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Abstract—Stacking-based deep neural network (S-DNN) is
aggregated with pluralities of basic learning modules, one after
another, to synthesize a deep neural network (DNN) alternative
for pattern classification. Contrary to the DNNs trained from end
to end by backpropagation (BP), each S-DNN layer, that is, a self-
learnable module, is to be trained decisively and independently
without BP intervention. In this paper, a ridge regression-based
S-DNN, dubbed deep analytic network (DAN), along with its ker-
nelization (K-DAN), are devised for multilayer feature relearning
from the pre-extracted baseline features and the structured
features. Our theoretical formulation demonstrates that DAN/K-
DAN relearn by perturbing the intra/interclass variations, apart
from diminishing the prediction errors. We scrutinize the DAN/K-
DAN performance for pattern classification on datasets of varying
domains—faces, handwritten digits, generic objects, to name
a few. Unlike the typical BP-optimized DNNs to be trained
from gigantic datasets by GPU, we reveal that DAN/K-DAN
are trainable using only CPU even for small-scale training sets.
Our experimental results show that DAN/K-DAN outperform
the present S-DNNs and also the BP-trained DNNs, includ-
ing multiplayer perceptron, deep belief network, etc., without
data augmentation applied.

Index Terms—Deep analytic network (DAN), face recognition,
object recognition, pattern classification, stacking-based deep
neural network (S-DNN).

I. INTRODUCTION

DEEP neural network (DNN) is architecturally a multilayer
stack of elementary building blocks (or modules),

each of which is a nonlinear interleaving layer or more
sophisticatedly a subnetwork with the output of one
rendering the input of the next [1]. For hierarchical rep-
resentation learning (from raw inputs to high-level intri-
cate abstractions), a nonlinear input–output mapping is
learned for each in the stack in an end-to-end manner by
backpropagation (BP) algorithm. To date, DNNs, in particular,
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multilayer perceptron (MLP)-driven instances, i.e., convolu-
tional neural networks (CNNs, as an MLP special case) [2]–[4]
and recurrent neural networks (RNNs, as a generalization for
MLP) [5], [6], have accomplished significant breakthroughs
for image, video, speech, and audio signals. Despite of that
DNN, such as MLP, is hardly trained from the pre-extracted
baseline features and the structural hand-engineered features,
especially when sufficient training data is inaccessible to learn
the large parameter set.

Stacking-based deep neural network (S-DNN) emerges as
a DNN-alike resemblance, e.g., [10]–[13], [15], [24]–[27],
[29], [30], [32]–[34], etc., for pattern classification.
Architecturally, S-DNN is in line with stacked general-
ization [7], [8], which aggregates a chain of independent
self-learnable modules. In lieu of end-to-end BP-based
training, S-DNN deciphers large-scale problems via mod-
ularization, where each modular unit is engaged to learn
an effective function to untangle a prefixed problem deci-
sively and independently. Hence, there is zero, or minimal
interaction between any two neighboring modules. In princi-
pal, there is no restriction applied to the layer-wise learner
selection, as long as a meaningful mapping is realized. The
broadly adopted learners are principal component analy-
sis (PCA) [9], linear discriminant analysis (LDA) [14], ridge
regression (RR) [20], extreme learning machine (ELM) [28],
and random forest (RF) [31]. In general, S-DNNs are either be
convolutional or nonconvolutional. The convolutional S-DNN
receives only images for feature extraction via image-filter
convolutions, followed by an optional feature encoding stage.
Some of the pertinent works are the PCA network (PCANet)
and its variants [10]–[13], and the LDA-learned deep discrim-
inant face descriptor (D-DFD) [15]. Different from that of
convolutional, the nonconvolutional S-DNN is topologically
fully connected (FC) for both images and nonimages such as
the pre-extracted baseline features and also the handcrafted
structured features. The most representative FC S-DNNs
include deep convex networks (DCNs) [24]–[27]; deep ELMs
(D-ELMs) [29], [30]; and deep forests (DFs) [32]–[34]. We
group all the abovementioned networks under the S-DNN
umbrella term in Fig. 1.

On the other hand, there are relevant S-DNNs relying on BP
for global fine-tuning (FT) on the modularly trained networks,
e.g., deep belief networks (DBNs) [16], [17]; deep Boltzmann
machine (DBM) [18]; and deep auto-encoder (DAE) [19].
We refer these exceptional S-DNN to S-DNN with BP
(S-DNNBP) for performance analysis and comparison. This
paper, however, focuses only on S-DNN trained conveniently
without BP.
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Fig. 1. DNN and subdisciplines.

A. Related Works

This paper underlines the FC S-DNN trained with no BP
involvement. One of the earliest S-DNN is the supervised
DCN [24]. Each DCN layer is a single-hidden-layer network
with the sigmoidal activations yielding a regression output set
to the immediate next layer. The DCN innovation is after-
ward extended to the kernelized-DCN (K-DCN) [25], [26]
and the tensor deep stacking network (T-DSN) [27]. These
DCN instances are disclosed to be on par with the BP-tuned
DBN [17].

The D-ELM, e.g., stacked ELM (S-ELM) [29], autoencoder-
based S-ELM (AE-S-ELM) [29], hierarchical ELM (H-
ELM) [30], etc., outline the ELM-based S-DNNs. To address
the computational burden for high-dimensional random pro-
jection, each ELM module for S-ELM and AE-S-ELM is
designated with a streamlined hidden node set in exchange
for deeper construction. On the other hand, both AE-S-
ELM and H-ELM train the ELM-based autoencoder for the
refined random input-hidden weights. Overall, these D-ELMs
outshine the traditional single-layer ELM, support vector
machine (SVM), and DBNs.

The most recent S-DNN is the DF by Zhou and Feng [32],
where each layer is an ensemble of random decision tree
forests, or an ensemble of ensembles. To assure high degree
of diversity leading to performance gain in consequence,
each ensemble is instantiated with RFs of different types.
Other DF-driven S-DNNs include [33] and [34]. However, the
performance evaluation of these DF networks is limited to only
handwritten digit recognition.

B. Motivation

The BP-optimized DNNs, e.g., CNNs and RNNs, have been
demonstrated prominent in learning representative hierarchi-
cal features from image, video, speech, and audio inputs.
However, to the best of our knowledge, there is no DNN
learnable on top of the pre-extracted rudimentary features
elicited from images, e.g., [10], [42], and [43], and the
nonsignal/nonsequential data [41], e.g., lab measurements,
social-demographic variables, and human annotated examples
of which we term as the handcrafted structured features in
this paper. One possible alternative is the MLP empowered
with the layer-wise pretraining [16], [17]. The cornerstones
of training an arbitrary deep and high-complexity MLP are:
1) MLP only relies on the iterative BP algorithm; 2) a gigan-
tic training set is demanded to confront overfitting issue;

3) network training is a black box due to the lack of theoreti-
cal grounds defined to fine-tune the massive hyper-parameter
set; 4) network adaptability and scalability problems, e.g., any
amendments to a pretrained MLP requires retraining from the
scratch; and 5) GPU employment is of mandatory for training.

In comparison to MLP (and other BP-trained DNNs), the
S-DNN with no BP intervention stands out in four perspec-
tives: 1) fast learning speed owing to no BP and no mysterious
hyper-parameter tuning; 2) no gigantic data demanded as train-
ing is of module-based, one after another; 3) modularly stacked
networks are adaptable and scalable; and 4) training applies no
GPU but only CPU as complexity is reasonably inexpensive.

