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Abstract—Recently, microexpression recognition has attracted
a lot of researchers’ attention due to its challenges and valu-
able applications. However, it is noticed that currently most of
the existing proposed methods are often evaluated and tested
on the single database and, hence, this brings us a question
whether these methods are still effective if the training and
testing samples belong to different domains, for example, dif-
ferent microexpression databases. In this case, a large feature
distribution difference may exist between training (source) and
testing (target) samples and, hence, microexpression recognition
tasks would become more difficult. To solve this challenging
problem, that is, cross-domain microexpression recognition, in
this paper, we propose an effective method consisting of an aux-
iliary set selection model (ASSM) and a transductive transfer
regression model (TTRM). In our method, an ASSM is designed
to automatically select an optimal set of samples from the target
domain to serve as the auxiliary set, which is used for subse-
quent TTRM training. As for TTRM, it aims at bridging the
feature distribution gap between the source and target domains
by learning a joint regression model with the source domain
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samples and the auxiliary set selected from the target domain.
We evaluate the proposed TTRM plus ASSM by extensive cross-
domain microexpression recognition experiments on SMIC and
CASME II databases. Compared with the recent state-of-the-
art domain adaptation methods, our proposed method has a
more satisfactory performance in dealing with the cross-domain
microexpression recognition tasks.

Index Terms—Cross-domain microexpression recognition,
domain adaptation (DA), microexpression recognition, transduc-
tive transfer regression, transfer learning.

I. INTRODUCTION

M ICROEXPRESSION recognition aims at accurately
detecting the human beings’ inner true emotional states

which they try to conceal from the facial video clips [1]. It
has been one of the most attractive research issues among
affective computing, human behavior analysis, and pattern-
recognition fields since it has many valuable practical appli-
cations, such as clinical diagnosis [2], interrogation [3], and
security [4]. Compared with the ordinary dynamic facial
expressions [5], microexpressions have two important charac-
teristics, that is, lower intensity and shorter duration, which
makes microexpression recognition become a very difficult
and challenging task. Nevertheless, in recent years, many
researchers have been devoted to investigate microexpres-
sion recognition and proposed lots of effective methods. In
the work of [1], Pfister et al. first proposed using a local
binary pattern from three orthogonal planes (LBP-TOPs) [6] to
describe microexpressions and demonstrated its effectiveness
in microexpression recognition tasks. Subsequently, various
techniques are applied to enhance the performance of the
LBP-TOP descriptor such that it can be more suitable for
microexpression recognition. For example, reparameterization
of the second-order Gaussian jet was used to improve LBP-
TOP for describing microexpressions in the work of [7]
and the proposed method achieved a more promising result
than that of [1]. Wang et al. [8] proposed employing robust
principal component analysis (RPCA) [9] to extract the back-
ground information from the image sequences of microex-
pression samples and then use the LBP-TOP extracted from
the background information to describe the microexpres-
sions. Recently, another novel descriptor called spatiotemporal
local binary pattern with integration projection (STLBP-IP)
was developed by Huang et al. [10] to describe microex-
pressions. More recently, some other new spatiotemporal
descriptors, for example, TOP versions of completed local
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quantized patterns (CLQP-TOP) [11], histogram of oriented
gradients (HOGs-TOP) [12], and histogram of image gradi-
ent orientation (HIGO-TOP) [12], have been proposed for
microexpression analysis. In addition to the LBP-TOP method-
ology, there are still other types of descriptors designed for
microexpression recognition. The mean directional mean opti-
cal (MDMO) [13] and facial dynamics map (FDM) [14] are
two representative-leading microexpression features among
them.

Although the research of microexpression recognition has
lasted for several years, it is noticed that nearly all of them
focus on the scenario where the training and testing samples
are from the same microexpression database. Usually, in this
case, the training and testing samples can be thought to share
the same feature distributions [15], [16]. In practice, however,
such a condition may be broken because microexpression sam-
ples used for the training and testing stage would be quite
different. For instance, they may be recorded by different
equipment, under different environments, or the subjects of the
training and testing microexpression samples belong to differ-
ent ethnics. Consequently, it is necessary to consider whether
the aforementioned microexpression recognition methods are
still workable if the testing samples are different from the
training samples. This thus leads to a more challenging
microexpression recognition problem, namely, cross-domain
microexpression recognition. For a convenient description in
what follows, we will refer to the training samples as the
source domain (samples) and the testing samples as the target
domain (samples), respectively.

As a typical domain adaptation (DA) problem, the cross-
domain microexpression recognition can be roughly divided
into two cases according to the number of the provided
labeled samples from the target domain, that is, the semisu-
pervised case and unsupervised case [17]. Table I illustrates
the detailed label information provided in these two cases.
From this table, it is clear to see that the unsupervised case
is more difficult and challenging than the semisupervised one
because the label information of the target domain is entirely
unknown. In this paper, we will focus on the unsupervised
cross-domain microexpression recognition problem and pro-
pose a novel method whose basic idea is illustrated in Fig. 1.
As Fig. 1 shows, the proposed method consists of two major
steps, where each step corresponds to one model. In the first
step, we develop an auxiliary set selection model (ASSM) to
select an optimal subset from the unlabeled target domain to
serve as the auxiliary set. In the second step, the selected aux-
iliary set is used together with the labeled source samples to
jointly train a transductive transfer regression model (TTRM).
By resorting to TTRM, we are able to narrow the feature dis-
tribution gap between the source and target domains existing
in the original feature space.

It is worth mentioning that this paper is actually a follow-up
to our previous work of [18], in which we proposed a trans-
ductive transfer subspace learning (TTSL) model to deal with
the unsupervised cross-domain facial expression recognition
problem. However, TTSL still has several limitations. First,
TTSL and its relaxed version called transductive transfer reg-
ularized least squares regression (TTRLSR) proposed in [18]

Fig. 1. Basic idea of the proposed method consisting of ASSM and TTRM
for unsupervised cross-domain microexpression recognition.

TABLE I
CATEGORIZATION OF CROSS-DOMAIN MICRO-EXPRESSION

RECOGNITION PROBLEM

only consider the contributions of the facial local regions to
distinguish different expressions with a binary manner, while
their contributions are quite different in recognizing expres-
sions. Second, TTSL needs to select an auxiliary set from the
target domain in advance. So far, it is still an open question
for TTSL to seek the elements and the optimal size of the
auxiliary set from the target domain, which is very important
to TTSL and needs to be solved urgently.

By taking the above limitations of TTSL into consideration,
we generate the idea of ASSM and TTRM. Compared with
TTRLSR, the proposed TTRM is not only one more relaxed
and solvable version of TTSL but it also considers the specific
contributions of different facial local regions to distinguish
microexpressions. As for ASSM, it targets conquering the sec-
ond point of the above limitations of TTSL work. Overall,
different from our previous work of TTSL [18], this paper has
the following three new contributions.

