(x, y, t) =

∫
STm2(x, y, s)ΓnF ,τF (t− s)ds (17)

where SMi1
D(nN ,τN ) and STm1

D(nF ,τF ) represent the outputs of the
Mi1 and Tm1, respectively. nN , nF are orders of the Gamma
kernels while τN , τF are time constants.

2) Medulla Neuron Modeling of ESTMD: The most signifi-
cant difference between the medulla neuron modeling methods
of the DSTMD and ESTMD is that the ESTMD uses laterally
inhibited ON and OFF signals to define the outputs of the
medulla neurons. This can be seen in Fig. 2 that the ESTMD
implements a second-order lateral inhibition mechanism fol-
lowing ON and OFF signals while the DSTMD does not. In
the ESTMD, the outputs of the Tm3 and Tm2 denoted by
S̃Tm3 and S̃Tm2, are defined as,

S̃Tm3(x, y, t) =
[ ∫∫

SON(u, v, t)W2(x− u, y − v)dudv
]+
(18)

S̃Tm2(x, y, t) =
[ ∫∫

SOFF(u, v, t)W2(x− u, y − v)dudv
]+
(19)

where SON and SOFF are the ON and OFF signals defined in
(14) and (15); W2(x, y) is the second-order lateral inhibition
kernel, defined as

W2(x, y) = A[g(x, y)]+ +B[g(x, y)]− (20)

where A,B are constant, and g(x, y) is given by

g(x, y) = Gσ4
(x, y)− e ·Gσ5

(x, y)− ρ (21)

where Gσ(x, y) is a Gaussian function and e, ρ are constant.
Similarly, the outputs of the Tm1 and Mi1 are defined as the

temporally delayed outputs of the Tm3 and Tm2, which are
obtained by convolving S̃Tm3(x, y, t) and S̃Tm2(x, y, t) with a
Gamma kernel. That is,

S̃Mi1
D(nN ,τN )(x, y, t) =

∫
S̃Tm3(x, y, s)ΓnN ,τN (t− s)ds (22)

S̃Tm1
D(nF ,τF )(x, y, t) =

∫
S̃Tm2(x, y, s)ΓnF ,τF (t− s)ds (23)

where S̃Mi1
D(n

N
,τ
N
) and S̃Tm1

D(n
F
,τ
F
) stand for the outputs of the

Mi1 and Tm1, respectively.
In the following, we discuss the implementation of the

second-order lateral inhibition mechanism. Existing biological
research [33] asserts that the size selectivity of the STMD
neurons is shaped by the second-order lateral inhibition mech-
anism. However, where this second-order lateral inhibition
mechanism occurs remains elusive. Although the ESTMD
implements this second-order lateral inhibition mechanism
on medulla neurons, it is just speculative and there is no
neuroanatomical evidence for it. On the other hand, we notice
that the LPTC neurons also receive signals from medulla
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neurons [31], [34]. If the medulla neurons which provide
signals to the LPTC neurons, are laterally inhibited, the
LPTC neurons would show strong size selectivity (this will
be demonstrated in the experiment Section IV-B). This may
conflict with the finding that the LPTCs do not exhibit size
selectivity [17]–[19]. To satisfy both size selectivity of the
STMDs and size insensitivity of the LPTCs, we infer that
the second-order lateral inhibition mechanism may happen
on the STMD pathway rather than medulla neurons in the
implementation of our proposed neural network.

D. Lobula Layer

In the insect’s visual system, the STMD neurons integrate
signals from the medulla layer. They respond strongly to small
target motion, but show weak or no response to wide-field
motion (size selectivity) [2], [4], [5]. Besides, some STMDs
exhibit strong responses to small target motion oriented along
a preferred direction, but show weak or no response to
opposite-direction motion (direction selectivity) [6], [7].

In the proposed neural network (DSTMD), a new correlation
mechanism and a second-order lateral inhibition mechanism
are introduced for direction and size selectivities, respectively.
For comparison with the proposed neural network, the existing
non-directionally selective ESTMD [9] is also presented in the
following.

1) ESTMD: In the ESTMD, the output of an STMD neuron
located at (x, y), denoted by D̃(x, y, t), is defined as,

D̃(x, y, t) = S̃Tm3(x, y, t)× S̃Tm1
D(n3,τ3)

(x, y, t). (24)

As we can see from (24), the output of an STMD neuron
located at (x, y) is defined by the multiplication of the Tm1
and Tm3 outputs at the same position. Since medulla neural
signals from at least two different positions are needed for
detecting motion direction [35], the ESTMD is able to detect
the presence of target motion, but not the target’s motion
direction.

2) DSTMD: In the DSTMD, the correlation output of
an STMD neuron located at (x, y) with a preferred motion
direction θ, denoted by D(x, y, t; θ), is defined as,

D(x, y, t; θ) = STm3(x, y, t)×
{
STm1
D(n5,τ5)

(x, y, t)

+ SMi1
D(n4,τ4)

(x′, y′, t)
}

×STm1
D(n6,τ6)

(x′, y′, t)

(25)

where
x′ = x+ α1 cos θ

y′ = y + α1 sin θ
(26)

and α1 is a constant, θ ∈ {0, π4 ,
π
2 ,

3π
4 , π,

5π
4 ,

3π
2 ,

7π
4 }.