C. Contribution

This paper is inspired by the hierarchical representation
learning in DNNs. The three contributions are as follows.

1) An RR-based S-DNN, i.e., deep analytic network (DAN)
and its kernelization (K-DAN), are outlined to learn
a non-BP S-DNN involving no GPU, no enormous
training set, and no elusive hyper-parameter tuning.

2) DAN/K-DAN are attested triggering feature relearning
from the pre-extracted baseline features and the struc-
tured features, of which CNNs and RNNs are imprac-
ticable. Under a certain condition that the relearned
feature dimension is outnumbered by that of original,
DAN/K-DAN perform also feature compression. This is
overlooked and thus not being explored thoroughly in
other relevant works.

3) DAN/K-DAN are analyzed for proofs contributing to
the improved generalizability. We portray the basic
self-learnable unit to assemble the deep DAN/K-DAN
construction in Fig. 2, and the complete DAN/K-DAN
pipeline is illustrated in Fig. 3.

This paper is an extension to our preliminary work that
only emphasizes DAN [44]. With the twofold PCA filter-
to-filter convolution features (2-FFCPCA) [43], we summa-
rize in that paper the extent to which DAN improves the
2-FFCPCA baseline performance without any theoretical justi-
fications. For further analysis and exploration, we also outline
K-DAN in this paper on top of DAN. We conduct exten-
sive experiments to examine the DAN/K-DAN aptitude for
feature relearning, including relearning from the pre-extracted
DNN features. For comparison to that of DNNs in terms of
most primitive performance, computational complexity, and
CPU training and interference time, we retrain MLP [53]
and other influential BP-optimized DNNs [54]–[57] with only
a single network without applying data augmentation. We
demonstrate in Section V that DAN/K-DAN outperform the
BP-trained counterparts, aside from being the most promis-
ing among the other S-DNNs. Our implementation codes
are available on GitHub for result replication as follows:
https://github.com/chengyawlow/DAN.

D. Organization

The organization of this paper is deliberated as follows:
RR/KRR, as the single-module equivalences for DAN/K-DAN,
are formulated in Section II, followed by the algorithmic
details in Section III. The supporting theories are elucidated
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Fig. 2. Self-learnable building block for DAN and K-DAN.

in Section IV, and we summarize in Section V the empir-
ical performance for DAN/K-DAN and other counterparts.
Subsequent to that a concluding remark, along with future
works, are provided in the last section.

II. PRELIMINARIES

In principal, DAN/K-DAN are of parallel to that of
multilayer (deep) RR/KRR [20] constructions interleaved with
the rectified linear unit (ReLU) [51] for feature relearning. We
thus delineate RR/KRR as the groundworks for DAN/K-DAN
in this section.

A. Ridge Regression

Suppose {(xi, yi)}N
i=1 be a set of N training samples; each

xi ∈ R
d is associated with a target vector yi ∈ {t1, t2 . . . , tNc},

where tj = [tj,1, . . . , tj,j, . . . , tj,Nc ] ∈ R
Nc is of one-hot

encoded with the only jth element (conforming to the class
label) set to one whereas the remaining are of zeros, and
Nc represents the number of training classes. Let X =
[x1, . . . , xN]T ∈ R

N×d and Y = [y1, . . . , yN]T ∈ R
N×Nc ;

to resort the ill-posed least squares formulation from singu-
larity problem, RR learns the regression coefficients, i.e., the
weight matrix W ∈ R

d×Nc , by minimizing the penalized sum
of squares L(W) as follows:

L(W) = tr
[

(Y − X W)T(Y − X W)
]+ λ‖W‖2

F (1)

where λ is an RR regularization parameter, and ‖.‖F denotes
the Frobenius norm. Assuming that N ≥ d, W is estimated as
follows:

W = (
XTX + λI

)−1
XTY (2)

where I denotes an identity matrix of relevant dimension. On
the other hand, for N < d, (2) is rewritten into its equivalence
as in

W = XT(XXT + λI
)−1

Y. (3)

For an unknown sample xte ∈ R
d, the pretrained RR returns

a response vector ŷte ∈ R
Nc as follows:

ŷte = WTxte. (4)

Fig. 3. Generic DAN construction of L self-learnable layers affixed with
an FT module (bounded in blue). Each layer � yields a relearned feature set
q(�) from h[](�), and the relearned feature sets for all L layers are aggregated
into power-regularized feature set Q for FT to learn an auxiliary classifier.

Subsequent to that, the label of xte can be determined based
on ŷt as in

cls(xte) = argmax
j∈{1,...,Nc}

(
ŷte

)
j. (5)

B. Kernel Ridge Regression

Kernel machine, i.e., a machine learning model employ-
ing a prespecific nonlinear function via a neat kernel
trick, appeared in 1960s [21]. This emergence contributed
to the earliest kernel machine [22], followed by the great
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accomplishments of kernel SVMs in 1990s [23]. Other linear
models that which can be kernelized are RR, PCA, LDA, etc.

KRR and other kernel machines operate in an implicit fea-
ture space of (infinitely) high dimension. In other words, rather
than an explicit transformation, only the inner products over
training sample pairs are measured based on an arbitrary pos-
itive semidefinite kernel function k that satisfies the Mercer’s
condition. The well-known kernel functions are the polynomial
kernel, the radial basis function (RBF) kernel, the Laplacian
kernel, etc.

To analytically estimate W, KRR recasts (3) as follows:

W = XT(K + λI)−1Y (6)

where K ∈ R
N×N is the Gram matrix (or kernel matrix) with

Kij = k(xi, xj). In accordance to (6), KRR yields ŷte for xte
as follows:

ŷte = YT(K + λI)−1

⎡

⎣
k(xte, x1)

:
k(xte, xN)

⎤

⎦

T

. (7)

Along with that the corresponding class label is predicted
to be j as in (5).

III. DEEP ANALYTIC NETWORK AND KERNELIZATION

Similar to that of DCNs and D-ELMs reviewed in the fore-
going sections, we assemble DAN and K-DAN upon RR and
kernel RR (KRR) [20], respectively. The main reason is that
in place of the iterative BP-trained gradient descent algorithm,
RR provides an analytic solution leading the learning pro-
gression parsimonious. This section explicates how a series
of RR/KRR-based building blocks, being the basic self-
learnable module each, are stacked into the deep, feedforward
DAN/K-DAN.

