
IEEE TRANSACTIONS ON CYBERNETICS, VOL. 50, NO. 7, JULY 2020 3393

A Distributed Swarm Optimizer With Adaptive
Communication for Large-Scale Optimization

Qiang Yang , Member, IEEE, Wei-Neng Chen , Senior Member, IEEE, Tianlong Gu, Huaxiang Zhang ,

Huaqiang Yuan, Sam Kwong , Fellow, IEEE, and Jun Zhang , Fellow, IEEE

Abstract—Large-scale optimization with high dimensionality
and high computational cost becomes ubiquitous nowadays. To
tackle such challenging problems efficiently, devising distributed
evolutionary computation algorithms is imperative. To this end,
this paper proposes a distributed swarm optimizer based on
a special master–slave model. Specifically, in this distributed
optimizer, the master is mainly responsible for communication
with slaves, while each slave iterates a swarm to traverse the
solution space. An asynchronous and adaptive communication
strategy based on the request–response mechanism is especially
devised to let the slaves communicate with the master efficiently.
Particularly, the communication between the master and each
slave is adaptively triggered during the iteration. To aid the
slaves to search the space efficiently, an elite-guided learning
strategy is especially designed via utilizing elite particles in the
current swarm and historically best solutions found by different
slaves to guide the update of particles. Together, this distributed
optimizer asynchronously iterates multiple swarms to collabora-
tively seek the optimum in parallel. Extensive experiments on
a widely used large-scale benchmark set substantiate that the
distributed optimizer could: 1) achieve competitive effectiveness
in terms of solution quality as compared to the state-of-the-art
large-scale methods; 2) accelerate the execution of the algorithm
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in comparison with the sequential one and obtain almost linear
speedup as the number of cores increases; and 3) preserve a good
scalability to solve higher dimensional problems.

Index Terms—Distributed evolutionary algorithms, elite-
guided learning (EGL), high-dimensional problems, large-scale
optimization, particle swarm optimization (PSO).

I. INTRODUCTION

LARGE-SCALE optimization with high dimensionality
and high computational cost has become more and more

common in many research domains and engineering [1]–[4]
in the era of big data [5]. Faced with such difficult prob-
lems, traditional population-based metaheuristic algorithms
executed in serial would take hours or even days to find
the optimum [6]. This mainly results from two aspects. On
the one hand, due to the high time complexity of these
problems, it takes a long time to evaluate the fitness of an
individual. On the other hand, the solution space of these prob-
lems increases exponentially [7] and, thus, to traverse such
vast space, population-based metaheuristics, such as particle
swarm optimization (PSO) algorithms [8]–[10] and differen-
tial evolution (DE) algorithms [11]–[13], need to consume a
considerably large number of fitness evaluations to achieve
satisfactory performance. With these two challenges, the exe-
cution time of sequential metaheuristics is prolonged rapidly
when dealing with such problems and such time may even
become unbearable [14].

Fortunately, population-based metaheuristics generally pre-
serve inherent parallelism and, thus, developing parallel
and distributed metaheuristics is an efficient way to tackle
optimization problems with high computational cost. Recently,
this research direction has attracted increasing attention in
evolutionary computation community, leading to the develop-
ment of parallel metaheuristics [6]. However, most existing
studies directly extended traditional sequential metaheuris-
tics designed for low-dimensional problems in distributed
environments [6]. Faced with high-dimensional problems, tra-
ditional metaheuristics dramatically lose their effectiveness
and efficiency [15] and, thus, it is not effective to directly
employ existing distributed metaheuristics to cope with high-
dimensional problems. Consequently, to locate the optimum
in acceptable time, it is significant to develop distributed
metaheuristics with effective update mechanisms and effi-
cient communication schemes, which are suitable to solve
large-scale optimization problems.
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In the literature, to cope with large-scale optimization effec-
tively, many novel evolution mechanisms have been devised.
Broadly, these evolution mechanisms can be classified into
two categories [15]: 1) cooperative coevolution (CC) mecha-
nisms [16]–[18] and 2) novel update mechanisms for tradi-
tional metaheuristics [8]–[10]. The former aim to decompose
a high-dimensional problem into several smaller subprob-
lems and then optimize each subproblem separately [16].
In contrast, the latter still optimize all dimensions together
like traditional metaheuristics [19], [20], but incorporate new
update strategies to preserve high diversity [9], [10].

Though most existing evolution mechanisms have
shown promising performance in coping with large-scale
optimization, they are especially designed for sequential
environments but not for distributed environments. Despite
that some evolution mechanisms can be adapted to distributed
environments based on existing distributed models, they are
still confronted with many limitations. For instance, a few
studies have intuitively adapted some cooperative coevolu-
tionary algorithms (CCEAs) to distributed computing [21].
However, they are not capable of solving problems with
many interacting variables effectively (e.g., fully nonsep-
arable problems). Besides, a few studies have extended
some metaheuristics optimizing all variables together to dis-
tributed environments based on the master–slave distributed
model [6]. Nevertheless, such an adaptation would cause
a huge communication burden as will be demonstrated in the
experiments in Section IV.

Consequently, developing distributed metaheuristics with
effective evolution mechanisms and efficient communication
for large-scale optimization still deserves further investigation.
To this end, this paper proposes a distributed swarm optimizer
with a new update scheme and an adaptive communication
strategy to solve large-scale optimization problems efficiently.

Specifically, we adopt a special master–slave model, where
the master is responsible for the communication with the
slaves, while each slave iterates a swarm to traverse the high-
dimensional space. To let the slaves communicate with the
master efficiently, an adaptive communication strategy based
on the request–response mechanism is specifically designed.
In particular, the communication between the master and each
slave is triggered adaptively according to the search state of
the associated swarm during the iteration. By this means,
each slave communicates with the master independently and
asynchronously and, thus, little waiting time exists during the
communication between the master and the slaves.

Besides, to aid the swarms in the slaves to traverse the high-
dimensional space efficiently in the distributed environment,
we especially design an elite-guided learning (EGL) strategy,
which utilizes elite particles in the current swarm and his-
torically best solutions found by different slaves to guide the
update of particles. In this way, high swarm diversity could be
preserved to let particles escape from local areas during the
iteration.

Altogether, we name this distributed optimizer as distributed
elite-guided learning swarm optimizer (DEGLSO). With the
above two strategies, this distributed optimizer asynchronously
iterates multiple swarms in parallel to seek the optimum of

a high-dimensional problem. To verify its effectiveness and
efficiency, experiments are conducted on the CEC’2013 large-
scale benchmark set [22] to evaluate its performance in terms
of solution quality, execution time, speedup, and scalability
via comparing with state-of-the-art large-scale metaheuristics.

The rest of this paper is organized as follows. Section II
reviews the related metaheuristics. Then, the devised dis-
tributed swarm optimizer is elucidated in Section III. In
Section IV, a series of experiments is conducted to verify
its effectiveness and efficiency. At last, Section V concludes
this paper.

II. RELATED WORK

A. Parallel and Distributed Metaheuristics

In the literature, many parallel and distributed metaheuris-
tics have been developed to tackle optimization problems
with high time complexity based on different distributed
models [6]. Broadly, distributed models used in exist-
ing distributed metaheuristics can be classified into four
main categories [6]: 1) master–slave models [23]; 2) island
models [24], [25]; 3) cellular models [26], [27]; and 4) hier-
archical models [28].

The master–slave model maintains only one master pro-
cess but several slave processes [23]. Originally, the master
is only responsible for the update of the population, while
the slaves are to evaluate the fitness of individuals. After
updating the population, the master sends several individ-
uals to each slave, and the slaves compute the fitness of
the allocated individuals and then send the calculated fitness
back to the master. To improve the efficiency of this model,
researchers extended the original model to a coarse-grained
one [29], where each slave iterates a subpopulation and sends
the global best position found so far to the master, while the
master receives the global best positions from all slaves, deter-
mines the best one and then sends it to all slaves. As for
the communication between the master and the slaves, most
master–slave-based parallel metaheuristics adopt synchronous
communication schemes [6]. A few of this kind of distributed
metaheuristics [30] also adopt asynchronous communication
strategies.

