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Dimensionality Reduction of Hyperspectral Imagery

Based on Spatial-spectral Manifold Learning
Hong Huang, Member, IEEE, Guangyao Shi, Haibo He, Fellow, IEEE, Yule Duan, and Fulin Luo

Abstract—The graph embedding (GE) methods have been
widely applied for dimensionality reduction of hyperspectral
imagery (HSI). However, a major challenge of GE is how to
choose proper neighbors for graph construction and explore the
spatial information of HSI data. In this paper, we proposed an
unsupervised dimensionality reduction algorithm termed spatial-
spectral manifold reconstruction preserving embedding (SSM-
RPE) for HSI classification. At first, a weighted mean filter
(WMF) is employed to preprocess the image, which aims to
reduce the influence of background noise. According to the spatial
consistency property of HSI, the SSMRPE method utilizes a new
spatial-spectral combined distance (SSCD) to fuse the spatial
structure and spectral information for selecting effective spatial-
spectral neighbors of HSI pixels. Then, it explores the spatial
relationship between each point and its neighbors to adjusts the
reconstruction weights for improving the efficiency of manifold
reconstruction. As a result, the proposed method can extract the
discriminant features and subsequently improve the classification
performance of HSI. The experimental results on PaviaU and
Salinas hyperspectral datasets indicate that SSMRPE can achieve
better classification accuracies in comparison with some state-of-
the-art methods.

Index Terms—Hyperspectral remote sensing; Dimensionality
reduction; Manifold learning; Spatial-spectral combined dis-
tance; Discriminant features

I. INTRODUCTION

BY observing digital images in hundreds of continuous

narrow spectral bands spanning the visible to infrared

wavelengths, hyperspectral imagery (HSI) contains both de-

tailed spatial structure and spectral information [1]–[3]. Due

to its ability to distinguish more subtle differences between

ground cover classes than traditional multi-spectral imagery

[4], [5], HSI has been widely used in many fields such as en-

vironmental monitoring, precision agriculture, urban planning,

and earth observation [6]–[8]. Classification of each pixel in

HSI plays a crucial role in these real applications, but the
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traditional classification methods commonly cause the Hughes

phenomena because of the high dimensional characteristic of

spectral features [9], [10]. Therefore, the most important and

urgent issue is how to reduce the number of bands largely with

some valuable intrinsic information preserved [11]–[13].

In recent years, many dimensionality reduction (DR) meth-

ods have been proposed to reduce the number of spectral

bands in HSI. Principal component analysis (PCA) [14] and

linear discriminant analysis (LDA) [15] are two widely used

subspace learning methods which project high-dimensional

data into a lower-dimensional embedding space by using

a set of optimal basis vectors, but they cannot reveal the

intrinsic structure in HSI data [16], [17]. While manifold

learning methods are useful to analyze the data that lie on

or near a manifold in the original data space, many mani-

fold learning methods have been introduced for discovering

the intrinsic structure in high-dimensional data [18]–[20],

such as local linear embedding (LLE) [21], isometric feature

mapping (ISOMAP) [22], laplacian eigenmaps (LE) [23],

and t-distributed stochastic neighbor embedding (t-SNE) [24].

However, these methods are non-linear techniques, and the

issue of how to map unknown data points into embedding

space remains difficult [25]–[27]. To solve this problem, many

linear manifold learning methods were developed to directly

map unknown samples into embedding space, e.g. locality

preserving projection (LPP) [28], neighborhood preserving

embedding (NPE) [29] and parametric supervised t-SNE [30].

In order to unify these methods, a graph embedding (GE)

framework has been proposed to analyze the DR methods on

the basis of statistics or geometry theory [31]–[33].

However, the above DR methods only consider the spectral

information and neglect the spatial correlations among pixels

in HSI, which restricts their discriminant capability for classi-

fication in real applications [34]–[37]. Therefore, many spatial-

spectral DR methods have been proposed to fuse spatial corre-

lation and spectral information for enhancing the classification

performance. Wei et al. [38] proposed a spatial coherence-

neighborhood preserving embedding (SC-NPE) method, which

considered spatial context of pixels by adopting the difference

between the surrounding patch of pixels, and then mapped the

raw data into the low-dimensional space through an optimized

local linear embedding. Zhou et al. [39] developed a spatial-

domain local pixel neighborhood preserving embedding (LP-

NPE) method, and it seeks a linear projection matrix such that

the local pixel neighborhood preserving scatter is minimized

and the total scatter is maximized in the projected space

simultaneously. Feng et al. [40] defined discriminate spectral-

spatial margins (DSSMs) to reveal the local information of

http://arxiv.org/abs/1812.09530v1
http://ieeexplore.ieee.org
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hyperspectral pixels and explore the global structure of both

labeled and unlabeled data via low-rank representation. The

aforementioned spatial-spectral combined methods just use the

spatial information to represent the similarity relationship or

reveal the spatial neighborhood relationship of HSI data within

a certain spatial window, which ignore the influence of spatial

information in the construction of adjacency graph.

