
This is a postprint version of the following published document:

Lazaro, M. & Figueiras-Vidal, A. R. (2021). A Bayes
Risk Minimization Machine for Example-Dependent
Cost Classification. IEEE Transactions on Cybernetics,
51(7), 3524–3534.

DOI: 10.1109/tcyb.2019.2913572

 © 2021, IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

https://doi.org/10.1109/tcyb.2019.2913572

SUBMITTED TO IEEE TRANS. ON CYBERNETICS (ACCEPTED VERSION), FEBRUARY 2019 1

A Bayes risk minimization machine for
example-dependent cost classification

Marcelino Lázaro, Anı́bal R. Figueiras-Vidal, Life Fellow, IEEE

Abstract—A new method for example-dependent cost clas-
sification is proposed. The method constitues an extension of
a recently introduced training algorithm for neural networks.
The surrogate cost function is an estimate of the Bayesian risk,
where the estimates of the conditional probabilities for each
class are defined in terms of a one-dimensional Parzen window
estimator of the output of (discriminative) neural networks. This
probability density is modeled with the objective of allowing
an easy minimization of a sampled version of the Bayes risk.
The conditional probabilities included in the definition of the
risk are not explicitly estimated, but the risk is minimized by
a gradient-descent algorithm. The proposed method has been
evaluated using linear classifiers and neural networks, with
both shallow (a single hidden layer) and deep (multiple hidden
layers) architectures. Experimental results show the potential and
flexibility of the proposed method, which can handle example-
dependent cost classification under imbalanced data situations
that commonly appear in this kind of problems.

I. INTRODUCTION

During decades, learning machines used for pattern classifi-
cation [1] were designed to learn from labeled examples, using
different algorithms, but with the general goal of obtaining
designs with a good generalization capability, i.e. a good
performance with patterns that were not seen during the
training procedure. The performance was usually measured by
the number of erroneous decisions, which is an appropriate
figure of merit as long as it is possible to assume that the
importance of the errors is the same for all patterns. However,
there are many real problems where this assumption is not
practical because different errors can have different costs.
Problems with this characteristics are known as Cost-Sensitive
(CS). There are two types of CS problems. In some cases, the
cost naturally depends on the class of the pattern, for instance
in medical diagnosis problems, and the name Class-Dependent
Cost (CDC) is used. CS learning deals with these CDC prob-
lems, but the same formulation has also been applied to deal
with imbalanced problems, i.e. problems where the number of
examples of patterns is very different for each class [2]. In
this kind of problems, to assign a higher cost to the errors of
the minority classes can be a useful mechanism to compensate
the effects of the underrepresentation of these classes in the
training set [3], [4]. Another interesting application of CS
learning with CDC is ordinal regression (also known as ordinal
classification), where the classes exhibit a natural order, and
therefore the cost of an erroneous classification depends on the

Marcelino Lázaro and Anı́bal R. Figueiras-Vidal are with the Department
of Signal Theory and Communications of University Carlos III of Madrid,
Spain.

difference between the order of the correct and wrong classes
[5].

Example-Dependent Cost (EDC) problems are other class of
CS problems. EDC classification problems are those in which
the cost for attributing a class i item to class j is not only a
function of i, j, as in CDC problems, but also of the observed
item x. They are frequent and relevant in many application
areas, such as security and health, and particularly in business
and finance. Fraud detection [6], [7], [8], [9], [10] and credit
scoring [11], [12] are core activities in finance. Customer
churn [13], [14] and direct marketing [15], [16], [17] are much
relevant in business.

Obviously, EDC classification would not require special
attention if the statistical information for the Bayesian for-
mulation were available. In practice, keeping a statistical
perspective is necessary. The initial research followed this
line, such as in [18], which is one of the pioneer works on
the subject. Some years later, machine learning approaches
were considered. Training discriminative machines to solve
EDC problems is far from being an easy task. Proportional
re-sampling is proposed in [19], [15]. This approximate way
of dealing with EDCs suffers the drawbacks of sampling
techniques, which can modify the problem by reducing the
influence of critical samples and/or emphasizing unimportant
instances [20]. Decision trees have also been considered for
EDC problems [21], [22], and perceptrons and piecewise linear
classifiers were used in [23] with an hybrid learning algorithm
that constructs separating hyperplanes for each pair of classes.
In general, all these techniques suffer from the limitations of
the constrained partition of the input space. After an analysis
of an SVM-based formulation, the authors of [24] conjecture
that, when the number of samples is high enough, the L2

version can be used to minimize the Bayes cost for EDCs.
The problem is that, for finite training sets, SVMs merely
establish a bound of the classification cost [25].

An interesting, partly principled approach was proposed
by Bahnsen and his colleagues [8], [9], [12], [14], [26].
They introduce a two-step procedure: First, they estimate the
posterior class probabilities using constant costs. Then, they
use these estimates to solve the EDC classification by means of
a Bayesian formulation. Unfortunately, they do not use in the
first step learning schemes that provide consistent estimates
of the posterior probabilities, whose characteristics will be
discussed below (the only exception being the logistic re-
gression when training minimizes appropriate surrogate costs).
Consequently, the authors explored further steps to improve
the first estimate. In any case, even these improved estimates
of posterior probabilities are sensitive to imbalance situations.

SUBMITTED TO IEEE TRANS. ON CYBERNETICS (ACCEPTED VERSION), FEBRUARY 2019 2

In this paper, we propose an alternative method to solve
binary EDC classification problems. It is based on our previous
work [27], that introduced a novel method for CDC classifica-
tion with application to imbalanced problems. Here, we extend
the formulation to deal with EDC classification and discuss
its advantages for this class of problems. Specifically, we
propose a training algorithm for neural networks with sample-
by-sample updating equations to minimize a cost function that
is defined using the joint theoretical framework of Bayesian
decision and Parzen windows [28] for probability density
estimation.

The Parzen windows method is well known since the
sixties, but its formulation still continues finding applications
in different fields (as in [29], to cite a very recent example).
In the field of classification machines, Parzen’s formulation
has been previously used in combination with the Bayesian
theory, as in the probabilistic neural networks proposed by
Specht [30] or in [31], where Parzen windows (or a weighted
version of them) are used to estimate the multi-dimensional
probability densities in the input space and this estimation is
used to solve the classification problem by means of Bayesian
decision rules.

Our approach is totally different: Parzen windows are not
applied in the multi-dimensional input space but in the one-
dimensional output of a leaning machine with an arbitrary
architecture, the classifier does not require an explicit density
estimation, neither the decision rule is based on such an
estimation. The decision rule for a pattern is the result of
comparing the output of the machine for this pattern with
the “zero-threshold” that is commonly used in conventional
learning machines for binary classification problems. Parzen
windows are included in the cost function to be minimized
during the training procedure, allowing a sample-by-sample
updating algorithm, which depends on the window associ-
ated to a single sample. So, this approach gives freedom to
train sample-by-sample or in mini-batches, according to the
characteristics of the problem being solved and the available
computational resources.

The rest of the paper is organized as follows. Section II
presents the problem of EDC classification and proposes a
surrogate cost function that is a direct estimation of the Bayes
risk, and creates a training algorithm to optimize it. In Section
III, some experiments serve to evaluate the performance of
the method in both synthetic and real data sets. Extensive
comparisons of performance against other methods in several
selected synthetic and real problems support the effectiveness
of the method that is proposed for EDC. Finally, Section IV
summarizes the main conclusions and outlines some promising
further research lines.

II. BAYESIAN NEURAL NETWORK FOR
EXAMPLE-DEPENDENT COST LEARNING

This section presents a new surrogate cost function for
example-dependent cost classification based on the Bayesian
formulation.

A. General Bayesian formulation

In a binary classification problem, a D-dimensional input
pattern

x = [x1, x2, · · · , xD]T (1)

has to be assigned to one out of two possible classes, Ci, i ∈
{0, 1}. Superindex T in (1) denotes the transpose operator.