A. Basic Self-Learnable Module

As shown in Fig. 2, the internal constructions for each
DAN/K-DAN building block are different in that one is of RR-
based and another operates on KRR. By cascading multiple
self-learnable modules, the �th layer of DAN/K-DAN learns
based on h(�) = [x, q(1), . . . , q(�−1)] ∈ R

d� , i.e., a stacking
vector comprising of the input feature x of any types and
other relearned features for all preceding modules {q(i)}�−1

1
with dimension d� = d + Nc(� − 1) to yield a new relearned
feature set q(�). Considering that each modular unit, regardless
of RR or KRR, responds with p(�) ∈ R

Nc to be nonlinearly
projected into q(�) ∈ R

Nc such that q(�) = ρ(p(�)) In this
paper, ρ(.) denotes the ReLU activation function performing
q(�) = max(0, p(�)). To navigate into a deeper construction
of � + 1, h(�+1) ∈ R

d�+1 composing of x and the stack of
q(1), q(2), . . . , q(�) is formed to yield q(�+1) of generally more
discriminative. Provided with the training repository X with
N samples; we transform P(�) = [p(�)

1 , . . . , p(�)
N ]T ∈ R

N×Nc

into Q(�) = [q(�)
1 , . . . , q(�)

N ]T ∈ R
N×Nc . Along with that

we derive H(�) = [h(�)
1 , . . . , h(�)

N ]T ∈ R
N×d� accordingly to

estimate W(�) ∈ R
d�×Nc based on RR, or KRR (refer to

Sections III-B and III-C).
Unlike DAN triggering feature relearning on h(�) directly,

each KRR modular unit in K-DAN performs RR in the implicit

nonlinear transformed space. In other words, a DAN mod-
ule is an FC layer implementing the nonlinear RR-trained
building block; while each K-DAN module is a specialized
two-layer network exercising kernelization prior to the RR
feature relearning stage. In a nutshell, every single DAN/K-
DAN layer nonlinearly maps h(�+1) to the relearned feature
set q(�+1) for further exploration in all the succeeding lay-
ers. The complete DAN/K-DAN construction is detailed in
the following sections.

B. Deep Analytic Network

The DAN construction is stacked with the RR-learned
units for layer-wise feature relearning, as portrayed in Fig. 3.
Following the definitions in Section II, assuming N ≥ d, the
first layer of DAN with depth L is delivered with X, and (2)
is extended to estimate the analytic weight set W(�) ∈ R

d�×Nc

for � = 1, . . . ,L as follows:

W(�) =
(

H(�)TH(�) + λ(�)I
)−1

H(�)TY (8)

where H(1) = X, H(2≤�≤L) = [H(1), Q(1) . . . , Q(�−1)] ∈
R

N×d� or equivalently H(2≤�≤L) = [H(�−1), Q(�−1)]. Note
in (9) that Q(�) accommodates the ReLU-transformed response
matrix of P(�) = H(�)W(�), such that P(�), Q(�) ∈ R

N×Nc .
The supporting theories in Section IV underscores that this
non-negativity is of crucial in two perspectives: 1) the ReLU-
activated responses improve the training prediction accuracy
and 2) DAN forms the dynamics of inter/intraclass distances;
we solidify these theories based on the empirical observations
in Section V

P(�) = H(�)W(�)

Q(�) = ρ
(

P(�)
)

= max
(

0, P(�)
)
. (9)

The DAN FT output layer with the power-law nonlinearity
is the last building block on the stack, which embeds the built-
in regression classifier. We power-regularize all the relearned
feature sets {Q(�)}L1 with respect to a small positive ratio of
0 ≤ β ≤ 1 in the element-wise manner to synthesize QFT =
[Q(1), . . . , Q(L)]β ∈ R

N×dFT , where dFT = L × Nc. This is to
regularize the disparities within the relearned features before
WFT ∈ R

dFT×Nc is learned as follows:

WFT =
(

QT
FTQFT + λ

(�)
FTI
)−1

QT
FTY. (10)

Depending on the task at hand, the FT layer is opted for other
classifiers, e.g., nearest neighbor (NN) classifier, SVMs, etc.

Regardless of the classifier types, the response vector ŷte for
xte is estimated as follows:

ŷte = WT
FTqFT,te (11)

where qFT,te = [q(1)
te , . . . , q(L)

te ]β ∈ R
dFT . Our formulation

derives q(�)
te = max(0, p(�)

te ), where p(�)
te = W(�)Th(�)

te and
h(�)

te = (xte, q(1)
te , . . . , q(�−1)

te ) ∈ R
D� . Considering the default

classifier in (5), the class label for xte is inferred as j.
In summary, the DAN feature relearning stage involves

a set of three parameters to be fine-tuned, specifically λ(�),
λ

(�)
FT, and βFT. Our experiments dispatch DAN with the

pre-extracted 2-FFCPCA features [43] for multilayer feature
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TABLE I
DAN FEATURE RELEARNING PROGRESSION

relearning, unless specified otherwise. To be more precise, the
DAN relearning procedures are summarized in Table I.

C. Kernel Deep Analytic Network

We consider only K-DAN with the RBF kernel in this paper,
albeit other Mercer kernels are possible. Pursuant to the KRR
formulation in Section II, K-DAN rewrites (6) as follows:

W(�) = H(�)T
(

K(�) + λ(�)I
)−1

Y (12)

where K(�) denotes the RBF-defined kernel matrix with K(�)
i,j =

k(h(�)
i , h(�)

j ) = exp(−γ (�)h(�)
i − h(�)2

j ), such that γ (�) is an
empirical parameters controlling bias and variance. As in
DAN, the K-DAN relearning phase demands also P(�) and
Q(�) to be described as in (9) to elaborate H(�). Subsequent
to that, WFT is learned from QFT as in (10).

To yield q(�)
te from for xte where q(�)

te = max(0, p(�)
te ), (7) in

KRR is revised as follows:

p(�)
te = YT

(
K(�) + λ(�)I

)−1

⎡

⎢⎢
⎣

k
(

h(�)
te , H(�)

1

)

:

k
(

h(�)
te , H(�)

N

)

⎤

⎥⎥
⎦

T

. (13)

Following that ŷte is elicited based on the prelearned WFT
and qFT,te as in (11) to predict the class label for xte by the
regression classifier in (5). As a whole, K-DAN encapsulates
four empirical parameters: λ(�), γ (�), λ

(�)
FT, and βFT. We provide

the K-DAN relearning summary in Table II.

D. Comparison to DNNs and Existing S-DNNs

In general, DAN/K-DAN exhibit the four S-DNN attributes
outlined in Section I-B. These include the fast learn-
ing advantage resulted from the RR/KRR employment for
one-shot (analytic) solution. Training DAN/K-DAN hence
requires only minimal efforts owing to no massive train-
ing data, no BP, and no GPU. Moreover, the modularly

TABLE II
K-DAN FEATURE RELEARNING PROGRESSION

trained DAN/K-DAN removes the network depth L from
the hyper-parameter list. A new module is conveniently
introduced to the existing stack based on the layer-wise
performance of the validation set. In addition to that oppos-
ing to DNNs, the number of hidden nodes for each layer
d� is of deterministic such that d� = d + Nc(� − 1) for
� = 1, . . . ,L. As DAN possesses only three hyper-parameters
(and four for K-DAN), hyper-parameter tuning is of nontrivial
essentially.

DAN/K-DAN simplify the existing S-DNNs, including
DCN [24]–[27] and D-ELM [29]–[30]. One of the distin-
guishable traits is that every DAN module is of single-layer
implementing RR (or KRR for K-DAN). The sigmoidal
input-hidden projection based on the stochastic weights (as
in S-ELM [29]), or other iteratively learned weights, either
RBM-learned (as in DCN [24]), gradient descent-learned
(as in T-DSN [27]), or autoencoder-learned (as in AE-S-
ELM [29] and H-ELM [30]), are of nonexistent. Being the
finest DCN variant learning third-order bilinear mappings,
T-DSN also appears to be far-fetched. There is no signifi-
cant improvement witnessed, despite of being computationally
more expensive than that of DCN. On the other hand, S-ELM
and AE-S-ELM, that is, the best-performing among D-ELMs,
are reported requiring very deep network construction (to be
exposed in Section V). More importantly, there is no the-
oretical analysis derived, but some black-box performance
summaries evaluated on the toy datasets.