1) We propose a new relaxed and solvable version of
TTSL called TTRM. In contrast to the TTRLSR method,
TTRM is able to quantify the contributions of facial local
regions in distinguishing different microexpressions
whereas TTSL can only roughly determine whether each
facial block is needed.

2) We propose a simple yet effective method called ASSM
to solve the problem of choosing the optimal auxiliary
set from the unlabeled data samples of the target domain,
which is an important yet unsolved problem in the TTSL
method.



3) We generalize the TTRM method from the feature space
to a nonlinear reproduced kernel Hilbert space (RKHS)
such that the TTRM model in RKHS can better fit the
auxiliary data samples selected by ASSM and then we
can also simplify the TTRM model.

The remainder of this paper is organized as follows.
Section II briefly reviews the related works to unsupervised
cross-domain microexpression recognition. Then, some pre-
liminary works and backgrounds associated with the proposed
method for unsupervised cross-domain microexpression recog-
nition are introduced in Section III. Section IV describes our
proposed TTRM plus ASSM (TTRM + ASSM)-based unsu-
pervised cross-domain microexpression recognition method
in detail. In Section V, extensive unsupervised cross-domain
microexpression recognition experiments are conducted to
evaluate our proposed method. Finally, this paper is concluded
in Section VI.

II. RELATED WORKS

In this section, we first briefly introduce the existing work
of unsupervised cross-domain microexpression recognition.
Then, we also review the recent progress of other modal-
ity (including speech emotion and facial expression)-based
unsupervised cross-domain emotion recognition and DA in
other applications, which is closely related to unsupervised
cross-domain microexpression recognition.

A. Unsupervised Cross-Domain Micro-Expression
Recognition

Recently, the problem of cross-domain microexpression
recognition has gradually drawn the researchers’ attentions. In
the work of [17], Zong et al. first investigated unsupervised
cross-database microexpression recognition by proposing a tar-
get sample regenerator (TSRG) method. This method targets at
learning a sample regenerator to regenerate the source and tar-
get microexpression samples such that the regenerated source
and target samples would have the same or similar feature dis-
tributions. Then, we are able to train a classifier based on the
labeled source microexpression samples and use it to predict
the microexpression categories of the unlabeled regenerated
target samples.

B. Other Modality-Based Unsupervised Cross-Domain
Emotion Recognition

As for unsupervised cross-domain speech emotion recogni-
tion, the first research may be traced to the work of [19], in
which Schuller et al. investigated cross-corpus speech emotion
recognition problem by using various normalization schemes
to normalize the speech features. Since then, many researchers
have focused on this interesting problem and proposed lots of
effective methods. For instance, Deng et al. [20]–[22] designed
a sequence of autoencoder-based unsupervised domain adap-
tion methods, which learns a common representation of the
speech features from source and target domains to bridge
the two domains, for handling cross-corpus speech emo-
tion recognition tasks. In the work of [23], Hassan et al.
proposed an importance-weighted support vector machine

(IW-SVM) to deal with cross-corpus speech emotion recog-
nition problem. The importance weights of IW-SVM are
learned by three typical DA methods, that is, kernel mean
matching (KMM) [24], Kullback–Leibler importance estima-
tion procedure (KLIEP) [25], and unconstrained least-squares
importance fitting (uLSIF) [26].

For facial expression modality, lots of interesting works
about unsupervised cross-domain facial expression recogni-
tion have also emerged in the recent years. For example,
Chu et al. [27], [28] proposed a novel method called selec-
tive transfer machine (STM) to cope with the personalized
facial action units detection problem. The key novelty of this
paper is that STM can learn a set of weights for the corre-
sponding source samples by utilizing the testing samples such
that the classifier could also be suitable for target samples.
In the work of [29], Sangineto et al. investigated the unsu-
pervised cross-domain facial expression recognition problem
and proposed a novel classifier parameter transfer model that
directly transfers the knowledge about the parameters of source
domain classifier to the classifier for target domain. Recently,
Yan et al. [30] proposed an unsupervised domain-adaptive
dictionary learning (UDADL) model to cope with the unsu-
pervised cross-database facial expression recognition problem.
UDADL aims at learning a common dictionary for source
and target facial expressions such that the new representations
with respect to the learned common dictionary share the same
feature distributions.

C. Domain Adaptation in Other Applications

Cross-domain emotion recognition, including microexpres-
sion recognition, is just a typical application field of DA
methods. In fact, DA methods have great values in lots of
applications in computer vision and multimedia analysis. For
instance, the widely used baseline unsupervised DA method,
geodesic flow kernel (GFK) [31], was originally proposed to
solve cross-domain object image recognition. GFK aims to
bridge two different domains and narrow their gaps with a
well-designed GFK on a Grassmann manifold. Another exam-
ple may be the action recognition field. For action recognition
tasks, DA can provide a new and different solving angle. In
the work of [32], Zhang et al. proposed a novel DA method
called semisupervised image-to-video adaptation (IVA) to deal
with the video action recognition problem and achieved satis-
factory performance. IVA adapts the knowledge from images
such that the action recognition in videos can be enhanced.
DA can also be used to solve the image attribute prediction
tasks, which is an interesting and meaningful vision problem.
For example, Han et al. [33] proposed a DA framework called
image attribute adaptation (IAA), which aims to automatically
adapt the knowledge of attributes from well-defined auxiliary
images to target images. Thus, IAA can assist in predicting
appropriate attributes for target images.

III. PRELIMINARY

In this section, we introduce some preliminary knowl-
edge that is needed and contribute to the derivation and



Fig. 2. Multiscale spatial division method for microexpression feature
extraction.

understanding of the proposed TTRM + ASSM-based unsu-
pervised cross-domain microexpression recognition method.

A. Micro-Expression Feature Extraction

In the research of facial expression and microexpression
analysis, it is an important step to extract the spatiotemporal
descriptors from video clips to describe facial expression and
microexpression samples. During this step, a spatial grid, for
example, 8 × 8, is often used to divide the facial video clip
into a few facial local regions in advance. Instead of directly
using the grid with fixed size, Zhao and Pietikäinen [34]
proposed employing a multiscale-division method consisting
of multiple grids with different sizes to divide the facial
expression video clips. Their work suggested that such com-
bination of multiscale facial local regions provides more ben-
eficial information to distinguish dynamic facial expressions.
Similarly, this multiscale-division method also contributes to
the descriptors, such as local binary pattern (LBP) [35],
in describing the static image facial expression recogni-
tion [36]–[38]. Motivated by these works, in this paper, we
employ this spatial-division scheme for microexpression fea-
ture extraction and choose four types of grids, that is, 1 × 1,
2 × 2, 4 × 4, and 8 × 8, for the scheme. An illustration of
our feature extraction method used in this paper is shown
in Fig. 2. Concretely, given a microexpression video clip
V , we first divide it into M = 85 facial local regions as
shown in the example. Then, a specific spatiotemporal descrip-
tor xi(i = 1, . . . , M), for example, LBP-TOP, is extracted
from each facial local region, where xi is a column vec-
tor. Finally, these spatiotemporal descriptors are concatenated,
in turn, to compose a feature vector, which is denoted by
xV = [xT

1 , . . . , xT
M]T , to describe this microexpression sample.