As we can see from (25), four medulla neural signals from
two different positions, i.e., (x, y) and (x′, y′), are used to
define the output of an STMD neuron located at (x, y) (see
Fig. 2, two multipliers and one adder). These four medulla
neural signals include the outputs of the Tm1 and Tm3 located
at position (x, y), i.e., STm1

D(n5 ,τ5 )
(x, y, t) and STm3(x, y, t), the

outputs of the Tm1 and Mi1 located at position (x′, y′), i.e.,
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Fig. 5. (a) Schematic illustration of relative position between A (x, y) and B
(x′, y′). α1 is the distance between A and B while θ is the angle between line
segment AB and the horizontal line. (b) Schematic illustration of excitatory
and inhibitory regions of the second-order lateral inhibition mechanism.

STm1
D(n

6
,τ

6
)(x
′, y′, t) and SMi1

D(n
4
,τ

4
)(x
′, y′, t) (the full deriva-

tion of (25) is shown in the supplementary materials). The
schematic illustration of relative position between (x, y) and
(x′, y′) is presented in Fig. 5(a). For a given position (x, y),
we can choose a series of (x′, y′), corresponding to different
directions θ. Thus, a series of correlation outputs D(x, y, t; θ)
with different preferred motion directions θ can be defined. For
a given direction θ0, D(x, y, t; θ0) gives the strongest output
to small target motion oriented along direction θ0, with weak
or no outputs to motion oriented along other directions. That
is, D(x, y, t; θ) shows direction selectivity.

After the signal correlation, the DSTMD implements the
second-order lateral inhibition mechanism on D(x, y, t; θ) for
size selectivity. That is,

DI(x, y, t; θ) =
[ ∫∫

D(u, v, t; θ)W2(x− u, y − v)dudv
]+
(27)

where DI(x, y, t; θ) is the signal after lateral inhibition and
[x]+ denotes max(x, 0), W2(x, y) is defined in (20).

The schematic illustration of inhibition kernel W2(x, y) is
shown in Fig. 5(b). As can be seen, the inhibition kernel
W2(x, y) contains two components, i.e., excitatory and in-
hibitory regions. For the kernel W2(x, y), its surround inhibi-
tion is set as three times as strong as the center excitation. In
this case, once the target’s size exceeds the excitatory region, it
will receive strong inhibition. When the target is smaller than
the excitatory region, the amount of excitation will increase as
the rise of target size. That is, the DSTMD prefers the target
whose size is equal to the excitatory region and exhibits size
selectivity.

Following the second-order lateral inhibition mechanism,
the DSTMD inhibits model output D

I
(x, y, t; θ) at directions

more than 45◦ apart by convolving D
I
(x, y, t; θ) with an

inhibition kernel W3(θ). That is,

E(x, y, t; θ) =
[ ∫

D
I
(x, y, t;ϕ)W3(θ − ϕ)dϕ

]+
(28)

where [x]+ denotes max(x, 0) and W3(θ) is defined as

W3(θ) = Gσ6
(θ)−Gσ7

(θ). (29)

where Gσ(x, y) is a Gaussian function.
In the DSTMD, E(x, y, t; θ) is regarded as the output of

the STMD neurons.
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TABLE I
PARAMETERS OF THE DSTMD AND ESTMD

Eq. Parameters

(1) σ1 = 1

(4) n1 = 2, τ1 = 3, n2 = 6, τ2 = 9

(8), (9) σ2 = 1.5, σ3 = 3

(10), (11) λ1 = 3, λ2 = 9

(20) A = 1, B = 3

(21) σ4 = 1.5, σ5 = 3, e = 1, ρ = 0

(24) n3 = 5, τ3 = 25

(25) n4 = 3, τ4 = 15, n5 = 5, τ5 = 25, n6 = 8, τ6 = 40

(26) α1 = 3

(29) σ6 = 1.5, σ7 = 3

E. Motion Direction Estimation

In the insect’s visual system, the STMD neurons are be-
lieved to be upstream of target selective descending neurons
(TSDNs) [4], [6], [8]. Further biological research [8] found
that eight pairs of the TSDNs are able to encode motion
direction of targets by a population vector algorithm.

In the proposed neural network, we estimate motion direc-
tions of targets by populating the model output E(x, y, t; θ)
along different directions θ. That is,

MD(t) =
∑

(x,y)∈Target

∑
θ

(E(x, y, t; θ) cos θ,E(x, y, t; θ) sin θ)

(30)
where MD(t) denotes the motion direction of the small target
at time t, (x, y) ∈ Target stands for the position of the STMD
neurons which respond to the small target motion.

F. Parameter Setting

Parameters of the proposed neural network (DSTMD) and
ESTMD are given in Table I. These parameters are tuned
manually based on empirical experiences and will not be
changed in the following experiments unless stated.

