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Abstract—Highly constrained trajectory optimization prob-
lems are usually difficult to solve. Due to some real-world
requirements, a typical trajectory optimization model may need
to be formulated containing several objectives. Because of the
discontinuity or nonlinearity in the vehicle dynamics and mission
objectives, it is challenging to generate a compromised trajectory
that can satisfy constraints and optimize objectives. To address
the multi-objective trajectory planning problem, this study ap-
plies a specific multiple-shooting discretization technique with the
newest NSGA-III optimization algorithm and constructs a new
evolutionary optimal control solver. In addition, three constraint
handling algorithms are incorporated in this evolutionary op-
timal control framework. The performance of using different
constraint handling strategies is detailed and analyzed. The
proposed approach is compared with other well-developed multi-
objective techniques. Experimental studies demonstrate that the
present method can outperform other evolutionary-based solvers
investigated in this paper with respect to convergence ability
and distribution of the Pareto-optimal solutions. Therefore, the
present evolutionary optimal control solver is more attractive
and can offer an alternative for optimizing multi-objective
continuous-time trajectory optimization problems.

Index Terms—Trajectory optimization, Multi-objective opti-
mal control, multiple-shooting, NSGA-III optimization, Pareto-
optimal.

I. INTRODUCTION

O
VER the past couple of decades, trajectory optimization

problems have attracted a large amount of attentions

due to their increasing significance in industry and military

fields [1], [2]. Generally, this type of problem aims to find

the optimal state and control sequences so as to optimize the

predefined performance index. Relative works on this topic

can be found in various scientific and engineering applications

such as agent/robot trajectory planning [3], [4], autonomous

vehicle optimal path design [5], and spacecraft optimal control

systems [6]–[8]. More precisely, in [2] the author proposed a

time-optimal trajectory generation strategy for a multi-body

car model. Pritesh et al. [1] solved a fixed-wing unmanned

aerial vehicle trajectory planning problem by embedding hu-

man expert cognition. In addition, the trajectory generation
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problem for a class of wheeled inverted pendulum vehicles

was studied and reported in [9]. Besides, an optimal spacecraft

Sun-Earth orbital transfer trajectory was designed by applying

a hybrid invariant manifold method [6]. Similarly, the low

computational cost orbital transfer path was generated by Peng

and Wang in [7], wherein an adaptive surrogate optimization

technique was constructed. In their follow-up research [8], an

emergency transfer trajectory design mission was considered

and solved via a fast surrogate-based optimization method.

Although many optimization strategies have been designed for

trajectory planning problems, it is still challenging to generate

the optimal or near optimal state and control trajectories under

a highly constrained environment.

Since it is difficult and unrealistic to obtain an analytical

solution from a nonlinear continuous-time system, discretiza-

tion methods are usually employed to solve trajectory planning

problems with constraints. For discretization techniques, one

effective technique which has been applied in practical prob-

lems is the single shooting method. In a shooting scheme,

only the control variable is parameterized. Then numerical

integration techniques (e.g. the Euler method) are applied to

satisfy the differential constraints [10]. Another well-known

methodology is the collocation method (e.g. the pseudospectral

techniques). Three well-developed collocation methods are the

direct collocation method [11], the Chebshev pseudospectral

method [12] and the Gauss pseudospectral method [13]. Unlike

shooting techniques, collocation methods parameterize both

the control and state variables. Subsequently, the continuous-

time optimal control problem is discretized to a nonlinear

programming problem (NLP) which can be addressed via

effective nonlinear optimization techniques.

In the recent ten years, evolutionary-based optimization

techniques have become popular and have been widely imple-

mented to address optimal trajectory design problems. Com-

pared with traditional gradient-based algorithms, evolutionary

algorithms do not require initial guess values since the initial

population is chosen randomly, and it is more likely than

gradient approaches to find the global optimal solution [14].

Furthermore, there is no derivative information required in a

heuristic approach, which means it will not suffer from the

difficulty of constructing Jacobian and Hessian matrix. Con-

tributions made to apply these approaches in optimal control

can be found in literatures [15]–[20]. For example, in [15],

a constrained space plane reentry trajectory design problem

was addressed by using a genetic algorithm (GA), whereas
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Kamesh et al. [16] combined a hybrid genetic algorithm with

collocation method in order to analyze an Earth-Mars orbit

transfer problem. In [17], the authors generated the optimal

trajectory for robotic manipulators based on particle swarm

optimization (PSO). Conway et al. [18] combined evolutionary

algorithms with direct collocation to create a bi-level structural

optimal control solver. An enhanced differential evolution

method was constructed in our previous work to approximate

the optimal flight trajectory [19], where a simplex-based direct

search mechanism was embedded in the algorithm framework.

Besides, a detailed analysis and comparative study between

different optimization techniques for solving an aeroassisted

vehicle orbital hopping trajectory design issue can be referred

to [20].

The problem address in this paper is a multi-objective

optimal trajectory design for the spacecraft in the reentry

phrase. For general engineering multi-objective problems, the

evolutionary multi-objective optimization (EMO) methodol-

ogy has been illustrated as a promising tool to analyze the

relationships between objectives and calculate the pareto-front

[21]. New techniques based on EMO have been widely studied

during the past decades [22]–[26]. For example, Roy et al.

[22] developed an optimal path control strategy for solving

general multi-objective optimization problems. Ji et al. [23]

designed a modified NSGA-II algorithm to address a multi-

objective continuous berth allocation problem. In [24], the

author proposed a decomposition-based EMO technique, along

with a novel diversity factor, for handling many-objective

problems. Moreover, an enhanced many-objective PSO method

was proposed in [25], wherein a two-stage strategy was

designed so as to better balance the convergence and diversity

of the approximated pareto solutions. Furthermore, in [26] a

constraint consensus-based mechanism, together with a new

mutation operator, was studied for solving multi-objective

benchmark problems. However, most of these EMO tech-

niques cannot be directly applied to solve the multi-objective

spacecraft trajectory design problem. This is because most

of these works only targeted at unconstrained problems or

problems with algebraic equality and inequality constraints. If

an EMO is employed to calculate the multi-objective optimal

spacecraft trajectory, a proper treatment of the continuous-

time differential constraints is also required. To do this, in

this paper, a novel NSGA-III-based optimal control solver

is designed and applied to solve a multi-objective spacecraft

trajectory optimization problem. So far to the best of the

author’s knowledge, there is no adequate work that has been

reported to investigate the multi-objective reentry trajectory

design problem, and the NSGA-III-based algorithm has not

been applied to this kind of problem before. Hence, the present

study is an attempt to address these concerns.

The main contributions of the presented work include the

following aspects:

1) The spacecraft trajectory optimization problem estab-

lished in [27] is reformulated and extended to a new

multi-objective reentry optimal control model. Various

path constraints including the control rate and obstacle

avoidance are considered in the optimization process.

2) The original NSGA-III algorithm is extended by embed-

ding a discretization scheme such that this integrated

computational framework can have the capability of

handling system dynamics and producing optimal trajec-

tories for the multi-objective spacecraft optimal control

problem.

3) Different constraint handling algorithms are embedded

in the proposed framework to deal with various mission

constraints. The performance of these strategies is an-

alyzed in detail. The constraint-handling strategy, with

the best found performance, is suggested to solve the

investigated application problem.

4) The multi-objective reentry optimization model, together

with the extended NSGA-III algorithm, is tested for

different mission scenarios. Experimental results are

verified and compared with other EMOs based on the

performance indicators established in the multi-objective

domain.