B. Transductive Transfer Subspace Learning [18]

The TTSL model is originally proposed to deal with
the unsupervised cross-domain facial expression recognition
problem. In this paper, we will introduce TTSL by apply-
ing it to solve the unsupervised cross-domain microexpression
recognition problem such that TTSL can be better under-
stood from the viewpoint of our topic. Suppose we have
Ns source microexpression samples and Ntau auxiliary sam-
ples selected from the target microexpression database. Their

corresponding feature matrices, which are extracted accord-
ing to the proposed multiscale feature extraction scheme, are
denoted by Xs = [XsT

1 , . . . , XsT

M ]T ∈ R
Md×Ns and Xtau =

[Xtau
T

1 , . . . , Xtau
T

M ]T ∈ R
Md×Ntau , where each column of the

source and target feature matrices is the feature vector like
xV shown in Section III-A, M is the number of the divided
facial local regions and d is the dimension of the feature vec-
tor extracted from each facial local region, respectively. Let
Ys and Ytau be their corresponding label matrices and each
column of them contains its corresponding microexpression
sample’s label information where all of its elements are binary
and only the cth element is 1 if it belongs to the cth microex-
pression category. Then, we are able to formulate the TTSL
model as the following optimization problem:

min
Ytau ,A,Bi,ωi,Ws,Wt

f TTSL
1 + λ1f TTSL

2 + λ2f TTSL
3

s.t. ltau
j � 0, 1Tytau

j = 1, ωi ∈ {0, 1} (1)

where ytau
j is the jth column of the label matrix Ytau of the

auxiliary samples. It is clear that the objective function of our
TTSL model consists of three key terms, that is: 1) the loss
function term f TTSL

1 ; 2) the group sparse term f TTSL
2 ; and 3) the

difference elimination term f TTSL
3 . Next, we introduce them in

detail.
1) Loss Function Term f TTSL

1 : The loss function term f TTSL
1

aims at building the relationship between both source and aux-
iliary features and their corresponding microexpression label
information and is defined as

f TTSL
1

(
Ytau , A, Bi, ωi

)

=
∥∥∥∥∥
[
Ys, Ytau

] − A
M∑

i=1

ωiBT
i

[
Xs

i , Xtau
i

]
∥∥∥∥∥

2

F

.

Note that A and Bi can be interpreted as the projection matrix
which bridges the feature space and the label space and Bi is
the ith matrix block of B = [BT

1 , . . . , BT
M]T . ωi is a binary-

weighted parameter and is designed to select the important
facial local regions which have contributions to distinguish
different microexpressions.

2) Group Sparse Term f TTSL
2 : As mentioned before, the

target of introducing ωi is to determine whether its corre-
sponding facial block is needed for TTSL. To achieve this
goal, the TTSL model adopts the L1-norm with respect to
ω = [ω1, . . . , ωM]T to serve as the regularization term as
follows:

f TTSL
2 (ωi) =

M∑

i=1

ωi.

3) Difference Elimination Term f TTSL
3 : f TTSL

3 is a regular-
ization term with respect to B and is designed to narrow the
feature distribution gap between the source and target domains
in the row space of B. In the TTSL model, we employ the
common subspace approach [39] as the f TTSL

3 that has the
following formulation:

f TTSL
3

(
B, Ws, Wt)

= ∥∥BTXs − BTXtau Wt
∥∥2

F

+ ∥∥BTXsWs − BTXtau
∥∥2

F + λ3
(∥∥Ws

∥∥
1 + ∥∥Wt

∥∥
1

)



where Ws and Wt are the linear combination coefficient matri-
ces. The optimal projection matrix B should be the one which
minimizes this term.

The optimization problem of the TTSL model does not have
an effective solving method due to the strict binary constraint
with respect to the weighted parameter ωi. Therefore, in the
work of [18], we relax the original TTSL to a solvable version
called the TTRLSR model by introducing a new variable B̃i

by satisfying B̃i = ωiBi. Thus, the optimization problem of
TTSL in (1) would become solvable, which has the following
formulation:

min
Ytau ,A,B̃i,Ws,Wt

f TTRLSR
1 + λ1f TTRLSR

2 + λ2f TTRLSR
3

s.t. ytau
j � 0, 1Tytau

j = 1 (2)

where

f TTRLSR
1

(
Ytau , A, B̃i

)
=

∥∥∥
∥∥
[
Ys, Ytau

] − A
M∑

i=1

B̃T
i

[
Xs

i , Xtau
i

]
∥∥∥
∥∥

2

F

f TTRLSR
2

(
B̃i

)
=

M∑

i=1

∥∥
∥B̃i

∥∥
∥

F

and

f TTRLSR
3

(
B̃, Ws, Wt

)

=
∥∥∥B̃TXs − B̃TXtau Wt

∥∥∥
2

F

+
∥∥∥B̃TXsWs − B̃TXtau

∥∥∥
2

F
+ λ3

(∥∥Ws
∥∥

1 + ∥∥Wt
∥∥

1

)
.

The TTSL model in (2) can be effectively solved by
the alternating direction method (ADM). Among the solv-
ing procedures, the step of optimizing B̃i is the key one,
which can be updated by lots of widely used algorithms,
such as iterative thresholding (IT) [9], accelerated proximal
gradient (APG) [40], exact augmented Lagrange multiplier
(EALM) [41], and inexact ALM (IALM) [41]. The detailed
procedures for optimizing TTSL can be referred to [18].

IV. TTRM PLUS ASSM FOR UNSUPERVISED

CROSS-DOMAIN MICROEXPRESSION RECOGNITION

In this section, we introduce the proposed ASSM and
TTRM in detail and then show how to use them to deal with
unsupervised cross-domain microexpression recognition tasks.

A. From TTSL to TTRM

To make the original TTSL be solvable, we relax it by the
following three operations: 1) let A be an identity matrix; 2) let
B = C; and 3) let ωi be a non-negative rational number. Then,
we are able to get the loss function term f TTRM

1 and the group
sparse term f TTRM

2 of TTRM formulated as follows:

f TTRM
1

(
Ytau , Ci, ωi

) =
∥∥∥∥
∥
[
Ys, Ytau

] −
M∑

i=1

ωiCT
i

[
Xs

i , Xtau
i

]
∥∥∥∥
∥

2

F

where ytau
j � 0, 1Tytau

j = 1, ωi ≥ 0 (3)

and

f TTRM
2 (ωi) =

M∑

i=1

ωi, where ωi ≥ 0. (4)

Note that ωi with the value of 0 disables its corresponding
projection matrix Ci in the projection procedures, which is
actually similar to the group sparse matrix Bi learned by
TTRLSR in (2). Furthermore, it is worth mentioning that
replacing the binary constraint of ωi with a non-negative one
makes TTRM become more reasonable because a different
facial local region usually has different contributions to dis-
tinguish microexpressions [42], and weighted parameters of
TTRM can measure such contributions. In contrast, the learned
group sparse projection matrix B of TTRLSR can only deter-
mine whether each feature group of its associated facial local
region needs to be selected.