In an EDC problem, some specific cost policy ci,j(x),
i, j ∈ {0, 1} is defined for each pattern, where ci,j(x) is
the cost of assigning pattern x to class i when the true
class is j. These EDCs are characteristic of each classification
problem under analysis, and usually analytical forms of them
are provided from expert knowledge on the corresponding
field. However, in some problems the costs are obtained
from observations and uncertainty can remain about the EDC
for unseen samples: therefore, classification algorithms that
implicitly learn the EDCs can provide advantage. This is the
case of the procedure we propose in this paper, which trains
a neural network to minimize a sampled version of the Bayes
risk. The possibility of using powerful deep neural networks
is one more advantage.

The optimal assignment rule in this kind of problems
minimizes the decision cost, and this optimal rule is provided
by the Bayesian theory. The Bayes risk function is defined for
the decision on the class of pattern x as

R(x) =
∑
j

(∑
i

ci,j(x) Pr(Di|Cj)

)
Pj , (2)

where Di, i ∈ {0, 1} denotes the decision for class Ci, and Pj

denotes the a priori probability of class Cj . When the posterior
probabilities for each class, Pr(Ci|x), are known, the decision
rule minimizing (2) for pattern x is to assign it to the class
with minimum average decision cost

i∗ = arg min
i
{c̄(i|x)}, (3)

where
c̄(i|x) =

∑
j

ci,j(x) Pr(Cj |x). (4)

Taking into account the relationship of posterior probabilities
Pr(Ci|x) and likelihoods p(x|Ci), this rule can be written as
the well known Likelihood Ratio Test (LRT) [32]

p(x|C1)

p(x|C0)

C1

≷
C0

c10(x)− c00(x)

c01(x)− c11(x)

P0

P1
. (5)

B. Machine learning in the Bayesian framework

In many practical cases the required statistical knowledge
for carrying out the classification, necessary to evaluate (4) or
(5), is not explicitly available, and the information about the
problem is enclosed in a set of labeled examples or training
set, T , consisting of L labeled examples

T = {(x`, y`, ci,j(x`)) | ` ∈ {1, · · · , L}, i, j ∈ {0, 1}} (6)

that in an example-dependent cost problem must include
the cost policy for each pattern, ci,j(x`), as well as labels
y` ∈ {0, 1} indicating the class for each pattern x`. When the
available information is constrained to this labeled set, one of

SUBMITTED TO IEEE TRANS. ON CYBERNETICS (ACCEPTED VERSION), FEBRUARY 2019 3

the usual approaches is to use machine learning methods to
solve the classification problem.

In the framework of Bayesian theory, machine learning can
be used for EDC classification in several different ways. One
approach is to use a two-step methodology:

1) A machine is used to obtain estimates of the a posteriori
probabilities Pr(Ci|x).

2) These estimates are used along with the decision costs
ci,j(x) to implement the Bayesian decision rule, i.e.,
(3)-(4) or alternatively (5).

Although several machine learning methods have been used
to provide the estimate of step 1), such as logistic regression
or random forest [12], [8], theoretically a more interesting
approach is to consider neural networks that make use of
Bregman divergences [33] as surrogate costs, because net-
works trained to minimize this kind of costs provide consistent
estimates of the a posteriori probabilites [34], [35].

Another approach is to introduce the Bayes risk into the
cost function to be minimized during the training of the neural
network, as proposed in [27], where the surrogate cost function
is an estimate of the Bayesian risk with fixed cost per class.
Here, we will follow this approach. Specifically, a new cost
function is proposed, by averaging an estimate of Bayes risk
(2), which is presented in the next sub-section.

C. Proposed surrogate cost function

A new surrogate cost function for EDC binary classification
is presented to be used to train neural networks with a single
output neuron and a threshold based decision rule. The output
of the neural network for a pattern x is

z = fw(x), (7)

where w denotes the trainable parameters of the neural
network and the transfer function fw(·) is given by the
neural architecture. Any architecture can be considered, such
as Multi-Layer Perceptrons (MLPs) or radial basis function
networks, but also linear classifiers, fw(x) = wT [1,xT]T , can
be included. From the network output, the decision rule of the
classifier is obtained by comparing z with a zero threshold,
i.e.,

ŷ =

{
1, if z ≥ 0

0, if z < 0
. (8)

Note that, contrary to rules (3) or (5), the decision rule in
this case does not require the knowledge of the costs ci,j(x),
because it only depends on the input pattern x1. This is an
important advantage for those problems in which functional
cost expressions are not available for unseen samples.

For this kind of networks, the proposed cost function is the
average of an estimate of the Bayes risk (2). For the sake
of simplicity, in the following the costs for correct decisions
will be considered null, c0,0(x) = c1,1(x) = 0, because this
is a very common situation and to include non-null values
is straightforward. Moreover, we define c0(x) = c1,0(x)

1Obviously, the parameters w will be obtained during the training of the
network taking into account the costs, but these costs are not required in the
evaluation phase.

and c1(x) = c0,1(x). Using this notation, the proposed cost
function is

JR(w) = E
[
c0(x)P̂r(D1|C0)P̂0 + c1(x)P̂r(D0|C1)P̂1

]
,

(9)
where ·̂ denotes an estimate, and E[·] is the statistical ex-
pectation operator. When not known from side information,
estimates for the a priori probabilities, P̂i, can be easily
obtained by the proportion of samples per class in the training
set. In a network with a one-dimensional output (7) and
decision rule (8)

Pr(D1|C0) =

∫ ∞
0

p(z|C0) dz (10)

and

Pr(D0|C1) =

∫ 0

−∞
p(z|C1) dz, (11)

p(z|Ci) being the conditional probability density of the output
z under class Ci. Estimates P̂r(Di|Cj) in (9) can be obtained
by integrating estimates of p(z|Ci) computed using the Parzen
window estimator [28]

p̂(z|Ci) =
1

Li

∑
n∈Si

ki(z − zn) (12)

with
Si = {n : yn = i}, (13)

Li is the number of samples in set Si, i.e., Li = |Si|, and
ki(z) is the Parzen window used in the estimator for class
Ci. Each window ki(z) has to be a valid probability density
function, i.e., it has to be a non-negative function ki(z) ≥ 0
with unit area. When modeling with Parzen windows we
combine the representation power of the machine with the
Parzen classical approach to deal with probability densities.
This means that better results are expected, because we can
train the neural network towards an easy representation of
the classes at the output level (unidimensional), instead of
working directly with the (multidimensional) samples in the
input space, as usual when Parzen windows are used for
classification [31], [36]. The use of Parzen windows to model
z allows to build a sample-by-sample training algorithm in a
direct and easy manner, while other non-parametric models,
such as k nearest neighbours, or more compact representations,
such as Gaussian mixtures, would not allow it. Moreover, non-
parametric density estimators do not make any assumption
about the probabilistic structure of z. This is appropriate
because z values are obtained by projecting input samples via
training the neural network. Finally, since z is unidimensional,
it is easy to select different profiles of windows in order to get
good classification results. These are additional advantages of
our proposed method.