The island model [24], [25] is a spatially distributed model.
In this model, each island maintains a subpopulation and
communicates with each other using a certain migration mech-
anism. Particularly, this model seriously relies on the adopted
migration mechanism, including the migration frequency, the
selection of the immigrants, etc. [31]. Except for the migra-
tion mechanism, this distributed model is also very sensi-
tive to the topologies that arrange the islands [6]. In the
original island model, islands are arranged by a complete
graph, which would cause a high communication burden.
Recently, researchers have utilized network topologies, such
as ring and torus, to arrange islands to improve the effi-
ciency of this model [32], [33]. As for the communication
between islands, both synchronous and asynchronous com-
munication strategies have been utilized in the literature. For
synchronous island models, the global best solution found by
each island is exchanged periodically at a specific interval of
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generations [33]. For asynchronous ones, each island could
receive information sent from other islands as soon as it is
ready [34].

The cellular model [26], [27] maintains only one population
but arranges individuals onto grids with one grid occupy-
ing one or several individuals. In this model, individuals
are updated by their corresponding neighbors determined by
the topology that arranges individuals onto grids. In the
literature, a lot of effort has been devoted to develop cellular-
based distributed metaheuristics with different topologies, such
as linear topology [35], toroid topology [36], and regular
lattices [26]. Similar to island models, both synchronous and
asynchronous communication strategies have been utilized in
this model [37].

The hierarchical model [28] generally combines two or
more distributed models stated above hierarchically, so that the
advantages of different models can be inherited. Three kinds
of hybrids exist. The first is the island–master–slave hybrid
model [38], where the first layer adopts the island model to
evolve multiple subpopulations and the second layer utilizes
the master–slave model operated on each island in the first
layer. Another is the island–cellular hybrid model [28], which
is similar to the first one. The only difference is that the second
layer takes advantage of the cellular model and thus individu-
als in each island in the first layer are arranged onto the grids
of the cellular model. The other is the island–island hybrid
model [39], where the second layer uses another island model
and thus the population in each island in the first layer is fur-
ther divided into subpopulations evolved by the islands in the
second layer.

Based on these distributed models, many distributed meta-
heuristics have been designed via incorporating different
traditional metaheuristics [6]. However, most of them only
remain efficient and effective in low-dimensional space. When
handling high-dimensional problems, their effectiveness and
efficiency dramatically degrade [15].

B. Large-Scale Optimization

In the literature, the evolution mechanisms for large-scale
optimization mainly lie in the two following aspects [15].

1) Cooperative Coevolution Mechanisms: CCEAs uti-
lize the divide-and-conquer method to partition a high-
dimensional problem into several smaller subproblems and
then optimize each subproblem separately [16], [40]. Since
interacted variables generally interfere with each other during
the optimization, the decomposition strategy has been proven
to play a crucial role in CCEAs [16], [41], [42].

Theoretically, the ideal decomposition strategy is to group
interdependent variables into the same subproblem. However,
in most cases, the prior knowledge about variable interdepen-
dency in an optimization problem is not available. As a result,
current research on CCEAs mainly concentrates on devising
effective decomposition strategies to divide high-dimensional
problems as accurately as possible. Broadly, existing decom-
position strategies can be classified into two categories [15]:
1) dynamic decomposition strategies [42]–[44] and 2) static
decomposition strategies [16], [45].

Dynamic decomposition strategies are usually exe-
cuted in each generation along with optimizers and,
thus, the variable decomposition may be different in dif-
ferent generations [15]. In the literature, two kinds of
dynamic decomposition strategies exist, namely random-
based decomposition [17], [42], [46] and learning-based
decomposition [44], [47], [48]. The former strategies ran-
domly divide variables into groups without taking variable
interaction into consideration [17], [42], [46] and thus
they perform poorly on problems with more than two
interdependent variables. The latter strategies make use
of evolutionary information to learn variable interdepen-
dency and then divide variables into groups [44], [47]. For
instance, in [47], an adaptive variable partition technique was
developed based on the correlation coefficients of the top half
individuals.

Unlike dynamic decomposition, static decomposition is
executed before optimization based on variable interaction
detection [16] and in the optimization stage, the variable
decomposition is fixed. One typical static grouping approach
is the differential grouping strategy (DG) [16], which utilizes
partial difference between functional values to detect variable
interdependency. However, this approach can only detect direct
linkages between variables. To detect direct and indirect vari-
able dependency simultaneously, extended DG (XDG) [49]
and global DG (GDG) [45] were further developed based
on DG. Though the above DG variants could partition vari-
ables into groups satisfactorily, they cost up to O(D2) (D is
the dimension size) fitness evaluations in the decomposition
stage. Thus, if only given limited total fitness evaluations,
the number of fitness evaluations used for optimization is
greatly reduced. To alleviate this predicament, many attempts
have been made to reduce the cost of fitness evaluations
in the decomposition stage. For instance, a recursive DG
method (RDG) [50] was developed based on the idea of binary
search. Particularly, it reduces the used fitness evaluations from
O(D2) to O(Dlog(D)).

2) Novel Update Mechanisms for Traditional
Metaheuristics: In this direction, plenty of novel update
schemes have been developed to aid traditional metaheuristics
to preserve high search diversity during the optimization,
so that local traps can be avoided. In this section, we only
review representative variants of PSO and DE in tackling
large-scale optimization, because they are the most developed
ones in this direction [15].

With respect to PSO, in the classical update scheme, each
particle is guided by its own experience and the social
experience of the swarm with the following update formula:

vd
i ← wvd

i + c1r1

(
pbestdi − xd

i

)
+ c2r2

(
gbestd − xd

i

)
(1)

xd
i ← xd

i + vd
i (2)

where xi = [x1
i , . . . , xd

i , . . . , xD
i ] and vi = [v1

i , . . . , vd
i , . . . , vD

i ]
are the position and the velocity of the ith parti-
cle, respectively. D is the dimension size. pbesti =
[pbest1i , . . . , pbestdi , . . . , pbestDi ] and gbest = [gbest1, . . . ,
gbestd, . . . , gbestD] are the personal best position of the ith
particle and the global best position found by the swarm,



3396 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 50, NO. 7, JULY 2020

respectively. As for the parameters, w is the inertia weight,
c1 and c2 are two acceleration coefficients, and r1 as well
as r2 is uniformly randomized within [0, 1]. When solving
large-scale optimization problems, this classic update scheme
usually loses its effectiveness. Oldewage [51] found that the
velocity clamping and the parameter settings in (1) have great
influence on PSO in solving high-dimensional problems.

However, compared with parameters, the update strategy
generally plays a more important role in PSO [10]. Therefore,
to adapt PSO to solve large-scale optimization problems, many
researchers have developed a variety of novel update schemes.
For instance, Zhao et al. [52] developed a dynamic multiswarm
PSO along with the quasi-Newton method as the local search
method, leading to DMS-L-PSO. Specifically, this optimizer
randomly partitions the whole swarm into smaller subswarms
in each generation. Hsieh et al. [53] proposed an efficient pop-
ulation utilization strategy for PSO, leading to EPUS-PSO. In
particular, a population size managing approach and a solution
sharing approach were devised to improve the search abil-
ities of particles in EPUS-PSO. García-Nieto and Alba [54]
devised a velocity modulation method and a restarting mech-
anism for PSO. With the aid of these two techniques, the
developed PSO variant could effectively avoid premature con-
vergence and redirect particles to promising areas in the search
space. A multiswarm PSO based on a competition scheme was
devised in [55]. In this PSO variant, two swarms are main-
tained and particles in the two swarms compete with each
other. Then, each loser is updated via a convergence strategy,
while each winner is updated by a mutation strategy.

The above studies mainly adopt multipopulation strategies
or restarting mechanisms to promote the search diversity of
PSO, so that falling into local traps could be avoided. In par-
ticular, they all utilize the historically best positions, such as
pbest, nbest, and gbest, to update particles as the classical
PSO [56], [57]. Nevertheless, these best positions may remain
unchanged for many generations during the iteration and, thus,
have great limitations in diversity maintenance [10].