The proposed neural network is written in Matlab (The
MathWorks, Inc., Natick, MA). The computer used in the
experiments is a PC with one 2.50 Ghz CPU (Core i7
4710MQ) and windows 7 operating system. The source code
can be found at https://github.com/wanghongxin/DSTMD.

IV. RESULTS AND DISCUSSIONS

The proposed neural network is tested on image sequences
produced by Vision Egg [36]. The Vision Egg is a open-
source programming library that allows scientists to produce
arbitrary visual stimuli (http://visionegg.org/). Such stimuli
involve traditional stimuli such as sinusoidal gratings, or may
be more complex, 3-D, and naturalistic scenes. The image
sequences used in this paper can be divided into two categories
depending on background types. The first category contains
image sequences showing small target motion against white
backgrounds. This category is used to test the basic properties
of the proposed neural network, such as tuning properties (see
Sections IV-B and IV-C), direction selectivity (see Section
IV-D). The other category contains image sequences showing

BV

TV

Fig. 6. Representative frame of the input image sequence. A small rectangle
highlighted by the white circle, is moving against the cluttered background.
This rectangle whose size and luminance are set as 5× 5 pixels and 0, is the
small target needed to be detected. The arrows VT and VB denote the motion
directions of the small target and the background, respectively. The velocities
of the small target and the background are all set as 250 pixel/s.

small target motion against naturally cluttered backgrounds.
This category is used to test the detection performance of the
proposed neural network in complex backgrounds (see Section
IV-A and IV-E). All image sequences can be reproduced by
the Vision Egg with the same parameters (given before each
experiment). The video images are 500 (in horizontal) by 250
(in vertical) pixels and temporal sampling frequency is set as
1000 Hz.

A. Contribution of Various Neurons

To evaluate the characteristics of the neurons in the pro-
posed neural network, we observe and analyze their outputs.
For an input image sequence I(x, y, t), where x ∈ [0, 500]
pixel, y ∈ [0, 250] pixel, t ∈ [0, 1000] ms (see Fig. 6), we first
fix y and t as y0 = 125 pixel and t0 = 1000 ms, then illustrate
I(x, y0, t0) with respect to x in Fig. 7(a). Similarly, the outputs
of other neurons are presented in the subplots below.

Fig. 7(a)-(c) shows the input luminance signal I(x, y0, t0),
ommatidium output P (x, y0, t0) and LMC output L(x, y0, t0),
respectively. Compared to the input signal, the ommatid-
ium output demonstrates little difference and is just slightly
smoothed. This is because the ommatidium is modeled as
a spatial Gaussian filter to smooth the input luminance sig-
nals. The LMC output displays significant difference from
the ommatidium output. More precisely, the LMC output
becomes the band-pass-filtered version of the ommatidium
output. From the other perspective, the LMC output reveals
the luminance changes of pixels, where the positive values
correspond to luminance increase while the negative values
suggest luminance decrease.

Fig. 7(d) and (e) illustrates the outputs of the Tm3 and Tm2
modeled by the DSTMD and ESTMD, respectively. Compared
to Fig. 7(d), the outputs of the Tm3 and Tm2 are largely
suppressed in Fig. 7(e). This is because the ESTMD uses the
laterally inhibited ON and OFF signals to define the outputs
of the Tm3 and Tm2 (see (18) and (19)), while the DSTMD
utilizes the ON and OFF signals directly (see (12) and (13)).
Fig. 7(f) and (g) demonstrate the medulla signals used for the
signal correlation in the DSTMD and ESTMD, respectively.
As can be seen, four medulla signals are used for the signal
correlation in the DSTMD whereas only two medulla signals
are utilized in the ESTMD.

Fig. 7(h) and (i) displays the outputs of the proposed
DSTMD model and the existing non-directionally selective

http://visionegg.org/
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Fig. 7. Outputs of various neurons in the DSTMD and ESTMD models where x ∈ [0, 500] pixel, y0 = 125 pixel, t0 = 1000 ms. In each subplot, the
horizontal axis denotes the location of neurons (x coordinate) while the vertical axis represents neural outputs. (a) Input signal I(x, y0, t0). (b) Ommatidium
output P (x, y0, t0). (c) LMC output L(x, y0, t0). (d) Outputs of the Tm3 and Tm2 modeled by the DSTMD, i.e., STm3(x, y0, t0) and STm2(x, y0, t0). (e)
Outputs of the Tm3 and Tm2 modeled by the ESTMD, i.e., S̃Tm3(x, y0, t0) and S̃Tm2(x, y0, t0). (f) Medulla neural outputs used for the signal correlation
in the DSTMD, i.e., STm3(x, y0, t0), SMi1

D(3,15)
(x, y0, t0), STm1

D(5,25)
(x, y0, t0) and STm1

D(8,40)
(x, y0, t0). (g) Medulla neural outputs used for the signal

correlation in the ESTMD, i.e., S̃Tm3(x, y0, t0) and S̃Tm1
D(5,25)

(x, y0, t0). (h) DSTMD output E(x, y0, t0; θ). In this subplot, the DSTMD outputs to the
small target are further shown in the polar coordinate system, where the angular coordinate denotes the preferred motion direction θ while the radial coordinate
stands for the model output along this preferred direction. (i) ESTMD output D̃(x, y0, t0).