This paper is constructed as follows. In Section II, a

newly-established trajectory optimization model is extend-

ed to a multi-objective optimization formulation. Following

that, Section III presents the discretization technique and

the main framework of the extended NSGA-III for solving

the discrete-time nonlinear programming model. Section IV

constructs several constraint handling strategies. Case studies

and comparative simulation results are presented in Section V.

In Section VI, the influences of some important parameters

with respect to the optimal result are analyzed. Finally, the

conclusions are drawn in Section VII.

II. PRELIMINARIES AND PROBLEM FORMULATION

A typical multi-objective optimal control problem with

the consideration of state boundary and path constraints can

be formulated as follows.

It is desired to obtain a control function u(t) ∈ R
u such

that the multiple objective functions/performance indices can

be minimized:

min(J(x(t), u(t))) = [J1(x(t), u(t)), J2(x(t), u(t)), ...,
JM (x(t), u(t))]

(1)

in which M denotes the number of mission objectives; x(t) ∈
R
x represents the state variable which is required to satisfy

the dynamic constraints:

ẋ(t) = f(x(t), u(t), t) (2)

the state boundary constraints:

ζ(x(0), x(tf ), t0, tf ) = 0 (3)

and the state and control path constraints:

P (x(t), u(t), t) ≤ 0 (4)

A. Multi-objective spacecraft trajectory optimization problem

The overall objective of the spacecraft trajectory op-

timization problem studied in this work is to generate a

constrained optimal flight trajectory, for a given vehicle, to

strike the predetermined terminal condition in maximum or

minimum performance indices. The performance index defines
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optimality, which is mission-dependent and typically designed

by the mission planners. In most cases, equality and inequality

constraints are adhered to the equations of motion such as

variable box constraints, no-fly zones and mission specified

path restrictions. These limitations are usually modeled into

equations and employed to search the optimal control se-

quence. Therefore, the first step is to formulate the continuous-

time spacecraft optimal control optimization problem used

throughout this research.

B. Dynamics

The dynamics of the spacecraft, together with the initial

boundary conditions, are given by the following system of

equations [19], [28]:

ṙ = V sin γ

θ̇ = V cos γ sinψ
r cosφ

φ̇ = V cos γ cosψ
r

V̇ = −D
m − g sin γ

γ̇ = L cosσ
mV + (V

2−gr
rV ) cos γ

ψ̇ = L sinσ
mV cos γ + V

r cos γ sinψ tanφ

(r(0), φ(0), θ(0), V (0), γ(0), ψ(0))
= (r0, φ0, θ0, V0, γ0, ψ0)

(5)

where r stands for the distance from the center of the Earth.

θ and φ stand for the longitude and latitude, respectively. V
represents the speed, while γ denotes the flight path angle.

ψ represents the azimuth angle, whereas m is the mass of

the spacecraft. The angle of attack α and bank angle σ are

the two control variables. g is the gravity acceleration. For

simplicity reasons, the dynamic equations described in Eq.(5)

is abbreviated as ẋ = f(x, u), x(0) = x0, where x ∈ R
6 and

u ∈ R
2. L(α, ρ) and D(α, ρ) are the lift and drag forces and

they are functions of α and the density of the atmosphere ρ.

The simplification of the atmosphere model is given by ρ =
ρ0 exp ((r − r0)/hs), in which ρ0 is the density of atmosphere

at sea-level, whereas hs denotes the density scale height.

C. Motivation and mission objective

It is worth mentioning that most existing spacecraft

trajectory design works are targeted at single-objective prob-

lems. However, in reality, for optimal trajectory design, a lot

of missions may have multiple mission requirements. These

objectives must be frequently considered during the path

planning phrase, and this brings the development of multiple

objective trajectory optimization techniques.

For the reentry trajectory optimization problem investigat-

ed in the present study, four competitive objective functions

are considered so as to take more real-world requirements

into account (e.g. J = [J1, J2, J3, J4]). The first objective

function to be optimized is the cross range value, i.e. the

terminal longitude φ(tf ). A larger cross range value is usually

desired and this can be an important indicator to measure

the entry flying ability of the space vehicles. In addition,

minimizing the total aerodynamic heating and the heat flux

are also chosen as the objectives since the vehicle structure

integrity is largely influenced by these two criteria. Moreover,

since it is not desirable to have many oscillations during the

flight, a smoothness indicator is also chosen as the objectives.

Therefore, the mission objectives selected for the analysis are

established as follow:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

max J1 = φ(tf )

min J2 =
∫︀ tf
t0
Q̇(t)dt

min J3 =
∫︀ tf
t0
γ̇(t)dt

min J4 = max Q̇(t)

(6)

D. Constraints

For safety reasons, the spacecraft entry manoeuvre should

satisfy different types of constraints. During the entire flight

mission, all the variables should vary in their allowable range

known as box constraints and it can be written as:

xmin ≤ x ≤ xmax, umin ≤ u ≤ umax (7)

Early studies on spacecraft trajectory design problems on-

ly used box constraints to limit the controls [28]. However, in

practice, certain requirements for the rate of control variables

should be considered such that the control sequence and its

derivative cannot vary significantly. These requirements are

achieved using the lag equations shown as follows:
{︂

α̇ = kα(αc − α)
αminc ≤ αc ≤ αmaxc

{︂

σ̇ = kσ(σc − σ)
σminc ≤ σc ≤ σmaxc

(8)

Eq.(8) is adhered to Eq.(5) in the evolutionary phase (will be

discussed in the next section), thereby increasing the state-

space order by two. For this case, αc and σc are now treated

as the control variable.

In order to protect the vehicle structure integrity, three

path constraints, namely aerodynamic heating, dynamic pres-

sure and load factor, are also taken into account.

Q̇ = KQρ
0.5V 3.07(c0 + c1α+ c2α

2 + c3α
3) < Q̇max

Pd =
1
2ρV

2 < Pmaxd

nL =
√
L2+D2

mg < nmaxL

(9)

where Q̇max, Pmaxd and nmaxL represent the maximum accept-

able heating rate, dynamic pressure and acceleration, respec-

tively.

To ensure the terminal guidance, the state variable at

the final time instant must satisfy the terminal constraints.

Specifically, the error of altitude, speed and flight path angle

at the final time instant should be less than a certain limit.

This can be expressed as:

ex =

⎡

⎣

er
ev
eγ

⎤

⎦ =

⎡

⎣

|rf − r(tf )|
|Vf − V (tf )|
|γf − γ(tf )|

⎤

⎦ ≤

⎡

⎣

emaxr

emaxv

emaxγ

⎤

⎦ (10)

Remark 1. It should be noted that the terminal error constraints

(described in Eq.(10)) can be removed if collocation schemes

are used to discretize the dynamic model. Since for direct

collocation methods, the terminal state of the trajectory can be

set to the target state, whereas for other discretization methods

like multiple shooting, it does not collocate the terminal state

variables.
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In general, for a dynamic mission profile, the no-fly zone

constraints should be included for geopolitical consideration

or threat/obstacle avoidance. For the case investigated in this

paper, the no-fly zone constraints are described as circular

exclusion zones with infinite altitude [4], [28]. Suppose the

center of the jth no-fly zone is (θj , φj) and its radius is Rj ,
then the no-fly zone constraints can be modeled as:

NF = argmin
√︀

(θ − θj)2 + (φ− φj)2 ≥ Rj
j = 1, 2, ..., Nzone

(11)

where Nzone is the number of no-fly zones.