To further promote the diversity of the swarm, some
researchers introduced new exemplars to replace pbest, nbest,
or gbest to guide the update of particles. For instance,
Cheng and Jin [10] developed a competitive swarm opti-
mizer (CSO). In this optimizer, particles are randomly
arranged into pairs and the paired particles compete with each
other. Then, the loser is guided by the winner, while the winner
is not updated. In particular, the loser is updated as follows:

vd
l ← r1vd

l + r2

(
xd

w − xd
l

)
+ φr3

(
x̄d − xd

l

)
(3)

xd
l ← xd

l + vd
l (4)

where xl = [x1
l , . . . , xd

l , . . . , xD
l ] and vl = [v1

l , . . . , vd
l , . . . , vD

l ]
are the position and the velocity of the loser, respectively.
xw = [x1

w, . . . , xd
w, . . . , xD

w] is the position of the correspond-
ing winner of the loser and x̄ = [x̄1, . . . , x̄d, . . . , x̄D] is the
mean position of the whole swarm. r1, r2, and r3 are three
random numbers uniformly generated within [0, 1]. φ is
a control parameter within [0, 1], which is in charge of the
influence of x̄.

In addition, in [58], a level-based learning swarm opti-
mizer (LLSO) was proposed, which shares the similar update
formula as CSO in (3). Different from CSO, particles in LLSO
are divided into different levels according to their fitness values
and then the ones in lower levels are guided by two superior
particles randomly selected from two different higher lev-
els. Since particles are updated generation by generation, the
exemplars of updated particles in both CSO and LLSO are dif-
ferent in different generations. Therefore, both of them could
preserve high diversity during the optimization, leading to their
promising performance in handling large-scale optimization.

For DE, various novel mutation schemes have been designed
to adapt DE to handle high-dimensional problems. For exam-
ple, Wang et al. devised a generalized opposition-based
learning strategy and hybridized it into the classical DE
to update the population, leading to a generalized opposi-
tion DE (GODE) [13]. Weber et al. [12] developed a shuffle
or update parallel DE (SOUPDE) via dividing individu-
als into subpopulations randomly with a probability during
the optimization. Zhao et al. [11] hybridized the self-adaptive
strategy in JADE [59] and a modified multitrajectory search
algorithm to solve large-scale optimization problems, leading
to a self-adaptive DE named SaDE-MMTS. In [60], an elite
opposition-based DE (EOBDE) was devised by employing the
opposite learning strategy to some selected elites with a cer-
tain probability. Ali et al. [61] first divided the population into
independent subgroups, and then utilized different mutation
strategies to update the subgroups. With this update scheme,
the population diversity of DE could be largely boosted.

Though the above methods have shown good performance
in solving large-scale optimization problems, they are designed
for serial environments, but not for distributed environments.
A few studies intuitively adapted some large-scale metaheuris-
tics to distributed environments [21], using the aforementioned
distributed models [6]. However, such adaption would cause
a huge communication burden. To alleviate this predicament,
this paper proposes a distributed swarm optimizer (named
DEGLSO) with a new update scheme and an adaptive com-
munication strategy to deal with large-scale optimization.

III. DISTRIBUTED SWARM OPTIMIZER

In this section, the proposed distributed swarm optimizer
DEGLSO is elaborated in detail. Specifically, we first elu-
cidate its framework and the EGL strategy in Section III-A.
Section III-B states the adaptive communication strategy
designed for efficient information exchange. In Section III-C,
the implementation of DEGLSO is presented. At last, to make
comparisons, the serial version of DEGLSO, named SEGLSO,
is presented in Section III-D.

A. DEGLSO

1) Framework: The framework of DEGLSO is presented
in Fig. 1. In this distributed optimizer, a special master–slave
model is adopted. Particularly, in this model, only one mas-
ter process exists, which is mainly in charge of information
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exchange, and multiple slave processes, each of which iter-
ates a small swarm, cooperate with each other to search the
high-dimensional space.

Concretely, the master maintains an archive A to store the
global best positions found by the slaves. It does nothing but
takes charge of information exchange among slaves. In terms
of the slaves, each of them iterates a swarm based on the
proposed EGL to be described next to find the optimum. In
this paper, the archive size in the master and the swarm size
in the slaves are set the same and denoted as NP. The details
of the master and the slaves are elaborated as follows.

1) As for the master, after it receives the gbests sent from
the slaves, it places them into the archive A. Once A
is full, a random individual is first selected from the
archive and is then compared with the received one. If
the received individual is better, it replaces the selected
one; otherwise, it is discarded. Such a strategy not only
facilitates high diversity maintenance, but also takes
little time in updating A, which is beneficial for reduc-
ing the computational cost of the master. It should be
mentioned that instead of only using the best among
these gbests sent from the slaves like in [29], an archive
of gbests from the slaves are maintained for the sake
of high diversity preservation. Specifically, by means of
preserving multiple gbests sent from slaves, the mas-
ter could send different information to different slaves,
and thus affords diverse information exchange between
slaves. In this manner, the slaves could avoid receiving
uniform information and thus they have great chance to
search the high-dimensional space in different directions,
avoiding converging to the same area. The usefulness
of the archive A in the master will be verified in the
experiments in Section III in the supplementary material.

2) As for the slaves, each of them also maintains an archive
P, whose size is set to M, to store the received individ-
uals from the master. Once the archive of a slave is
full, the received individual is compared with the worst
one in P. If the received individual is better, it replaces
the worst one; otherwise, it is abandoned. Such a main-
tenance mechanism could ensure the archive of each
slave always keeps the most promising individuals found
historically by the slaves, which may facilitate fast con-
vergence. It should be mentioned that instead of using
the received individual from the master to replace the
worst one in the swarm in the corresponding slave like
in [29], an archive is utilized to store the received indi-
viduals and then is used in EGL to update the swarm.
In this way, different exchanged information from other
slaves could be preserved to aid the search of the swarm.
Therefore, high diversity in exemplar selection could be
maintained and high search diversity could be preserved
during the optimization. Experiments in Section III in
the supplementary material will verify the usefulness of
the archives in the slaves.

Remark 1: It should be noticed that the archive tech-
nique has been widely employed to assist metaheuristics to
tackle various optimization problems, like single-objective
optimization problems [59], [62]; dynamic optimization

Fig. 1. Framework of DEGLSO.

problems [63], [64]; and multiobjective optimization
problems [65], [66]. In single-objective optimization, an
archive is generally utilized to store promising individuals
during the optimization [59], [62]. By taking advantage of the
information stored in the archive, either the diversity or the
convergence of metaheuristics could be enhanced [59], [62].
In dynamic optimization, an archive is usually maintained
to store the best solutions found when the environment
change occurs [63], [64]. The archive is utilized mainly to
assist metaheuristics to react to the change of the environ-
ment quickly [63], [64]. In multiobjective optimization, an
archive is usually maintained to store the nondominated
solutions [65], [66]. In some cases, these archives are also
updated by a certain multiobjective metaheuristic [65], [66].

Different from existing archive techniques, this paper
maintains multiple archives in the distributed environment.
Specifically, one archive is maintained in the master to store
the gbests found so far by all slaves, and one archive is main-
tained in each slave to store the introduced information from
the master. The archive in the master is mainly utilized to
realize the communication between slaves, and it provides
diverse information exchange between slaves, which is bene-
ficial for the slaves to avoid converging to the same area. The
archive in each slave is mainly for preserving diverse promis-
ing information introduced from the master, and it provides
extra diverse exemplar selection for the update of particles in
EGL. Overall, we can see that these two kinds of archives
are mainly utilized to promote the diversity of the distributed
swarm optimizer. The effectiveness of these two kinds of
archives will be verified in Section III in the supplementary
material.

2) Elite-Guided Learning: To help the swarms in the slaves
traverse the high-dimensional space efficiently in the dis-
tributed environment, we devise an EGL strategy to guide the
update of particles in each slave.