To overcome the aforementioned drawbacks, we proposed a

new unsupervised DR method termed spatial-spectral manifold

reconstruction preserving embedding (SSMRPE) for hyper-

spectral imagery classification. The SSMRPE method makes

full use of spatial structure and spectral information in HSI

to extract discriminant features for classification, and the

main characteristics of this DR method can be concluded as:

1) As a preprocessing step, a spatial weighted mean filter

(WMF) method is explored to reduce noise and smoothen the

homogeneous regions in HSI; 2) Compared with traditional

Euclidean distance, the proposed spatial-spectral combined

distance (SSCD) is a helpful way to choose effective spatial-

spectral neighbors by incorporating the spatial structure and

spectral information simultaneously; 3) A spatial-spectral ad-

jacency graph is constructed to discover the manifold structure

of HSI data, and the aggregation of data is enhanced through

adjusting the reconstruction weight of spatial neighbors to ex-

tract the discriminant features. Experimental results on PaviaU

and Salinas hyperspectral datasets show that the proposed

SSMRPE method achieved better classification performance

than some state-of-art DR methods.

This paper is organized as follows. In Section II, we briefly

review some related works. Section III details our proposed

method. Experimental results on two real hyperspectral data

sets are presented in Section IV to demonstrate the effective-

ness of the proposed SSMRPE method. Finally, Section V

provides some concluding remarks and suggestions for future

work.

II. RELATED WORKS

Suppose that a HSI dataset consists of D bands, each pixel

can be denoted as a vector xi ∈ RD(i = 1, 2, . . . , n), where

n refers to the number of HSI pixels. The class label of

ℓ(xi) ∈ {1, 2, · · · , c}, where c is the number of land cover

types. The goal of dimensionality reduction is to map X ∈ RD

to Y ∈ Rd, where D ≫ d. For the linear DR methods,

Y = [y1,y2,y3, · · · ,yn] ∈ Rd×n is replaced by Y = ATX,

where A ∈ RD×d is the corresponding projection matrix.

A. Weighted Mean Filtering (WMF)

To reduce noise and smoothen the homogeneous regions

in the HSI, a spatial WMF is used to preprocess the pixels.

Assuming that the coordinate of xi is denoted as (pi, qi), then

the adjacent space centered at xi can be defined as

Ω(xi) = {xi(p, q)|p ∈ [pi − t, pi + t], q ∈ [qi − t, qi + t]}
(1)

where t = (w − 1)/2, w is a positive odd number, and it

indicates the size of spatial window. Denoting the pixels in the

adjacent space Ω(xi) as xi,xi1,xi2, · · · ,xi(w2−1), Then, the

filtered pixel x′

i can be represented with a weighted summation

as follows:

x′

i =

∑

xj∈Ω(xi)
vjxj

∑

xj∈Ω(xi)
vj

=
xi +

∑w2
−1

k=1 vkxik

1 +
∑w2−1

k=1 vk
(2)

where vk = exp{−γ0‖xi−xik‖
2} is the weight of xik , and γ0

is a constant which is empirically set 0.2 in the experiments.

The WMF method adjusts the degree of filtering by spatial

window w, and it can effectively decrease the influence of

noise for enhancing the spectral similarity between pixels from

the same class.

B. Neighborhood Preserving Embedding (NPE)

NPE can be regarded as a linear approximation to locally

linear embedding (LLE), and it can directly map unknown

samples into embedding space where the local manifold struc-

ture of data can be preserved. The outline of NPE can be

summarized as follows:

1) Construct an adjacency graph G. G is composed of n nodes,

and i-th node corresponds to sample xi. Node i and j are

connected by an edge if xj is among k nearest neighbors of

xi. The common ways of selecting neighbors are k-nearest

neighbors and ε-neighborhood.

2) Compute the weight matrix W. Let wij denote the weight

of xi and xj , and wij = 0 if there is no such edge between

them; otherwise wij can be calculated by minimizing the

following reconstruction error function:

min
N
∑

i=1

||xi −
k

∑

j=1

wijxj ||
2 = min

N
∑

i=1

||
k

∑

j=1

wij(xi−xj)||
2

(3)

with constrains
∑

j

wij = 1, j = 1, 2, · · · , k

3) Calculate the projection matrix A. To preserve the local

manifold structure on high-dimensional data, NPE assumes

that the low-dimensional embedding yi can be approximated

by the linear combination of its corresponding neighbors.