In comparison to DF assembled upon random forests [31],
DAN/K-DAN consider no additional performance factors,
except the regression shrinkage and the kernel regularization
parameters. For DF, to ensure the diversity for each ensemble,
the internal parameters to be accounted for are forest types in
each ensemble, the number of forests, the number of decision
trees in each forest, the tree growth, etc. We summarize in
Section V that the DAN trained based on the pre-extracted
basic features remarkably outperforms DF [32].

IV. SUPPORTING THEORIES

This section formulates the DAN/K-DAN supporting theo-
ries. In particular, we disclose how the layer-wise relearned
features (yielded by applying ReLU to the regression
prediction) reduce the training prediction errors. Following
that we analyze how the intra/interclass distances at each layer
of DAN/K-DAN are changed as the layer deepens.
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A. Relearned Features by ReLU Improves Training Accuracy

Following our previous definitions, we pair each xi of
X with a binary label yi forming y = [y1, . . . , yN]T . The
prediction vector ŷ = XW elicits the next layer of DAN,
X̄ = [X, ρ(ŷ)], with its prediction ̂̄y = X̄W̄, where ρ(ŷ) is
the relearned features yielded by applying ReLU activation
to ŷ, provided that W and W̄ be the RR projection matrices
learned from X and X̄, respectively.

Definition: Let z = [z1, . . . , zN] ∈ R
N be a vector. Define

I(z < 0) := {i ∈ [N] : zi < 0} and I(z ≥ 0) := {i ∈ [N] : zi ≥
0} where [N] = {1, . . . , N}. For an index set I ⊆ [N], let
Ic := {i ∈ [N] : i /∈ I} and QI be a matrix such that QIz ∈ R

N

with (QIz)i = zi if i ∈ I and 0, otherwise.
Theorem 1: Suppose dim(span(X)) < N. If either

(ŷ − y)TQIŷ �= 0, or (ŷ − y)TQIc ŷ �= 0, then

ρ
(
ŷ
)

/∈ span(X) (14)

where I = I(ŷ < 0). In this case,

span(X) < span
(
X̄
)

(15)

and therefore,

ŷ − y ≥ ̂̄y − y. (16)

This asserts that if either of the QI and QIc projections of
the prediction samples ŷ is not orthogonal to the errors of the
samples ŷ−y, the ReLU-ed prediction ρ(ŷ) is outside the span
of the data matrix X. In which case, the span of X̄ gains an
extra dimension by ρ(ŷ) and, consequently, the column space
of X̄ gets closer to the target t than that of X; namely, the
training accuracy increases in the next layer as stated in (16).

We prove Theorem 1 by leveraging the following lemma.
Lemma: Let u ∈ span(X), I ⊆ [N] be an index set neither

empty nor universal, and T be a matrix, the columns of which
form a subset of a basis of span(X)⊥. Then, ρ(w) ∈ span(X)

only if

w ∈ ker
(
(QIT)T)∩ ker

(
(QIc T)T) (17)

for w ∈ span(X) with I(w < 0) =: I.
Proof. Let w ∈ span(X), T = [v1, . . . , vk], and ρ(w) /∈

span(X). Let either w /∈ ker((QIT)T) or w /∈ ker((QIc T)T).
If w /∈ ker((QIT)T) holds, then (QIvi)

Tw �= 0 for some vi.
Therefore, (QIcvi)

Tw �= 0 as

vT
i w = (QIvi)

Tw + (QIc vi)
Tw = 0. (18)

However, 0 �= (QIcvi)
Tw = vT

i QIc w = vT
i ρ(w), which is

a contradiction. On the other hand, if w /∈ ker((QIcT)T) holds,
then a contradiction exists in the same way.

Proof of Theorem 1: Equation (14) is proved by substitut-
ing ŷ and [ŷ − y] (regarded as a matrix of size N × 1) into
u and T, respectively, in lemma. Equation (15) is trivial as
X̄ additionally contains a vector independent to all the col-
umn vectors of X. To prove (16), since it suffices for ρ(ŷ) to
be comprised of an orthogonal vector, assume without loss of
generality that ρ(ŷ) ∈ ker XT . Let X = U�VT be its SVD with
V = [v1, . . . , vd], U = [u1, . . . , ud], � = diag(σ1, . . . , σd).
If X̄ = Ū�̄V̄T is its SVD, then V̄ = [v̄1, . . . , v̄d, v̄d+1],
Ū = [ū1, . . . , ūd+1], �̄ = diag(σ1, . . . , σd, ρ(ŷ)), where
v̄i = [vT

i , 0]T , v̄d+1 = [0T , 1]T , ūi = ui, ūd+1 = ρ(ŷ)/‖ρ(ŷ)‖

for i = 1, . . . , d. By denoting ŷ = Pλy and ŷnext = P̄λy, where
λ is the ridge regularizer, we obtain

Pλ =
d∑

i=1

σ 2
i

σ 2
i + λ

uiuT
i (19)

P̄λ = Pλ + Hλ (20)

where Hλ := sλρ(ŷ)ρ(ŷ)T with sλ := 1/(ρ(ŷ)2 +λ). Also note
that

y − Pλy2 − y − P̄λy2

= 2sλ

(
ρ
(
ŷ
)Ty

)2 − s2
λρ
(
ŷ
)2(

ρ
(
ŷ
)Ty

)2
(21)

due to the reason that PT
λHλ = 0 by ρ(ŷ) ∈ ker(XT). Now

it is obvious that (21) is greater than 0, as 2 ≥ sλ‖ρ(ŷ)‖2 =
‖ρ(ŷ)‖2/(‖ρ(ŷ)‖2 + λ). This completes the proof.

The extension to the multiclass classification is trivial, and
the proof above holds for arbitrary � and (� + 1)th layers.

B. Layer-Wise Intra/Interclass Distance Dynamics in DAN

Descriptive features are, at least partially, implied by high
interclass and low intraclass variances on them. We show that
the deeper the layer of DAN is, the bigger the gap is between
the variance of the interclass features and that of the intraclass
ones. To this end, the expected intraclass and interclass dis-
tances, w(�) and b(�), respectively, at the �th layer of DAN are
defined as follows:

w(�) :=
[
‖h(�) − h′(�)‖2 | x, x′ ∈ Cc

]

b(�) := E

[
‖h(�) − h′(�)‖2 | x ∈ Cc, x′ ∈ Cc′

]
. (22)

Here, x and x′ are the independent identically distributed ran-
dom input samples, h(�) (resp. h′(�)) is the �th layer of DAN
completed from x (resp. x′), and x ∈ Cc (and x′ ∈ Cc′ sim-
ilarly) indicates that x belongs to the cth class with c �= c′
assumed.

As the regression error is believed to be normally dis-
tributed, we deliberate the following technical assumptions to
simplify our formulation.

Assumptions: Let ∈(�) (resp. ∈′(�)) represents the random
vector modeling the prediction error

∈(�)= ŷ(�) − y (23)

where ŷ(�) is the regression output of h(�), y ∈ {t1, t2, . . . , tNc}
is the true target of x, and tj = [tj,1, . . . , tj,j, . . . , tj,Nc ] ∈ R

Nc .
Assume for arbitrary j, c, c′ ∈ {1, . . . , Nc} with c �= c′:

1) ∈(�) and ∈′(�) are of independent, given either x, x′ ∈ Cc,
or x ∈ Cc, x′ ∈ Cc′ ;

2) the class-conditional distribution of prediction error
remains the same, whichever class the input x belongs
to; that is, p∈(�)|x∈Cc

= p∈(�)|x∈Cc′ ;
3) p∈(�)|x∈Cc

= N (0, diag(σ (�)2(c))), that is, it fol-
lows multivariate normal distribution with variance
diag(σ (�)2(c)).