According to Darwin’s “survival-of-the-fittest”
principle [67], [68], the top fittest individuals, namely
elites, generally preserve greater chances to survive and more
valuable evolutionary information than others. Inspired from
this, we divide the swarm in each slave into two separate
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sets: 1) the elite set ES containing M elites in the swarm
and 2) the nonelite set NES consisting of the rest (NP-M)
particles. Since the elites in ES are the best particles in the
current swarm, they preserve the most useful information to
guide the swarm. Thus, they directly enter the next generation.
This matches Darwin’s “survival-of-the-fittest” principle, and
is helpful for protecting promising information from being
lost or weakened during the optimization. Therefore, only the
(NP-M) particles in NES are updated in each generation.

Since the elites in ES preserve the most useful information
to update the swarm, they can be utilized to guide the update of
the particles in NES. Therefore, the update of these particles is

vd
i ← r1vd

i + r2

(
xd

elrand
− xd

i

)
+ φr3

(
x̂d

ES − xd
i

)
(5)

xd
i ← xd

i + vd
i (6)

where xi = [x1
i , . . . , xd

i , . . . , xD
i ] and vi = [v1

i , . . . , vd
i , . . . , vD

i ]
are the position and velocity of the ith particle in NES
respectively; xelrand = [x1

elrand
, . . . , xd

elrand
, . . . , xD

elrand
] is an elite

randomly selected from ES ∪ P, and is better than xi; and
x̂ES = [x̂1

ES, . . . , x̂d
ES, . . . , x̂D

ES] is the means position of the
elites and is computed as follows:

x̂d
ES =

1

M

M∑
j=1

xd
ESj

(7)

where xESj = [x1
ESj

, . . . , xd
ESj

, . . . , xD
ESj

] is the jth elite in ES,
r1, r2, and r3 are three uniformly generated numbers in [0, 1],
φ in charge of the influence of x̂ES is a control parameter in
[0, 1].

In (5), the following techniques should deserve attention.
1) The first exemplar xelrand in (5) is randomly selected from

ES∪ P not just from ES. For one thing, with this tech-
nique, the useful information from other slaves, which
is stored in P, could be made full use of to update the
swarm in the slave. For another, 2M candidate exemplars
could be potentially utilized to guide the update of these
particles, and thus high diversity may be maintained.

2) The selected exemplar xelrand should be better than xi.
By this means, each xi in NES is always guided by
better particles, and thus could approach to promising
areas fast, which facilitates fast convergence. Therefore,
if the selected xelrand is worse than xi (which only may
occur when the selected exemplar comes from P), a new
xelrand is randomly selected from ES∪P until it is better
than xi.

3) As for another exemplar in (5), the particles in NES
share the social knowledge via the mean position of the
elites in ES. Since the elites in ES in two successive
generations may be different, the mean position x̂ES may
be different in different generations. This is beneficial for
diversity preservation. Besides, the mean position x̂ES of
these elites can be a good distribution estimation of the
swarm in the current generation. Utilizing it as the social
exemplar is beneficial for finding promising areas fast.

In summary, the devised EGL can potentially let DEGLSO
compromise diversity maintenance and fast convergence well

to search the high-dimensional space. Such a good compro-
mise will be verified in Section III in the supplementary
material.

As for the parameters, only two extra parameters (the num-
ber of elites M and the control parameter φ) are introduced
in DEGLSO. Taking deep insight into the influence of φ on
DEGLSO, we find that a large value of φ could promote the
influence of x̂ES on the update of particles, which is bene-
ficial for preventing the updated particle from being greedily
attracted by the selected elite xelrand . Such prevention is helpful
when xelrand falls into local areas. Nevertheless, a small value
of φ could weaken the aforementioned prevention, which is
profitable when xelrand is close to the globally optimal areas
and thus exploitation is strongly needed. Together, we can see
that a large φ is preferred at the early optimization stages when
the swarm explores the search space and a small φ is needed
at the late stages when the swarm exploits the searching areas.

Bearing the above consideration in mind and inspired from
the linear adaption of the inertia weight in PSO [56], we
design a linear adjustment strategy for φ, which is defined
as follows:

φg = 0.5

(
1− g

Gmax

)
(8)

where g is the current generation index and Gmax is the
maximal number of generations.

Overall, we can see that since the elites in ES directly
enter the next generation, the most promising information is
preserved. After the particles in NES are updated, new bet-
ter particles could become elites and enter ES, while those
obsolete “elites” in the last generation have to walk out of ES
and go into NES and then will be updated. As a result, elites
in ES become better and better during the iteration, and thus
they may converge to the optimum of the optimized problem.

Remark 2: Compared with the classical PSO (1), the
recently proposed CSO (3) and LLSO, the proposed EGL (5)
differs from them in the following four aspects.

First, from the viewpoint of the frameworks of these PSO
variants, EGL, CSO, and LLSO are totally different from the
classical PSO. Instead of using historically best positions to
guide the update of the swarm in PSO, the three PSO vari-
ants directly utilize particles in the current swarm to guide
the update of the swarm. Specifically, in CSO, particles are
randomly paired together and then the loser in the paired par-
ticles is guided by the winner, while the winner is not updated
and directly enters the next generation. In LLSO, particles are
divided into multiple levels according to their fitness. Then,
particles in lower levels are guided by those from higher levels.
In DEGLSO, particles in each slave are divided into two sep-
arate sets (namely the elite set ES and the nonelite set NES)
according to their fitness. Besides, only particles in NES are
updated by learning from those in ES and the solutions stored
in the archive P, which are introduced from the master.

Second, as for the first exemplar, DEGLSO, CSO, and
LLSO utilize superior particles in the current swarm to update
inferior ones, while the classical PSO utilizes the personal best
position (pbest) to guide the update of one particle. On the one
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side, superior particles may be different in different genera-
tions; on the other side, the first exemplar guiding the update of
one inferior particle is randomly selected from superior ones.
Thus, the selection diversity of the first exemplar in DEGLSO,
CSO, and LLSO is much higher than that in PSO, because
pbest may remain unchanged for many generations especially
in the later stage of the optimization. Compared with CSO
and LLSO, DEGLSO further promotes the selection diversity
of the first exemplar via selecting it from the archive P in each
slave, which preserves useful information collected from other
slaves.

Third, with respect to the second exemplar, both DEGLSO
and CSO share the social knowledge via mean positions of
either the whole population (CSO) or the elites (DEGLSO),
while LLSO still adopts superior particles in the current swarm
to update particles. Nevertheless, the classical PSO shares the
social knowledge via the global best position (gbest) found so
far by the swarm. Unlike gbest, which may remain unchanged
in many generations, the mean positions in both DEGLSO and
CSO and superior particles in LLSO may be different in dif-
ferent generations due to the update of particles. Therefore,
the second exemplar in DEGLSO, CSO, and LLSO could
assist them to maintain higher diversity than the classical
PSO. Unlike CSO and LLSO, DEGLSO utilizes the mean
position of the elites in the current swarm as the second exem-
plar. Particularly, this mean position can be taken as a good
distribution estimation of the current swarm. Utilizing it as the
second exemplar may be beneficial for the optimizer to find
promising areas fast.

Fourth, the proposed EGL in (5) is specifically designed
for distributed environments. In particular, the division of the
swarm into ES and NES makes it possible to devise an adap-
tive communication strategy for efficient information exchange
between slaves, which will be introduced in the next section.

Remark 3: It deserves attention that the elite-based update
mechanisms have been widely utilized in the literature.
Broadly speaking, two kinds of elite-based update mecha-
nisms exist in optimizing single-objective problems. One is
the explicit elite-guided update, like in JADE [59] and the
other is the implicit elite-guided update, like in estimation of
distribution algorithms (EDAs) [69]. In the former, the top p
best individuals (namely elites) in the population are utilized to
generate offspring, while in the latter, the elites are generally
utilized to estimate the distribution of the population and then
offspring are generated based on the estimated distribution.

The proposed EGL belongs to the former kind of elite-based
update. However, the differences between JADE [59] and the
proposed EGL are twofold. First, in EGL, the elites are not
updated, but directly enter the next generation to protect use-
ful information from being lost or weakened. Nevertheless, in
JADE, the elites are also updated. Second, in DEGLSO, the
elite set ES is further utilized to devise an adaptive commu-
nication strategy for efficient information exchange between
slaves, which will be introduced in the next section.