Therefore, a reasonable criterion for choosing a good project

matrix A is to minimize the objective function as














min
N
∑

i=1

|yi −
k
∑

j=1

wijyij |
2 = minATXMXTA

s.t.
N
∑

i=1

yi = 0, 1
N
AAT = I

(4)

where M = (I−W)(I−W)T and I = diag[1, · · · , 1].

III. PROPOSED METHOD

To effectively reveal the intrinsic manifold structure of

hyperspectral data, a spatial-spectral manifold reconstruction

preserving embedding (SSMRPE) method was proposed for

DR of HSI. SSMRPE chooses spatial-spectral neighbors by

incorporating the spatial structure and spectral information,

which is more effective to choose the proper neighbors from

HSI pixels, especially for spectrally-similar pixels from dif-

ferent classes. To further enhance the discriminating power

of feature learning, it exploits the spatial-spectral neighbors

to construct a spatial-spectral adjacency graph, and adjusts
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Fig. 1. Flowchart of the proposed SSMRPE method.

the reconstruction weight of them by their spatial coordinates

in HSI. Thus, SSMRPE makes full use of spatial-spectral

combined information of HSI data, and it can obtain discrim-

inating features to improve the classification performance.The

flowchart of the proposed algorithm is shown in Fig. 1.

In hyperspectral image, the pixels are usually spatially

related, the pixels within a small neighborhood usually possess

the spatial distribution consistency of ground objects. There-

fore, neighborhood pixels can be utilized to fuse spatial and

spectral information for measuring similarity.

In order to explore the spatial-spectral combined informa-

tion in HSI, a spatial-spectral combined distance (SSCD) is

proposed to choose effective neighbors for the construction of

adjacency graph, which explores the adjacent space Ω(xi) to

measure the similarity between data points. The overview of

SSCD is shown in Fig. 2. For pixels xi and xj in HSI, x′

i and

x′

j are the corresponding filtered pixels by using the weighted

mean filter (WMF) method. Suppose the adjacent spaces of xi

and xj are Ω(xi) and Ω(xj), respectively, the spatial-spectral

combined distance (SSCD) can be defined as

dSSCD(xi,xj) = d(Ω(xi),x
′

j) (5)

where d(Ω(xi),x
′

j) is the distance between Ω(xi) and x′

j , it

is defined as follows:

d(x′

j ,Ω(xi)) =

w2
∑

s=1
vis||x

′

j − xis||

w2
∑

s=1
vis

xis ∈ Ω(xi) (6)

in which vis is the weight of xis, and it can be calculated by

a heat kernel function as

vis = exp{−||x′

j − xis||
2
/

σ2
j } (7)

where σj is set to be the average value of ||x′

j − xis||, s =
1, 2, · · · , w2, that is

σj =
1

w2

w2
∑

s=1

||x′

j − xis|| (8)

With the modified distance by SSCD, a number of spatial-

spectral neighbors can be obtained for adjacency graph. To

further illustrate the effectiveness of SSCD, we crop an image

block from the PaviaU hyperspectral image, as shown in Fig.3

(a). Then we randomly select some pixels from the image

block as training samples, and the distributions of all training

samples are shown in Fig.3 (b). xi is set as the target pixel

that is denoted with a brown circle, and then its spectral

neighbors, spatial neighbors and spatial-spectral neighbors are

chosen, respectively. Note that the window size of spatial-

based methods is 9 × 9. All the neighbors are indicated by

red circles, which are connected with xi by brown lines. The

distributions for three different types of neighbors are shown in

Fig.3 (c-e), and their corresponding spectral curves of selected

neighbors are shown in Fig.3 (f-h).

As we can see from Fig.3 (a) and (f), spectral neighbors

measure the similarity of pixels only based on spectral fea-

tures while neglect the spatial distributions of ground objects,

and the selected neighbors often contain pixels with similar

spectral curves which come from different classes. From Fig.3

(d) and (g), spatial neighbors consider the spatial relationship

between pixels, but the spatial neighbors may include pixels

come from different classes, especially at land cover bound-

aries, which will produce negative influence on DR of HSI. As

in Fig.3 (e) and (h), the spatial-spectral combined information

between pixels are explored to find effective neighbors, which

is beneficial to construct the adjacency graph for DR.