Since P̂r(Di|Cj) is obtained by integrating p̂(z|Ci), it is
useful to define the integrals of the Parzen windows

Ki(z) =

∫ z

−∞
ki(a) da, (14)

because with this definition∫ ∞
0

ki(z − zn) dz = 1−Ki(−zn) (15)

SUBMITTED TO IEEE TRANS. ON CYBERNETICS (ACCEPTED VERSION), FEBRUARY 2019 4

and ∫ 0

−∞
ki(z − zn) dz = Ki(−zn). (16)

By replacing p(z|Ci) in (10) and (11) by their Parzen
window estimates given by (12) and taking into account (15)
and (16), the proposed cost function becomes

JR(w) =
P̂0

L0

∑
n∈S0

c0(xn) (1−K0(−zn))

+
P̂1

L1

∑
n∈S1

c1(x) K1(−zn). (17)

It is common to estimate

P̂0 =
L0

L0 + L1
=
L0

L
, P̂1 =

L1

L0 + L1
=
L1

L
. (18)

In this case, the normalized costs are defined as

c̄i(x) =
ci(x)

L
, (19)

and the proposed cost function can be written as

JR(w) =
∑
n∈S0

c̄0(xn) (1−K0(−zn))

+
∑
n∈S1

c̄1(x) K1(−zn). (20)

The problem of consistency of convex risks minimizations
is classical in the statistical literature [37], [38]. Here, we are
applying a consistent probability density estimator, the Parzen
windows model, which shows a reasonable performance. But
our objective is not exactly to get good EDC Bayes risk
estimates, but to design classifiers that offer high performance
when applied to the corresponding classification problem.
Further studies could lead to a better understanding of the
statistical characteristics of the method, but, in any case, we
remark that we deal with an easy situation: The estimator is
applied to a one-dimensional variable, the output z. More-
over, conditional distributions p̂(z|Ci) will not be explicitly
estimated, but the proposed cost in whose definition these
estimates are included will be minimized using an iterative
procedure, as it is shown below. This procedure leads to
an updating expression that depends on the one-dimensional
Parzen windows, ki(z), included in the theoretical definition
of the estimates, (12). This approach is notably different from
using Parzen windows to obtain estimates of the conditional
distributions of the input, p(x|Ci), or the joint input-output
distributions, p(x, y), such as in [30], [39].

D. Training algorithm and computational load

The proposed cost function can be minimized by using any
appropriate optimization procedure. Here we present the pro-
cedure to minimize the cost function by means of an iterative
gradient descent algorithm, but its extension to gradient plus
momentum, Adam optimizer [40], or similar procedures is
straightforward. The updating equation for gradient descent
is

w(n+ 1) = w(n)− µ ∂JR(w)

∂w

∣∣∣∣
w=w(n)

, (21)

where µ is the step-size parameter. The gradient expresion
can be computed sample-by-sample, batch (using the whole
training set) or mini-batch (using a sub-set of the training set
in each step). The sample-by-sample expression of the gradient
is

∂JR(w)

∂w

∣∣∣∣
w=w(n)

=
∂JR(w)

∂zn

∂zn
∂w

∣∣∣∣
w=w(n)

. (22)

The first factor in the right side is2

∂JR(w)

∂zn
=

{
−c̄1(x)k1(−zn) if yn = 1

+c̄0(x)k0(−zn) if yn = 0
. (23)

The second term in the right side of (22) is independent of the
cost function and it only depends on the network architecture.

To briefly analyze the computational burden of the training
algorithm, we compare the updating expressions with those
associated to the well-known minimum mean squared error
(MMSE) cost function. For this cost function the second term
in the right side of (22) is the same, because it does not depend
on the cost. The first term is

∂JMMSE(w)

∂zn
= −2(yn − zn) (24)

By comparing (23) with (24), it can be concluded that the
computational complexity using the proposed cost function is
of the same order of magnitude than that required for the
MMSE cost function.3

III. EXPERIMENTS

The proposed method will be evaluated by means of some
experiments.

A. Benchmark methods

Several methods designed for example-dependent cost clas-
sification will be used as benchmarks. In particular, a linear
method: linear regression (LR); a generalized linear model:
Cost-Sensitive Logistic Regression (CSLR) [12]; and several
non-linear methods: random forest (RF), Cost-Sensitive De-
cision Tree (CSDT) [26], and Bayes Minimum Risk (BMR)
method [8] with several different approaches to estimate the
posterior probabilities: LR, RF, CSLR, and CSDT. The meth-
ods will be denoted BMR(LR), BMR(RF), BMR(CSLR) and
BMR(CSDT), respectively. To improve the performance, these
methods are sometimes combined with re-sampling techniques
aiming at producing data distributions which are proportional
to the costs. Therefore, the training phase of these methods
will be performed from 3 different data sets: the training set,
and two additional sets obtained using the cost-proportional
over-sampling (OS) [19] and the cost-proportional rejection
sampling (RS) [15] techniques. For LR and RF, the Python
implementation provided in Scikit-learn4 software [41] has

2This is the expression for (20). In the more general case (17), c̄i(x) is
replaced by ci(x)P̂i/Li.

3In a practical implementation, the difference is mainly dependent on the
cost for evaluating the Parzen windows ki(·), which basically depends on the
implementation platform.

4http://scikit-learn.org

SUBMITTED TO IEEE TRANS. ON CYBERNETICS (ACCEPTED VERSION), FEBRUARY 2019 5

been employed. For CSLR, CSDT and BMR, the Python
implementation of the Costcla module [42] has been used.
The parameters for each method are those recommended in
[12].

B. Proposed method

Complementary kernels have been considered, k0(z) =
−k1(z). We have added a normalized Gaussian kernel, with
variance 0.15 (thus having 99% of the energy in [−1, 1]) to
the four kernels proposed in [27], uniform, linear, triangle,
and absolute value. In this way, the basic support of all
kernels is constrained to this interval, which fits the range
of the tanh activation function. The five kernels are plotted in
Fig. 1. Taking into account the updating equation (23), where
the gradient is proportional to ki(−z), the choice of a given
kernel is related with how different patterns contribute to the
gradient as a function of the distance between their output
and the decision threshold at z = 0. Gaussian or triangle
kernels enhance the contribution of samples that are close
to the threshold. Absolute value enhances the contribution of
samples that are far away from the threshold. Uniform kernel
weights equally all patterns at a distance ≤ 1. The linear kernel
enhances the contribution of samples in the wrong side of the
threshold, because the contribution increases linearly with the
distance to the desired extreme value (+1 for samples of Class
1, or −1 for samples of Class 0).

kG(z)

z
−1 1

1

kU (z)

z
−1 1

1

kL(z)

z
−1 1

1

kT (z)

z
−1 1

1

kA(z)

z
−1 1

1

Fig. 1. Kernels used in the experiments, with k1(z) = kX(z) and
complementary kernels (k0(z) = k1(−z)). X ∈ {G,U,L, T,A}, with G:
Gaussian, U : uniform, L: linear, T : triangle, A: absolute value.

The performance of the proposed cost function will be
evaluated for two architectures: a linear classifier and a neural
network classifier. In this case, MLPs with HL hidden layers
and N neurons at each layer are employed. A tanh activation
function is used for the single neuron of the output layer,
and tanh or rectified linear units (ReLU) activations are used

for neurons of the hidden layers. For the linear classifier,
Lin(X) will denote that kernel k1(z) = kX(z) is used, with
X ∈ {G,U,L, T,A}. For the MLP, MLP(HL,N ,X) will
denote HL hidden layers with N neurons and that kernel
k1(z) = kX(z) is employed. For N , several number of
neurons are tried, and the best model size is obtained by cross-
validation.

The proposed cost function is optimized using a mini-batch
gradient descent algorithm. An adaptive step-size µ has been
used in gradient updates. After each epoch the cost JR(w)
is computed and compared with the cost at the end of the
previous epoch. Then

• If cost decreased: step size is increased, µ = cI µ
• If cost increased: step size is decreased, µ = µ/cD, and

weights are re-computed with the new step size.

Parameters cI = 1.05 and cD = 2 have been used in all
experiments, with initial step size µ = 10−3.