B. Adaptive Communication

In distributed models, one of the most important compo-
nents is the communication strategy, which has a significant

effect on the performance of distributed metaheuristics with
respect to both the solution quality and the execution time [6].
In particular, for the master–slave distributed model, a good
communication strategy should appropriately provide solutions
to two issues: 1) when the slaves make communication with
the master and 2) what the slaves exchange with the master.

To make the slaves communicate with the master efficiently,
we devise an adaptive communication strategy, which could
afford proper solutions to the above two issues. As shown in
Fig. 1, there are two kinds of information exchange between
the master and the slaves in DEGLSO: 1) each slave sends
gbest found by the associated swarm to the master, so that
different gbests found by different slaves can be preserved
in the archive (A) in the master and then can be introduced
to the slaves in the next kind of information exchange and
2) each slave introduces an individual from the master to aid
the related swarm to update.

In terms of the former exchange, to save communication
time, first, we let each slave communicate with the master
independently. Then, the delivery of gbest to the master for
each slave is triggered when gbest found by the related swarm
is updated. In this way, this kind of communication is asyn-
chronous and triggered adaptively during the optimization.
Therefore, much waiting time could be saved.

With respect to the latter, to save communication time, we
also design an asynchronous communication strategy based on
the request–response mechanism. First, for each slave, when
overlap exists in the elites of the associated swarm between
two consecutive generations, namely, ESg−1∩ESg �= ∅ (where
ESg−1 and ESg are the elite sets of the last generation and the
current generation, respectively), this slave sends a request
to the master to introduce one individual to aid the swarm
to update. Then, after receiving the request from the slave,
the master randomly selects an individual from archive A and
sends this individual along with its fitness to the corresponding
slave. In this manner, each slave introduces one individual
from the master independently as well. It should be mentioned
that such communication is adaptively triggered by ESg−1 ∩
ESg �= ∅ based on the following consideration. When ESg−1∩
ESg = ∅, all elites found in the last generation are out-of-
date and replaced by the new ones found in this generation.
Therefore, the ability of the swarm in finding better solutions
using current information is strong and thus no introduction of
individuals from the master is needed. However, when ESg−1∩
ESg �= ∅, the ability of the swarm to find more promising areas
is limited. Thus, before it is too late to help the swarm enhance
its ability, the slave immediately sends a request to the master
to introduce individuals once ESg−1 ∩ ESg �= ∅. We can take
ESg−1 ∩ESg as a measure to percept the search ability of the
swarm.

Remark 4: By means of the above two schemes, the slaves
could communicate with the master efficiently. Particularly, the
developed communication strategy has the following features.

1) The communication is asynchronously and indepen-
dently conducted between the slaves and the master,
leading to great reduction in the waiting time. In particu-
lar, all communication is adaptively triggered according
to the requirement of the search process.
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2) Only one individual is sent and received in each time
of communication, which could save a lot of time in
communication and is also beneficial for DEGLSO to
adapt to a large number of cores.

3) Each slave introduces one candidate from the master
adaptively according to its own search state measured
by ESg−1 ∩ ESg �= ∅. This adaptiveness could avoid
too frequent or too little information exchange, both of
which are not beneficial for the update of particles.

4) Since each slave communicates with the master inde-
pendently and asynchronously, it is possible to make
DEGLSO adapt to clusters with heterogeneous comput-
ers, which is considerably common in the real-world
applications.

C. Implementation

We utilize message passing interface (MPI) as the tool
to implement the devised DEGLSO. Specifically, the pro-
cedures of the master and the slaves are presented in
Algorithms S1 and S2 in the supplementary material,
respectively.

From Algorithm S1 in the supplementary material, we
can see that the master does nothing but receives and sends
information from and to the slaves. During the communica-
tion between the master and the slaves, three cases occur.
In case 1 (lines 8–12), the master receives gbest found by
the associated swarm when the slave terminates, which is
corresponding to line 23 in Algorithm S2 in the supplemen-
tary material. Then, it compares these gbests and obtains the
final gbest of DEGLSO. In case 2 (lines 13–19), the mas-
ter receives gbest from a slave during the iteration, which is
associated with line 6 in Algorithm S2 in the supplemen-
tary material. After receiving this data, the master updates
the archive (A) either using a random replacement strategy
along with an elite mechanism once A is full or directly
putting it into A when A is not full. In case 3 (lines
20–22), the master receives the request from one slave requir-
ing to introduce candidates, which corresponds to line 9
in Algorithm S2 in the supplementary material. Then, the
master randomly selects an individual from A and sends
this individual along with its fitness to the corresponding
slave.

From Algorithm S2 in the supplementary material, we can
see that each slave iterates a swarm using the proposed EGL
to locate promising solutions. Besides, an archive P of size M
is also maintained by each slave to store the individuals intro-
duced from the master. To exchange information, each slave
sends gbest found by the swarm to the master (line 6, triggered
when gbest is updated) and then requests to introduce candi-
dates from the master (lines 9 and 10, triggered when ESg−1∩
ESg �= ∅). After receiving the data from the master, the slave
will either put the received individual into P using the principle
of replacing the worst when P is full (lines 11–13) or directly
place the received individual into P when P is not full (line 15).
Subsequently, particles in NES are updated using EGL
(lines 18–20).

Compared with existing master–slave-based distributed
metaheuristics, three differences can be noticed in DEGLSO.

1) With the adaptive communication strategy, the
distributed model in DEGLSO is asynchronous.
However, in most existing master–slave-based parallel
metaheuristics [6], [23], the distributed models are
synchronous, where the master stops and waits to
receive information from all slaves before proceeding
to the next generation, and each slave must wait until
the master finishes sending information to those slaves
ahead of it. However, in DEGLSO, the master waits
only when there is no slave sending information to
it. Once there is such a slave, it will receive the
information and conduct operations corresponding to
one of the three cases (cases 1–3) in Algorithm S1 in
the supplementary material. Besides, one slave waits
only when it sends a request to the master to introduce
candidate individuals. Therefore, DEGLSO takes little
waiting time.

2) In DEGLSO, the master takes charge of information
exchange, while the slaves asynchronously iterate the
swarms to find the optimum. However, in most existing
master–slave-based distributed metaheuristics [6], [23],
the master iterates the swarm and the slaves are to
evaluate the fitness of the allocated individuals.

3) DEGLSO could adapt to clusters composed of het-
erogeneous computers. This advantage benefits from
the devised adaptive and asynchronous communication
strategy, which could reduce waiting time largely.

D. SEGLSO

To compare with DEGLSO, we also develop the serial ver-
sion of DEGLSO, named SEGLSO, whose pseudocode is
presented in Algorithm S3 in the supplementary material. To
make fair comparisons, the number of subswarms in SEGLSO
is the same as that of the slaves in DEGLSO. Besides, the main
components of SEGLSO are the same as DEGLSO.

Comparing Algorithms S1 and S2 with Algorithm S3 in
the supplementary material, we can find two main differences
between DEGLSO and SEGLSO.

1) The iteration of the swarms is executed in parallel in
DEGLSO, while that in SEGLSO is carried out sequen-
tially. Theoretically, the execution time of DEGLSO
should be much less than that of SEGLSO, which is
empirically demonstrated in Section IV.

2) The communication among the swarms is asyn-
chronous in DEGLSO, while it is synchronous in
SEGLSO. Specifically, in SEGLSO, since the swarms
are iterated sequentially, the new gbests produced in the
(k−1) swarms may be immediately used to update
the kth and the rest swarms if they are chosen as
the candidates to be introduced into these swarms and
then are utilized to update particles in these swarms.
Nevertheless, in DEGLSO, due to the asynchronization,
when a slave introduces candidates from the master, the
new gbest may be not produced in other swarms or the
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new gbests generated by other swarms have not been
delivered to the master to update A.

In Section IV, experiments are conducted to compare
DEGLSO with SEGLSO, and the experimental results sub-
stantiate that DEGLSO could achieve as good performance
in terms of solution quality as SEGLSO, but takes much less
execution time than SEGLSO.