After obtaining the spatial-spectral neighbors, a spatial-
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Fig. 2. Overview of spatial-spectral combined distance (SSCD). (Note that the green circles represent the spatial neighbors of xi and xj , respectively.)

spectral adjacency graph Gss = {X,Wss} can be con-

structed, where X is the vertex of the graph and Wss is the

weight matrix. In graph Gss, if two pixels are neighbors, an

edge is connected between them, otherwise they should not

be connected. In general, the selected neighbors may have

different effect in the reconstruction process due to their spatial

relationships. In hyperspectral image, if a neighbor pixel is

closer to the target pixel, there would be a high probability of

them being in the same class, and the weight between them

should be bigger in the reconstruction process. Therefore, a

spatial coordinate distance dSCD is introduced to denote the

spatial relationship.

Denoting the coordinates of xi and xj in HSI as (pi, qi)
and (pj , qj), then the spatial coordinate distance dijSCD is given

by the Euclidean distance between their coordinates as

dijSCD = dSCD(xi,xj) =

√

(pi − pj)
2
+(qi − qj)

2
(9)

To preserve the spatial relationship of HSI data, the recon-

struction error function for the optimal weights is defined as

follows:






min
N
∑

i=1

||
k
∑

j=1

w′

ij(
xi−xj

d
ij

SCD

)||2

s.t.w′

ij = 0 ∀ xj /∈ k(xi)

(10)

In Eq.(10), (xi −xj)/d
ij
SCD indicates the spatial-spectral com-

bined measure between xi and xj .

Suppose that xk
i represents the k-th spatial-spectral neighbor

of xi, h
k
i = (xi − xk

i )/d
ik
SCD is the spatial-spectral combined

measure between xi and its k-th spatial-spectral neighbor, and

k is the number of spatial-spectral neighbors, then the objective

function can be simplified into

min
N
∑

i=1

||
k
∑

j=1

w′

ij(
xi−xj

d
ij

SCD

)||2 = min
N
∑

i=1

w′T
i ziw

′

i (11)

where zi = [h1
i , h

2
i , h

3
i , ..., h

k
i ]

T [h1
i , h

2
i , h

3
i , ..., h

k
i ] and w′

i =
[w′

i1, w
′

i2, w
′

i3, · · · , w
′

ik]. Then, the objective function can be

expressed as the following optimization problem:














min
N
∑

i=1

w′T
i ziw

′

i

s.t.
k
∑

j=1

w′

ij = 1
(12)

With the Lagrange multiplier method, w′

ij is given as follows:

w′

ij =

k
∑

m=1
(zjmi )

−1

k
∑

p=1

k
∑

q=1
(zpqi )

−1

(13)

where zjmi = (hj
i )

Thm
i and zpqi = (hp

i )
Thq

i .

After obtained the weight matrix W′, the projection vector

A for low-dimensional embedding can be achieved by solving



IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, XX XXXX 5

(a) (b)

(c) (d) (e)

 ! " # $ %  

 

&  

%   

%&  

 
!
"
#
!
$
%
"
&

 !"#$#%&'(

  

!

)*

)+

),

)-

).

)/

(f)

 ! " # $ %  %! 

 

&  

%   

%&  

!   

  

!

 !

 "

 #

 $

 %

 &

 
!
"
#
!
$
%
"
&

'()*+*,-./

(g)

 ! " # $ %  

 

&  

%   

%&  

 
!
"
#
!
$
%
"
&

 !"#$#%&'(

  

!

)*

)+

),

)-

).

)/

(h)

Fig. 3. Diagrams of spectral, spatial and spatial-spectral neighbors. (a) Original image (b) Randomly selected training samples (c) Spectral neighbors (d)
Spatial neighbors (e) Spatial-spectral neighbors (f) Curves of spectral neighbors (g) Curves of spatial neighbors (h) Curves of spatial-spectral neighbors

the following optimization problem:














min
N
∑

i=1

|yi −
k
∑

j=1

w′

ijyj |
2

s.t.
N
∑

i=1

yi = 0, 1
N
AAT = I

(14)

With some mathematical operations, (14) can be reduced as

min
N
∑

i=1

||yi −
k
∑

j=1

w′

ijyj ||
2

= min
N
∑

i=1

||
k
∑

j=1

w′

ij(yi − yj)||
2

= min
N
∑

i=1

||YIi −Yw′

i||
2

= min tr(Y(I −W′)(I−W′)TYT )

= minATXM′XTA

(15)
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Algorithm 1 SSMRPE

Input: D-dimensional data set X = [x1,x2,x3, · · · ,xn] ∈ RD×n and their corresponding class labels {l1, l2, · · · , ln},

embedding dimension d(d ≪ D), window size w > 0, neighbor number k > 0 and γ0 = 0.2.