ESTMD model, respectively. From these two subplots, we can
see that both the DSTMD and ESTMD show the strongest
response at x = 250 which is the location of the small
moving target. At the other positions, both models exhibit
much weaker or even no response. For example, both models
demonstrate little response to the tree trunk located between
x = 450 and x = 480, which is regarded as a large object.
The above results indicate that both the DSTMD and ESTMD
are only interested in small target motion.

Comparing Fig. 7(h) with 7(i), we can find that the major
difference between the DSTMD and ESTMD is direction
selectivity. More precisely, in Fig. 7(h), the DSTMD has

eight outputs E(x, y0, t0; θ) corresponding to eight preferred
directions θ, θ ∈ {0, π4 ,

π
2 ,

3π
4 , π,

5π
4 ,

3π
2 ,

7π
4 }. However, in Fig.

7(i), the ESTMD only has one output D̃(x, y0, t0) lacking
of direction information. To clearly show direction selectivity,
the DSTMD outputs to the small target are illustrated in polar
coordinate (see the right part of Fig. 7(h)). As can be seen, the
DSTMD exhibits the strongest output along direction θ = π
which is consistent with the motion direction of the small
target. The other seven outputs of the DSTMD decrease as
the corresponding direction θ deviates from the small target
motion direction.
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Fig. 8. External rectangle and neighboring background rectangle of a small
target. The arrow VT denotes the motion direction of the target. w represents
target width while h stands for target height.

B. Tuning Properties

We test four basic properties of the proposed neural net-
work, including Weber Contrast sensitivity, velocity selectivity,
width selectivity and height selectivity. These four properties
are basic properties of the STMD neurons and are used
to distinguish the STMD neurons in biology [2], [5], [7].
Here, Weber Contrast sensitivity refers to that the STMD
neural response increases with the increase of Weber Contrast.
Velocity selectivity refers to that the STMD neurons show the
strongest response to a specific velocity (optimal velocity).
Above or below this optimal velocity will result in the signifi-
cant decrease of neural responses. Width selectivity and height
selectivity are similar to velocity selectivity.

We first give definitions of Weber Contrast, width and
height. As it is shown in Fig. 8, width represents the target
length extended parallel to the motion direction while height
denotes the target length extended orthogonal to the motion
direction. If the size of a target is w × h, the size of its
background rectangle is (w + 2d) × (h + 2d), where d is
a constant which equals to 10 pixels in this paper. Weber
Contrast is defined by the following equation,

Weber Contrast =
|µt − µb|

255
(31)

where µt is the average pixel value of the target, µb is the
average pixel value in neighboring area around the target.

We perform four experiments to illustrate four basic proper-
ties of the proposed neural network. In these four experiments,
image sequences which display a small target moving against
the white background, are used as the model input. The initial
parameters of the small target including luminance, velocity,
width and height, are set as 0, 250 pixel/second, 5 pixels and 5
pixels, respectively. In each experiment, we change one of four
target parameters while fix other three parameters, then record
corresponding model outputs. The recorded tuning curves are
displayed in Fig. 9.

As it is shown in Fig. 9(a), the outputs of the DSTMD and
ESTMD increase with the increase of Weber Contrast, until
reach maximum at Weber Contrast = 1. This reveals that the
DSTMD and ESTMD exhibit Weber Contrast sensitivity. In
Fig. 9(b), the outputs of the DSTMD and ESTMD all peak
at velocity = 300 pixel/s and decrease significantly when the
target velocity is above or below 300 pixel/s. This suggests
that the DSTMD and ESTMD have a preferred velocity and
exhibit velocity selectivity. Similar variation trends can be seen
in Fig. 9(c) and (d) which reveal the width selectivity and
height selectivity of the DSTMD, respectively.

In the following, we carry out an experiment to demonstrate
the hypothesis raised in Section III-C. The hypothesis is that
if the medulla neurons which provide signals to the LPTC
neurons [17]–[19], are laterally inhibited, the LPTC neurons
would show strong size selectivity. In order to demonstrate
this point, we first adopt TQD model [26], [27] to simulate
the LPTC neurons. Then we use the medulla neuron modelling
methods of DSTMD and ESTMD to simulate medulla neurons,
respectively. For TQD which receives signals from medulla
neurons modeled by DSTMD, we denote it as TQD. For
TQD which receives signals from medulla neurons modeled
by ESTMD, we denote it as TQD(LI). The only difference
between the TQD and TQD(LI) is that medulla neurons pro-
viding signals to the TQD(LI), are laterally inhibited. Finally,
we test the four basic properties of the TQD and TQD(LI).
The recorded tuning curves are presented in Fig. 10.