IV. EXPERIMENTS

To verify the effectiveness and efficiency of DEGLSO, we
conduct extensive experiments on the latest and challenging
CEC’2013 large-scale benchmark set [22]. The main proper-
ties of this set are listed in Table SI in the supplementary
material.

In the following, we first investigate the parameter settings
of DEGLSO and SEGLSO in Section IV-A. Then, exten-
sive comparisons with respect to solution quality between
DEGLSO and several state-of-the-art large-scale metaheuris-
tics are conducted in Section IV-B. Particularly, in this section,
we also investigate the comparison in regard to execution
time and speedup between DEGLSO and one state-of-the-art
large-scale optimizer implemented with the traditional master–
slave model. In Section IV-C, we investigate the scalability
of DEGLSO from the perspective of more cores and higher
dimensionality. At last, in Section IV-D, we provide an in-
depth investigation on DEGLSO via analyzing the influence of
its components. However, due to the page limit, we attach the
details of the experiments to Section III in the supplementary
material.

In the experiments, unless otherwise stated, the number of
cores is experimentally set to 21 for DEGLSO (indicating
that except for one master, 20 slaves exist) and the maximum
number of fitness evaluations is set to 5000 × D (where D
is the dimension size) for all compared algorithms. For fair-
ness, median, mean, and standard deviation (Std) values over
30 independent runs are used to evaluate different algorithms.
When two algorithms are compared, two-tailed Wilcoxon rank
sum test is performed at the significance level of 0.05.

In addition, all algorithms are run on a homogeneous cluster
with PCs composed of 4 Intel Xeon E3-1225 3.30-GHz CPUs,
8-Gb memory and 64-bit Ubuntu 16.04 LTS system.

A. Parameter Investigation

In DEGLSO, only the number of elites M needs fine-tuning.
Since it is related to swarm size NP, which is a com-
mon parameter for all population-based metaheuristics, we set
M = �ER × NP	 for the convenience of fine-tuning, where
ER∈[0, 1] is the ratio of the elites out of the swarm, and
�x	 is the floor function, which returns the largest integer
smaller than or equal to x. For both DEGLSO and SEGLSO,
we conduct experiments on six 1000-D functions (F1, F7, F8,
F13 ∼ F15) with ER varying from 0.1 to 0.5 and NP ranging
from 20 to 50. It should be mentioned that these six functions
are selected because we want to investigate the parameter set-
tings on almost all kinds of functions, like fully separable,
partially separable, overlapping, nonseparable, unimodal, and
multimodal functions.

Table SII, in the supplementary material, shows the exper-
imental results with the left of the bolded line representing
the results of DEGLSO and the right denoting the results of
SEGLSO. The best results of both DEGLSO and SEGLSO are
bolded in the left and right of the bolded line, respectively.

From this table, we can obtain the following findings.
1) On most functions, when NP varies from 20 to 50, the

most proper ER is 0.2 for both algorithms.
2) When ER is fixed as 0.2, it seems that NP makes lit-

tle difference on the performance of both algorithms on
most functions, except for F1.

3) Particularly, we find that NP = 30 with ER = 0.2 is the
most proper setting for both algorithms.

In conclusion, NP = 30 with ER = 0.2 is adopted for
both DEGLSO and SEGLSO in the following experiments
conducted on 1000-D problems.

B. Comparison With State-of-the-Art Large-Scale EAs

To comprehensively verify the effectiveness and efficiency
of DEGLSO along with SEGLSO, we compare them with
several state-of-the-art large-scale methods. Particularly, five
large-scale optimizers focusing on the second aspect and
five CCEAs concentrating on the first aspect on large-scale
optimization as described in Section II are, respectively,
selected. The former five are CSO [10], DMS-L-PSO [52],
EOBDE [60], GODE [13], and SOUPDE [12], while the latter
five are CCPSO2 [17], DECC-G [42], MLCC [46], DECC-
DG [16], and DECC-XDG [49]. For fairness, the parameters
of the compared algorithms are set as recommended in the
related papers.

1) Solution Quality Comparison: Table I displays the com-
parison results among different algorithms on the 15 1000-D
CEC’2013 benchmark functions. In this table, two rows of p-
values exist with the first row representing the results when
DEGLSO is compared with the associated algorithms and the
other denoting the results when SEGLSO is compared with the
corresponding algorithms. Besides, the highlighted p-values
mean that DEGLSO or SEGLSO is significantly better than
the corresponding compared algorithms. In addition, the sym-
bols, “+,” “−,” and “=,” above the p-values represent that
DEGLSO or SEGLSO is significantly better than, significantly
worse than, and equivalent to the compared algorithms on the
associated functions. Accordingly, there are two “w/t/l” in the
last row with the first representing that DEGLSO wins on
w functions, ties on t functions, and loses on l functions in
total in the competitions with the counterpart methods and the
second denoting those numbers of SEGLSO.

The experimental results in this table can be summarized as
follows.

1) In terms of solution quality, DEGLSO and SEGLSO
achieve very similar performance on most (13 out of
15) functions.

2) Both DEGLSO and SEGLSO are better than the
ten compared algorithms on at least 8 functions.

3) Concretely, both DEGLSO and SEGLSO are better than
CSO on at least 8 functions and significantly superior
to DMS-L-PSO on at least 11 functions. Particularly,
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DEGLSO and SEGLSO beat GODE and EOBDE
down both on 14 functions, and are significantly bet-
ter than SOUPDE on 10 functions. In comparison with
CCPSO2, DECC-G, MLCC, DECC-DG, and DECC-
XDG, DEGLSO significantly dominates them on at least
8 functions, while SEGLSO performs quite better on at
least 9 functions.

In short, DEGLSO achieves very similar performance with
SEGLSO and both of them achieve very competitive or even
better performance in comparison with the ten state-of-the-art
large-scale algorithms. The superior performance of DEGLSO
and SEGLSO in regard to the solution quality benefits from
the proposed EGL strategy and the devised adaptive commu-
nication mechanism, which bring many benefits to them in
diversity maintenance as elucidated in Section III.

2) Execution Time and Speedup Comparison: To investi-
gate the superiority of DEGLSO in execution time, we record
the execution time of both DEGLSO and SEGLSO on the
CEC’2013 set. In addition, to make comparison, we also
develop the distributed version of CSO, namely DCSO (the
serial version of CSO is denoted as SCSO), using the tra-
ditional master–slave distributed model, where the master is
responsible for the update of particles, while the slaves are to
compute the fitness of particles. In particular, in DCSO, the
updated particles are equally distributed to the slaves to com-
pute their fitness values. In this experiment, CSO is selected
because: 1) CSO is one popular and state-of-the-art PSO vari-
ant in handling large-scale problems, and also focuses on the
same aspect (the second aspect as stated in Section II) as
DEGLSO and SEGLSO and 2) compared with DMS-L-PSO,
EOBDE, GODE, and SOUPDE, the superiority of DEGLSO
and SEGLSO to CSO is the smallest in solution quality as
shown in Table I.

The efficiency of a distributed metaheuristic can be reflected
by the speedup of the execution time defined

Speedup = Tserial

Tparallel
(9)

where Tparallel and Tserial are the averaged execution time of
the distributed metaheuristic and that of its serial version over
multiple independent runs, respectively.

For fairness, the source code of SCSO is directly down-
loaded from the associated authors’ websites and DCSO is
implemented based on SCSO. The maximum number of fit-
ness evaluations is set to 5000×D for all algorithms. Besides,
DEGLSO and DCSO utilize 21 cores to optimize each problem
in the CEC’2013 set. Table II presents the execution time (in
second) of the four algorithms and the speedup of the two dis-
tributed metaheuristics. The function evaluation time of each
function is also provided in this table.

From this table, we can observe the following.
1) DEGLSO not only takes much less time than SEGLSO

but also takes significantly less time than DCSO and
SCSO.

2) The speedup of DEGLSO is significantly higher than
that of DCSO.

3) Concretely, on almost all functions, except for F12, the
speedup of DEGLSO is at least 14, while that of DCSO
is smaller than 4.