1: for i = 1 to n do

2: find neighbor pixels of xi by (1).

3: for s = 1 to do

4: Compute the weights of neighbor pixels:vk = exp{−γ0‖xi − xik‖
2}

5: end for

6: Obtain the filtered pixel x′

i =

∑
xj∈Ω(xi)

vjxj
∑

xj∈Ω(xi)
vj

7: end for

8: X′ = [x′

1,x
′

2,x
′

3, · · · ,x
′

n]
9: for i = 1 to n do

10: Compute the spatial-spectral combined distance as (5).

11: find k-nearest spatial-spectral neighbors [x1
i ,x

2
i ,x

3
i , · · · ,x

k
i ] of xi

12: compute spatial coordinate distance dijSCD between xi and its spatial-spectral neighbors.

13: end for

14: Compute the reconstruction weight of xi by (11).

15: Solve the generalized eigenvalue problem as (16).

16: Obtain the projection matrix with the d smallest eigenvalues corresponding eigenvectors: A = [a1, a2, · · · , ad] ∈ RD×d

Output: Y = ATX ∈ Rd×n

in which M′ = (I − W′)(I − W′)T and I = diag [1, · · ·
,1]. (15) can be solved by Lagrange multiplier, and it can be

transformed into the following form:

XM′XTA = λXXTA ⇒ (XXT )−1XM′XTA = λA
(16)

where λ is the eigenvalue of (16). With the eigenvectors a1, a2,

· · · , ad corresponding to the first d eigenvalues, the optimal

projection matrix can be represented as A = [a1 a2 . . . ad].

Then the embedding of high-dimensional data in the low-

dimensional space can be denoted as Y = ATX.

In summary, the proposed method makes full use of spatial-

spectral combined information of HSI data, and it can obtain

discriminating features to improve the classification perfor-

mance. The detailed process of SSMRPE method is given in

Algorithm 1.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the Pavia University and Salinas Valley

hyperspectral data sets were employed to demonstrate the

effectiveness of the proposed SSMRPE method, and it was

compared with some state-of-art DR algorithms.

A. Data Description

1) Pavia University data set: This data set is a hyperspectral

image of the Pavia University acquired by the ROSIS sensor

in 2002. The area possesses a spatial size of 610×340 pixels,

and the uncorrected data contains 115 spectral bands ranging

from 0.43 to 0.86 µm with a spatial resolution of 1.3 m. The

corrected data has 103 bands after the 12 bands with serious

water absorption are removed. The data set contains nine land

cover types. The HSI in false color and its corresponding

ground truth are shown in Fig. 4.

2) Salinas data set: This HSI data set was collected by

an airborne visible/infrared imaging spectrometer (AVIRIS)

Fig. 4. PaviaU hyperspectral remote sensing image. (a) HSI in false color.
(b) Corresponding ground truth. (Note that the number of samples for each
class is shown in brackets.)

sensor over Salinas Valley, Southern California, in 1998. The

image size is 512× 217 pixels with a spatial resolution of 3.7

m. It contains 224 bands and 16 ground-truth classes in total.

After removing 20 bands that are severe affected by noise, the

remaining 204 bands are used for the experiments.The Salinas

scene in false color and its corresponding ground truth are

shown in Fig. 5.

B. Experimental Setup

In each experiment, the HSI data set is randomly di-

vided into training and test sets. The training set is used

to learn a low-dimensional embedding space using different

DR methods. Then, all test samples are projected onto the

embedding space. After that, the nearest neighbor classifier

(1-NN) is employed for classification in all experiments.

Overall classification accuracies (OAs), average classification

accuracies (AAs), and the kappa coefficients (κ) are used to
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Fig. 5. Salinas hyperspectral remote sensing image. (a) HSI in false color.
(b) Corresponding ground truth. (Note that the number of samples for each
class is shown in brackets.)

evaluate the classification performance. To robustly evaluate

the results in different training conditions, we randomly chose

training samples and repeated the experiment five times in

each condition.

The proposed SSMRPE method was compared with sev-

eral state-of-art DR algorithms such as PCA, NPE, LPP,

LDA, LFDA, SC-NPE, DSSMs and LPNPE. The former

five methods are spectral-based DR methods, while the later

three approaches make use of spatial relationship and spectral

information for DR of HSI data.

In order to evaluate the classification influence of spatial

window size w and neighbor number k, we randomly selected

1% samples from the two HSI datasets for training, and the

remaining samples are used for testing. Parameters w and k

were tuned with a set of {1, 3, 5, · · · , 25, 27} and a set of

{1, 2, 3, · · · , 59, 60}, respectively. Fig. 6 shows the OAs versus

different values of w and k.