The same is assumed to hold for the test data with
σ (�)(c) replaced by σ te(c)(�). By Assumption 2), let us denote
p∈(�)

j |x∈Cc
and σ (�)(c) simply by p(�) and σ (�), respectively.
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Under these assumptions, we show that if the prediction
error is sufficiently small, then the increment δ

(�)
w := w(�+1) −

w(�) of the expected intraclass distance is relatively negligible
compared to that of the expected interclass distance δ

(�)
b :=

b(�+1) − b(�). In detail, δ
(�)
b is greater than t2c,c + t2c′,c′ while

δ
(�)
w is bounded by a factor of the variation of the prediction

error 2 ‖ σ (�) ‖2. This implies that the gap b(�)−w(�) becomes
larger as the layer � deepens, concluding the deeper layer of
DAN gets more discriminative.

Proposition 1: We have

w(�+1) = w(�) + δ(�)
w (24)

b(�+1) = b(�) + δ
(�)
b (25)

where

0 ≤ δ(�)
w ≤ 2 ‖ σ (�) ‖2 (26)

δ
(�)
b ≥ t2c,cP(�)

c,c + t2c′,c′P
(�)

c′,c′ + O

⎛

⎜
⎝e

−t2min

2max
(
σ
(�)
c ,σ

(�)

c′
)2

⎞

⎟
⎠ (27)

as σ (�) → 0. Here, P(�)
c,j = P(∈(�)

j > −tc,j|x ∈ Cc) denotes the
probability that the prediction error at the �th layer is greater
than −tc,j, and tmin = minc,j|tc,j|. Moreover,

δ(�)
w = O

⎛

⎝σ (�)2
c +

∑

j�=c

exp

(

− t2min

2σ
(�)2
j

)⎞

⎠ (28)

δ
(�)
b → t2c,c + t2c′,c′ (29)

as σ (�) → 0.
Corollary: If the prediction error ||σ (�)|| is sufficiently

small, the gap b(�) − w(�) increases as the layer � deepens
with negligible variation on w(�).

Proof of Proposition 1: Here, we fix � for clarity. Note

‖h(�+1) − h′(� + 1)‖2 − ‖h(�) − h′(�)‖2

=
∑

j

ρ
(
ŷj
)2 − 2ρ

(
ŷj
)2 − 2ρ

(
ŷj
)
ρ
(

ŷ′
j

)
+ ρ

(
ŷ′

j

)2
(30)

E
[
ρ
(
ŷj
)|x ∈ Cc

] = tc,jPc,j + σ 2
j p
(
tc,j
)

(31)

E

[
ρ
(
ŷj
)2|x ∈ Cc

]
=
(

t2c,j + σ 2
j

)
Pc,j + σ 2

j tc,jp
(
tc,j
)

(32)

which are obtained by change of variable on standard Gaussian
integral

∫∞
−tc,j

∈jp(∈j)d∈j and
∫∞

−tc,j
∈2

j p(∈j)d∈j. Also, by
Assumption 1)

E

[
ρ
(
ŷj
)
ρ
(

ŷ′
j

)
|x ∈ Cc, x′ ∈ Cc′

]

= E
[
ρ
(
ŷj
)|x ∈ Cc

]
E

[
ρ
(

ŷ′
j

)
|x′ ∈ Cc′

]
. (33)

Using these, we obtain

δ(�)
w = 2

∑

j

tc,jP
(�)
c,j

(
1 − P(�)

c,j

)

+ σ
(�)2
j

[
P(�)

c,j

(
1 − 2tc,jp

(�)
(
tc,j
))

+ tc,jp
(�)
(
tc,j
)− σ

(�)2
j p(�)

(
tc,j
)2] (34)

and

δ
(�)
b =

∑

j

[
t2c,jP

(�)
c,j − 2tc,jtc′,jP

(�)
c,j P(�)

c′,j + t2c′,jP
(�)

c′,j

]

+ σ (�)2
[
tc,jp

(�)
(
tc,j
)+ tc′,jp

(�)
(
tc′,j
)

+ P(�)
c,j

(
1 − 2p(�)

(
tc′,j
)
tc,j
)

+ P(�)

c′,j

(
1 − 2p(�)

(
tc,j
)
tc′,j
)

− 2σ
(�)2
j p(�)

(
tc,j
)
p(�)tc′,j

)]
. (35)

By upper bounds for Gaussian tail

Pc,j <

√
2

√
π

(√
8/

π +
(

tc,j
/
σj

)2 + |tc,j|/
σj

)exp

(

− t2c,j
2σ 2

j

)

(36)

for j �= c, which implicates that Pc,j, 1 − Pc,j, and p(tc,j) for
j �= c, j = c, and all j, respectively, are all O(exp(−1/σ 2

j ) as
σj → 0. Applying these on (34) and (35), it proves (27)–(29).
Meanwhile, (26) is proved by observing |ρ(ŷj) − ρ(ŷj′)| ≤
|ŷj− ŷ′

j| and the expectation of |ŷ−ŷ′|, provided that x,x′ ∈ Cc,
is 2

∑
j σ

2
j . This completes the proof.

Noting the fact that assumptions hold on test data with
σ (�) replaced by σ

(�)
te , the layer-wise inter/intraclass distance

dynamics described in Proposition 1 applies at test phase as
well. This is experimentally verified as shown in Figs. 5 and 6.

V. EXPERIMENTS AND DISCUSSION

We recapitulate, in this section, the DAN/K-DAN gener-
alization performance for pattern classification. We analyze
and compare DAN/K-DAN to the present FC S-DNNs, and
the BP-trained networks, for example, S-DNNBP, MLP, and
other DNNs.

A. Benchmarking Datasets

Our experiments recruit datasets of varying domains, includ-
ing faces, digits, natural objects, and structured features.

1) FERET [36] consists of a training set FA with a sin-
gle face image for each of 1196 subjects; and 4 probe
sets with pose, expression, illumination, and time-span
variations, namely, FB, FC, DUP I, and DUP II—
each containing a summation of 1195, 194, 722, and
234 images of size 128 × 128 pixels.

2) MNIST [37] is composed of 70 000 handwritten dig-
its, digit 0 to digit 9, each is of size 28 × 28 pixels.
Compliant to the predetermined evaluation protocol, the
first 60 000 images are apportioned for training, and the
rest for testing.

3) CIFAR10 [38] reposits 60 000 color images of each
32 × 32 pixels for 10 natural objects. The training
and the testing set capacities are of 50 000 and 10 000,
respectively.

4) Tiny ImageNet [39] refers to the ImageNet
subset [40] furnished with a reduced labeled image
set of 200 classes. Each class is sampled with
500 training, 50 validation, and 50 testing images
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TABLE III
SPECIFICATION SUMMARY FOR UCI DATASETS

composing the training/validation/testing sets of
100 000/10 000/10 000 images, respectively. Note that
the original ImageNet contains 1.2-million of images
with 1000 classes queried from the Internet, and the
images are with variable appearances, positions, view-
points, poses, background clutters, and occlusions. In
addition, the image size is intentionally shrunk to only
64 × 64 pixels from 256 × 256 for visual recognition
challenge. As the ground truths for the testing images
are not provided, our evaluation is reported based on
the validation set.