III. AN EXTENDED NSGA-III ALGORITHM WITH

CONSTRAINT HANDLING

A. Discrete-time optimal control model

This section presents the multi-objective optimization

method used to solve the problem. It is worth noting that

in [29], the authors designed and applied a fuzzy physical

programming algorithm to transform multiple objectives into

a single objective formulation. Subsequently, an interactive

strategy was incorporated in the algorithm framework so

as to better control the optimization process [30]. It was

shown that this transformation technique is able to produce a

compromised solution that can satisfy the designer’s specific

preference requirements. However, one main disadvantage of

this approach is that its effectiveness is largely depended on the

designer’s experience and physical knowledge of the problem.

If the preference regions defined by the mission planners are

not accurate, then the results might not be credible.

The motivation of using MOEAs mainly relies on their

ability in producing a set of approximated pareto-optimal

solution. Moreover, it is easy to implement and requires less

physical knowledge of the problem. In addition, it should

be mentioned that for most existing gradient-based optimal

control solvers, it is assumed in the implementation that all

the objectives and constraints have continuous first and second

order derivatives. In some practical control problems, however,

the nonlinearity and nonsmoothness of the objectives or path

constraints can be high. That indicates it is hard to obtain

the gradient information for constructing the Jacobian and

Hessian matrix. This problem becomes more difficult when

the dimension of the objective function increases. Therefore,

in order to solve the multi-objective optimal control problem

constructed in Section.II, an extended NSGA-III algorithm

is proposed. Since the original NSGA-III algorithm has no

capability in dealing with dynamic constraints (e.g. the vehicle

dynamics), discrete techniques should be implemented such

that the continuous-time problem can be transcribed to static

NLPs. The discretization scheme applied in this paper is

based on the multiple shooting technique. That is, the control

variables are parameterized at temporal nodes [t0, t1, ..., tf ].
Then, the equations of motion are integrated with a numerical

integration method, e.g. forth-order Runge-Kutta method. For

convenience, let xk = [rk, θk, φk, Vk, γk, ψk]
T denotes the

approximation of states at tk time instant, and ξk stands for the

step length for the kth time interval [tk, tk+1]. The discretized

version of the continuous-time problem with constraints is then

formulated as:

minimize J = [J1, J2, J3, J4]
subject to xk+1 = xk + ξk

∑︀s
i=1 bif(xki, uki)

xki = xk + ξk
∑︀s
j=1 aijf(xkj , ukj)

g(xki, uki) ≥ 0
x(0) = x0
i, j = 1, ..., s, k = 0, ..., Nk − 1

(12)

in which Nk denotes the number of discretized time nodes.

g(x, u) represents the inequality constraints given by Eq.(7)-

(11). aij and bi are discretization coefficients and 1 ≤ i, j ≤ s.
In Eq.(12), xkj and ukj are the intermediate state and control

variables on the current time interval [tk, tk+1]. In addition,

the intermediate time point tki holds tki = tk + ciξk, 0 ≤
c1 ≤ · · · ≤ cs ≤ 1. Eq.(12) is obtained by using an s-stage

multiple shooting scheme. The order conditions with respect

to multiple shooting discretizations for differential equations

are detailed in Table.I

TABLE I: Order conditions of multiple shooting schemes

Order/Stage s Conditions: ci =
∑︀s

j=1
aij , dj =

∑︀s
i=1

biaij
s = 1

∑︀
bi = 1

s = 2
∑︀
di = 1

2

s = 3
∑︀
bic

2

i = 1

3
,
∑︀
dici = 1

6

s = 4
∑︀
bic

3

i = 1

4
,
∑︀
dic

2

i = 1

12
,∑︀

biciaijcj = 1

8
,
∑︀
aijcjdi = 1

24

Following the use of the direct multiple shooting tech-

nique, the resulting multi-objective NLP problem is solved

by the NSGA-III algorithm, which is detailed in the next

subsection of this paper.

B. Reference points generation

The framework of the classic NSGA-III algorithm is

constructed based on the original NSGA-II approach with

modifications in its selection mechanism. Both of these two

techniques implement crossover and mutation operator to cre-

ate the offspring generation. In addition, these two techniques

use fast non-dominated sorting technique to assign the non-

dominant rank for each individual. However, unlike NSGA-

II, the maintenance of diversity among population members

in the newly proposed method is preserved by creating and

adaptively updating a number of well-distributed reference

points. For completeness, a brief description of the way used

to select the reference points is recalled.

It should be noted that the way of choosing reference

points can either be predetermined in a structured manner or

specified preferentially by the decision makers. In this study, as

suggested in [31], a systematic approach that places points on

a normalized hyperplane (an (M-1)-dimensional unit simplex)

is conducted such that the reference points can be equally

distributed to all objective axes and have an intercept of one

on each axis. The total number of reference points (H) can be

determined by H = CpM+p−1, where M denotes the index of

objectives, and p represents the number of divisions along each

normalized objective. Take the entry trajectory optimization

problem discussed in Section II as an example, if seven

divisions (p = 7) is selected for each normalized performance
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index axis, then for an M = 4 problem, H = C7
4+7−1 or

120 reference points will be chosen. In NSGA-III, the main

aim for designing a set of reference points is to associate

each population members with each of these reference points

in some sense. Since the created reference points are widely

distributed on the entire normalized objective space, it can be

expected that the obtained individuals are widely distributed

on or near the true pareto-optimal front. The algorithm used

to associate each individual can be found in [31].

Remark 2. It should be noted that in [32] and [33], two

multi-objective evolutionary methods were tested to solve a

multi-objective spacecraft orbital hopping problem. Both of

these two algorithms used the crowding distance mechanism

to maintain the diversity of population. That is, the last front

members having the largest crowding distance values are

chosen. However, based on the results obtained in [32] and

other literature [34], this domination principle might lack the

ability to assign sufficient selection pressures and emphasize

feasible candidates, thus resulting in poor-distributed pareto

front. Since the NSGA-III algorithm uses a niching process

and a set of reference points distributed widely on the entire

normalized objective-plane, it is likely to find near pareto-

optimal solutions corresponding to the predefined reference

points. Hence this algorithm is selected to generate the pareto-

optimal solution for the problem considered in this paper.

C. Combination of improved NSGA-III with Runge-Kutta dis-

cretization scheme

By applying the multiple shooting discretization tech-

nique, a series of static NLP problem shown in Eq.(12) can

be obtained. For simplicity reasons, this equation is further

rewritten as:

minimize J = (J1, J2, J3, J4)
subject to hk(u) = 0, k = 1, 2, ..., E,

gj(u) ≤ g*, j = 1, 2, ..., I,
umin ≤ u ≤ umax, u ∈ R

nc×Nk .

(13)

where I and E represent the total number of inequality and

equality constraints, respectively. g* is the maximum allowable

value for the inequality constraints and nc is the dimension

of control variables. Since for multiple shooting method,

only the control variables are parameterized, the optimiza-

tion parameters of the corresponding NLP are the control

sequences shown in Eq.(13). One advantage of using the

combination of the multiple shooting and NSGA-III algorithm

for solving the multi-objective optimal control problem is that

the control box constraints (described in Eq.(8)) and equations

of motion (Eq.(5)) can be satisfied automatically by initializing

all population members within the specified lower and upper

bounds and by integrating the dynamic model forward through

numerical integration (e.g. RK-4). Specifically, if the initial

population contains NP individuals, then all the decision

variables can be generated randomly according to the limits of

demanded angle of attack and bank angle (see Eq.(14). This

indicates that every decision variable can be in the feasible

zone.