As can be seen from Fig. 6, the performance of the SSMRPE

becomes much better with large values of parameters k and w.

The OAs of SSMRPE first improve with the increase of w, and

then the OAs maintained a stable value. The reason is that a

larger spatial window contains more neighbors, which brings

benefits to extract discriminant features for classification.

However, if the size of spatial window is too large, the spatial

information in neighbors will become redundant for DR of

HSI. Furthermore, a larger spatial window also leads to a great

increase in the computational complexity. Based on the above

analysis, we choose w = 13, k = 20 for PaviaU dataset, and w

= 15, k = 15 for Salinas dataset in the following experiments.

C. Classification Results

In this section, the experiments were conducted on PaviaU

and Salinas data sets to evaluate the classification performance

of different DR methods. In order to demonstrate the classifi-

cation performance of different DR algorithms under different

training conditions, we randomly selected ni (ni =20, 30, 40,

and 50) samples from each class for training, and the others for

testing. Table I is the classification results on PaviaU dataset

under different number of training samples.

TABLE I
CLASSIFICATION RESULTS USING DIFFERENT DR METHODS WITH KNN

FOR THE PAVIAU DATA SET. [OA ± STD(%)]

Algorithm ni = 20 ni = 30 ni = 40 ni = 50

RAW 74.53 ± 1.24 78.05 ± 0.42 81.40 ± 0.75 84.32 ± 0.76

PCA 74.53 ± 1.25 78.05 ± 0.41 81.39 ± 0.75 84.30 ± 0.78

NPE 72.12 ± 1.42 80.57 ± 1.11 86.60 ± 0.85 89.24 ± 1.07

LPP 71.37 ± 1.44 81.12 ± 0.75 86.97 ± 1.59 90.03 ± 0.62

LDA 83.48 ± 1.14 91.70 ± 0.30 92.96 ± 1.20 93.28 ± 0.73

LFDA 82.37 ± 1.17 90.95 ± 0.85 93.05 ± 1.28 94.13 ± 0.88

DSSMs 74.36 ± 1.31 79.97 ± 1.32 83.39 ± 1.36 85.78 ± 0.60

SC-NPE 72.52 ± 1.45 80.27 ± 1.27 82.96 ± 1.23 85.82 ± 0.94

LPNPE 85.77 ± 1.27 90.28 ± 1.25 93.76 ± 1.25 95.37 ± 1.04

SSMRPE 86.92 ± 1.22 92.31 ± 1.33 95.78 ± 1.29 97.93 ± 0.59

From Table I, we can see that the classification accuracies

of all DR algorithms improved with the increase of the number

of training samples. The reason is that a large number of

training samples contain more available information to learn

low-dimensional embedding features. The supervised spectral-

based methods, LDA and LFDA, are superior to unsupervised

ones such as PCA, NPE, and LPP, which indicates the prior

knowledge of training samples is useful for DR of HSI data.

For spatial-spectral combined methods, the proposed SSMRPE

method achieves better classification results than DSSMs,

SC-NPE, and LPNPE in most conditions. This is because

SSMRPE explores a new spatial-spectral combined distance

to choose effective neighbors which are used to construct a

spatial-spectral adjacency graph for discovering the intrinsic

manifold structure of HSI data, and the reconstruction weights

of spatial neighbors are adjusted to enhance the aggregation of

HSI data. Thus, the discriminating power of extracted features

is further improved.

In order to analyze the classification performances of dif-

ferent DR algorithms on each class, 1% samples per class

were randomly selected for training and the rest for testing.

The classification accuracy of each class, OA, AA and kappa

coefficient in PaviaU data set were shown in Table II. Fig. 7

is the corresponding classification maps of different methods

for PaviaU hyperspectral image.

As shown in Table II, the unsupervised spatial-spectral

combined methods, SC-NPE, LPNPE and SSMRPE, perform

better than unsupervised spectral-based methods such as RAW,

PCA, NPE and LPP, which indicates that combining spatial

structure and spectral information provided by training sam-

ples gives the benefits to DR of HSI. Our proposed method

obtained the strongest classification effect in most classes

and achieved the best OA, AA, and kappa coefficient. The

reason is that SSMRPE constructs a spatial-spectral adjacency

graph to reveal the intrinsic structure of HSI data, and it

also exploits the spatial distance to adjust the reconstruction

weights between pixels and their neighbors for enhancing
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Fig. 6. Classification accuracies for PaviaU and Salinas data sets under different w and k.