In addition, in our previous work of [43], we proposed
to eliminating the distribution mismatch between the features
from source and target domains by minimizing their mean
vector difference and covariance matrix difference. Following
this work, in this paper, we consider simply employing the
distance of the projected mean vectors of the two datasets in
the projected feature space to determine the optimal projec-
tion matrix. Under this consideration, the optimal projection
matrix C and weighted parameter ωi for the difference elimi-
nation term f TTRM

3 of TTRM should be the ones that minimize
the following objective function:

f TTRM
3 (Ci, ωi) =

∥∥∥
∥∥

1

Ns

M∑

i=1

ωiCT
i Xs

i 1s − 1

Ntau

M∑

i=1

ωiCT
i Xt

i1tau

∥∥∥
∥∥

2

(5)

where 1s and 1tau are the vectors whose elements are all 1 and
the lengths are Ns and Ntau , respectively.

Finally, by combining the above three components, that
is, (3)–(5) together, we are able to obtain the optimization
problem of TTRM as follows:

min
Ytau ,A,Bi,ωi

f TTRM
1 + λ1f TTRM

2 + λ2f TTRM
3

s.t. ωi ≥ 0, ytau
j � 0, 1Tytau

j = 1. (6)

B. Selecting the Satisfactory Auxiliary Set for TTRM Using
ASSM

Similar to TTRLSR and TTSL, it is still an important
problem for TTRM to select an optimal auxiliary set from the
target domain. In this paper, we propose a simple yet effective
method called ASSM based on the maximum mean discrep-
ancy (MMD) [44] to select an optimal auxiliary set. MMD is
proposed by Borgwardt et al. to compare distributions between
two datasets in the reproducing kernel Hilbert space (RKHS),
which is defined as

MMD(U, V) =
∥∥∥
∥∥

1

n1

n1∑

k=1

�(uk) − 1

n2

n2∑

k=1

�(vk)

∥∥∥
∥∥
H

(7)



where U = {u1, . . . , un1} and V = {v1, . . . , vn2} are two
different datasets. It had been proved that given a kernel map-
ping operator �, U and V will have the same or similar
distributions, if their MMD is minimized in such an RKHS.

Motivated by the work of MMD, we design two crite-
ria to seek an optimal auxiliary set from the target domain.
Specifically, such an ideal auxiliary set should satisfy the fol-
lowing two conditions, that is, given an RKHS, both: 1) MMD
between the optimal selected auxiliary set and the source
domain and 2) MMD between the optimal selected auxiliary
set and the target domain should be minimized. In this case,
the selected auxiliary set would not only describe the feature
distribution of the target domain but also have the same or
similar distribution to the source domain in the given RKHS.
Following this idea, we endow a selection parameter αk to
each sample in the target domain whose value is either 1 or 0
to determine whether its corresponding sample can be served
as an element of the optimal selected auxiliary set. Then, we
can easily arrive at the proposed ASSM model which has the
following formulation:

min
αi

∥
∥∥∥∥

1
∑Nt

k=1 αk

Nt∑

k=1

αi�
(

xVt
k

)
− 1

Nt

Nt∑

k=1

�
(

xVt
k

)
∥
∥∥∥∥

2

H

+
∥∥∥∥∥

1
∑Nt

k=1 αk

Nt∑

k=1

αi�
(

xVt
k

)
− 1

Ns

Ns∑

i=1

�
(

xVs
i

)
∥∥∥∥∥

2

H
s.t. αi ∈ {0, 1} (8)

where � is a kernel mapping operator; xVs
i and xVt

i are the ith
columns of the source microexpression feature matrix Xs and
target microexpression feature matrix Xt ∈ R

Md×Nt , respec-
tively; and Nt is the number of the target microexpression
samples.

Once the optimal selection parameter αi of ASSM is
obtained, the auxiliary set can be determined by choosing the
samples corresponding to αi with the value of 1 as its ele-
ments. Unfortunately, there is no closed-form solution for the
optimization problem of ASSM in (8). Motivated by the work
in [45] and [46], we introduce a new variable βi which is equal
to αi(

∑Nt
i=1 αi)

−1 for ASSM. Then, by substituting βi into (8),
the optimization problem of ASSM can be rewritten as

min
β

βTK̃ttβ − 1

Nt
βTK̃tt1t − 1

Ns
βTK̃ts1s

s.t. 0 ≤ βi ≤ 1, 1Tβ = 1 (9)

where K̃tt = �(Xt)T�(Xt), K̃ts = �(Xt)T�(Xs), and 1s and
1t are the vectors of all ones with the lengths of Ns and Nt,
respectively. Note that β is theoretically sparse because αi

with value of 0 causes its corresponding βi to be 0. Since the
sparseness of β can be controlled by minimizing the L1-norm
with respect to β (‖β‖1 = 1Tβ), we relax ASSM in (9) by
imposing 1Tβ on its objective function and then arrive at the
following optimization problem:

min
β

βTK̃ttβ + βT

(

λ1t − K̃tt1t

Nt
− K̃ts1s

Ns

)

s.t. 0 ≤ βi ≤ 1. (10)

The optimization problem of the proposed ASSM can be
thus converted to a standard quadratic programming (QP)
one, and can be conveniently solved by lots of algorithms,
such as the interior point method. Suppose we achieved the
optimal βi, then we are able to recover the binary solution
for αi, according to the comparison between the value of βi

and a preset threshold. Finally, the samples from the target
domain corresponding to nonzero αi compose the expected
auxiliary set.

C. Refining TTRM for Fitting ASSM

By using the proposed ASSM, we are able to select the
optimal auxiliary set from the target domain. However, it
should be noted that the selected auxiliary samples only meet
the requirements in the RKHS induced by the kernel oper-
ation �. In other words, in the original feature space, these
auxiliary samples may not have the expectative distribution.
Thus, TTRM learned in the original feature space based on
this auxiliary set is possibly unsatisfactory. To conquer this
defect, it is a good way to perform ASSM and TTRM in the
same RKHS such that TTRM fits the auxiliary set selected by
ASSM well. Following this idea, we build the TTRM in the
RKHS which is induced for performing ASSM by the kernel
mapping operator � and use the refined TTRM for the unsu-
pervised cross-domain microexpression recognition instead of
the original one. More specifically, let us first define a new
kernel mapping operator φ that has the following relationship
with � as follows:

�(X) = [
φ(X1)

T , . . . , φ(XM)T]T
(11)

where X = [XT
1 , . . . , XT

M]T ∈ R
Md×N .