As it can be seen from Fig. 10(a), (b) and (c), the TQD
and TQD (LI) display little difference. They all exhibit Weber
Contrast sensitivity and velocity selectivity, but do not show
the width selectivity. In Fig. 10(d), although both TQD and
TQD (LI) have a local maximum at height = 5, they show
differences with increasing height. As the continuous increase
of the height, the output of the TQD firstly has a slight drop
and finally tends to be stable around 0.9. In contrast, the output
of the TQD (LI) decreases significantly and finally tends to be
stable around 0.05. Above results indicate that the TQD(LI)
exhibits height selectivity. This contradicts with the biological
finding that the LPTC neurons are not size selective [17]–
[19]. To avoid conflict with the biological finding on the LPTC
neurons, we adopt the new medulla neuron modeling method
and implement the second-order lateral inhibition mechanism
on the STMD neuron pathways.

C. Parameter Sensitivity

In the last section, we have demonstrated that the pro-
posed neural network shows four basic properties, i.e., Weber
Contrast sensitivity, velocity selectivity, width selectivity and
height selectivity. In this section, we further evaluate the
impacts of three sets of parameters, including (n4, τ4), (n5, τ5)
and (σ4, σ5), on the four basic properties. These three sets of
parameters are defined in (21) and (25).

We conduct three experiments to assess the effects of these
three sets of parameters, respectively. In each experiment, we
change one set of parameters while keep other two sets of
parameters at their initially assigned value [see Table I], then
record corresponding model outputs. In the first experiment,
(n4, τ4) is set as (1, 5), (2, 10), (3, 15), (4, 20), (5, 25), (6, 30).
In the second experiment, (n5, τ5) is set as (3, 15), (4, 20),
(5, 25), (6, 30), (7, 35), (8, 40). In the third experiment,
(σ4, σ5) is set as (1.0, 2.0), (1.5, 3.0), (2.3, 4.6), (2.8, 5.6),
(3.7, 7.4). The recorded tuning curves of the proposed neural
network under different parameter settings, are presented in
Fig. 11–13.

In the first and second experiment, we illustrate that the
parameter (n4, τ4) and (n5, τ5) have large impact on the
velocity selectivity and width selectivity, but show little effect
on the Weber Contrast sensitivity and height selectivity. More
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Fig. 9. Tuning properties of the proposed neural network (DSTMD) and ESTMD. In each subplot, the horizontal axis represents one of target parameters
(Weber Contrast, velocity, width, and height) while the vertical axis denotes normalized model outputs. (a) Weber Contrast tuning curves. (b) Velocity tuning
curves. (c) Width tuning curves. (d) Height tuning curves.
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Fig. 10. Tuning properties of the TQD and TQD(LI). In each subplot, the horizontal axis represents one of target parameters (Weber Contrast, velocity, width,
and height) while the vertical axis denotes normalized model outputs. (a) Weber Contrast tuning curves. (b) Velocity tuning curves. (c) Width tuning curves.
(d) Height tuning curves.
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Fig. 11. Tuning properties of the proposed neural network under different parameter (n4, τ4). In this experiment, (n4, τ4) is set as (1, 5), (2, 10), (3, 15),
(4, 20), (5, 25), (6, 30) while the other parameters are fixed. In each subplot, the horizontal axis represents one of the target parameters (Weber Contrast,
velocity, width, and height) while the vertical axis denotes normalized model outputs. (a) Weber Contrast tuning curves. (b) Velocity tuning curves. (c) Width
tuning curves. (d) Height tuning curves.
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Fig. 12. Tuning properties of the proposed neural network under different parameter (n5, τ5). In this experiment, (n5, τ5) is set as (3, 15), (4, 20), (5, 25),
(6, 30), (7, 35), (8, 40) while the other parameters are fixed. In each subplot, the horizontal axis represents one of the target parameters (Weber Contrast,
velocity, width, and height) while the vertical axis denotes normalized model outputs. (a) Weber Contrast tuning curves. (b) Velocity tuning curves. (c) Width
tuning curves. (d) Height tuning curves.

precisely, from Fig. 11(a) and (d), we can see that the increase
of (n4, τ4) have not induced any significant changes of the
Weber Contrast tuning curve and the height tuning curve.
However, with the increase of (n4, τ4), as shown in Fig. 11(b)

and (c), the peak velocity decreases while the peak width
increases. In Fig. 12, the parameter (n5, τ5) has similar effect
with (n4, τ4) on the four basic properties.

The reasons for the above results are—in the proposed



10 IEEE TRANSACTIONS ON CYBERNETICS

0 0.2 0.4 0.6 0.8 1
Weber Contrast

0

0.2

0.4

0.6

0.8

1

M
od

el
 o

ut
pu

ts

(1.0,2.0)
(1.5,3.0)
(2.3,4.6)
(2.8,5.6)
(3.7,7.4)

(a)

0 200 400 600 800 1000
Velocity (pixel/second)

0

0.2

0.4

0.6

0.8

1

M
od

el
 o

ut
pu

ts

(1.0,2.0)
(1.5,3.0)
(2.3,4.6)
(2.8,5.6)
(3.7,7.4)

(b)

0 5 10 15 20
Width (pixels)

0

0.2

0.4

0.6

0.8

1

M
od

el
 o

ut
pu

ts

(1.0,2.0)
(1.5,3.0)
(2.3,4.6)
(2.8,5.6)
(3.7,7.4)