TABLE II
CLASSIFICATION ACCURACIES (%) FOR THE PAVIAU DATA SET (1% LABELED SAMPLES PER CLASS FOR TRAINING, TOTALLY 427

TRAINING SAMPLES AND 42349 TEST SAMPLES) (%)

Class Train Test RAW PCA LDA LFDA NPE LPP SCNPE DSSMs LPNPE SSMRPE

1 66 6565 92.14 92.14 92.93 96.31 94.96 96.53 93.71 92.22 94.36 97.62

2 186 18463 96.65 96.65 99.60 99.06 98.03 99.02 98.46 96.86 99.87 99.71

3 21 2078 85.37 85.37 94.71 91.00 90.95 91.67 84.46 87.42 93.55 95.24

4 31 3033 76.69 76.69 92.19 91.20 78.44 86.71 78.96 76.66 83.55 87.67

5 13 1332 99.77 99.77 99.32 99.70 99.85 99.85 99.92 99.77 99.77 99.92

6 50 4979 74.01 74.01 95.90 96.85 90.88 96.49 86.46 73.99 100.00 99.68

7 13 1317 73.04 73.04 99.70 97.27 82.69 92.26 87.17 72.67 91.95 99.85

8 37 3645 87.76 87.76 84.01 72.65 92.15 85.54 87.11 87.94 84.94 89.22

9 10 937 95.20 95.20 91.14 89.97 94.66 94.56 94.13 95.20 92.53 93.92

OA - - 89.87 89.87 95.82 94.90 93.96 95.65 92.85 90.68 95.94 97.27

AA - - 86.73 86.73 94.38 92.66 91.40 93.62 90.04 87.51 94.36 95.86

Kappa - - 86.39 86.39 94.46 93.24 91.94 94.22 90.43 87.22 94.49 96.39

discriminating ability of embedding features. The numerical

results shown in Table II are confirmed by inspecting the

classification maps in Fig. 7, where smoother classification

map is obtained by SSMRPE.

Table III reports the classification performances of different

DR algorithms on Salinas hyperspectral data set under differ-

ent number of training samples. It is obviously that the overall

accuracy of each method improved with the increasing number

of training samples. The proposed algorithm achieved the best

classification performance than other DR methods in most

cases. The classification results indicate that SSMRPE not only

inherits the merit of manifold learning but also makes full

use of the spatial consistency of HSI data, which is beneficial

to extract discriminating features and subsequently enhance

classification performance.

In order to evaluate the performance of the SSMRPE

method under different training conditions, we use a balanced

training set in which around 1% of the labeled samples

per class have been randomly selected for training and the

TABLE III
CLASSIFICATION RESULTS USING DIFFERENT DR METHODS WITH KNN

FOR THE SALINAS DATA SET. [OA ± STD(%)]

Algorithm ni = 20 ni = 30 ni = 40 ni = 50

RAW 90.46 ± 1.04 91.96 ± 0.74 92.93 ± 1.62 93.31 ± 0.36

PCA 90.45 ± 1.06 91.95 ± 0.77 92.92 ± 1.66 93.31 ± 0.36

NPE 91.37 ± 1.20 92.95 ± 1.33 93.06 ± 1.90 94.02 ± 0.71

LPP 90.57 ± 0.46 94.77 ± 1.06 95.42 ± 1.72 96.47 ± 0.63

LDA 95.27 ± 0.81 96.19 ± 1.30 96.68 ± 1.16 97.39 ± 0.70

LFDA 89.54 ± 0.71 93.71 ± 0.91 95.89 ± 1.37 96.22 ± 0.42

DSSMs 90.43 ± 0.65 91.96 ± 0.94 93.23 ± 0.81 94.33 ± 0.41

SC-NPE 91.23 ± 0.51 93.12 ± 0.93 93.78 ± 0.74 95.20 ± 0.39

LPNPE 94.51 ± 0.64 96.08 ± 0.92 96.86 ± 0.69 97.70 ± 0.81

SSMRPE 95.82 ± 1.03 97.37 ± 0.56 97.94 ± 1.15 99.23 ± 0.73
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Fig. 7. Classification maps for different methods based on KNN for the PaviaU data set. (a) Ground truth (b) Training samples (c) RAW (d) PCA (e) NPE
(f) LPP (g) LDA (h) LFDA (i) SCNPE (j) DSSMs (k) LPNPE (l) SSMRPE

TABLE IV
CLASSIFICATION ACCURACIES (%) FOR THE SALINAS DATA SET (1% LABELED SAMPLES PER CLASS FOR TRAINING, TOTALLY 544

TRAINING SAMPLES AND 53585 TESTING SAMPLES) (%)