Subsequently, we can obtain the refined TTRM by rewriting
three key components of TTRM in the RKHS as follows:

min
Ytau ,φ(Ci),ωi

f TTRM
1 + λ1f TTRM

2 + λ2f TTRM
3

s.t. ωi ≥ 0, ytau
j � 0, 1Tytau

j = 1 (12)

where f TTRM
1 , f TTRM

2 , and f TTRM
3 are expressed as follows:

f TTRM
1

(
Ltau , φ(Ci), ωi

)

=
∥
∥∥∥∥
[
Ys, Ytau

] −
M∑

i=1

ωiφ(Ci)
T[

φ
(
Xs

i

)
, φ

(
Xtau

i

)]
∥
∥∥∥∥

2

F

s.t. ytau
j � 0, 1Tytau

j = 1

f TTRM
2 (ωi) =

M∑

i=1

ωi, s.t. ωi ≥ 0

and

f TTRM
3 (φ(Ci), ωi) =

∥∥
∥∥∥

1

Ns

M∑

i=1

ωiφ(Ci)
Tφ

(
Xs

i

)
1s

− 1

Ntau

M∑

i=1

ωiφ(Ci)
Tφ

(
Xtau

i

)
1tau

∥∥∥∥
∥

2

.

It is notable that the major goal of ASSM is to alleviate
the data distribution differences between the source dataset



and the auxiliary dataset, which is actually the major tar-
get of minimizing the term of f TTRM

3 . Considering that the
minimization operation of ASSM is performed before the
TTRM optimization, it is reasonable to remove the term of
f TTRM
3 from (12) in order to reduce the model complexity

of TTRM, which results in the following simplified TTRM
model:

min
Ytau ,φ(Ci),ωi

f TTRM
1 + λ1f TTRM

2

s.t. ωi ≥ 0, ytau
j � 0, 1Tytau

j = 1. (13)

According to the reproduced kernel theory, in the RKHS
induced by φ, the projection matrix φ(Ci) can be reconstructed
by φ(Xs

i ) and φ(Xtau
i ), that is, φ(Ci) = [φ(Xs

i ), φ(Xtau
i )],

where P = [p1, . . . , pc] ∈ R
(Ns+Ntau )×c is a representation

matrix. In addition, for a better reconstruction for φ(Ci),
we also impose an L1-norm with respect to P, that is,
‖P‖1 = ∑c

i=1 ‖pj‖1 to serve as the regularization term on
the objective function of TTRM. Thus, we are able to reach
the final version of TTRM, which is formulated as follows:

min
Ytau ,ωi,P

∥∥∥∥∥
[
Ys, Ytau

] − PT
M∑

i=1

ωiKi

∥∥∥∥∥

2

F

+ λ1

M∑

i=1

ωi + λ2‖P‖1

s.t. ωi ≥ 0, ytau
j � 0, 1Tytau

j = 1 (14)

where Ki =
[

Kss
i Kst

i
Kts

i Ktt
i

]
, Kss

i = φ(Xs
i )

Tφ(Xs
i ),

Kst
i = φ(Xs

i )
Tφ(Xtau

i ), Kts
i = φ(Xtau

i )Tφ(Xs
i ), Ktt

i =
φ(Xtau

i )Tφ(Xtau
i ), and λ1 and λ2 are the tradeoff parameters

which control the sparsity of the weighted parameter vector ω

and the reconstruction coefficient matrix P, respectively.

D. Optimization of TTRM

The optimization problem of TTRM in (14) can be effi-
ciently solved by the ADM, which consists of two major
steps: 1) fix Ytau and update ω and P and 2) fix ω and P and
update Ytau . We summarize its detailed solving procedures in
Algorithm 1, where we can adopt IALM [41] to optimize P
and adopt Liu et al.’s SLEP package [47] to learn ω.

E. Microexpression Prediction in the Target Domain Based
on TTRM

Once the optimal solution of TTRM is obtained, we are able
to estimate the microexpression categories of the samples from
the target domain. More specifically, suppose that the learned
optimal TTRM parameters are denoted by ω∗ and P∗. We first
compute the microexpression label vector for a given testing
feature vector xt

te from the target microexpression domain by
solving the QP problem as follows:

min
yt

te

∥∥
∥∥∥

yt
te − PT∗

M∑

i=1

(ω∗)i
(
Kt

te

)
i

∥∥
∥∥∥

2

F

s.t. yt
te � 0, 1Tyt

te = 1 (15)

Algorithm 1: Algorithm for Solving TTRM in (14)
Input: source microexpression feature matrix Xs, source
microexpression label matrix Ys, auxiliary
microexpression feature matrix Xtau selected by ASSM
(Eq. (10)), kernel function φ, and tradeoff parameters λ1
and λ2.
Output: model parameters Ytau∗ , ω∗, and P∗.
Initialize: k = 0, Ytau

k , and ωk.
While the residue of the objective function < ε or
k = kmax do

1) Fix Ytau
k and update ωk+1 and Pk+1:

Initialize t = 0 and let ωt = ωk;
While the residue of the objective function < ε or
t = tmax do

a) Fix ωt and update Pt+1:

Pt+1 = arg min
P

‖Ỹt − PTK̂t‖2
F + λ2‖P‖1;

where Ỹk = [Ys, Ytau
k ] and K̂t = ∑M

i=1(ωt)iKi.
b) Fix Pt+1 and update ωt+1:

ωt+1 = arg min
ω

‖ŷk − Vω‖2
F + λ1‖ω‖1;

where ŷk = vec(Ỹk), V = [v1, · · · , vM],
vi = vec(PT

t+1Ki), and vec(·) means transforming
a matrix to a vector by concatenating all the
columns of the matrix.

c) t = t + 1;
end while
We have ωk+1 = ωt+1 and Pk+1 = Pt+1.

2) Fix ωk+1 and Pk+1 and update Ytau
k+1:

Ytau
k+1 = arg min

Ytau
‖[Ytau − PT

M∑

i=1

(ωk+1)iK
tau
i ‖2

F

s.t. ωi ≥ 0, ytau
j � 0, 1Tytau

j = 1.

This is a standard QP problem, in this algorithm, we
employ Interior Point method to solve it.