5) Apart from imagery datasets our experiments employ
also the UCI machine learning repositories hand-
engineered with structured features [41]. The data spec-
ifications for the preselected two-class and multiclass
problems are summarized in Table III.

B. Implementation Summary

For each of the imagery datasets, except Tiny ImageNet,
a PCA filter ensemble is trained to render the onefold and
the twofold PCA filter-to-filter convolution descriptors, that
is, 1-FFCPCA and 2-FFCPCA [43]. Following that we learn
DAN/K-DAN with L-layer from these features. Table IV
reveals the parameter setting for the 1-FFCPCA and 2-FFCPCA
feature extraction and encoding stage, including PCA filter
size (before 2-FFC), the number of 1- and 2-FFC PCA fil-
ters, and the grid-partition for block-wise histogram feature
encoding, or optionally the overlapped spatial pyramid pool-
ing (SPP) [46]. In addition to that we replicate the PCANet
features according to the parameters recommended in [10] for
performance comparison. For small-scale UCI machine learn-
ing repositories (of which the explicit feature encoding is
inapplicable), we streamline the K-DAN structure to that with
the last FT layer removed, known as K-DANTrim. This reduces
the number of hyper-parameters from the initial four, that is,
λ(�), γ (�), λ

(�)
FT, and βFT, to only two, that is, λ(�) and γ (�).

Our experiments recruit no additional manipulation to pre-
process the images. We report the DAN/KDAN performance
in terms of rank-1 classification accuracy (%). Since the
DAN/K-DAN construction is built layer by layer, we explore
the layer-wise performance and the best-performing layer
are remarked for comparison. However, for the end-to-end

TABLE IV
PARAMETER CONFIGURATION FOR 2-FFCPCA FEATURES

trained networks, e.g., MLP, the layer-wise performance is
inaccessible.

C. Parameter Configuration

In place of grid-searching for the best parameter setting
for each individual layer �, the layer-wise hyper-parameters
of DAN/K-DAN are coarsely fine-tuned across L layers with
respect to the validation sets (to be remarked in the following
sections). To be specific, we simplify the trivial tuning task
by fixing the layer-wise parameters to be similar for all lay-
ers, from the first to the last. For result replicability, we list
the parameter configuration for each benchmarking dataset in
Table V.

D. Performance Analysis

We degeneralize DAN/K-DAN into its basic configurations
for a pilot study, followed by a relearnability test. Along
with that the DAN/K-DAN theories delivered in Section IV
are validated in this section. As DAN/K-DAN are analogous
algorithmically, our analysis considers only DAN.

1) Basic Configuration and Relearnability Analysis: The
DAN construction (as portrayed in Fig. 3) is degeneralized into
that with/without ReLU and the FT layer. We carefully fine-
tune DAN in the first layer to scrutinize the extent to which
the deep construction improves the layer-wise performance. To
investigate if the relearned features lie in the feature domain,
the built-in regression classifier is replaced by the NN classifier
with the Euclidean distance metric. We index all configurations
from I to V as follows:

I. linear DAN with no ReLU and no FT layer;
II. linear DAN with an FT layer;

III. complete DAN with ReLU and FT;
IV. carefully fine-tuned DAN;
V. DAN with NN classifier, replacing the built-in regression

classifier.
For the ten-layer DAN learned from the 2-FFCPCA features

pre-extracted for the FERET FA images, Table VI discloses
that the linear DAN (configuration I) only learns in the first two
layers, capping at 94.44% evaluated on the DUP II probe set.
However, appending a power-regularized RR-based FT layer
to the linear DAN, or configuration II, improves the layer-
wise performance from 44.44% to 95.73%, navigating from
the first to the deepest layer. The primary reason leads to
the drastic performance drop is that the FT layer trains the
built-in regression classifier from the power-regularized (dis-
torted) prediction outputs without the 2-FFCPCA features. For
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TABLE V
PARAMETER CONFIGURATION

TABLE VI
PERFORMANCE ANALYSIS ON FERET DUP II PROBE SET, IN TERMS OF

CLASSIFICATION ACCURACY (%)

a sufficiently deep network, we discern that the stack of power-
regularized prediction outputs yields an expressive feature set
for the FT learning stage. On top of that, we discern that
ReLU and FT are complementary to each other. The nonlin-
ear DAN with ReLU and the FT layer escalates the baseline
performance of the 2-FFCPCA features from 83.73% to 97.01%
in the third layer (refer to configuration III).

In the meantime, we observe that the carefully fine-tuned
DAN, that is, configuration IV, accomplishes only 96.15% in
the first layer. If it is deepened further while freezing the hyper-
parameter settings unchanged, its classification performance is
progressed to 97.01%. This discloses that DAN does refine
its representation by means of relearning at the time growing
a layer deeper. For the DAN equipped with the NN clas-
sifier, or configuration IV, the ReLU-ed predictive outputs
are revealed interpretable as the relearned features since the
performance by pair-matching is unaffected, comparing to that
of configuration III. This underscores that the relearned fea-
tures are applicable also to other succeeding manipulations,
e.g., metric learning. However, this is beyond the coverage
of this paper. On the other hand, since the 2-FFCPCA feature

(a)

(b)

Fig. 4. Performance analysis on training capacity for (a) DAN, and the (b)
BP-trained VD-VGG using MNIST.

dimension d = 131 072 (refer to the parameter configurations
in Table IV), and the FT output dimension Nc = 1096, such
that Nc < d, DAN performs also feature compression.

2) Training Capacity Analysis: We switch from FERET to
MNIST owing to the larger training capability available for
the empirical analyses. We sample six training subsets with
10 000 to 60 000 images to learn for each subset a five-layer
DAN with respect to the pre-extracted 1- and 2-FFCPCA fea-
tures. Similar to other learning-based models, we disclose in
Fig. 4(a) that the DAN performance is proportionate to the
number of training samples. Our empirical results show that
the training subset with 10 000 samples is sufficient to learn
an outperforming DAN. The DAN trained from this subset
achieves an accuracy of 99.17%, prevailing over the BP-trained
very deep VGG network of 16 layers (VD-VGG-16) [56]
with only 98.43%. The same phenomenon is observed for
capacities up to 40 000 examples. However, the VD-VGG-
16 performance is advanced to 99.59% for the counterpart
learned from the entire training set. This shows that DAN gains
performance advantage over the BP networks, particularly
when the training capacity is limited.

3) Theory Analysis: For theory analysis, a summation
of 1000 random training and testing samples are drawn
with replacement from the MNIST dataset to investigate
the intra/interclass variations in terms of Euclidean distance.
Our empirical finding in Fig. 5 reflects the Proposition 1 in
Section IV that the interclass distance dynamically increases
whereas the intraclass distance is mildly perturbed, each time
navigating a layer deeper. We, therefore, substantiate that the
deeply stacked DAN (and K-DAN) works by deviating the
interclass samples, while preserving the intraclass distribution.

To validate the assertion made by Proposition 1, the phys-
ical intra/interclass distances, i.e., w(�) and b(�) measured as
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Fig. 5. Intra/interclass distances for MNIST training and testing samples.

in (22) based on our empirical samples, are compared to the
theoretical intra/interclass distances w(�)

theo and b(�)
theo as in (24)

and (25), respectively. Note w(1) = w(1)
theo and b(1) = b(1)

theo for
the first layer. Fig. 6 shows that our theoretical simulations
approximate the physical ones.