4) Particularly, on F12, due to the short function evalua-
tion time, the efficiency of both DEGLSO and DCSO
is not as good as that on functions with longer func-
tion evaluation time. Due to the large communication
between the slaves and the master in DCSO, which leads
to more time in communication than the function evalua-
tion, DCSO even takes more time than SCSO. However,
DEGLSO still takes much less time than SEGLSO. The
only exception is that the speedup is not as high as that
on other functions with longer function evaluation time,
but is still much higher than DCSO on all functions.

5) With the function evaluation time increasing, in most
cases, the speedup of both DEGLSO and DCSO
increases as well. This matches the expectation that
distributed metaheuristics are more suitable to tackle
problems with high computational cost.

6) DEGLSO can not only handle problems with high com-
putational cost better but also retain greater efficiency
on problems with low computational cost as compared
to DCSO.

The superiority of DEGLSO in the execution time and
speedup benefits from the devised adaptive and asynchronous
communication strategy. On the one hand, with this adaptive
communication strategy, the slaves in DEGLSO communi-
cate with the master independently. Thus, little waiting time
exists in the communication between the slaves and the mas-
ter. However, in the traditional master–slave model, the master
needs to wait before at least one slave finishes the fitness eval-
uation and sends the fitness values to the master. Besides, the
slaves also need to wait when the master updates particles
and one slave must wait until the master has finished sending
particles to those slaves ahead of it. Therefore, much wait-
ing time exists in the traditional master–slave model, leading
to the deficiency of DCSO. On the other hand, the slaves in
DEGLSO communicate with the master adaptively. This indi-
cates that the slaves in DEGLSO do not communicate with the
master every generation like in the traditional master–slave
model. Instead, for each slave, the communication is adap-
tively trigged based on the search state, like gbest is updated
or ESg−1 ∩ ESg �= ∅.

C. Scalability Investigation

In this section, we conduct experiments to investigate the
scalability of DEGLSO from three perspectives: 1) scalability
to more cores with fixed total fitness evaluations; 2) scala-
bility to more cores with fixed iterations for each slave; and
3) scalability to higher dimensionality.

1) Scalability to More Cores With Fixed Total Fitness
Evaluations: First, we investigate the scalability of DEGLSO
to more cores when given fixed 5 × 106 total fitness evalu-
ations. In this case, the total fitness evaluations are equally
allocated to all slaves. We execute DEGLSO on the 1000-D
CEC’2013 set with the number of cores varying from 6 to 46.
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TABLE I
FITNESS COMPARISON RESULTS AMONG DIFFERENT ALGORITHMS ON 1000-D CEC’2013 PROBLEMS

Accordingly, the number of subswarms in SEGLSO ranges
from 5 to 45.

Fig. S1, in the supplementary material, displays the change
of the averaged fitness values of both DEGLSO and SEGLSO
on different functions with the number of cores (subswarms)
increasing from 6 to 46 (5 to 45). Fig. S2, in the supple-
mentary material, presents the change of the execution time
of DEGLSO and SEGLSO and that of the speedup as the
number of cores changes.

From Fig. S1 in the supplementary material, the following
observations can be obtained with respect to solution quality.

1) On most functions, except for F12, on which DEGLSO
is inferior to SEGLSO, DEGLSO achieves similar
performance with SEGLSO.

2) On most functions (8 out of 15), the performance of both
DEGLSO and SEGLSO first becomes better and better
and then becomes worse and worse with the number of
cores increasing. This phenomenon can be explained as
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TABLE II
TIME (IN SECOND) AND SPEEDUP COMPARISON AMONG DEGLSO,

SEGLSO, DCSO, AND SCSO ON 1000-D CEC’2013 PROBLEMS

follows. On the one hand, when the number of cores is
too small, only a few swarms are maintained, leading
to that no enough diversity is afforded. In this situation,
both DEGLSO and SEGLSO may easily get trapped into
local optima; on the other hand, when the number of
cores is too large, given fixed total fitness evaluations,
the number of fitness evaluations allocated to each slave
is small, leading to that the swarm in each slave can-
not be iterated well enough to approach to the global
optimum.

3) On F6 and F10, the performance of DEGLSO and
SEGLSO tends to be worse and worse when the number
of cores increases.

4) Surprisingly, on F2, F5, and F9, the performance of
DEGLSO and SEGLSO becomes better and better as
the number of cores increases. This may benefit from the
increasing diversity brought by the increasing swarms,
which is precious for multimodal functions.

From Fig. S2 in the supplementary material, the experi-
mental results in terms of execution time and speedup can be
summarized as follows.

1) The execution time of DEGLSO is much smaller than
that of SEGLSO.

2) With the number of subswarms increasing, the execution
time of SEGLSO almost remains unchanged. This is not
strange because the total number of fitness evaluations
is fixed and during the execution, the fitness evaluation
takes the most computational cost.

3) As the number of cores increases, the execution time
of DEGLSO becomes smaller and smaller almost on all
functions, except for F12. This is not surprising because
more cores partition the iteration of the optimizer and
then more fitness evaluations are performed in parallel.

4) The only exception for DEGLSO is F12, on which its
execution time first decreases when the number of cores

increases from 6 to 26 and then increases as the num-
ber of cores increases from 26 to 46. This is because
the function evaluation time of F12 is too small. When
the number of cores is small, the communication time
in DEGLSO is negligible compared with the function
evaluation time. However, when the number of cores is
too large, the communication time is not negligible, but
becomes comparable or even larger than the function
evaluation time.

5) On almost all functions, except for F12, DEGLSO
achieves linear speedup as the number of cores increases.

Overall, taking both the solution quality and the execution
time into consideration, we find that given fixed 5× 106 total
fitness evaluations, DEGLSO with 21 cores could make a good
compromise over all functions.

2) Scalability to More Cores With Fixed Iterations for Each
Slave: Subsequently, we conduct experiments on the 1000-D
CEC’2013 set to investigate the scalability of DEGLSO to
more cores when given a fixed number of iterations for each
slave. Particularly, in this experiment, the maximum number of
generations for each slave (each subswarm) is fixed to 10 500.
This number is selected to keep consistency with the previous
experiments, so that when the number of cores is 21, the max-
imum number of function evaluations is close to 5000 × D
(D = 1000). We execute DEGLSO with the number of cores
varying from 6 to 46. Accordingly, for SEGLSO, the number
of subswarms ranges from 5 to 45.

Fig. S3, in the supplementary material, displays the change
of the averaged fitness values of both DEGLSO and SEGLSO
on different functions with the number of cores (subswarms)
increasing from 6 to 46 (5 to 45). Fig. S4, in the supple-
mentary material, presents the change of the execution time
of DEGLSO and SEGLSO and that of the speedup as the
number of cores changes.

From Fig. S3 in the supplementary material, we can obtain
the following observations.

1) On most functions, with the number of cores (sub-
swarms) increasing, the performance of both DEGLSO
and SEGLSO becomes better and better. This is not sur-
prising because with the number of generations fixed in
each slave (subswarms), as the number of cores (sub-
swarms) grows, not only more particles participate in
locating the optima but also more fitness evaluations are
allocated.

2) DEGLSO can achieve very similar performance with
SEGLSO on almost all functions, except for F12, where
DEGLSO performs worse than SEGLSO.

3) On F3, F10, and F11, the performance of both DEGLSO
and SEGLSO vibrates, but the tendency of the quality of
the final solutions obtained by both algorithms is becom-
ing better and better as the number of cores (subswarms)
increases.

From Fig. S4 in the supplementary material, we can find
the following phenomena.

1) As the number of cores (subswarms) increases, the exe-
cution time of SEGLSO increases fast and linearly on
all functions, while that of DEGLSO grows very mildly
on almost all functions, except for F12, on which the
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execution time of DEGLSO also increases linearly but
much slower than that of SEGLSO. This is not strange
because in DEGLSO, all swarms are iterated in parallel,
while in SEGLSO, all subswarms are iterated in serial.
Besides, due to the proposed adaptive and asynchronous
communication strategy, little communication time is
occupied, which could be ignored compared with the
long function evaluation time. However, on F12, due to
its too short function evaluation time, the communication
time may be comparable to the function evaluation time,
leading to the increased execution time of DEGLSO as
the number of cores increases.