αc = αminc + rand(·)× (αmaxc − αminc )
σc = σminc + rand(·)× (σmaxc − σminc )

(14)

Then combining all the optimization parameters, the structure

of the individual can be defined by a matrix of decision

variables as shown in Eq.(15), where i = 1, 2, ..., Np and

j = 1, 2, ..., Nk.

ui =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

α1,1
c , · · · α1,j

c , · · · α1,Nk
c ,

... · · ·
... · · ·

...

αi,1c , · · · αi,jc , · · · αi,Nk
c ,

... · · ·
... · · ·

...

α
Np,1
c , · · · α

Np,j
c , · · · α

Np,Nk
c ,

σ1,1
c , · · · σ1,j

c , · · · σ1,Nk
c

... · · ·
... · · ·

...

σi,1c , · · · σi,jc , · · · σi,Nk
c

... · · ·
... · · ·

...

σ
Np,1
c , · · · σ

Np,j
c , · · · σ

Np,Nk
c

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(15)

Moreover, another advantage of using multiple shooting

discretization scheme is that a good accuracy can also be

achieved and controlled by the user if the step length of

the temporal nodes is small enough [35]. In terms of the

discretization scheme used in this paper, the error order can

be approximated as 𝒪(‖ T
Nk

‖s∞), in which T = tf − t0 is the

time duration of the mission.

IV. DIFFERENT CONSTRAINT HANDLING STRATEGIES

Normally, most of the spacecraft trajectory optimization

problems are highly constrained. However, there is not suffi-

cient literature on handling strict equality and inequality path

constraints in a multi-criteria optimal control problem, since

most of the existing multi-objective evolutionary solvers were

developed for solving unconstrained problems. In [36], the

author extended the MODE/D to a constrained MOEA/D-DE

algorithm and suggested to use a penalty function P to handle

constraints. However, it is usually difficult to find a proper

balance between the objective term and the path constraint

violation term for the studied problem.

To effectively deal with the infeasibility of the control

sequence, this study applies the definition of constraint viola-

tion degree V and this will be the primary metric used for the

constraint handling strategies illustrated in the following sub-

sections [19]. In terms of the inequality constraints described

in the optimization model (Eq.(13)), the violation degree for

relation “≤” (i.e. gj(u) ≤ g*j ) can be defined as:

µgj (u) =

⎧

⎪

⎨

⎪

⎩

0, gj(u) ≤ g*j ;
gj(u)−g∗i
gjmax−g∗j

, g*j ≤ gj(u) ≤ gmaxj ;

1, gj(u) ≥ 2g*j .

(16)

where gj(u) represents the jth constraint value for each indi-

vidual. Based on Eq.(16), the tolerance range is (g*j , g
max
j ),

where gmaxj stands for the maximum value of the constraint

for the individual. If an individual can satisfy the constraint

gj , then according to Eq.(16), its violation degree value should

equal to 0.

For equality constraints (i.e. hk(u) = h*k), the tolerance

region (hmink , hmaxk ) can be chosen based on the minimum
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and maximum constraint value for the individual. Therefore,

the relation “=” is defined as:

µhk
(u) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1, hk(u) ≥ hmaxk ;
hk(u)−h

∗

k

hmax
k

−h∗

k

, h*k ≤ hk(u) ≤ hmaxk ;

0, hk(u) = h*k;
h∗

k−hk(u)

h∗

k
−hmin

k

, hmink ≤ hk(u) ≤ h*k;

1, hk(u) ≤ hmink .

(17)

Then the constraint violation for each individual in the

current generation can be calculated as:

Vi =

I
∑︁

j=1

µgj (u) +

E
∑︁

k=1

µhk
(u), i = 1, 2...NP (18)

Based on the violation degree function established above,

each individual can be associated with all the constraints. The

magnitude of the solution infeasibility can be directly reflected

by the value of the violation function.

A. Superiority of feasible solution method

The superiority of feasible solution (SF) constraint han-

dling strategy is introduced in this subsection. From Eq.(18),

the violation degree of the ith individual is the sum violation

of all the constraints and based on this definition, the V-based

dominant rule “≻” can be given by:

Definition 1. [37] (V-based dominant rule “≻”) For two

individuals u1 and u2 in the current population, u2 is said

to be dominated by u1 if and only if one of the following

relationships is satisfied:

1) V (u2) > V (u1) > 0.

2) V (u1) = 0, V (u2) > 0.

3) V (u1) = V (u2) = 0, and for each objective function

i, Ji(u1) < Ji(u2) is satisfied (Classic dominance

definition).

As shown in Definition.1, the feasible individual can

always dominate the infeasible one, while the individual with

smaller violation degree always dominates the one with higher

violation value. After the V-based dominance relationships are

determined, each candidate among the current population can

be divided into different ranks. It should be noted that for high-

ly constrained spacecraft trajectory optimization problems, it

is likely that all of the individual among the population are

infeasible solution in the first several generations. Then, three

problem types can be introduced. If all the individuals in the

current population are infeasible solutions, the problem type

is set to 0, whereas if some of the individuals are feasible

solutions, the problem type is set to 0.5. Correspondingly,

Problem type = 1 means all the candidates among the

population are feasible solutions. To improve the algorithm ef-

ficiency, for the first several generations (Problem type = 0),

the non-dominant rank can be simply assigned by sorting the

violation degree of the individuals such that the computational

complexity can be reduced. Supposing the NSGA-III algorith-

m, together with the SF strategy, is adopt to solve a typical

high index spacecraft trajectory optimization problem defined

in Section II, the overall optimization procedure is summarised

in the Pseudocode (see Algorithm 1).

Algorithm 1 Overall procedures of the SF-based algorithm

1: Initialize the first population P1 = (u1, ..., uNp
) and other

control parameters of the proposed algorithm;

2: /*Main Loop*/

3: for generation G := 1, 2, ...Gmax do;

4: (a). Calculate the objective function values J and the

5: violation degree according to the Eq.(16)-(17) for

6: each individual;

7: (b). Generate offspring population QG by using the

8: recombination and mutation processes [31];

9: (c). Combine QG with PG to obtain RG (e.g. RG =
10: QG ∪ PG);

11: (d). Specify the problem type by checking the violation

12: degree of individuals:

13: if Problem type = 0 then

14: Get all non-dominated ranks by sorting the

15: violation degree.

16: end if

17: if Problem type = 0.5 or 1 then

18: assign all non-dominated ranks using the

19: V-based dominant rule.

20: end if

21: (f). Select the best Np individuals as the candidates of

22: the new generation SG via reference point-

23: based selection operation [38];

24: (g). Set G = G+ 1;

25: end for

26: Output the optimal control pareto solution;

B. Penalty function based method

Another constraint handling strategy that can be applied

to deal with infeasible solutions is the penalty function (PF)

based method. By applying the violation degree information,

this approach transforms a constrained problem into an uncon-

strained version. To penalize the infeasible solution among the

population, a constraint violation term is introduced to form

an augmented fitness function. This process can be given by:

J(u) =

{︂

J(u), if all constraints can be satisfied;

J(u) + P, otherwise.

where the penalty term P = c(
∑︀I
j=1 µgj (u)+

∑︀E
k=1 µhk

(u)),
where c stands for a positive constant named penalty factor.