C. Figure of merit

The cost savings will be used as figure of merit to evaluate
the proposed method performance. If Cost({ŷ`}) denotes the
cost of a given decision rule {ŷ` : ` ∈ {1, 2, · · · , L}}

Cost({ŷ`}) =
∑
`∈S0

ŷ` c0(x`)

+
∑
`∈S1

(1− ŷ`) c1(x`), (25)

the savings for that decision are

Sav({ŷ`}) =
CostT − Cost({ŷ`})

CostT
, (26)

where
CostT = min{CostT0, CostT1} (27)

and CostTi is the cost of the trivial rule ŷ` = i ∀`. It can be
seen that savings are defined as the percentage of the costs
that are saved by using a given decision rule with respect to
the costs of not using an intelligent rule, i.e., with respect to
the best trivial decision (the best of the “all patterns of class
0” and “all patterns of class 1” rules). This is an appropriate
metric for EDC problems that has been used in several works
(see, for instance, [9], [26]) because it has the advantage, with
respect to the raw cost measure (25), of being normalized.

D. Datasets

We have considered four datasets, two synthetic and two
with real data. The two synthetic datasets are two-dimensional
problems where data of both classes have Gaussian distribu-
tions, which allows to compute the optimal Bayesian solution.
The first synthetic dataset is as follows:

• Class 0: A Gaussian distribution with mean vector and
covariance matrix

µ0 =

[
0
0

]
, Σ0 =

[
4 0
0 4

]

SUBMITTED TO IEEE TRANS. ON CYBERNETICS (ACCEPTED VERSION), FEBRUARY 2019 6

• Class 1: A Gaussian distribution with mean vector and
covariance matrix

µ1 =

[
6
0

]
, Σ1 =

[
4 0
0 8

]
The decision cost is constant, 1, for patterns of class 0, and is
the exponential of the first coordinate for patterns of class 1

c1,0(x) = 1, c0,1(x) = exp(x1)

Some examples of patterns of both classes and the Bayesian
solution to this problem if P0 = P1 are shown in Fig. 2. The
Bayes solution for this dataset provides savings of 75.95%.

−6 −4 −2 0 2 4 6 8 10 12
−8

−6

−4

−2

0

2

4

6

8

x1

x
2

Fig. 2. Some examples of patterns for the first synthetic experiment and the
Bayesian decision boundary (circles for class 0, stars for class 1).

The second synthetic dataset has the following distributions:
• Class 0: A mixture of two Gaussians with the following

mean vectors and covariance matrices:

µ0a =

[
1
4

]
, µ0b =

[
1
−4

]
, Σ0a = Σ0b =

[
2 0
0 2

]
• Class 1: A Gaussian distribution with mean vector and

covariance matrix

µ1 =

[
4
0

]
, Σ1 =

[
2 0
0 4

]
The decision costs are the same that in the previous dataset.
Some examples of patterns of both classes and the Bayesian
solution for equiprobable classes are shown in Fig. 3. It can
be seen that now the boundary is clearly non-linear, unlike for
the first dataset, where the decision boundary is almost linear.
The Bayes solution for this dataset provides savings of 66.3%.

The third dataset is a real dataset, the 2009 Pacific-Asia
Knowledge Discovery and Data-Mining (PAKDD) conference
competition, a credit scoring problem, where the objective is
to identify credit card applicants that are likely to be in default.
It contains 38,578 patterns with 32 features for each pattern. It
is an imbalanced dataset, with a 19.89% of patterns of Class
1. Costs for false negatives are proportional to the client’s
credit line, and costs for false positives are the addition of the

−4 −2 0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6

8

x1

x
2

Fig. 3. Some examples of patterns the second synthetic experiment and the
Bayesian decision boundary (circles for class 0, stars for class 1).

expected loss and the average loss of profit by rejecting a good
customer (specific details are given in [12]). The dataset was
downloaded from the Costcla Python module repository5.

Finally, the home equity (HMEQ) loans data set [43]6

reports characteristics and delinquency information for 5,960
home equity loans, where the obligor uses the equity of
a home as the underlying collateral. Each pattern has 12
characteristics, and the percentage of applicants that defaulted
on loan is 19.95 %. For this dataset we have considered that
cost for false negatives is proportional to the loan, in particular
we fixed 75% of the loan amount. The cost for false positives
is given by the loss of profit, which has also been considered
proportional to the loan amount, in this case a 15% of this
amount.

In the experiments with synthetic datasets, the sizes for
train, validation and test sets will be specified at every case.
For the two real datasets, data is randomly split in train,
validation and test subsets in each realization according to
the following percentages: 50%, 25% and 25%, respectively.

E. Experiments with the synthetic datasets

The first experiment is performed with the first synthetic
dataset and balanced classes (P0 = P1). In this case, 4,000
samples are used for designing the solutions, with 2/3 and
1/3 proportions for train and validation sets, respectively. For
the test set, 100,000 independent samples are generated. The
benchmark methods are designed from 3 different sets: the
train set, and two re-sampled sets, using both over-sampling
(OS) and rejection-sampling (RS). The proposed method is not
trained working with the re-sampled sets because the Bayesian
formulation allows to deal directly with the costs and the a
priori probabilities for each class. The mini-batch size is 1000
samples, and the proportion of samples for each class is kept
in every mini-batch.

5https://pypi.org/project/costcla/
6Available at http://www.creditriskanalytics.net

SUBMITTED TO IEEE TRANS. ON CYBERNETICS (ACCEPTED VERSION), FEBRUARY 2019 7

Table I compares the results obtained with the benchmark
methods and with the proposed method using both a linear
classifier and an MLP with a single hidden layer with tanh
activations. 2, 4, 10, 25 and 50 neurons were tried for this
hidden layer. The table shows the average savings (in %)
obtained in the test set in 100 independent realizations. To
make easier the comparison, the best result7 for the linear (and
generalized linear) benchmark methods, non-linear benchmark
methods, the proposed method with linear models and the
proposed method with MLPs, are highlighted (boldface). The
best size for the MLPs among the 5 sizes under test has been
selected by cross-validation using the validation test. Training
has also been stopped by cross-validation.

The linear model obtains better results than LR or CSLR.
LR obtains better results when combined with re-sampling
techniques, as expected (re-sampling produces a distribution
proportional to the costs), especially with the RS method in
this case, although the achieved performance is far from the
optimal solution. It can be seen that several non-linear methods
are able to obtain a performance close to the optimal Bayesian
rule: CSDT, and all BMR methods working with the train set
but BMR(RF), which has a lower performance (RF, by its own
nature, does not work well in such a low-dimension space).
The proposed method with MLPs obtains results that are very
close to the optimal. The proposed cost function with a linear
classifier obtains slightly lower results, as expected, taking into
account that the optimal boundary is slightly non-linear. The
best kernel for both linear and MLP models for this problem
is the linear kernel. The sensitivity to the choice of the kernel
is slightly lower for MLPs than for the linear classifiers.

Method Train Set Re-Sampling(OS) Re-Sampling(RS)
LR 24.85 ± 6.44 25.23 ± 6.38 51.90 ± 5.94

CSLR 31.14 ± 0.35 31.22 ± 0.57 31.18 ± 0.70
RF -143.93 ± 186.07 -115.58 ± 62.57 -12.29 ± 151.32

CSDT 75.07 ± 0.59 75.02 ± 0.73 -83.25 ± 399.15
BMR(LR) 75.18 ± 0.45 75.18 ± 0.46 72.54 ± 3.10
BMR(RF) 21.06 ± 14.45 21.17 ± 13.96 61.67 ± 49.00

BMR(CSLR) 75.04 ± 0.45 -349.94 ± 261.11 -180.28 ± 649.66
BMR(CSDT) 75.07 ± 0.58 75.02 ± 0.73 -38.85 ± 408.70

Lin(G) 73.18 ± 6.07
Lin(U) 73.42 ± 5.54
Lin(L) 74.20 ± 4.50
Lin(T) 73.45 ± 5.37
Lin(A) 73.11 ± 5.58

MLP(1,10,G) 74.99 ± 0.74
MLP(1,50,U) 75.01 ± 0.64
MLP(1,10,L) 75.89 ± 0.48
MLP(1,25,T) 75.13 ± 0.57
MLP(1,50,A) 75.12 ± 0.66

TABLE I
COST SAVINGS IN THE TEST SET (AVERAGE ± STANDARD DEVIATION, IN

%) FOR THE FIRST DATASET WITH BALANCED CLASSES AND 4000
EXAMPLES FOR TRAINING AND VALIDATION (IN A 2/3 - 1/3 PROPORTION).