Class Train Test RAW PCA LDA LFDA NPE LPP SCNPE DSSMs LPNPE SSMRPE

1 20 1989 99.50 99.50 100.00 99.85 99.70 99.95 99.80 98.74 99.85 100.00

2 37 3689 99.54 99.54 100.00 100.00 99.73 100.00 99.76 99.76 99.97 100.00

3 20 1956 89.98 89.98 100.00 99.59 100.00 100.00 100.00 95.81 100.00 100.00

4 14 1380 98.99 98.99 99.78 99.49 99.20 99.71 98.91 98.99 98.77 99.20

5 27 2651 96.27 96.27 99.02 99.06 97.62 98.87 98.49 95.13 99.02 98.87

6 40 3919 99.82 99.82 99.92 99.87 99.85 99.92 99.87 99.80 99.87 99.97

7 36 3543 98.62 98.62 99.97 99.92 99.32 99.97 98.96 99.07 99.97 99.97

8 113 11158 85.30 85.30 96.07 89.28 91.57 93.04 89.83 86.54 95.90 98.37

9 62 6141 98.47 98.47 100.00 100.00 100.00 99.95 100.00 98.84 99.98 100.00

10 33 3245 93.90 93.90 99.69 99.29 95.10 96.39 96.18 94.05 97.16 98.37

11 11 1057 80.79 80.79 99.43 99.72 98.86 99.15 100.00 95.84 99.91 100.00

12 19 1908 99.90 99.90 100.00 100.00 99.95 100.00 100.00 99.84 100.00 100.00

13 10 906 97.46 97.46 99.01 98.79 98.01 98.45 98.01 97.35 98.12 99.01

14 11 1059 93.39 93.39 97.26 94.62 93.86 96.69 93.77 97.17 97.36 98.11

15 73 7195 87.06 87.06 90.33 83.64 87.46 91.87 84.38 86.84 97.32 98.42

16 18 1789 97.21 97.21 99.83 99.16 99.22 99.78 94.13 96.26 99.50 99.83

OA - - 93.27 93.27 97.71 95.27 95.83 94.99 94.50 94.56 98.41 99.28

AA - - 94.76 94.76 98.76 97.64 97.46 97.02 97.36 96.25 98.91 99.37

Kappa - - 92.52 92.52 97.45 94.74 95.36 94.43 93.87 93.40 98.23 99.12
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 8. Classification maps for different methods based on KNN for the Salinas data set. (a) Ground truth (b) Training samples (c) RAW (d) PCA (e) NPE
(f) LPP (g) LDA (h) LFDA (i) SCNPE (j) DSSMs (k) LPNPE (l) SSMRPE

remaining samples are used for testing. Table IV reports the

classification accuracies of different DR methods in the Salinas

data set, and Fig. 8 shows the corresponding classification

maps.

In Table IV, the proposed SSMRPE method obtained better

classification accuracy in most classes, and achieved the best

results in terms of OA, AA, and kappa coefficient among all

DR methods with balanced training data. As shown in Fig.

8, the numerical results are confirmed by visual inspection

of the classification maps. The SSMRPE method produces

more homogenous areas and smoother classification maps

than the other methods, especially in the extreme case (e.g.,

classes Weeds 1,Weeds 2, lettuce 4wk, lettuce 6wk). The

probable reason is that it not only explores the spatial-spectral

adjacency graph to reveal the intrinsic manifold structure of

HSI data but also utilizes the spatial distance to adjust the

reconstruction weights for extracting the discriminant features

in the low-dimensional embedding space, which is more

beneficial to HSI classification.

V. CONCLUSION

In this paper, we proposed an unsupervised DR method

termed spatial-spectral manifold reconstruction preserving em-

bedding (SSMRPE) to learn the low-dimensional embedding

features for HSI classification. SSMRPE proposed a new

spatial-spectral combined distance to construct the spatial-

spectral adjacency graph for revealing intrinsic manifold struc-

ture of HSI data. Then, it adjusts the reconstruction weights

according to the spatial relationship between each point and its

neighbors to improve the efficiency of manifold reconstruction.

As a result, the proposed method can effectively extract the

discriminant features and subsequently improve HSI classifi-

cation performance. Experimental results on PaviaU and Sali-

nas hyperspectral datasets show that the proposed algorithm

performs much better than some state-of-the-art DR methods

in terms of classification accuracy and kappa coefficient. Our

future work will focus on how to reduce the computational

complexity and further improve the classification performance

of the SSMRPE method.
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