After calculating the augmented fitness function for each

individual, the classic nondominant sorting process will be

processed to rank all the candidates. Compared with the

SF strategy, PF method tends to have better capability to

maintain the population diversity. This is because in SF,

feasible solutions can always dominate the infeasible one. As a

result, some “good” infeasible solutions will be removed from

the population. If a problem contains disconnected feasible

regions, the SF method might not perform properly [26].

C. Multi-objective constraint handling technique

The multi-objective constraint handling strategy (MOCH)

is based on the concept of multi-objective optimization. It tran-

scribes the constrained multi-objective problem into an uncon-
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strained version by defining the total constraint violation value

as an additional objective, thereby increasing the objective s-

pace by one. More precisely, for the problem considered in this

paper, we can define J5 = min
∑︀I
j=1 µgj (u)+

∑︀E
k=1 µhk

(u).
Different from the PF technique, the tuning process of the

penalty factor is no longer necessary for MOCH. However,

one of the main disadvantages with respect to this strategy

is that it may result in a significant increase in terms of the

processing time. Besides, the extra number of objective has

negative influences in terms of the searching procedures [23].

The aforementioned three constraint handling methods

are all established and embedded in the proposed evolutionary

optimal control solver. In this study, we are interested in

finding the most suitable constraint handling method to help

the infeasible trajectories to quickly move toward the feasible

path region.

D. Computational complexity analysis

The computational complexity of one generation of the

proposed algorithm for solving trajectory optimization prob-

lems is presented in this subsection. Since each individual

in the population represents a trajectory, the initialization of

all the trajectories using multiple-shooting scheme requires

𝒪(sNpNk) computations, where s is the number of inner

steps in the Runge-Kutta scheme (e.g. if forth-order Runge-

Kutta scheme is used, then s = 4). According to [31], the

calculation and normalization of objectives require 𝒪(M2Np)
computations, whereas 𝒪(MN2

p ) computations are needed for

the association of population members with reference points.

The computational complexity of the three constraint han-

dling strategies is then analyzed. 𝒪(NpE) and 𝒪(NpI) com-

putations are required to calculate the equality and inequality

constraints of a 2Np population members, respectively. If the

PF method is chosen as the constraint handling method, the

calculation of the augmented fitness function requires 𝒪(Np)
operations. Based on the augmented fitness value, the classic

nondominant sorting process will be implemented to rank all

the candidates, and this requires 𝒪(Np log
M−2Np) operations

[39]. For the SF method, as indicated in Algorithm.1, the

identification of the problem type requires 𝒪(Np) operations.

Once the problem type is determined, the operation times for

Problem type = 1 are 𝒪(Np log
M−2Np), which is the same

with the classic non-dominant sorting. For Problem type =
0.5, the worst-case computational complexity can be reduced

to 𝒪((Np−Ninf ) log
M−2(Np−Ninf ))+𝒪(Ninf logNinf ),

where Ninf stands for the number of infeasible solutions

among the current population. As for Problem type = 0, the

worst-case computational operation is 𝒪(Np logNp). From

the complexity analysis, it is obvious that for Problem
type = 0.5 and 1, the operations required for the SF strategy

are less than that of PF.

Essentially, the SF method divides the solution-finding

process into two steps: finding feasible candidates and optimiz-

ing the objectives. In the first step, the only information used

is the constraint violation value. It considers that any feasible

solution can be better than the infeasible one. This allows the

SF algorithm can get quickly rid of infeasible solutions.

As for the MOCH approach, since the total constraint

violation value is treated as an additional objective function,

the objective space is increased by one and the problem

becomes an unconstrained version. Therefore, the compu-

tational complexity of the sorting process is increased to

𝒪(Np log
M+1−2Np), which is generally higher than the SF

and PF methods.

V. EXPERIMENTAL RESULTS

In this section, the simulation results of the proposed

algorithm on the four-objective spacecraft entry trajectory

optimization problem described in Section II are presented.

The vehicle’s mass is given by m = 6309.43slug, while

the final state error constraints are set as emaxr = 3000ft,
emaxV = 350ft/s and emaxγ = 1deg. The following parameters

of three no-fly zone constraints are used to construct the

corresponding inequality constraints:

1). Center: θ1 = 30∘, φ1 = 7.5∘; Radius: R1 = 5∘;

2). Center: θ2 = 60∘, φ2 = 15∘; Radius: R2 = 5∘;

3). Center: θ3 = 70∘, φ3 = 20∘; Radius: R3 = 5∘;

The parameters of the extended NSGA-III are given as

follows: the crossover probability pc = 1.0, crossover index

etac = 20 and mutation index etam = 20. The maximum

number of generations is given as 500. In addition, the whole

entry flight time is set as 2000s and all the results are

displayed with a fixed grid of Nk = 200 points. In this way,

the optimization parameter for the resulting NLP problem

becomes nc × Nk = 2 × 200 = 400. The discretization

parameters bi and ci used for the simulation are assigned as

bi = ( 16 ,
1
3 ,

1
3 ,

1
6 ) and ci = (0, 12 ,

1
2 , 1). The non-zero elements

of aij are a21 = 0.5, a32 = 0.5 and a43 = 1, respectively. It

is obvious that aij , bi and ci follow the conditions (s = 4)

given by Table.I

Remark 3. For most optimal control problems, since the prob-

lem may have discontinuous points or nonsmooth segments,

the quality of solution tends to be affected by the mesh

refinement process. This process is designed to analyze if

the current temporal set is reasonable and adaptively update

the temporal set. However, it is difficult and unrealistic to

incorporate this process in an evolutionary-based NLP solver.

Therefore, to decrease the effect of nonsmoothness segments

and discontinuity points, a large number of time nodes, which

is uniformly distributed along the whole time history are

chosen and fixed as the discrete temporal points.

A. Performance evaluation indicators

To evaluate the performance of the constructed method,

certain evaluation metrics established in the multi-objective

domain should be introduced and adopt. Two performance

metrics that have been widely applied are the inverted gener-

ational distance (IGD) and the hypervolume value (HV). For

completeness, these two performance metrics are introduced.

1). IGD [40]: Inverted generational distance is an in-

dicator that has been favored by researchers. This value

reflects both the convergence and diversity of the obtained

pareto-optimal solution. To calculate this performance metric,

the information of the true pareto front should be utilized.
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However, this information is usually unavailable for most

practical multi-objective engineering optimization problems.

2). HV [40]: The hypervolume value of the calculated

pareto front is the size of the objective space dominated

by those solutions. This indicator can be used to reflect the

spread of the approximated solution on the objective space. To

compute the HV metric, the following equation can be applied:

HV (P ) = Leb(
⋃︁

u∈P

[J1(u), R1]× · · · × [JM (u), RM ]) (19)

in which Leb(·) denotes the Lebesgue measure. R =
[R1, R2, ..., RM ]T represents a reference point which is domi-

nated by all points on the pareto front. Compared with the IGD

indicator, one important advantage of using the HV metric

is that it does not rely on the true pareto-optimal solution.

Therefore, in this paper, the HV value is applied as the primary

performance metric for the experimental study.

B. Performance of different constraint handling methods

As discussed in Section IV, a comparative study in terms

of the performance of different constraint handling strategies

is firstly carried out. Three mission cases are tested in order

to illustrate the performance of constraint handling methods

under different path constraint settings. These mission cases

are summarised as follows:

∙ Case 1: [Q̇max, Pmaxd ,nmaxL ] = [200, 280, 2.5].
∙ Case 2: [Q̇max, Pmaxd ,nmaxL ] = [150, 250, 1.25].
∙ Case 3: Case 1 with no-fly zone constraints.