E. Performance Comparison and Discussion

We distinguish DAN/K-DAN from the primary S-DNN and
S-DNNBP counterparts in this section. For a thorough analy-
sis and comparison, the three-hidden-layer MLP with ReLU
and batch normalization [54] (MLPReLU-BN) is trained for each
dataset to relieve the overfitting problem. The number of hid-
den nodes for each layer is to be disclosed in the following
sections accordingly. Other configurations are: cross-entropy
as the MLP loss function; a constant weight decay and momen-
tum of 0.0005 and 0.9; the number of epochs is set to
80–100 for FERET, MNIST, and CIFAR, but 50 for UCI
datasets; and a learning decay of 0.1 for each 10 epochs.

1) FERET: Owing to the rigorous evaluation protocol (with
merely a single image per subject in the FA training set), the
S-DNNs reviewed in Section I disregard this dataset for face
recognition analysis. We, therefore, only compare DAN/K-
DAN to the three-hidden-layer MLPReLU-BN (equipped with
500 nodes in each layer) and KDCN [25] in Table VII, where
the best-performing layer for DAN, K-DAN, and KDCN is
parenthesized. Since BP networks require a large training
capacity of target specific images (refer to Fig. 4), we wit-
ness that the FA-learned MLPReLU-BN produces a very high
misclassification rate across all probe sets. Despite of being
better than MLPReLU-BN, the modularly learned K-DAN (from
raw image pixels) is attested to be underperformed. This is due
to the wide variations in the testing distribution incurred by
poses, facial expressions, illumination conditions, time-span,
and other disturbances, opposing to the only frontal face in FA.

On the contrary, DAN/K-DAN gets rid of the variation issue
by learning from the pre-extracted BSIF [42], PCANet [10],
and 2-FFCPCA [43] features. We discern that with DAN,
K-DAN, or KDCN, the baseline performance for PCANet and
2-FFCPCA in particular exhibits a vast improvement over the
four probe sets. In a nutshell, the DAN/KDAN performance
dominates KDCN for the less discriminative descriptor, that
is, BSIF as in this case. We observe that KDCN halts from
learning immediately after the first layer; while DAN/K-DAN
continue relearning in each layer as it deepens. We strongly

(a)

(b)

Fig. 6. Physical and theoretical intra/interclass distances for (a) training and
(b) testing samples.

TABLE VII
PERFORMANCE COMPARISON FOR DAN/K-DAN, KDCN, AND MLP ON

FERET, IN TERMS OF CLASSIFICATION ACCURACY (%)

believe the DAN performance with the 2-FFCPCA features,
that is, 98.69% on average, is the best at present. On the other
hand, as the PCANet and the 2-FFCPCA features reside in high
feature space (each consisting of 131 072 dimensions yielded
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TABLE VIII
PERFORMANCE COMPARISON FOR DAN/K-DAN AND OTHER

COUNTERPARTS ON MNIST, IN TERMS OF

CLASSIFICATION ACCURACY (%)

based on Table IV), our results reveal that the indefinite pro-
jection by RBF for K-DAN and K-DCN offers no benefit.
However, K-DAN is shown outperforming DAN for the BSIF
features of 16 284 dimensions. Note that by adopting DUP
II as the validation set, DAN/K-DAN are, respectively, trained
with 5/6 layers for BSIF, 2/4 layers for PCANet, and 3/2 layers
for 2-FFCPCA.

2) MNIST: For performance analysis, we learn DAN/K-
DAN with five layers from the training/validation sets of
50 000/10 000 examples. In addition to the S-DNN counter-
parts, we compare DAN/K-DAN to S-DNNBP, MLPReLU-BN,
and the two remarkable CNNs, that is, very deep VGG
of 16 layers (VD-VGG) [56] and the regularized neural
network (R-NN) [45]. Table VIII shows that the DAN/K-
DAN learned based on the 1-2-FFCPCA features, that is,
the composition of 1-FFCPCA and 2-FFCPCA features, attain
99.46% and 99.51% of accuracies, extended from the base-
line of 99.03%. This attest that both DAN/K-DAN are the
best-performing ones compared with other S-DNN counter-
parts. It is reported that S-ELM and AE-S-ELM [29] are
learned with 650 and 700 layers in depth; DF [32] learns
for every layer an ensemble of random decision trees; in
place of one-shot solution like DAN/K-DAN, T-DSN [27], and
RBM-GI [35] are trained iteratively, despite of BP FT is not
exercised; and the remaining networks are S-DNNBP instances,
namely DBN [16], CDBN [17], DBM [19], SAE [19], and
SDAE [19].

To date, the least generalization error for MNIST is archived
to be 0.21%, equivalent to a classification accuracy of 99.79%,
by R-NN [45]. Rather than a single network, R-NN learns
a bag of five with aggressive data augmentation and its final
accuracy is determined via voting. However, we discern that
its accuracy without data augmentation shrinks to 99.43%, out-
performed by that of DAN/K-DAN marginally. Our analysis
in the preceding section reveals also that the single VD-VGG
network achieves an impressive accuracy of 99.59%, without
data augmentation applied.

TABLE IX
PERFORMANCE COMPARISON FOR DAN/K-DAN, AND OTHER

COUNTERPARTS ON CIFAR10, IN TERMS OF

CLASSIFICATION ACCURACY (%)

3) CIFAR10: Our experiments learn for CIFAR10 the
6-layer DAN/K-DAN from the random training/validation sets
with 40 000/10 000 examples. To the best of our knowledge,
the only two non-BP S-DNNs evaluating on CIFAR10 are
D-ELM [47] and DF [32]. With a minimal performance of
63.37%, Table IX summarizes that DF stands out from non-
BP D-ELM and the BP networks, including the 3-layer
MLPReLU-BN (designated with 2000 nodes for each hidden
layer) and DBN [16].

Different from the datasets discussed earlier, we opt DAN
for the linear SVM classifier, in place of the RR building
block. By fixing the SVM penalty parameter to 0.1, we learn
the DANSVM from the PCA-compressed 1-2-FFCPCA com-
posite features with only 4000 dimensions. We proves that
DANSVM improves the baseline accuracy by 16%, progress-
ing from 63.38% to 79.03%, even with the PCA-compressed
features. In addition to that we demonstrate that DANSVM
achieves 76.66%, extended from an accuracy of 65.10% for
the PCA-compressed PCANet features of 4000 dimensions
derived from 3 × 3 and 5 × 5 filters based on [10]. On top
of that the composition of the PCA-compressed 1-2-FFCPCA
and PCANet features offers an accuracy of 80.15% in the third
layer (refer to the row of A + B in Table IX).

To bridge DAN and K-DAN to the BP-trained networks, we
pretrain the 16-layer VD-VGG [56] with the softmax classi-
fier. We extract the features learned at the last FC layer for
our subsequent analyses using the 1-NN classifier, DAN, and
K-DAN. We attest that the DAN/K-DAN-trained based on the
prelearned VD-VGG features outperforms 1-NN and the com-
monly used softmax classifier. This suggests DAN/K-DAN to
be practiced in transfer learning [58], such that DAN or K-
DAN is analytically trained as an auxiliary classifier in place
of softmax. We scrutinize this using the Tiny ImageNet dataset
in the following section.