2) Except for F12, the speedup of DEGLSO increases
linearly as the number of cores grows on almost all
functions due to the efficient communication strategy.

Overall, we can conclude that DEGLSO could preserve
a good scalability to more cores when given a fixed num-
ber of iterations for each slave. In particular, DEGLSO scales
well to a large number of cores with linear speedup. Such
superiority benefits from the devised communication strategy
and the developed EGL. The former provides efficient and
effective information exchange, leading to nearly unchanged
execution time as the number of cores increases. The latter
helps the swarms maintain high search diversity, giving rise
to the good performance of DEGLSO in terms of the solution
quality.

3) Scalability to Higher Dimensionality: At last, we inves-
tigate the scalability of DEGLSO to solve higher dimensional
problems. First, we construct several 2000-D and 3000-D com-
posite problems by concatenating different 1000-D functions
in the CEC’2013 set. Without loss of generality, we utilize
F1, F4, F7, F8, F11, F13, F14, and F15 in the CEC’2013 set
to construct six 2000-D problems and six 3000-D prob-
lems, respectively. These functions are selected because on
the one hand, they could cover all the main properties of
the CEC’2013 set, like fully separable, partially separable,
overlapping, etc.; on the other hand, each variable of these
functions has the same lower and upper bounds, which makes
it easy to program. The six constructed 2000-D problems
denoted as “CF2,i” (the ith 2000-D composite function) and
the six constructed 3000-D problems denoted as “CF3,i” (the
ith 3000-D composite function) are presented in Tables SIII
and SV, in the supplementary material, respectively.

Second, we also adopt both DCSO and SCSO to make com-
parisons with DEGLSO and SEGLSO. In addition, NP and
ER are set to 80 and 0.1 for DEGLSO and SEGLSO based on
preliminary experiments. As for the parameters in CSO, they
are set according to the guideline in [10]. In this experiment,
21 cores are adopted to execute both DEGLSO and DCSO and
the maximum number of fitness evaluations is set to 5000×D.

Tables SIII and SIV, in the supplementary material, present
the experimental results on the six 2000-D problems with
the former displaying the fitness comparison results and the
latter showing the execution time and speedup comparison
results. Tables SV and SVI, in the supplementary material,
respectively, display the fitness comparison results and the exe-
cution time and speedup comparison results on the six 3000-D
problems.

From Table SIII in the supplementary material, in terms
of solution quality on the 2000-D problems, we find that:
1) DEGLSO still achieves very similar performance with
SEGLSO on the functions and 2) DEGLSO and SEGLSO are
better than DCSO and SCSO on the six functions.

From Table SIV in the supplementary material, with respect
to the execution time and the speedup, we can obtain three
observations.

1) DEGLSO takes significantly less time not only than
SEGLSO, but also than both DCSO and SCSO.

2) The speedup of DEGLSO is considerably larger than
that of DCSO. Specifically, on these 2000-D problems,
the speedup of DEGLSO is at least 16, while that of
DCSO is less than 3.

3) Compared with the speedup of DEGLSO on 1000-
D problems in Table II, the speedup of DEGLSO on
2000-D problems is a little larger, due to the increase
of the function evaluation time. However, that of DCSO
does not increase so obviously, because although the
function evaluation time increases, the communication
content also increases due to the higher dimensionality.

From Table SV in the supplementary material, in terms of
solution quality on the 3000-D problems, we can get similar
observations: 1) DEGLSO achieves very similar performance
with SEGLSO on these functions as well and 2) DEGLSO and
SEGLSO are better than DCSO and SCSO on five functions.
Unfortunately, on CF3,2, DEGLSO and SEGLSO perform
worse than DCSO and SCSO.

From Table SVI in the supplementary material, as for the
execution time and speedup, we can find the following.

1) DEGLSO still takes much less time not only than
SEGLSO, but also than DCSO and SCSO.

2) The speedup of DEGLSO is still much larger than that
of DCSO. Specifically, on these 3000-D problems, the
speedup of DEGLSO is at least 18, while that of DCSO
is less than 3.

3) Compared with the speedup of DEGLSO and DCSO
on the 2000-D problems, the speedup of DEGLSO
and DCSO increases not so obviously. This is because
the communication content greatly increases due to the
higher dimensionality.

Overall, DEGLSO retains great efficiency and effectiveness
on higher dimensional problems in terms of both the solu-
tion quality and the execution time. In particular, DEGLSO
still maintains high speedup to optimize higher dimensional
problems. The good scalability of DEGLSO to solve higher
dimensional problems mainly benefits from the proposed EGL
and the devised adaptive communication strategy. The former
mainly makes DEGLSO obtain good performance in terms
of the solution quality, while the latter mainly lets DEGLSO
achieve good performance in terms of the execution time.

D. Investigation About DEGLSO

In this section, we analyze the influence of each component
on DEGLSO, so that it is clear to know what contributes to
the good performance of DEGLSO. However, due to the page
limit, we have to attach the details of the analysis to Section III
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in the supplementary material. As a consequence, we only list
brief introductions and conclusions of the analysis here.

First, we take investigation about the swarm diversity and
the fast convergence of DEGLSO via comparing it with
GPSO and CSO (related to Section III-A in the supplemen-
tary material). The experimental results verify that DEGLSO
compromises swarm diversity and fast convergence better than
CSO and GPSO on both unimodal and multimodal problems.

Second, we investigate the influence of the archives in the
master and the slaves on DEGLSO. We compare DEGLSO
with its versions without archives in the master and the slaves
(associated with Section III-B in the supplementary material).
The experimental results substantiate that the archives in both
the master and the slaves are vital and the archive in the master
is more crucial than the archives in the slaves for DEGLSO.

Third, we investigate the influence of the proposed adaptive
communication strategy from three perspectives (associated
with Section III-C in the supplementary material).

1) We record the accumulated communication times
between the slaves and the master triggered by ESg−1∩
ESg �= ∅. The experimental results show that compared
with letting the slaves communicate with the master
every generation, the adaptive communication strategy
could help DEGLSO save many communication times
during the optimization.

2) We compare the asynchronous communication strategy
with the one widely used synchronous communication
strategy that each slave communicates with the master
every T generations. The experimental results demon-
strate that the proposed asynchronous communication
strategy is much more effective than the synchronous
one.

3) We compare the adaptive communication scheme with
two asynchronous communication strategies triggered
adaptively by two measures that the global best fit-
ness remains unchanged in T consecutive generations
and the relative improvement of the global best fitness
between two successive generations is less than a thresh-
old R, respectively. The experimental results verify that
compared with the above two measures, the proposed
measure ESg−1 ∩ ESg �= ∅ could bring more sufficient
and effective information exchange among slaves, con-
tributing to the good performance of DEGLSO in terms
of the solution quality.

Overall, the proposed EGL and the devised communica-
tion strategy cooperate with each other cohesively to aid the
slaves to search the high-dimensional space effectively and
efficiently, leading to the good performance of DEGLSO in
terms of both the solution quality and the execution time and
speedup.

V. CONCLUSION

This paper has proposed a DEGLSO to tackle large-
scale optimization problems with high computational cost.
Particularly, this distributed optimizer utilizes the special
master–slave distributed model, where the master is mainly

responsible for information exchange, while each slave iter-
ates a swarm using the devised EGL to find the optimum
of the problem. An adaptive and asynchronous communica-
tion strategy based on the request–response mechanism is
especially designed for this distributed model, which adap-
tively triggers the communication between the master and the
slaves. In this manner, each slave iterates the swarm asyn-
chronously and communicates with the master independently.
The proposed EGL and the devised communication strategy
cooperate with each other cohesively to aid the slaves to search
the high-dimensional space effectively and efficiently.

Extensive experiments conducted on the CEC’2013 bench-
mark set have demonstrated the competitive effectiveness and
efficiency of DEGLSO with respect to the solution quality
and the execution time, as compared to state-of-the-art large-
scale algorithms. Particularly, DEGLSO achieves nearly linear
speedup as the number of cores increases and preserves a good
scalability to solve higher dimensional problems.
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