TABLE II: Performance of constraint handling methods

Case 1 Case 2 Case 3

Factor SF PF MOCH SF PF MOCH SF PF MOCH

Ifst 19 45 97 65 88 201 52 60 164

Iall 52 83 228 124 167 484 97 129 426

Nf 50 42 17 37 26 3 45 31 7

By limiting the maximum number of generations as 500,

20 trials were carried out independently for Case 1 to 3

using different constraint handling methods. The correspond-

ing statistical results are tabulated in Table.II. This table

contains three indicators. The first indicator Ifst is the average

iteration for finding the first feasible solution, while the second

indicator Iall represents the average iteration for making all

the population member feasible. The third indicator Nf stands

for the average number of pareto-optimal solutions obtained.

As can be seen from the statistical results, the SF method

can generally perform better than its counterparts in terms of

finding feasible solutions for different mission cases. Based on

the Nf results, it can be observed that getting rid of infeasible

solution quickly can have positive influences in terms of

obtaining more pareto-optimal solutions for the multi-objective

spacecraft entry trajectory design problem. Moreover, when

the constraint condition becomes tighter, the MOCH method

might fail to drive all candidate solutions into the feasible

region, thereby resulting in limited final pareto set. There-

fore, although the use of SF might lose population diversity

compared with PF and MOCH techniques, it tends to be more

competitive for handling the investigated problem with various

mission constraints.

C. Flight trajectory problem without no-fly zone constraint
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Fig. 1: Time history of states and controls (case 1)

Time (s)

0 500 1000 1500 2000

Q
 (

B
T

U
)

0

50

100

150

200

Time(s)

0 500 1000 1500 2000

D
y
n

a
m

ic
 p

re
s
s
u

re
 (

lb
)

0

100

200

300

Time (s)

0 500 1000 1500 2000

L
o

a
d

 f
a

c
to

r

0

1

2

3

time (s)

0 500 1000 1500 2000

A
tm

o
s
p

h
re

 ρ

×10-4

0

0.5

1

Fig. 2: Time history of path constraints (case 1)

This subsection presents the optimal results obtained

using the extended NSGA-III algorithm. As analyzed in Sec-

tion V.A, the SF technique is implemented as the constraint

handling strategy. Priori to displaying the optimal trajectory

in detail, the relationship between different objectives is an-

alyzed. From the objective and system equations (e.g. Eq.(5)

and Eq.(6)), it can be analyzed that an increase in the cross

range φ will result in a slower deceleration, thereby generating

more heat load. Hence maximizing the final latitude (cross

range) and minimizing the aerodynamic heating are conflicting

objectives. In addition, it is worth noting that the maximum

heat flux value is usually achieved at the point where the

vehicle completes the first descent phase. Minimizing the

maximum heat flux value tends to enlarge the magnitude of the

continuing skip hops so as to achieve the final velocity value,

which means the path smoothness will be sacrificed. Thus

minimizing the heat flux and minimizing the path smoothness

indicator are also conflicting objectives.

The optimal trajectories obtained without considering the

no-fly zone constraint are firstly presented. Based on the ve-

hicle dynamics, mission objectives and constraints illustrated

in Section II, the results in the last population are shown in

Fig.1 and Fig.2.

As can be observed from Fig.1 and Fig.2, the proposed

multi-objective optimal control solver manages to generate

state trajectories between the predetermined initial and final
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conditions without violating path constraints. Therefore, the

thermal and structural safety of the entry vehicle can be

guaranteed, which is the prerequisite for the validity of an

optimal control solver to spacecraft trajectory optimization

problems. To effectively capture the true behaviour of the flight

vehicle, a high density of mesh grids is required. However,

the high density of nodes tends to have negative influences in

terms of the evolution and convergence processes. One way

to handle this problem is to introduce the lag equation as

described in Eq.(8). The function of the lag equation is similar

to a first-order filter, that can filter the control input signal and

make the trend in the actual control history smoother. This is

apparent in Fig.1 (see the bank angle profile).

Since all the trajectory in the final population are feasible

solutions, the next step is to verify the pareto-optimality and

improvement of the proposed algorithm over other multi-

objective solvers. An attempt is made to compare the so-

lutions obtained using the proposed method, MOPSO [41]

and MOEA/D [21] approaches on maximizing final latitude

versus minimizing heating pane. Non-optimal results may

produce higher heat loads than necessary for a desired cross

range. Fig.3 shows the Pareto fronts obtained by different

evolutionary approaches investigated in this paper. As illus-

trated in Fig.3, the improved NSGA-III algorithm generally

preforms better than other multi-objective heuristic solvers

for solving the multi-criteria trajectory planning problem,

since the pareto set calculated by applying the proposed

technique can cover the pareto front calculated using other

heuristic algorithms. More precisely, the first front set (rank 1)

obtained by the proposed algorithm contains 49 pareto-optimal

solutions, whereas there are only 39 and 23 pareto-optimal

solutions calculated using MOEA/D and MOPSO lying on

the first front, respectively. In addition, the distribution of

pareto fronts obtained using the extended NSGA-III is more

uniform in the objective space. This is because the supply

of a set of well-distributed reference points and the niching

methodology in searching pareto-optimal solutions associated

with every reference point have made the diversity preservation

of obtained solutions more efficient and reliable.
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Fig. 3: Pareto front obtained via three solvers (Case 1)

Due to the randomness of evolutionary-based optimiza-

tion methods in initialization, it is not enough to analyze the

simulation results in only one trial. In order to eliminate the

influences of randomness, this study has implemented three

TABLE III: Statistical boundary results (mission case 1)

Extended NSGA-III er(ft) eV (ft/s) eγ(deg)

Maximum 2773.92 240.88 0.95

Minimum 16.60 5.27 0.00

Average 1047.74 106.50 0.34

Standard deviation 786.57 64.43 0.26

MOPSO er(ft) eV (ft/s) eγ(deg)

Maximum 2977.40 316.04 1.00

Minimum 24.18 19.49 0.00

Average 1313.51 127.52 0.50

Standard deviation 979.56 85.45 0.29

MOEA/D er(ft) eV (ft/s) eγ(deg)

Maximum 2943.56 267.81 0.99

Minimum 29.27 12.03 0.00

Average 1169.23 162.53 0.39

Standard deviation 866.93 85.71 0.29

TABLE IV: Statistical objective results (mission case 1)

Extended NSGA-III J1 J2 J3 J4

Maximum 32.51 126.99 1.17 150.01

Minimum 30.26 106.32 0.73 143.77

Average 31.52 115.27 0.95 145.96

Standard deviation 0.55 5.29 0.11 1.74

Variance 0.31 27.99 0.01 3.05

MOPSO J1 J2 J3 J4

Maximum 32.23 131.63 1.17 154.19

Minimum 30.31 114.21 0.82 145.27

Average 31.14 120.66 1.01 148.08

Standard deviation 0.69 6.21 0.08 2.03

Variance 0.48 38.59 0.01 4.11

MOEA/D J1 J2 J3 J4

Maximum 32.22 128.67 1.20 152.85

Minimum 29.59 107.86 0.78 144.78

Average 31.16 117.40 0.98 148.29

Standard deviation 0.73 6.15 0.12 1.82

Variance 0.54 37.89 0.01 3.32

evolutionary-based solvers to run each mission scenario in 20

trials independently. The statistical comparison of the solutions

obtained in 20 trials is tabulated in Table.III and Table.IV.