(c)

0 5 10 15 20
Height (pixels)

0

0.2

0.4

0.6

0.8

1

M
od

el
 o

ut
pu

ts

(d)

Fig. 13. Tuning properties of the proposed neural network under different parameter (σ4, σ5). In this experiment, (σ4, σ5) is set as (1.0, 2.0), (1.5, 3.0),
(2.3, 4.6), (2.8, 5.6), (3.7, 7.4) while the other parameters are fixed. In each subplot, the horizontal axis represents one of the target parameters (Weber
Contrast, velocity, width, and height) while the vertical axis denotes normalized model outputs. (a) Weber Contrast tuning curves. (b) Velocity tuning curves.
(c) Width tuning curves. (d) Height tuning curves. 
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Fig. 14. Schematic illustration of the luminance changes of the position A
and B when a dark target successively passes position B (x′, y′) and A (x, y).
The red arrow denotes luminance decrease signal (OFF signal) while the blue
arrow represents luminance increase signal (ON signal). Let α1, w and v
stand for the distance between position A and B, target width and velocity,
respectively. Then we have ∆t1 = α1

v
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v
.

neural network, τ4 and τ5 are positively correlated to α1

v and
w
v , respectively, where α1, v and w stand for the distance
between position A and B, the peak velocity and the peak
width, respectively. Once α1 is given, the increase of τ4 (or
τ5) will result in the decrease of the peak velocity v and the
increase of the peak width w.

We further explain why τ4 and τ5 are positively correlated
to α1

v and w
v . In Fig. 14, we present the luminance changes of

position A and B when a dark small target moves from B to
A. In the equation (25), the DSTMD uses four medulla signals
from position A (x, y) and B (x′, y′) to define the output of
STMD neurons. Combining Fig. 14 with the equation (25),
we point out that these four medulla signal are: 1) ON signal
of position A (x, y), corresponding to S

Tm3

(x, y, t); 2) ON
signal of position B (x′, y′) with time delay order n4 and
time delay length τ4, corresponding to S

Mi1

D(n
4
,τ

4
)
(x′, y′, t); 3)

OFF signal of position A (x, y) with time delay order n5
and time delay length τ5, corresponding to S

Tm1

D(n
5
,τ

5
)
(x, y, t);

4) OFF signal of position B (x′, y′) with time delay order n6
and time delay length τ6, corresponding to S

Tm1

D(n6 ,τ6 )
(x′, y′, t).

In the DSTMD, we set τ4, τ5 and τ6 as ∆t1, ∆t2 and ∆t1 +
∆t2, respectively. Since ∆t1 = α1

v and ∆t2 = w
v , then we

have τ4 = α1

v and τ5 = w
v . That is, τ4 and τ5 are positively

correlated to α1

v and w
v , respectively.

In the third experiment, we demonstrate that the parameter
(σ4, σ5) has large impact on the height selectivity, but shows
little effect on the other three properties. As it can be seen from
Fig. 13(a)-(c), the tuning curves have little changes with the
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 = 
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 = 7 /4
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CCCC

DDDD

EEE

FFFF

Fig. 15. Motion trace of the small target where color denotes the direction
of the strongest output of the proposed neural network.

increase of (σ4, σ5); in contrast, the peak height of the height
tuning curve increases, as presented in Fig. 13(d). Here, we
point out that the peak height is positively correlated to the size
of the excitatory region of the lateral inhibition mechanism
(see Fig. 5(b)). In the proposed neural network, the size of the
excitatory region is determined by σ4 and σ5, where the higher
(σ4, σ5) means the larger excitatory region, i.e, the larger peak
height.

D. Direction Selectivity and Motion Direction Estimation

In this section, we illustrate how the proposed neural net-
work encode motion directions of small targets. In the experi-
ment, an image sequence which displays a small target moving
against the white background, is used as the network input.
The luminance and size of the small target are set as 0 and 5×5
pixels, respectively. The coordinate of the small target at time
t is (500− 250 · t+300

1000 , 125 + 15 · sin(4π t+300
1000 )), t ∈ [0, 1000]

ms. Fig. 15 presents the motion trace of the small target. The
motion direction of the small target varies between 142.98◦

and 217.01◦ when it moves along this motion trace.
We select six positions on the motion trace (A–F, in Fig.

15). The outputs of the DSTMD at these six positions are
normalized, then shown in polar coordinate (see Fig. 16).
In each subplot of Fig. 16, we can see that the smaller
difference between the preferred direction θ and the actual
motion direction (shown in Fig. 17), the stronger DSTMD
output tuned to this direction θ. These directionally selective
outputs are used to encode the motion direction of the small
target by the population vector algorithm. Fig. 17 and Table
II show the estimated motion direction and the actual motion
direction at the six positions. As can be seen, the difference
between the estimated direction and actual direction is smaller
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Fig. 16. (a)-(f) Normalized DSTMD outputs at the position A–F. In each subplot, the angular coordinate represents the preferred motion direction of the
DSTMD while the radial coordinate denotes the strength of the DSTMD output tuned to this preferred direction.
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Fig. 17. (a)-(f) Estimated motion direction (red) and actual motion direction (blue) at the position A–F. In each subplot, the red line is highly overlapped
with the blue line. That is, the estimated motion direction is quite close to the actual motion direction.