AVERAGE RESULTS FOR 100 INDEPENDENT REALIZATIONS.

The next experiment is performed with the second synthetic
dataset and balanced classes (P0 = P1) with 4,000 samples
with 2/3 and 1/3 proportions for train and validation sets,

7Strictly speaking, the apparently best result: That with the highest average
(and the lower variance, if there are ties). Obviously, there are several
statistically equivalent results.

respectively, and 100,000 independent samples for the test
set. The mini-batch size is again 1000 samples. Table II
compares the results obtained with the different methods. It
can be seen that now, in this problem with a clearly non-
linear solution, the proposed linear classifier cannot obtain an
average performance close to the optimal value. Anyway, it
obtains better results than LR and CSLR. Again, LR benefits
clearly from re-sampling.

The non-linear benchmark methods, although in general
obtain better results than their linear counterparts, are far from
the optimal solution. In fact, their performance is close to
the performance of the proposed linear method. However the
proposed method with MLPs obtains much better results, very
close to the optimal Bayesian solution, in this nolinear dataset.
The best kernel in both cases, linear classifiers and MLPs, is
the linear kernel, although in the case of the MLPs, as in the
previous example, the sensitivity to the choice of the kernel is
notably lower than for the linear classifiers.

Method Train Set Re-Sampling(OS) Re-Sampling(RS)
LR -11.84 ± 5.77 -3.01 ± 4.95 32.37 ± 5.33

CSLR 13.63 ± 5.45 15.32 ± 6.81 15.76 ± 7.10
RF -148.23 ± 56.28 -126.20 ± 51.92 21.14 ± 31.50

CSDT 40.90 ± 17.48 49.54 ± 12.58 5.68 ± 27.80
BMR(LR) 52.65 ± 0.51 52.66 ± 0.51 49.38 ± 3.61
BMR(RF) -10.18 ± 23.19 -9.20 ± 27.32 49.81 ± 9.00

BMR(CSLR) 49.51 ± 2.80 -199.30 ± 158.03 -235.19 ± 260.86
BMR(CSDT) 44.18 ± 15.05 49.55 ± 12.56 25.23 ± 24.07

Lin(G) 51.72 ± 3.33
Lin(U) 48.51 ± 8.40
Lin(L) 52.59 ± 0.54
Lin(T) 51.78 ± 3.02
Lin(A) 46.32 ± 9.37

MLP(1,25,G) 65.03 ± 3.38
MLP(1,25,U) 65.59 ± 0.70
MLP(1,25,L) 65.74 ± 0.70
MLP(1,25,T) 65.43 ± 0.84
MLP(1,25,A) 65.14 ± 3.27

TABLE II
COST SAVINGS IN THE TEST SET (AVERAGE ± STANDARD DEVIATION, IN

%) FOR THE SECOND DATASET WITH BALANCED CLASSES AND 4000
EXAMPLES FOR TRAINING AND VALIDATION (IN A 2/3 - 1/3 PROPORTION).

AVERAGE RESULTS FOR 100 INDEPENDENT REALIZATIONS.

F. Experiments with the PAKDD dataset

This section shows the results obtained with the PAKDD
dataset, a real problem for credit scoring with imbalanced
classes. Table III presents the savings obtained with the
different methods. For the proposed method, the mini-batch
size is 1000 samples, with a constant ratio between the number
of samples of each class in each mini-batch (maintaining
the original dataset imbalance ratio). The MLP has a single
hidden layer with tanh activations, and 2, 4, 10, 25 or 50
neurons were validated. In this problem, the linear model
again performs better than LR and CSLR (and again, LR
works better with rejection sampling). The proposed method
with MLPs behaves slightly better than the best non-linear
benchmark method, which is the BMR using LR to estimate
the posterior probabilities. This fact along with the relatively
good performance of the linear classifiers (they provide results

SUBMITTED TO IEEE TRANS. ON CYBERNETICS (ACCEPTED VERSION), FEBRUARY 2019 8

close to the best ones, only 1% lower) suggest that the PAKDD
problem is not highly nonlinear.

With respect to the kernels, for the linear classifiers now
the best kernel is the absolute value kernel, very close to the
Gaussian kernel, but notably better than the linear kernel for
this problem. In the case of the MLPs, the best kernel is again
the linear kernel, although the sensitivity to the kernel choice
is relatively low.

Method Train Set Re-Sampling(OS) Re-Sampling(RS)
LR 0.13 ± 0.12 24.02 ± 1.19 25.72 ± 1.46

CSLR 12.58 ± 1.43 8.17 ± 3.20 6.48 ± 3.41
RF 2.38 ± 0.96 20.12 ± 1.09 24.65 ± 1.59

CSDT 27.34 ± 0.96 16.68 ± 3.14 13.65 ± 3.35
BMR(LR) 30.17 ± 1.29 29.99 ± 1.03 29.93 ± 1.13
BMR(RF) 11.55 ± 2.83 18.61 ± 0.63 28.08 ± 1.08

BMR(CSLR) 26.80 ± 1.04 26.74 ± 1.03 26.91 ± 1.00
BMR(CSDT) 27.35 ± 0.96 26.53 ± 1.28 27.05 ± 1.03

Lin(G) 29.05 ± 1.09
Lin(U) 28.94 ± 1.13
Lin(L) 26.75 ± 1.47
Lin(T) 28.79 ± 1.30
Lin(A) 29.10 ± 1.13

MLP(4,G) 29.29 ± 1.14
MLP(50,U) 29.80 ± 1.14
MLP(2,L) 30.23 ± 1.51

MLP(25,T) 29.21 ± 1.25
MLP(50,A) 29.47 ± 1.30

TABLE III
COST SAVINGS IN THE TEST SET (AVERAGE ± STANDARD DEVIATION, IN

%) FOR THE PAKDD DATASET. AVERAGE RESULTS FOR 100
INDEPENDENT REALIZATIONS.

The choice of the kernel has an interesting effect in the size
of the model, given by the number of neurons in the hidden
layer. Fig. 4 shows the evolution of the savings as a function of
the number of neurons in the hidden layer for the five kernels
under test. Different trends are seen for each kernel. In this
case, the linear kernel requires just 2 neurons to obtain the
best performance, and the performance degrades for a higher
size, which is a typical example of over-fitting. With the other
kernels, the sensitivity to over-fitting is reduced. In the more
extreme cases, with the uniform or the absolute value kernels,
performance increases up to the size of 50 neurons, the highest
under evaluation. The linear kernel enhances the influence of
the patterns whose output is far away from their target value,
and it reduces the influence of patterns with outputs close
to the target values. This effect makes this kernel sensitive to
outliers and to over-fitting to these outliers. Kernels enhancing
also the effect of samples with outputs close to the target
values can reduce the sensitivity to over-fitting.