Specifically, the final boundary results are shown in Table.III,

whereas the objective results are shown in Table.IV. It can

be observed from Table.III that compared with other MOEA

solvers, the proposed strategy tends to have a robust and stable

behaviour in terms of achieving the final boundary conditions.

Regarding the specific efficiency of the calculation, the

average processing time for the optimization procedure is

about 1h 12m (4331.2s). It is important to remark that for

practical spacecraft guidance and control systems, the design

of optimal flight trajectories is usually carried out offline. In

addition, if parallel computing or high-performance computers

can be implemented to optimize the flight path, this processing

time can be further decreased.

D. Flight trajectory results with tighter path constraints

To further test the performance of the solver and con-

straint handling strategy, another mission scenario (Case 2)

which sets tighter requirements on the path constraints was

carried out using the improved NSGA-III algorithm. In this

case, the aerodynamic heating, dynamic pressure and load

factor constraints are restricted to [Q̇max, Pmaxd , nmaxL ] =
[150, 250, 1.25], respectively. The time history of the optimiza-

tion variable is plotted in Fig.4. Detailed results in terms of

terminal error values and different objective function values

are given in Table.V and Table.VI, respectively.
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Fig. 4: Time history of states and controls (case 2)
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Fig. 5: Time history of path constraints (case 2)
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Fig. 6: Pareto front obtained via three solvers (case 2)

TABLE V: Statistical boundary results (mission case 2)

Extended NSGA-III er(ft) eV (ft/s) eγ(deg)

Maximum 1962.88 246.97 0.95

Minimum 2.84 27.31 0.01

Average 486.15 173.15 0.55

Standard deviation 604.14 47.37 0.21

MOPSO er(ft) eV (ft/s) eγ(deg)

Maximum 2546.23 339.40 1.00

Minimum 7.08 102.37 0.23

Average 840.22 193.29 0.67

Standard deviation 639.43 86.54 0.31

MOEA/D er(ft) eV (ft/s) eγ(deg)

Maximum 2947.33 307.27 0.96

Minimum 7.29 48.21 0.09

Average 888.19 189.94 0.57

Standard deviation 862.86 65.92 0.24

TABLE VI: Statistical objective results (mission case 2)

Extended NSGA-III J1 J2 J3 J4

Maximum 31.78 121.83 1.19 146.46

Minimum 30.61 110.70 0.84 142.23

Average 31.16 114.58 1.04 143.65

Standard deviation 0.35 3.31 0.07 0.93

Variance 0.12 10.98 0.01 0.86

MOPSO J1 J2 J3 J4

Maximum 31.53 124.82 1.20 148.44

Minimum 29.81 109.88 0.92 142.01

Average 30.91 117.02 1.10 144.73

Standard deviation 0.45 3.55 0.08 0.94

Variance 0.21 12.61 0.01 0.89

MOEA/D J1 J2 J3 J4

Maximum 31.71 125.20 1.25 148.32

Minimum 29.81 109.87 0.91 142.02

Average 30.95 115.25 1.05 144.60

Standard deviation 0.44 3.69 0.07 1.17

Variance 0.19 13.64 0.01 1.37

From Fig.4, the obtained state and control profiles are

smooth enough and can vary in their tolerant set during the

entire time history. It should be noted that one important

factor that can have significant influences in the results is

the atmospheric model ρ. Similarly with the result presented

in Fig.2, the path constraint profiles, together with the ρ
profile, are displayed in Fig.5. From Fig.5, it is obvious

that the dynamic pressure and load factor constraint values

increase significantly as ρ increases. This phenomena affects

the characteristic of the altitude, flight path angle and bank

angle trajectories shown in Fig.1 and Fig.4. For example, after

around 1500s, the altitude profile tends to be much smoother,

which is mainly influenced by the flight path angle. This can be

explained by the fact that the oscillations in the trajectory tend

to make the dynamic pressure and load constraints becoming

active. In order to decrease these two constraint values, the

variance of the flight path angle should be decreased and this

is mainly achieved by increasing the bank angle gradually.

According to the results shown in Table.V and Table.VI,

the proposed solver can again achieve smaller final state errors

and better objective results than other multi-objective algo-

rithms. In addition, Fig.6 gives the Pareto fronts obtained by

the three approaches on maximizing final latitude versus mini-

mizing heating pane. Again, the improved NSGA-III performs

better than its counterparts since the pareto front obtained

using improved NSGA-III can cover fronts calculated using

other methods and tends to be well-distributed. Specifically,

for this case study, the improved NSGA-III algorithm obtains

37 pareto-optimal solutions in the first front set, while the first

front set calculated using MOEA/D and MOPSO approaches

only contains 34 and 18 elements, respectively. Therefore,

although all the evolutionary-based solvers considered in this

paper can be applied to generate feasible solutions for solving

multi-objective trajectory optimization problems, the improved

NSGA-III approach has quicker convergence speed and better

global search ability under limited computational power. This

further confirms that the designed method can have the ad-

vantage over other evolutionary-based multi-discipline solvers

considered in this paper.
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E. Flight trajectory problem with no-fly zone constraint

In this case scenario, the no-fly zone constraint is taken

into account during the entry phase (Case 3). The testing of

the results is to determine how well the numerical solution

obtained using the proposed algorithm avoids different types of

constraints and achieves multiple performance indices. From

the results, the maximum value of heating, dynamic pressure

and load factor among all the population are 154.93, 279.56

and 1.4268, respectively. All the final state errors are in the

tolerance region (defined in Eq.(10)), and the violation degree

of no-fly zone path constraints is equal to 0. That means the

proposed algorithm can also be effective for this mission case.

To better illustrate the no-fly zone constraints, the position

profile has been plotted in Fig.7 with the solution without

considering no-fly zone constraints.
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Fig. 7: Flight path with and without No-fly zone constraints
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Fig. 8: No-fly zone path constraints

The time history with respect to the three no-fly zone

path constraints is illustrated in Fig.8, where the first no-fly

zone path constraint becomes active (shown in Eq.(11)) at

around 500s, while the second and third no-fly path constraints

become active at around 1000s and 1300s, respectively. In

order to avoid the no-fly region, the vehicle should use a higher

longitudinal acceleration, thereby allowing more flexibilities

on the lateral direction. Compared with state and control

variables shown in Fig.1, the bank angle tends to increase

slower when the time past 500 second. This can result a

smaller heading angle of the vehicle, which implies that the

variance of longitude tends to increase, whereas the variance

of latitude tends to decrease. Moreover, a higher speed of the

vehicle can also have positive influences in terms of increasing

the acceleration of longitudinal speed. Therefore, the variance

of longitude tends to become higher than the one without

considering no-fly zone constraints.

To better investigate the performance of different multi-

objective methods, the statistical results of the HV metric

obtained using different algorithms for the three mission

cases are analyzed. By setting the reference point R as

R = [28.5, 150, 1.5, 200]T , the HV results are then tabulated

in Table.VII.