TABLE II
ESTIMATED MOTION DIRECTION AND ACTUAL

MOTION DIRECTION AT THE SIX POSITIONS

Position Estimated Actual Difference

A 144.25◦ 143.12◦ 1.13◦

B 152.36◦ 151.21◦ 1.15◦

C 166.83◦ 166.88◦ 0.05◦

D 180.37◦ 181.63◦ 1.26◦

E 195.93◦ 197.80◦ 1.87◦

F 214.24◦ 215.53◦ 1.29◦

than 2◦ at these six positions. We further estimate the motion
direction of the small target at each position of the motion
trace. The maximal difference between the estimated motion
direction and actual motion direction is 3.17◦. Above results
indicate that the proposed neural network provides a good
estimation for the motion direction of the small target.

E. Target Detection in Cluttered Backgrounds

In this section, we test the ability of the proposed neural net-
work for detecting small targets against cluttered backgrounds.
For a given detection threshold γ, if there is a position (x0, y0),
time t0 and direction θ0 which satisfy the DSTMD output
E(x0, y0, t0; θ0) > γ, then we believe that a small target is
detected at position (x0, y0) and time t0. Two metrics are
defined to evaluate the detection performance. That is,

DR =
number of true detections
number of actual targets

(32)

FA =
number of false detections

number of images
(33)

where DR and FA denote the detection rate and false alarm
rate, respectively. The detected result is considered correct if
the pixel distance between the ground truth and the result is
within a threshold (5 pixels).

In the first three experiments, we investigate the influences
of three target parameters (size, luminance and velocity) on

TABLE III
SETTINGS OF THE PARAMETERS INCLUDING TARGET LUMINANCE, SIZE

AND HORIZONTAL VELOCITY FOR THE FIRST THREE EXPERIMENTS

Luminance Size Velocity (V x
T

)

Experiment 1 0, 25, 50 5× 5 250

Experiment 2 0 3× 3, 5× 5, 8× 8 250

Experiment 3 0 5× 5 200, 250, 350

BV

Fig. 18. Representative frame of the input image sequence. The small target
is highlighted by the white circle. The white arrow VB denotes the motion
direction of the background.

the detection performance. In each experiment, we change one
of the target parameters while fix the other two parameters,
then record the detection performance of the models under
this parameter setting. The parameter settings of the first
three experiments are shown in Table III. All input image
sequences are produced using the same background image
where a representative frame is given in Fig. 18. In all input
image sequences, the background is moving from left to right
and its velocity is set as 250 pixel/s. A small target is moving
against the cluttered background, and its coordinate at time t
is (500 − V x

T
· t+300

1000 , 125 + 15 · sin(4π t+300
1000 )), t ∈ [0, 1000]

ms where V x
T

denotes the horizontal velocity. The receiver
operating characteristic (ROC) curves of the three experiments
with respect to target luminance, size and horizontal velocity
V x
T

, are displayed in Fig. 19.
In Fig. 19(a), we can see that the lower target luminance

is, the better ESTMD and DSTMD perform. This is because
the decrease of target luminance can induce the increase of
Weber Contrast (see Fig. S3 in the supplementary material).
Note that the ESTMD and DSTMD all show Weber Contrast
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Fig. 19. ROC curves of the first three experiments with respect to target luminance, sizes and velocities. (a) Experiment 1, different target luminance. Legend
’ESTMD-0’ and ’DSTMD-0’ represent the ROC curves of the ESTMD and DSTMD when target luminance equals to 0, respectively. Similar explanations
for other legends. (b) Experiment 2, different target sizes. Legend ’ESTMD-3’ and ’DSTMD-3’ represent the ROC curves of the ESTMD and DSTMD
when target size equals to 3 × 3 pixels, respectively. Similar explanations for other legends. (c) Experiment 3, different horizontal velocities (V x

T
). Legend

’ESTMD-200’ and ’DSTMD-200’ represent the ROC curves of the ESTMD and DSTMD when the horizontal velocity V x
T

equals to 200 pixel/s, respectively.
Similar explanations for other legends.
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Fig. 20. Experiment 4. (a) Representative frame of the input image sequence. (b) Weber Contrast of the small target during time period t ∈ [0, 1000] ms. (c)
ROC curves of the ESTMD and DSTMD. (d) Motion directions detected by the DSTMD in the sample 510, 570, 600, 630, 700 frames. No motion direction
detected by the ESTMD. (e) Actual motion directions in the sample 510, 570, 600, 630, 700 frames. (f) Motion directions detected by the DSTMD from
the 500th to the 700th frame. (g) Actual motion directions from the 500th to the 700th frame.

sensitivity, so the higher Weber Contrast can elicit the stronger
model output. From Fig. 19(b) and 19(c), we can see that when
the false alarm rate is given, the target size of 5 × 5 (or the
velocity of 250) has higher detection rate compared to the
target size of 3 × 3 and 8 × 8 (or the velocity of 200 and
350). This is because the ESTMD and DSTMD all exhibit
size and velocity selectivities. They show the strongest output
to the target whose size (or velocity) equals to 5×5 pixels (or
250 pixel/s), but weaker outputs to the object whose size (or
velocity) is higher or lower than 5× 5 pixels (or 250 pixel/s).