We have also tested the benchmark and the proposed
methods with the other two data sets provided with the
Costcla package, the 2011 Kaggle competition “Give Me
Some Credit”8 and the “Bank Marketing” [44] datasets, as
well as with IBM’s “Telco Customer Churn”9 dataset, where
costs were defined to be proportional to the yearly bill of
the customer. In all these cases, the behavior was similar to

8https://www.kaggle.com/c/GiveMeSomeCredit
9Available at https://www.ibm.com/communities/analytics/watson-

analytics-blog/predictive-insights-in-the-telco-customer-churn-data-set/

0 5 10 15 20 25 30 35 40 45 50
28.6

28.8

29

29.2

29.4

29.6

29.8

30

30.2

30.4

N

S
a
v
({
ŷ
`
})

(%
)

Fig. 4. Evolution of average savings in the PAKDD dataset as a function of
the number of neurons in the hidden layer for each kernel function: Gaussian
(circle), Uniform (square), Linear (star), Triangle (triangle), Absolute value
(diamond).

the obtained in the PAKDD dataset10: the proposed cost using
linear classifiers was very close to the best result of benchmark
methods, which was
• BMR(CDST) for “Give Me Some Credit”.
• BMR(LR) with OS re-samplig for “Bank Marketing” and

“Telco Customer Churn”.
The linear kernel provided the best results for linear classifiers
in “Bank Marketing” and “Telco Customer Churn”, and the
uniform kernel for “Give Me Some Credit”. The proposed
cost function with a single hidden layer MLP obtained slightly
better results than those methods, with linear kernel providing
the best results in all datasets. As in PAKDD, these results
point to a relatively low non-linearity in all these three
problems.

G. Experiments with the HMEQ dataset

The final dataset under test was the HMEQ dataset. Table
IV presents the savings obtained with all methods. For the
proposed method, the mini-batch size is 1000 samples, with
a constant ratio between the number of samples of each class
in each mini-batch (maintaining the original dataset imbalance
ratio). MLPs with a single hidden layer and 2, 4, 10, 25, 50,
100 and 150 neurons were validated. In this dataset, unlike
in the previous ones, ReLU activations in the hidden layer
provided better results than tanh activations in the case of
a shallow network with a single hidden layer. As in all the
previous datasets, the linear model obtains better results than
LR and CSLR, with LR with rejection sampling being the
best linear benchmark method. In this problem the difference

10For this reason detailed results have not been included in the manuscript,
but they are available as supplementary material at http:ieeexplore.ieee.org.
Summary of results for Best Benchmark / Linear / MLP: 47.61 ± 1.42 /
47.51 ± 1.17 / 48.35 ± 1.08 for “Give Me Some Credit”; 49.48 ± 0.93 /
49.13±1.39 / 49.51±1.28 for “Bank Marketing”; 38.31±2.97 / 38.79±2.64
/ 38.40± 3.35 for “Telco Customer Churn”.

http:ieeexplore.ieee.org

SUBMITTED TO IEEE TRANS. ON CYBERNETICS (ACCEPTED VERSION), FEBRUARY 2019 9

between the linear classifier and the MLP with a single hidden
layer can be clearly perceived, which suggest that the solution
to this problem is clearly non-linear. The MLP provides better
results than all the non-linear benchmark methods except
BMR(RF), which provides the best results.

Method Train Set Re-Sampling(OS) Re-Sampling(RS)
LR 25.69 ± 9.45 48.12 ± 4.96 50.82 ± 4.69

CSLR 4.48 ± 5.36 -0.51 ± 1.79 -0.10 ± 0.44
RF 53.68 ± 5.19 56.80 ± 5.62 63.32 ± 4.04

CSDT 64.99 ± 3.06 1.78 ± 2.36 1.65 ± 1.89
BMR(LR) -0.51 ± 1.79 -0.51 ± 1.79 -0.15 ± 0.65
BMR(RF) 72.67 ± 3.89 52.06 ± 12.59 5.56 ± 9.56

BMR(CSLR) -0.51 ± 1.79 -0.51 ± 1.79 -0.09 ± 0.43
BMR(CSDT) -0.27 ± 1.94 1.78 ± 2.30 1.31 ± 1.98

Lin(G) 53.02 ± 3.96
Lin(U) 53.69 ± 3.88
Lin(L) 53.21 ± 3.95
Lin(T) 53.29 ± 3.90
Lin(A) 52.85 ± 4.08

MLP(1,50,G) 58.58 ± 5.50
MLP(1,150,U) 59.88 ± 5.94
MLP(1,150,L) 69.09 ± 3.75
MLP(1,50,T) 58.05 ± 5.65

MLP(1,100,A) 60.45 ± 5.49
TABLE IV

COST SAVINGS IN THE TEST SET (AVERAGE ± STANDARD DEVIATION, IN
%) FOR THE HMEQ DATASET. AVERAGE RESULTS FOR 100 INDEPENDENT

REALIZATIONS.

Given the nonlinearity of the problem, deep networks have
been considered, in particular, MLPs with several hidden
layers. It is interesting to see that the benchmark method
providing the best results in this dataset, and the only one
with a performance close to the proposed method, is BMR
with random forest providing the estimates of the a posteriori
probabilities for each class. Given that random forest is not
guaranteed to provide consistent estimates for these probabil-
ities, as seen in the previous experiments (BMR(RF) shows a
poor performance in the synthetic datasets and in the PAKDD
dataset), the good behavior of this method in the HMEQ
dataset lead us to think that ensembles can provide a good
performance in HMEQ. For this reason, we also evaluated
the performance of ensembles made of deep neural classifiers
trained with the proposed cost function. Two aggregation rules
have been evaluated: comparison of the addition of the outputs
of all neural classifiers with a threshold at zero, denoted as TA
(thresholded addition), and majority voting rule, based on the
majority of the decisions and denoted as MVR.

Table V shows the average savings obtained with ensembles
of 5 MLPs with from one to seven hidden layers, and 150
neurons with ReLU activations at each hidden layer, as well
as the average savings obtained with a single MLP. The linear
kernel is used in all individual classifiers. To avoid overfitting,
dropout [45] is used during training, with dropout probability
of 0.5 for MLPs with one11 and two hidden layers, and 0.75
for MLPs with more than two hidden layers.

Considering individual classifiers, i.e., using a single MLP,
the best performance for this dataset is provided by the

11When comparing the results of MLP(1,150,L) with the results of Table
IV, it is necessary to take into account that the results in this table were
obtained for MLPs trained without dropout.

Individual Ensemble (TA) Ensemble (MVR)
MLP(1,150,L) 72.59 ± 3.23 73.57 ± 3.35 73.42 ± 3.23
MLP(2,150,L) 72.66 ± 3.16 74.10 ± 3.11 73.63 ± 3.19
MLP(3,150,L) 73.19 ± 2.87 74.15 ± 2.67 73.97 ± 2.70
MLP(4,150,L) 73.49 ± 2.83 74.57 ± 2.94 74.32 ± 3.02
MLP(5,150,L) 73.16 ± 2.80 74.07 ± 3.01 73.93 ± 3.06
MLP(6,150,L) 73.21 ± 2.79 74.05 ± 2.68 73.87 ± 2.83
MLP(7,150,L) 73.20 ± 2.98 74.04 ± 3.05 73.91 ± 3.12

TABLE V
COST SAVINGS IN THE TEST SET (AVERAGE ± STANDARD DEVIATION, IN

%) FOR THE HEMQ DATASET USING DEEP NETWORKS. AVERAGE
RESULTS FOR 100 INDEPENDENT REALIZATIONS.

network with HL = 4 hidden layers, although with all sizes
the performance is now comparable with the best benchmark
method. The performance of the MLP with a single hidden
layer is remarkable: it notably increases when dropout is
used to avoid overfitting (as compared with results in Table
IV, where dropout was not used). As expected, the use of
ensembles of 5 MLPs slightly improves the performance for
all network sizes, with the TA rule having a slightly better
performance than MVR in all cases.

IV. CONCLUSIONS

A new method for example dependent cost-sensitive ma-
chine classification has been presented. The main contribu-
tion is a new surrogate cost function and the corresponding
training algorithm to optimize it. The cost is an estimate of
the Bayesian risk for example-dependent decision costs. The
proposed method has several advantages when compared with
current state of the art methods:
• In can be used with different architectures: from linear

models to machine learning architectures such as MLPs,
in both shallow or deep networks, and does not exclude
the use of ensembles, thus having clear possibilities of
getting good results.