3) k = k + 1;
end while

and then assign a microexpression category to this testing
sample by using the following criterion:

microexpression_category = arg max
k

{
yt

te(k)
}

(16)

where yt
te(k) means the kth element of vector yt

te

V. EXPERIMENTS

A. Experimental Protocol

We conduct extensive unsupervised cross-domain microex-
pression recognition experiments to evaluate the performance
of our proposed TTRM + ASSM method. Two recent widely
used spontaneous microexpression databases, that is, SMIC
and CASME II, are adopted. The SMIC database is collected
by Li et al. [48] from the University of Oulu and its samples
are recorded by a high-speed (HS) camera of 100 frames/s,



TABLE II
SAMPLE STATISTICS OF CASME II AND SMIC DATABASES WITH THE

SAME MICRO-EXPRESSION LABELS FOR UNSUPERVISED CROSS-DOMAIN

MICRO-EXPRESSION RECOGNITION EXPERIMENTS

a normal visual (VIS) camera of 25 frames/s, and a near-
infrared (NIR) camera, respectively. The HS set contains
164 samples from 16 subjects and is divided into three differ-
ent microexpression categories, that is, Positive, Negative, and
Surprise. The VIS and NIR subsets comprise 71 samples and
are categorized into the same three microexpression classes as
an HS subset, respectively. The CASME II database is built
by Yan et al. [49] from the Institute of Psychology, Chinese
Academy of Sciences. It consists of 247 microexpression
samples from 26 participants and these samples belong to
five microexpression classes, that is, Happiness, Surprise,
Disgust, Repression, and Others, respectively.

We design two types of unsupervised cross-domain
microexpression recognition experiments. The first one is
based on either two sets of the SMIC (HS, VIS, and NIR)
database, for example, HS versus VIS, and we denote this
type of experiment and its six combinations by TYPE-I: Exp.1
(H → V), Exp.2 (V → H), Exp.3 (H → N), Exp.4 (N → H),
Exp.5 (V → N), and Exp.6 (N → V). The other types of
experiments are based on one set of SMIC (HS, VIS, and NIR)
and CASME II, which consists of six combinations as well,
and are denoted by TYPE-II: Exp.7 (C → H), Exp.8 (H → C),
Exp.9 (C → V), Exp.10 (V → C), Exp.11 (C → N), and
Exp.12 (N → C). Note that H, V, N, and C are short for
SMIC (HS), SMIC (VIS), SMIC (NIR), and CASME II.

For the CASME II database, we first select the sam-
ples excluding Others category and relabel the Happiness
samples with the Positive microexpression and the Disgust
and Repression samples with the Negative one. Thus, the
CASME II and three subsets of SMIC would share the
common microexpression categorization. We list the sample
distributions under the consistent labeling of all three microex-
pression databases for the experiments in Table II. We also
give an example of the samples from the SMIC and CASME II
databases, respectively, in Fig. 3 to show the difference among
these three microexpression databases, where we list an image
frame from the microexpression video clip.

Following the work of [17], the face images of the video
clips from CASME II are cropped and transformed to 308 ×
257 pixels, while for SMIC databases, we crop and then trans-
form the images of microexpression samples into 170 × 139
pixels. As for performance evaluation metrics, we report the
experimental results in terms of both weighted average recall
(WAR) and unweighted average recall (UAR), which are
widely used in the cross-domain speech emotion recognition
research [19]. WAR is actually the normal recognition accu-
racy, while UAR is defined as the mean accuracy of each

(a) (b) (c) (d)

Fig. 3. Examples of SIMC and CASME II microexpression databases. From
left to right, they are (a) SMIC (HS), (b) SMIC (NIR), (c) SMIC (VIS), and
(d) CASME II, respectively.

class divided by the number of classes without consideration
of samples per class. Since most of the above microexpres-
sion databases, for example, CASME II, are class-imbalanced,
which means the numbers of samples belonging to different
classes have a large difference, it is better to evaluate the
performance of the comparison methods in terms of both WAR
and UAR.

For comparison purposes, we choose nine representative
DA methods, that is, KMM [23], [24]; KLIEP [23], [25];
uLSIF [23], [26]; transfer component analysis (TCA) [50];
GFK [31]; subspace alignment (SA) [51]; STM [27], [28];
transfer kernel machine (TKL) [52]; and TSRG [17] to con-
duct the experiments under the same protocol as our TTRM
+ ASSM method. Meanwhile, we use the SVM without any
DA to conduct the experiments to serve as the baseline. The
microexpression features used for experiments and the tradeoff
parameters of all methods are set as below.

1) Micro-Expression Feature: The spatiotemporal descrip-
tor used for the experiments is uniform LBP-TOP [6]. Its
neighboring radius R and number of the neighboring points
P for LBP operator on three orthogonal planes are set to 3
and 8, respectively.

2) Classifier: Linear SVM with C = 1 is used to serve as
the classifier for all the comparison DA methods. Note that to
offer a fair comparison, the linear kernel is also used for all of
the DA methods involving kernel functions in the experiments.

3) Parameter Setting for DA Methods: There are some
important parameters for all of DA methods to be set such
as the tradeoff the parameters λ1 and λ2 for TTRM, and the
reduced dimension k for TCA, which affects the performance
of these methods. It is known that in unsupervised cross-
domain microexpression recognition, the label information of
the target samples is completely not provided. For this reason,
the cross-validation method is not practical to determine the
tradeoff parameters in the experiments. Consequently, to offer
a fair comparison among all methods, in this paper, we use the
widely used parameter space search strategy [17], [52]–[55] in
unsupervised DA experiments for these methods and report the
best results which correspond to the optimal parameters with
a preset parameter space. The details of the parameter setting
for these DA methods are as follows.

KMM: According to the suggestion of [24], its two impor-
tant parameters including the upper limit of importance weight
B and ε are set to be 1000, and

√
ntr − (1/

√
ntr), where ntr

denotes the number of training samples.
KLIEP: No parameter for KLIEP needs to be set.



TABLE III
EXPERIMENTAL RESULTS ON EITHER TWO SUBSETS OF SMIC (HS, VIS, AND NIR) DATABASES (TYPE-I) IN TERMS

OF WAR/UAR. THE COMMON MICRO-EXPRESSIONS (3 CLASSES) ARE NEGATIVE, POSITIVE, AND SURPRISE.
THE BEST RESULTS IN EACH EXPERIMENT ARE HIGHLIGHTED IN BOLD

TABLE IV
EXPERIMENTAL RESULTS ON CASME II AND THE ONE SUBSET OF SMIC (HS, VIS, AND NIR) DATABASES (TYPE-II) IN TERMS

OF WAR/UAR. THE COMMON MICRO-EXPRESSIONS (3 CLASSES) ARE NEGATIVE, POSITIVE, AND SURPRISE.
THE BEST RESULTS IN EACH EXPERIMENT ARE HIGHLIGHTED IN BOLD

uLSIF: Following the setting in [17], we search its
optimal tradeoff parameter λ from [1:1:100] × t (t =
1, 10, 100, 1000, 10 000, 100 000).

TCA, GFK, and SA: For the experiments of these three
methods, we search the optimal dimension k (the number of
eigenvectors for composing the projection matrix) by trying all
possible dimensions, that is, searching k ∈ [1, 2, . . . , kmax].