The three top-ranked BP-trained DNNs for CIFAR10 are the
fractional max-pooling network (FMP-Net) [47], the large for
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TABLE X
PERFORMANCE COMPARISON FOR DAN/K-DAN AND OTHER

CLASSIFIERS ON TINY IMAGENET, IN TERMS OF TOP-1 ACCURACY (%)

all CNN (large ALL-CNN) [48], and the layer-sequential unit-
variance network (LSUV-Net) [49], each of which achieves
96.53%, 95.59%, and 94.16%, respectively. The two common
grounds for these top-performing DNNs are as follows.

1) Instead of only one, multiple networks are learned
greedily on different initializations and configurations.
For example, FMP-Net is learned with summation of
100 networks.

2) Data augmentation is of mandatory to gain training
diversity for performance improvement.

Note that, both FMP-Net and LSUV-Net are renamed for
self-explanatory convenience.

4) Tiny ImageNet: This section employs two very deep
CNNs prelearned from the complete ImageNet dataset imple-
mented by MatConvNet [52]—the 19-layer VD-VGG (VD-
VGG-19) [56], and the 156-layer ResNet (ResNet-156) [57].
We affix these CNNs with three different classifiers, includ-
ing the NN with Cosine distance metric (1-NN), the softmax
classifier with a single FC layer, and the 8-layer DAN, of
which both softmax classifier and DAN are trained from the
VD-VGG-19 and RestNet-156.

Interestingly, Table X summarizes that DAN prevails over
1-NN and the softmax classifier for both CNN-extracted fea-
tures, in terms of top-1 classification accuracies. The concate-
nation of the VD-VGG-19 and the ResNet-156 features further
improves the accuracies from 69.34% (for VD-VGG-19) and
76.84% (for RestNet-156) to 78.08%. In the meantime, we
discern that VD-VGG-19 accomplish a relatively poor accu-
racy of 59.79%, if it is retrained from random initializations on
the Tiny ImageNet training set. This discloses that the non-BP
DAN also relearns from the CNN-learned features, and it is
therefore a good option to the softmax classifier in the transfer
learning practice.

5) UCI Hand-Engineered Datasets: In place of K-DAN,
we apply K-DANTrim to untangle the UCI hand-engineered
problems. Each UCI dataset is reshuffled for ten trials in
our experiments, and the two hyper-parameters, i.e., λ(�)

and γ (�), are empirically set as in Table V. We summa-
rize the average classification rate over all trials in Table XI,
along with performance summary for H-ELM [30], DBN [16],
RBM-GI [35], and MLPReLU-BN. The MLP structure for each
dataset, either of two or three hidden layers, is parenthesized.

TABLE XI
PERFORMANCE COMPARISON FOR K-DANTrim AND OTHER

COUNTERPARTS, IN TERMS OF CLASSIFICATION

ACCURACY (%), FOR UCI DATASETS

Although with the FT layer withdrawn, we attest that K-
DANTrim outshines other counterparts on all datasets, except
for Satimage. Moreover, our experimental results disclose that
K-DAN outperforms MLPReLU-BN on the whole. For small-
scale datasets, that is, the Glass dataset with 23 training
images for each class, MLPReLU-BN is revealed inferior achiev-
ing only 22.22%; whereas K-DANTrim is appraised to be
77.50%. For other larger datasets, especially Connect-4 with
16 666 images per class, K-DANTrim also exhibits its superi-
ority over both MLPReLU-BN and DBN. This ascertains that
a simplistic analytic network like K-DANTrim is a viable
alternative to BP-based MLP and DBN.

F. Comparison to Other BP-Trained Networks

We compare DAN/KDAN to the most influential BP-
optimized CNNs from three perspectives: the most primitive
performance (with only a single network trained for pattern
classification and recruiting no data augmentation); the com-
putational complexity (the number of trainable parameters);
the CPU training time (in h); and also the CPU inference time
(in s). Following MatConvNet [52], we retrain AlexNet [54],
network-in-network (NIN) [55], and residual network of depth
20 (ResNet-20) [57] on CIFAR10, aside from the aforemen-
tioned MLPReLU-BN and VD-VGG of 16 layers [56]. Our
implementation runs on an Intel Core i7-6850K @3.60GHz
CPU and a NVidia GeForce GTX 750 GPU.

For a fair comparison, we first learn all BP networks by
GPU for parameter tuning, and each is further retrained with
the prelearned parameters by CPU for training and inference
time. We observe from Fig. 7 that:

1) although MLPReLU-BN learns a massive parameter set
by BP (approximately 14.14M), its performance is lim-
ited to only 58.95%—the lowest among all comparing
networks;

2) we unveil that VD-VGG with nine convolutional layers,
and two FC layers offer the best performance. However,
it requires a whole day to learn 10.4 M parameters
with CPU;
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(a)

(b)

Fig. 7. (a) Classification performance versus network complexity and (b)
CPU training time versus CPU interference time for DAN/K-DAN and BP-
learned DNNs on CIFAR10.

3) in comparison with that of VD-VGG, each NIN and
ResNet-20 learns a significantly reduced parameter set,
specifically, only 0.36M for NIN and 0.27 for ResNet-
20, while securing a considerable accuracy of 87%.
Despite of that NIN and ResNet-20 expend 19 h at
least in training as these two networks are generally
more complicated. Therefore, GPU is indispensable to
expedite the trivial FT task;

4) assuming that the PCA-compressed composite feature
sets, that is, PCANet (A), and 2-FFCPCA (B) and the
VD-VGG (C) features are obtainable for feature relearn-
ing. DAN/KDAN consume only less than 90 s to train
0.5M and 0.14M parameters, respectively;

5) aside from network complexity and CPU training time,
it is worth mentioning that DAN/K-DAN necessitate
negligibly low inference time.

Opposing to the BP networks, we reaffirm that learning
the RR-driven DAN/K-DAN requires only minimum effort.
If DAN/K-DAN is fine-tuned for each layer individually,
we believe its performance especially in CIFAR10 will be
improved.

VI. CONCLUSION

S-DNN refers to a non-BP DNN assembled by means of
aggregating nonlinear self-learnable building blocks, one after
another, for a deep, feedforward construction. We outline
a modularly trained S-DNN upon RR, dubbed DAN and its
kernelized subsidiary (K-DAN) for pattern classification. We
underline that:

1) training DAN/K-DAN is of noniterative and non-BP,
but only minimal efforts since the one-shot analytic
solution is learnable by only CPU, disregarding of
training capacity;

2) opposing to other S-DNNs and the BP-trained networks
learned only from the raw image pixels, DAN/K-DAN
are demonstrated trainable on top of the pre-extracted
baseline features (including the pretrained CNN features
and the deliberately compressed features), and the struc-
tured features, that is, nonsignal or nonsequential data;

3) DAN/K-DAN operate more than a classifier, but trigger-
ing also feature relearning and feature compression;

4) we formulate a set of mathematical theories and proofs
to reason the generalizability of DAN/K-DAN;

5) both DAN/K-DAN are revealed to be the most promising
among other existing S-DNNs for a wide range of pat-
tern classification tasks, for example, faces, handwritten
digits, natural objects, and the structured features;

6) in the meantime, DAN/K-DAN stands out from other
BP-optimized networks, in terms of network complexity,
CPU training time, and CPU inference time.

For future exploration, it would be interesting if DAN/K-
DAN also permits weight transferability like what BP-based
DNNs do.
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