• The Bayesian formulation of the problem allows to deal
with the example-dependent costs in both balanced and
imbalanced situations, because the a priori probabilities
of the classes as well as the example-dependent costs
are included in the proposed cost function. This feature
makes unnecessary to re-sample the available data set to
compensate imbalance or to obtain distributions that are
proportional to the costs.

• Costs for each pattern must be known in the training
phase but, unlike in most of the methods used for
EDC problems, they are not needed in the evaluation
phase because the network implicitly learns them during
training. This feature can be helpful in applications were
the costs are not directly available for unseen samples.

• The use of Parzen windows in the definition of the
surrogate cost function not only allows to construct easily
a sample-by-sample training algorithm, but it provides
also an additional flexibility with the choice of the
window, that can be fitted to the characteristics of the
problem (a discussion about the role of the window
with illustrative examples can be found in [27]). An
appropriate window can be selected by cross-validation,
as seen in the experiments, where the results showed a

SUBMITTED TO IEEE TRANS. ON CYBERNETICS (ACCEPTED VERSION), FEBRUARY 2019 10

higher sensitivity in linear models than in MLPs, where
the hidden layers introduce the flexibility of projecting the
input data into a different space, which can be implicitly
forced to match the characteristics of the selected kernel.

The proposed method has been evaluated in two synthetic
experiments, where the optimal Bayesian solution is known,
and in several publicly available real datasets. In all cases it
has shown a good performance when compared with several
benchmark methods. The proposed method with a linear model
obtained better results than linear regresion and cost sensitive
logistic regresion in all datasets, without using re-sampling
techniques. With MLPs, the proposed method obtained the
best results also in all datasets.

There is another remarkable aspect. It is well known that a
classification method can be very well fitted to solve a specific
problem but can also have poor performance in some other
problems. The proposed method showed a consistent good
performance in all datasets. However, the benchmark methods
exhibited a greater variability, working well in some problems,
but working very poorly in some cases. Considering only the
PAKDD and the HMEQ datasets to simplify the analysis, in
the PAKDD dataset BMR(LR), with the 3 training options,
is the only method that provides results of the same quality
than the proposed method (the next method, BMR(RF)+RS
provides only 28.08% and the next one is BMR(CSDT) with
27.35%). But all these methods have catastrophic results in
the HMEQ dataset. In the HMEQ dataset the best bench-
mark method is BMR(RF), but this method has very poor
results in PAKDD dataset. Therefore, in a general comparison,
the proposed method provides much better results than any
other benchmark method. A more detailed comparison can
be found in the supplementary materials that are available at
http:ieeexplore.ieee.org.

The proposed cost function has been presented here for bi-
nary problems, but it can be extended to multiclass problems in
several ways, from the simplest approach of combining binary
classifiers, to the direct definition of a Bayesian risk for a
multiclass problem using a multiple output neural architecture.

Currently, we are actively working in the application of the
proposed methodology to different deep network architectures
and to different example-dependent cost problems, both in
binary and multi-class situations.

ACKNOWLEDGMENT

This work has been partly supported by grants CASI-
CAM-CM (S2013/ICE-2845, Madrid C/ FEDER, EUSF) and
MacroADOBE (TEC2015-67719-P, MINECO/FEDER, UE).

REFERENCES

[1] C. M. Bishop, Pattern Recognition and Machine Learning. New York,
NY: Springer, 2006.

[2] N. Japkowicz, “The class imbalance problem: Significance and strate-
gies,” in Proc. of the 2000 Intl Conf. on Artificial Intelligence (ICAI),
Las Vegas, USA, 2000, pp. 111–117.

[3] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Trans.
on Knowledge and Data Engineering, vol. 21, no. 9, pp. 1263–1284,
Sep. 2009.

[4] S. H. Khan, M. Hayat, M. Bennamoun, and F. A. Sohel, “Cost-sensitive
learning of deep feature representations from imbalanced data,” IEEE
Trans. on Neural Networks and Learning Systems, vol. 29, no. 8, pp.
3573–3587, Aug. 2018.

[5] P. A. Gutierrez, M. Pérez-Ortiz, J. Sánchez-Monedero, F. Fernández-
Navarro, and C. Hervás-Martı́nez, “Ordinal regression methods: Survey
and experimental study,” IEEE Trans. on Knowledge and Data Engi-
neering, vol. 28, no. 1, pp. 127–146, Jan. 2016.

[6] S. Panigrahi, A. Kundu, S. Surai, and A. K. Majumdar, “Credit card
fraud detection: A fusion approach using Dempster-Shafer theory and
Bayesian learning,” Information Fusion, vol. 10, no. 4, pp. 354–363,
Oct. 2009.

[7] S. Bhattacharyya, S. Jha, K. Tharakunnel, and J. C. Westland, “Data
mining for credit card fraud: A comparative study,” Decision Support
Systems, vol. 50, no. 3, pp. 602–613, Feb. 2011.

[8] A. C. Bahnsen, A. Stojanovic, D. Aouada, and B. Ottersten, “Cost
sensitive credit card fraud detection using Bayes minimization risk,”
in Proc. of the 12th Intl. Conf. on Machine Learning and Applications.
IEEE Computer Society, 2013, pp. 333–338.

[9] ——, “Improving credit card fraud detection with calibrated probabil-
ities,” in Proc. of the 14th Intl Conf. on Data Mining. Philadelphia,
USA: SIAM, Apr. 2014, pp. 677–685.

[10] A. Dal Pozzolo, O. Caelen, Y. Le Borgne, S. Waterschoot, and G. Bon-
tempi, “Learned lessons in credit card detection from a practitioner
perspective,” Expert Systems with Applications, vol. 41, no. 10, pp.
4915–4928, Aug. 2014.

[11] T. Verbraken, C. Bravo, R. Webber, and B. Baesens, “Development
and application of consumer credit scoring models using profit-based
classification measures,” European Journal of Operational Research,
vol. 238, no. 2, pp. 505–513, Oct. 2014.

[12] A. C. Bahnsen, D. Aouada, and B. Ottersten, “Example-dependent cost-
sensitive logistic regression for credit scoring,” in Proc. of the 13th Intl.
Conf. Machine Learning and Applications. IEEE Computer Society,
2014, pp. 263–269.

[13] T. Verbraken, W. Verbeke, and B. Baesens, “A novel profit maximizing
metric for measuring performance of customer churn prediction models,”
IEEE Trans. on Knowledge and Data Engineering, vol. 25, no. 5, pp.
961–973, May 2013.

[14] A. C. Bahnsen, D. Aouada, and B. Ottersten, “A novel cost-sensitive
framework for customer churn predictive modeling,” Decision Analytics,
vol. 2, no. 5, pp. 1–15, 2015.

[15] B. Zadrozny, J. Langford, and N. Abe, “Cost-sensitive learning by cost-
proportionate example weighting,” in Proc. of the Third Intl. Conf. on
Data Mining, Dec. 2003, pp. 435–442.

[16] E. W. T. Ngai, L. Xiu, and D. C. K. Chau, “Application of data mining
techniques in customer relationship management: A literature review
and classification,” Expert System with Applications, vol. 36, no. 2, pp.
2592–2602, Mar. 2009.

[17] S. Moro, R. M. S. Laureano, and P. Cortez, “Using data mining for
bank direct marketing: An application of the CRISP-DM methodology,”
in Proc. of the European Simulation and Modeling Conf., Guimaraes
(Portugal), 2011, pp. 117–121.

[18] A. Lenarcik and Z. Piasta, “Rough classifiers sensitive to costs varying
from object to object,” in Proc. of the 1st Intl. Conf. on Rough Sets and
Current Trends in Computing (LNAI 1424). Warsaw, Poland: Springer,
Jun. 1998, pp. 222–230.