STM: As the work of [17] suggested, the searching
space of the tradeoff parameter λ for STM is set as
[0.01:0.01:0.09, 0.1:0.1:1, 2:15].

TKL: The eigenspectrum damping factor ζ of TKL is
selected by searching from the parameter space [0.1:0.1:5].

TSRG: TSRG has two important tradeoff parameters,
that is, λ and μ. Its optimal values are determined by
searching from [0.001, 0.01, 0.1, 1, 10, 100, 1000] for λ and
[0.001:0.001:0.009, 0.01:0.01:0.09, 0.1:0.1:1, 2:10] for μ.

TTRM + ASSM: For our ASSM method, the parame-
ter λ is fixed at 1 throughout the experiments. As for the
parameters of TTRM, the preset spaces for λ1 and λ2 are
[0.01:0.01:0.1, 0.2:0.1:1] and [0.1:0.1:2], respectively.

B. Experimental Results and Analysis

In this section, we report the results of all methods on
the unsupervised cross-domain microexpression recognition
experiments under the aforementioned protocol. The WAR

and UAR of TYPE-I and TYPE-II experiments are given
in Tables III and IV, respectively, where we also calcu-
late the average among the WAR and UAR of six experi-
ments in each type of experiment. As the experiments show,
compared with the baseline results achieved by SVM with-
out any DA, our TTRM + ASSM method has promising
improvements. Furthermore, our TTRM + ASSM method
also has better overall performance than all of the compar-
ison methods, where our method achieves the highest average
WAR/UAR of 76.29%/76.28% in the TYPE-I experiment
and 55.71%/51.18% in the TYPE-II experiment, respectively.
More specifically, the proposed TTRM + ASSM achieves the
best results in terms of both WAR and UAR in most of the
experiments, including Exps.1, 2, and 4 (TYPE-I), and Exps.9
and 11 (TYPE-II), and the best results in terms of WAR in sev-
eral experiments, including Exp.5 (TYPE-I) and Exps.7 and 10
(TYPE-II), respectively. In addition, some comparison meth-
ods outperform the proposed TTRM + ASSM in some cases
(e.g., uLSIF in Exp.3 and GFK in Exp.6). Nevertheless, we
can find that the results are actually very competitive between
them and our TTRM + ASSM in such cases.

Moreover, as shown in Tables III and IV, both WAR and
UAR achieved by all methods in TYPE-I experiments are
much higher than those in TYPE-II experiments from the
comparison between the results of TYPE-I and TYPE-II. This



finding indicates that the unsupervised cross-domain microex-
pression recognition tasks between either of the two subsets of
SMIC are easier than the tasks between one subset of SMIC
and CASME II. It may be attributed to the fact that the sub-
jects of the samples from HS, NIR, and VIS are completely the
same, and these samples are just recorded by different cameras
at the same time. We also notice that among the experiments
of TYPE-I involving the HS dataset (Exps.1–4), the results
of using the VIS dataset as the source (Exp.2) and target
domain (Exp.1) are clearly at a lower level than the corre-
sponding results of experiments involving NIR (Exps.3 and 4).
We think that this is caused by the heterogeneous problem
existing between the NIR dataset and HS (VIS). As the exam-
ples in Fig. 3 show, it is clear that the image quality of NIR
samples is so different from that of the HS and VIS samples.

Besides, it can be from the TYPE-II experiments found that
compared with the experiments of using CASME II as the
source domain (Exps.7, 9, and 11), a larger gap between WAR
and UAR widely exists when CASME II is served as the target
domain (Exps.8, 10, and 12) for all DA methods. Based on this
finding, we agree that the class imbalance problem existing in
the target domain is another interference factor raising the level
of difficulty on unsupervised cross-domain microexpression
recognition, which has been demonstrated in [17]. As Table II
shows, the CASME II database is very class-imbalanced. Its
numbers of samples belonging to different microexpressions
for experiments are quite different, where the largest sample
number (Negative) is 91 while the smallest one (Surprise) is
only 25.

C. Comparison Between ASSM and Random Auxiliary
Selection Method

Compared with our previous work of TTSL [18], one of
the most worthy-mentioned advantages of this paper is that
we have proposed an effective ASSM for TTRM to select
a satisfactory auxiliary set instead of the random selection
used in TTSL. Here, we should emphasize that the proposed
ASSM is more suitable for TTRM than the random selection
method. By using ASSM together, the proposed TTRM has
stable performance. To check this point, we conduct additional
experiments (Exps.3 and 7) by using TTRM, where its corre-
sponding auxiliary sets are selected by ASSM and the random
selection method, respectively. For ASSM, the parameter λ is
still set as 1. As for the random selection method, we randomly
select the auxiliary set whose sample number is the same
as ASSM and then perform each experiment (Exps.3 and 7)
three times. The experimental results in terms of both WAR
and UAR are given in Table V, where the results of TTRM
with ASSM are directly taken from Tables III and IV. From
the results, it is clear to see that the performance of TTRM
with the random selection method is very unstable although
it performs well in some cases, for example, Random#1 in
Exp.3 and Random#2 in Exp.7. For example, it can be seen
that in Exp.3, the other two results of the random selection
method are both unsatisfactory, where its worst results are
only 70.69%/69.98% and very similar to the baseline results
(70.42%/69.63%) obtained by SVM without any DA. We think

TABLE V
COMPARISON BETWEEN ASSM AND RANDOM SELECTION METHOD,

WHERE THE RESULTS ARE REPORTED IN TERMS OF WAR/UAR

Fig. 4. Parameter sensitivity experiments for ASSM, where the results are
reported in term of WAR.

the main cause of such unstabilization in the use of random
selection with TTRM is that it is not satisfactory for the ran-
dom selection method to remove the difference elimination
term f TTRM

3 from the objective function of the original TTRM
in (12). On the other hand, it can be seen that our proposed
ASSM performs both well in Exps.3 and 7, which demon-
strates the advantages of the proposed ASSM over the random
selection method.

D. Evaluating ASSM With Different λ

It is clear that the sample number and the elements of
the auxiliary set selected by ASSM are determined by the
tradeoff parameter λ. This thus leads to an interesting ques-
tion as to whether the performance of ASSM is sensitive
to the selection of λ. To investigate this point, we conduct
Exps.3, 4, 7, and 8, respectively, by using ASSM with dif-
ferent λ ∈ {0.001, 0.01, 0.1, 1, 3, 5, 10}. The WAR of ASSM
with respect to the change of λ is shown in Fig. 4. From Fig. 4,
it can be seen that the performance of ASSM varies slightly
with respect to the change of λ in all experiments, which indi-
cates that our ASSM is less sensitive to its tradeoff parameter.
However, it should be pointed out that given a λ, the proposed
ASSM method can only select the optimal auxiliary set under
this fixed parameter. It is still unclear how to determine the
optimal λ for ASSM, which is one point of the limitations in
this paper.