In the fourth and fifth experiment, we evaluate the per-
formance of the proposed neural network in different back-
grounds. Two input image sequences with different back-
grounds are displayed in Fig. 20(a) and Fig. 21(a), respec-
tively. In these two image sequences, the backgrounds are
all moving from left to right and their velocities are set as
250 pixel/s. A small target whose luminance and size are
set as 0 and 5 × 5 pixels, is moving against the cluttered
backgrounds. The coordinate of the small target at time t is
(500− 250 · t+300

1000 , 125 + 15 · sin(4π t+300
1000 )), t ∈ [0, 1000] ms.

Fig. 20(c) and Fig. 21(c) demonstrate the ROC curves for

the two image sequences, respectively. As can be seen, the
detection rates of the DSTMD (or ESTMD) in Fig. 21(c) are
much lower than those in Fig. 20(c). There are two reasons
for the above result: 1) the background in Fig. 21(a) is more
cluttered compared to Fig. 20(a), which means that it contains
more small-target-like background features and 2) the Weber
Contrast in Fig. 21(b) is much lower than that in Fig. 20(b),
suggesting that the models exhibit much weaker outputs to the
small target in the fifth experiment.

Fig. 20(d) displays the motion directions detected by the
DSTMD in the sample 510, 570, 600, 630, 700 frames while
Fig. 20(f) illustrates the motion directions detected by the
DSTMD from the 500th to the 700th frame. As it is shown,
these detected motion directions are quite close to the actual
motion directions in Fig. 20(e) and 20(g). No motion direction
is detected by the ESTMD, because it is not directionally
selective. Similar results can be seen in Fig. 21(d)-(g).

The proposed neural network is further tested on a set
of real videos. The experimental results are presented in the
supplementary materials, due to the page limit.
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Fig. 21. Experiment 5. (a) Representative frame of the input image sequence. (b) Weber Contrast of the small target during time period t ∈ [0, 1000] ms. (c)
ROC curves of the ESTMD and DSTMD. (d) Motion directions detected by the DSTMD in the sample 510, 570, 600, 630, 700 frames. No motion direction
detected by the ESTMD. (e) Actual motion directions in the sample 510, 570, 600, 630, 700 frames. (f) Motion directions detected by the DSTMD from
the 500th to the 700th frame. (g) Actual motion directions from the 500th to the 700th frame.

V. FURTHER DISCUSSIONS

In the above sections, the presented neural network
(DSTMD) demonstrated a reliable ability to detect small
targets and motion directions against complex backgrounds.
Nowadays, for vision-based mobile robots, their visual sensors
are becoming more reliable while computation ability is more
powerful. These make it possible for mobile robots, such as
unmanned aerial vehicle (UAV), equipped with the presented
neural network to detect small moving targets in the distance
in the real world.

In the insects’ visual system, numerous neurons work
together to extract different cues from the real world. For
example, the LMCs extract motion information while the
amacrine cells capture contrast information from input visual
signals [37], [38]. Integrating these two types of information
may contribute to the improvement of detection performance
of the STMD neurons in cluttered backgrounds. In the future,
the cooperation of these specialized neurons needs to be taken
into consideration.

A number of bio-inspired neural networks based on firing-
rate methods, spiking neural networks or convolutional neural
networks [39]–[41], have been used for target detection, track-
ing and navigation. Although these neural networks perform
well, they cannot distinguish small target motion from large
object motion. Detecting target motion is relatively easy,
but distinguishing different target motion in terms of the
targets’ sizes is more challenging and difficult. For example,
a naturally cluttered background always contains small targets
such as insects, and large objects such as bushes, trees or rocks.
Due to the camera motion, these large objects are moving
with the background. In this case, the above-mentioned neural
networks can detect both small and large object motion, but
cannot distinguish them.

In engineering, small target motion detection can be per-
formed by infrared detection methods [42]. However, these
infrared methods always require significant temperature differ-
ences between objects of interest (such as rockets and jets) and

the background. This largely limits their application, because
such significant temperature difference is rare in the natural
world. Different from the infrared methods, the presented
neural network uses normal images as input and provides a
vision-based method for small moving target detection.

VI. CONCLUSION

In this paper, we proposed a visual neural network
(DSTMD) to simulate the directionally selective STMD neu-
rons. Direction selectivity is obtained by correlating signals
from two positions while size selectivity is introduced by the
second-order lateral inhibition mechanism. Motion directions
of detected targets are estimated by the population vector
algorithm. Systematic experiments showed that the presented
STMD-based neural network can detect not only small moving
targets, but also motion directions against complex back-
grounds. In the future work, various visual neurons which ex-
tract different cues simultaneously, will be integrated together
to improve detection performance.
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