[19] C. Elkan, “The foundations of cost-sensitive learning,” in Proc. of the
17th Intl Joint Conf. on Artificial Intelligence, vol. 2, 2001, pp. 973–978.

[20] P. Branco, L. Torgo, and R. P. Ribeiro, “A survey of predictive modeling
on imbalanced domains,” ACM Computer Surveys, vol. 49, no. 2, pp.
31:1–31:50, Aug. 2016.

[21] K. M. Ting, “An instance-weighting method to induce cost-sensitive
trees,” IEEE Trans. on Knowledge and Data Engineering, vol. 14, no. 3,
pp. 659–665, 2002.

[22] F. Wysotzki and P. Geibel, “A new information measure based on
example-dependent misclassification cost and its application in decision
tree learning,” Advances in Artificial Intelligence, pp. 3:1–3:13, Aug.
2009.

[23] P. Geibel and F. Wysotzki, “Learning perceptrons and piecewise linear
classifiers sensitive to example dependent costs,” Applied Intelligence,
vol. 21, pp. 45–56, 2004.

[24] U. Brefeld, P. Geibel, and F. Wysotzki, “Support vector machines with
example dependent costs,” in Proc. of the European Conf. on Machine
Learning: ECML 2003 (LNCS 2837). Springer, 2003, pp. 23–34.

[25] P. González, E. Álvarez, J. Dı́ez, R. González-Quinteros, E. Nogueira,
A. López-Urrutia, and J. J. del Coz, “Multiclass support vector machines
with example dependent costs applied to plankton biomass estimation,”

http:ieeexplore.ieee.org

SUBMITTED TO IEEE TRANS. ON CYBERNETICS (ACCEPTED VERSION), FEBRUARY 2019 11

IEEE Trans. on Neural Networks and Learning Systems, vol. 24, no. 11,
pp. 1901–1905, Jul. 2013.

[26] A. C. Bahnsen, D. Aouada, and B. Ottersten, “Example-dependent cost-
sensitive decision trees,” Expert Systems with Applications, vol. 42,
no. 19, pp. 6609–6619, Nov. 2015.

[27] M. Lázaro, M. H. Hayes, and A. R. Figueiras-Vidal, “Training neural
network classifiers through Bayes risk minimization applying unidimen-
sional Parzen windows,” Pattern Recognition, vol. 77, pp. 204–215, May
2018.

[28] E. Parzen, “On the estimation of a probability density function and the
mode,” Annals of Mathematical Statistics, vol. 33, pp. 1065–76, 1962.

[29] P. Duda, L. Rutkowski, M. Jaworski, and D. Rutkowska, “On the Parzen
kernel-based probability density function learning procedures over time-
varying streaming data with applications to pattern classification,”
IEEE Trans. on Cybernetics, pp. 1–14, Nov. 2018, (Early Access at
http://ieeexplore.ieee.org).

[30] D. F. Specht, “Probabilistic neural networks,” Neural Networks, vol. 3,
pp. 109–118, 1990.

[31] G. A. Babich and O. I. Camps, “Weighted Parzen windows for pattern
classification,” IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, vol. 18, no. 5, pp. 567–570, May 1996.

[32] H. L. Van Trees, Detection, Estimation, and Modulation Theory: Part I.
New York: John Wiley and Sons, 1968.

[33] L. M. Bregman, “The relaxation method of finding the common point
of convex sets and its application to the solution of problems in convex
programming,” USSR Computational Mathematics and Mathematical
Physics, vol. 7, pp. 200–217, 1967.

[34] J. Cid-Sueiro, J. I. Arribas, S. Urbán-Muñoz, and A. R. Figueiras-
Vidal, “Cost functions to estimate a posteriori probabilities in multiclass
problems,” IEEE Trans. on Neural Networks, vol. 10, no. 3, pp. 645–
656, May 1999.

[35] J. Cid-Sueiro and A. R. Figueiras-Vidal, “On the structure of strict sense
Bayesian cost functions and its applications,” IEEE Trans. on Neural
Networks, vol. 12, no. 3, pp. 445–455, May 2001.

[36] D.-Y. Yeung and C. Chow, “Parzen-window network intrusion detec-
tion,” in Proc. of the Intl Conf. on Pattern Recognition, vol. 4, no. 4,
2002.

[37] T. Zhang, “Statistical behavior and consistency of classification methods
based on convex risk minimization,” Annals of Statistics, vol. 32, no. 1,
pp. 56–85, Feb. 2004.

[38] J. Zhang, T. Liu, and D. Tao, “On the rates of convergence from
surrogate risk minimizers to the Bayes optimal classifier,” arXiv preprint,
arXiv:1802:03688, 2018.

[39] D. F. Specht, “A general regression neural network,” IEEE Trans. on
Neural Networks, vol. 2, no. 6, pp. 568–576, Nov. 1991.

[40] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv:1412.6980 [cs.LG], Dec. 2014.

[41] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[42] A. C. Bahnsen, “Cost Sensitive Classification (costcla) Python
module for cost-sensitive machine learning (classification),”
https://pypi.org/project/costcla/, Jan. 1996, version 0.5.

[43] B. Baesens, D. Roesch, and H. Scheule, Credit Risk Analytics: Mea-
surement Techniques, Applications, and Examples in SAS. John Wiley
& Sons, 2016.

[44] S. Moro, P. Cortez, and P. Rita, “A data-driven approach to predict the
success of bank telemarketing,” Decision Support Systems, vol. 62, pp.
22–31, Jun. 2014.

[45] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from overfit-
ting,” Journal of Machine Learning Research, vol. 15, pp. 1929–1958,
Jun. 2014.

Marcelino Lázaro was born in Carriazo, Cantabria,
Spain, in 1972. He received the Ingeniero de Tele-
comunicación and Doctor Ingeniero de Telecomuni-
cación degrees from the Universidad de Cantabria,
Spain, in 1996 and 2001, respectively.

From 1996 to 2002, he was with the Departamento
de Ingenierı́a de Comunicaciones, Universidad de
Cantabria. In 2003, he joined the Departamento de
Teorı́a de la Señal y Comunicaciones, Universidad
Carlos III de Madrid, Spain. His research interest
includes digital signal processing, detection, estima-

tion, and statistical learning methods.

Anı́bal R. Figueiras-Vidal (M’76, SM’84, F’12,
LF’15) received the Telecommunication Engineer
(Hons.) degree from Universidad Politécnica de
Madrid, Madrid, Spain, in 1973, and the Doctor
(Hons.) degree from Universidad Politécnica de
Barcelona, Barcelona, Spain, in 1976. He also re-
ceived Honoris Causa Doctor degrees from Univer-
sidad de Vigo, Vigo, Spain, in 1999, and Universidad
San Pablo, Arequipa, Peru, in 2011.

He is a Professor of signal theory and commu-
nications with Universidad Carlos III de Madrid,

Leganés (Madrid), Spain. He has authored or co-authored more than 300
journal and conference papers, and he has been the principal researcher in
almost 100 research projects and contracts. His current research interests are
digital signal processing and machine learning, including their applications.

Dr. Figueiras-Vidal has been Chair of IEEE Spain Section and IEEE Spain
Joint Chapter on Signal Processing and Communications. Dr. Figueiras-Vidal
is a member of the Royal Academy of Engineering of Spain. He was its
President from 2007 to 2011. He is also Corresponding Member of the Mexico
Academy of Engineering.

	Introduction
	Bayesian neural network for example-dependent cost learning
	General Bayesian formulation
	Machine learning in the Bayesian framework
	Proposed surrogate cost function
	Training algorithm and computational load

	Experiments
	Benchmark methods
	Proposed method
	Figure of merit
	Datasets
	Experiments with the synthetic datasets
	Experiments with the PAKDD dataset
	Experiments with the HMEQ dataset

	Conclusions
	References
	Biographies
	Marcelino Lázaro
	Aníbal R. Figueiras-Vidal