E. Evaluating TTRM Plus ASSM With Different Kernel
Functions

Since the proposed TTRM + ASSM is a kernel-based
method, its performance is surely affected by the selec-
tion of the kernel function. Therefore, in this section, we



TABLE VI
RESULTS (WAR/UAR) OF EXPERIMENTS USING TTRM + ASSM

WITH DIFFERENT KERNEL FUNCTIONS

choose Exp.3 (H→N) and Exp.7 (C→H) as the represen-
tatives and conduct additional experiments using TTRM +
ASSM with several widely used kernel functions, including
Polynomial and ChiSquare kernels. The polynomial kernel
is defined as ker(x, y) = (axTy + b)c and in the experi-
ments, we set its kernel parameters as a = 1, b = 0, and
c = 1.05. The definition of the ChiSquare kernel function
is ker(x, y) = 1 − ∑d

i=1((xi − yi)
2/0.5(xi + yi)), where xi

and yi, are the ith elements of the feature vectors x and y
whose dimension is d, respectively. The experimental results
are shown in Table VI, where we also take the results of the
linear kernel from Tables III and IV. From the results, it is
interesting to see that the Polynomial kernel performs the best
in terms of both WAR and UAR in Exp.3 and the ChiSquare
kernel achieves the highest UAR in Exp.7. This indicates that
choosing a suitable kernel benefits the performance increase
of the proposed TTRM + ASSM method in dealing with
the unsupervised cross-database microexpression recognition
tasks. However, it is hard to determine which kernel function
suits TTRM + ASSM in different tasks, which is worth a deep
investigation in the future.

F. Convergence Analysis for the Optimization Algorithm
of TTRM

In this section, we analyze the convergence of Algorithm 1.
As Algorithm 1 shows, we can see that the proposed algorithm
divided the original optimization problem of TTRM in (14)
into two minimization subproblems. Consequently, when the
new updated variables of each minimization subproblem were
obtained, the objective function value of TTRM in (14) would
decrease to be smaller than the one before updating. In other
words, the original objective function value of TTRM in (14)
would continually decrease if we iteratively solved these two
minimization subproblems. On the other hand, since the objec-
tive function of TTRM is a continuous function and lower
bounded, the convergence of the proposed iterative algorithm
for optimizing the TTRM problem is guaranteed. We also
choose Exp.7 as the example and plot the objective func-
tion value change of TTRM with respect to the iteration of
Algorithm 1, which is shown in Fig. 5. From this figure, it is
clear that the objective function value of TTRM decreases and
quickly reaches convergence within 10 iterations in this exper-
iment, which indicates that the proposed algorithm for solving
the TTRM optimization problem converges easily. Here, we
also give the execution time of Algorithm 1 as well as the
optimization problem in Section IV-E for prediction for Exp.7.
By using a computer which has an Intel Core i7-4790k of 4.00
GHz and 32-GB RAM, the execution time of the algorithm
and prediction is around 10.47 s and 2.71 s.

Fig. 5. Value changes of the objective function of TTRM in Exp.7 (C→H)
with respect to the iteration, where the tradeoff parameters of TTRM are set
as λ1 = 0.3 and λ2 = 1.9.

TABLE VII
STATISTICS OF USPS+MNIST AND OFFICE-10 DATASETS

G. Experiments on Other Applications

The proposed TTRM + ASSM method can be also used
in many other DA applications rather than the cross-domain
microexpression recognition. In this section, we would like
to conduct another two types of DA experiments, that is,
cross-domain handwritten digit recognition and cross-domain
object recognition, to further evaluate the proposed method.
To this end, two widely used benchmark datasets including
USPS+MNIST1 and Office-10 [56] are used, which results
in EIGHT DA experiments: 1) USPS → MNIST; 2) MNIST
→ USPS; 3) A → W; 4) W → A; 5) A → D; 6) D →
A; 7) W → D; and 8) D → W. Table VII shows their
detailed information. For the experiments between USPS and
MNIST, we follow the experimental setting of [55] and ran-
domly sample 1800 images in USPS and 2000 images in
MNIST to serve as source and target datasets alternatively.
The features in this type of experiment are the gray-scale pixel
values after rescaling all images to the size of 16 × 16. For
the experiments on Office-10, we adopt the SURF features
released by Gong et al. [31]. Five well-performing DA meth-
ods (TCA [50], GFK [31], SA [51], TKL [52], and TSRG [17])
and SVM without any DA are included in the comparison. The
experimental results are given in Table VIII. From Table VIII,
it is clear to see that our proposed TTRM + ASSM method
achieves the best average accuracy among all methods in the
experiments and outperforms all other methods in most cases
(FOUR DA experiments). This shows that our method also has
superior performance in dealing with the DA tasks in other
applications.

1USPS: http://www-i6.informatik.rwth-aachen.de/∼keysers/usps.html and
MNIST: http://yann.lecun.com/exdb/mnist.



TABLE VIII
ACCURACY (%) FOR CROSS-DOMAIN HANDWRITTEN DIGIT RECOGNITION AND CROSS-USING

TTRM + ASSM WITH DIFFERENT KERNEL FUNCTIONS

VI. CONCLUSION

In this paper, we have investigated the unsupervised cross-
domain microexpression recognition problem and proposed an
effective method consisting of a TTRM and an ASSM. In our
method, we first make use of the proposed ASSM to select an
optimal auxiliary set from the target domain for TTRM. Then,
TTRM can be learned based on both the source samples and
the selected auxiliary samples. By using an RKHS to per-
form TTRM, ASSM and TTRM can be integrated organically
such that TTRM is truly suitable for the auxiliary set selected
by ASSM. Extensive unsupervised cross-domain microexpres-
sion recognition experiments on the CASME II and SMIC
databases are conducted to evaluate the proposed TTRM with
the ASSM method. Compared with the recent state-of-the-
art DA methods, our method achieves overall more promising
results.

Recently, deep learning methods have been applied to the
research of microexpression recognition. For instance, in the
work of [57], Kim et al. made use of the convolutional neural
network (CNN) [58] and long short-term memory (LSTM)
recurrent network [59] to design a deep neural-network
method to deal with the microexpression recognition problem.
On the other hand, by leveraging the strong nonlinear map-
ping (representation) ability of deep neural networks [60], in
recent years, a large number of deep transfer learning methods
have been proposed and shown their promising performance
in DA tasks [61]–[63]. For example, Shu et al. [61] proposed
a weakly shared deep transfer network to deal with the cross-
domain translation problem. In the work of [63], Long et al.
designed two deep transfer networks, including the transfer
deep autoencoder (TDA) and transfer deep network (TDN)
for solving unsupervised DA tasks. Consequently, inspired by
these successful works, we can actually develop the deep trans-
fer learning methods to solve the unsupervised cross-domain
microexpression recognition problem, which is a good direc-
tion in the future and can advance the development of this
interesting and challenging topic.
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