TABLE VII: Best, medium and worst HV results

HV

Mission case MOEA/D MOPSO Proposed method

5.0207E+03 4.0151E+03 6.3310E+03

1 5.0036E+03 4.0042E+03 6.3043E+03

4.9848E+03 3.9938E+03 6.2908E+03

3.8943E+03 2.9168E+03 4.5112E+03

2 3.8863E+03 2.9129E+03 4.5020E+03

3.8797E+03 3.9093E+03 4.4919E+03

2.1338E+03 2.1290E+03 2.4064E+03

3 2.1272E+03 2.1249E+03 2.3995E+03

2.1224E+03 2.1154E+03 2.3916E+03

From this table, it is clear that the extended NSGA-III

method can generally outperform the other two MOEAs in

terms of HV for the three flight mission cases. Therefore, it can

be concluded that it advantageous to implement the proposed

algorithm for addressing the multi-objective spacecraft entry

trajectory design problem.

VI. PARAMETER ANALYSIS

In this section, the impact of different variables on

the obtained pareto solutions will be studied. The analysis

includes: 1). the impact of the initial population; 2). the impact

of the uncertain variables V and m; and 3). the influence of

the number of discretization node Nk.

A. Impact of initial population Np

The impact of the initial population is firstly studied.

As suggested in [31], the population size of the NSGA-III

algorithm should be assigned as the smallest multiple of four

greater than H = Cp4+p−1. Hence, the testing size levels are

assigned as: N
(1)
p = 56, N

(2)
p = 120 and N

(3)
p = 220 (referred

as Level 1, Level 2 and Level 3, respectively). The statistical

results of the HV value for the three algorithms are tabulated

in Table.VIII.

TABLE VIII: Best, medium and worst HV results (Different Np)

HV

Level MOEA/D MOPSO Proposed method

1.2811E+03 6.0568E+02 9.1488E+02

1 1.2753E+03 6.0138E+02 9.1076E+02

1.2693E+03 5.9757E+02 9.0799E+02

2.2316E+03 1.7224E+03 2.8136E+03

2 2.2266E+03 1.7145E+03 2.8084E+03

2.2192E+03 1.7086E+03 2.8017E+03

5.0170E+03 4.0143E+03 6.3282E+03

3 5.0037E+03 4.0024E+03 6.3059E+03

4.9910E+03 3.9911E+03 6.2844E+03

As can be observed from Table.VIII, under a relatively

small population setting, the MOEA/D algorithm has the best

performance among the three algorithms investigated in this

paper. However, when the population size experiences an
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increase, the performance of the presented approach becomes

better than its counterparts. This indicates that the developed

algorithm tends to work well if a relatively large population

size setting can be available for the optimization process.

B. Impact of uncertain variables

This subsection analyzes how the uncertain variables af-

fect the pareto results. Specifically, when the vehicle enters the

atmosphere, the vehicle’s mass m may experience a fraction.

Therefore, an uncertain assessment is firstly performed with

regard to the uncertain mass value.

Take mission case 1 as an example, we randomly pick

a point from the obtained pareto front shown in Fig.3

(e.g. p1(J1, J2) = [32.05, 118.37]). When mass uncertain-

ty is introduced into the problem (e.g. δm = +10%),

the resulting uncertainty-perturbed objective values become

[J̄1, J̄2]=[32.13, 121.61], which is deviated from the original

pareto front result. This further confirms that it is necessary to

carry out an uncertain assessment. By setting the mass value

uncertainty as δm = +5% and δm = +10%, the updated

pareto front result is displayed in Fig.9, from where it can

be seen that as δm increases, the obtained pareto front result

moves away from the original pareto solutions. Therefore, it

is meaningful to take into account the mass uncertainty in the

practical design of optimal spacecraft entry trajectories.
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Fig. 9: Pareto results with uncertainty

Another uncertain assessment is also performed to in-

vestigate the impact of the uncertain variable V . It is worth

noting that V̇ is a function of gravity acceleration g, which is

treated as a constant in the previous experiments. To capture

more reality, g is modeled as g = µ/r2 in the analysis. By

performing the simulation, it was found that the difference

between using a constant g and g = µ/r2 in the V̇ (g) equation

is not obvious.

C. Impact of Nk and other discretization schemes

The effect of the number of discretized time nodes Nk
is analyzed in this subsection. Since the objective value of J2
will experience a significant variation during the evolutionary

process, the goal attainment value of J2 is used as the

indicator to evaluate the convergence speed of the evolutionary

process. The goal attainment value µJ2 is calculated by

µJ2 = 1−
J2−J∗

2

Jmax
2

−J∗

2

, where J*
2 and Jmax2 are set to 135 and
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Fig. 10: Convergence results for different Nk and methods

1000, respectively. By specifying Nk = (100, 150, 200, 250),
the result is presented in Fig.10(a).

Fig.10(a) displays the result on the generation versus

goal attainment value plane. As discussed in Section III, the

continuous-time system is discretized at temporal nodes. As

a result, a larger Nk can improve the approximation accuracy

of the state and control trajectories. However, a larger Nk will

increase the number of optimization parameter and therefore,

it might have negative influences in terms of the convergence

speed of the optimization process. As shown in Fig.10(a), the

speed of achieving a higher goal attainment value experiences

a decrease as the number of Nk increases.

An attempt is made to apply the NSGA-III method

with other discretization algorithms such as the direct col-

location (DC) analyzed in [11], the Gauss pseudospectral

method (GP) outlined in [13], and a modified Chebyshev

pseudospectral technique (MCP) reported in [12]. By setting

Nk = (40, 60, 80), the results are displayed in Fig.10(b)-

(d). From the results, it can be found that compared with

other discretization schemes, applying the multiple shooting-

based (MS) NSGA-III algorithm can achieve satisfactory

results in fewer iterations and it has the flexibility to use

a relatively large temporal set. This is because in direct

collocation and pseudospectral methods, both the state and

control variables will be discretized and consequently, the

equations of motion are transcribed to a series of algebraic

equations (equality constraints). This implies that the resulting

number of optimization parameters and equality constraints

tends to be large and cannot be satisfied automatically. For

a given optimal control problem which contains ns state

variables and nc control variables, if Nk collocation points are

used to parameterized the problem, then the number of NLP

decision variables will be ns × (Nk + 1) + (nc × Nk). This

number is relatively large compared with applying multiple

shooting method nc × Nk. When an NLP problem contains

too many optimization parameters and equality constraints, it

tends to consume the evolutionary solver a large amount of

iteration times to capture the true behaviour or even fail to

satisfy all of the constraints. Therefore, it is recommended

to use the stochastic-based solvers with the multiple shooting

discretization scheme, which can eventually reduce the number
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of equality constraints and achieve enhanced convergence

performance.

VII. CONCLUSION

In this study, a multiple shooting-based NSGA-III algo-

rithm was designed to address the multi-objective spacecraft

trajectory optimization problem. Several constraint handling

algorithms were embedded in the proposed framework to deal

with various mission constraints Comparative simulations with

other typical evolutionary multi-objective solvers were carried-

out and the results demonstrate that the proposed approach can

generate more well-distributed Pareto fronts and has a better

convergence performance than the other algorithms.

An important concern coming from the implementation

of this approach is the threats of validity. For example, the

randomness caused by stochastic process with respect to

control variables can be regarded as one possible internal threat

of validity. To address this issue, the lag equation is used to

smooth the control profile. This mechanism allows users to

apply a large number of temporal nodes, thereby decreasing

the error order of the multiple shooting scheme and restricting

the control rates. In addition, the generalizability of the result

can also be considered as an external threat. By testing the

proposed solver for various challenging mission scenarios,

all the obtained results are still promising. Therefore, it can

be concluded that the extended NSGA-III method can be an

effective and reliable alternative to produce optimal control

profiles of the multi-objective spacecraft entry trajectory plan-

ning problem.
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