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A Bilevel Optimization Approach for Joint
Offloading Decision and Resource Allocation in

Cooperative Mobile Edge Computing
Pei-Qiu Huang, Yong Wang, Senior Member, IEEE, Kezhi Wang, Member, IEEE, and Zhi-Zhong Liu

Abstract—This paper studies a multi-user cooperative mobile
edge computing offloading (CoMECO) system in a multi-user
interference environment, in which delay-sensitive tasks may be
executed on local devices, cooperative devices, or the primary
MEC server. In this system, we jointly optimize the offloading
decision and computation resource allocation for minimizing the
total energy consumption of all mobile users under the delay
constraint. If this problem is solved directly, the offloading deci-
sion and computation resource allocation are generally generated
separately at the same time. Note, however, that they are closely
coupled. Therefore, under this condition, their dependency is not
well considered, thus leading to poor performance. We transform
this problem into a bilevel optimization problem, in which the
offloading decision is generated in the upper level, and then the
optimal allocation of computation resources is obtained in the
lower level based on the given offloading decision. In this way,
the dependency between the offloading decision and computation
resource allocation can be fully taken into account. Subsequently,
a bilevel optimization approach, called BiJOR, is proposed. In
BiJOR, candidate modes are first pruned to reduce the number
of infeasible offloading decisions. Afterward, the upper level
optimization problem is solved by ant colony system (ACS).
Furthermore, a sorting strategy is incorporated into ACS to
construct feasible offloading decisions with a higher probability
and a local search operator is designed in ACS to accelerate
the convergence. For the lower level optimization problem, it is
solved by the monotonic optimization method. In addition, BiJOR
is extended to deal with a complex scenario with the channel
selection. Extensive experiments are carried out to investigate
the performance of BiJOR on two sets of instances with up
to 400 mobile users. The experimental results demonstrate the
effectiveness of BiJOR and the superiority of the CoMECO
system.

Index Terms—Mobile edge computing, offloading decision,
computation resource allocation, bilevel optimization, ant colony
system.

I. INTRODUCTION

With the popularity of mobile devices, such as smart phones,
tablets, and wearable devices, a mass of novel mobile app-
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lications are emerging. Among them, an increasing number
of applications are resource-intensive and delay-sensitive, for
instance, face recognition [1] and augmented reality app-
lications [2]. However, the growing capacity of mobile devices
is still lagging behind the needs of people due to physical
limitations such as CPU, battery life, and so on [3]. Therefore,
it is a very challenging task to execute resource-intensive and
delay-sensitive tasks on mobile devices.

Such a challenge motivates the development of mobile cloud
computing (MCC) [4] in recent decades, which can provide
rich computation resources for mobile users by offloading
tasks from their own devices to the cloud server. Whereas,
as MCC is a centralized computing paradigm, mobile users
should exchange data with the cloud server in the remote
data center. To be specific, users must first upload data to
the remote cloud server through a wide area network, and
after completing computation, results will be transmitted back
to users via downlinks. Obviously, the remote transmission
causes high costs in terms of time and energy, which degrades
quality of service (QoS) [5].

To alleviate the drawback of remote transmission, a novel
paradigm of mobile computing has been proposed, known as
mobile edge computing (MEC)1 [7], which encourages a shift
of deploying servers from the core network to network edge
such as base stations. Compared with MCC, MEC consumes a
shorter transmission time and lower energy since data is only
uploaded to the server close to mobile users. Therefore, it has
more potential to speed up the process of task execution and/or
to save the energy of mobile devices [8]. Although MEC can
avoid remote task transmission, it still has some disadvantages.
For instance, if too many tasks are offloaded to the MEC server
simultaneously, mobile devices may generate severe interfer-
ence with each other, which has side effects on task execution
in two aspects [9]. Firstly, with the increasing number of tasks
offloaded to the MEC server, the data transmission rate will
decrease drastically. Consequently, the transmission time and
energy consumption will be increased. Secondly, due to the
delay constraint, the computation time will decrease with the
growth of the transmission time. As a result, each task should
be allocated more computation resources, which may cause
higher overloads of the MEC server. To summarize, there is a
performance bottleneck in the large-scale offloading system.

It is worth noting that an increasing number of mobile

1Since September 2016, ETSI has renamed mobile edge computing to
multi-access edge computing to broaden its applicability [6].
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devices are distributed at the network edge and are often
idle. These idle devices can potentially share their unused
computation resources with nearby devices to help them
execute tasks. This technology is called cooperative computing
(CC) [10], and the idle devices are called the cooperative
devices of nearby devices. Recently, some attempts [11]–[14]
have been made to incorporate CC into MEC to enhance the
capabilities of MEC, in which mobile devices are not only
network terminals but also “virtual” MEC servers. In this
way, it can not only save the computation resources of the
real MEC server, but also effectively alleviate the network
congestion for MEC. In this paper, a multi-user cooperative
MEC offloading (CoMECO) system is studied, in which tasks
may be executed on local devices, cooperative devices, or the
primary MEC server (denoted as P-MEC server) in the base
station. Different from existing multi-user cooperative MEC
offloading systems [13], [14], we take the delay constraint and
multi-user interference into account. Under this condition, the
offloading system becomes more complicated.

In offloading systems, offloading decision and resource
allocation are two key issues which have a direct impact on
QoS in terms of energy consumption and delay [15]. The
former is to decide whether to offload or not. In some cases,
a further question is where to offload. While the latter is to
decide how many resources are allocated. In this paper, first
of all, a joint offloading decision and computation resource
allocation problem in the CoMECO system is formulated,
with the aim of minimizing the total energy consumption of
all mobile users under the delay constraint. When solving
this problem directly, in general the offloading decision and
computation resource allocation are generated separately at the
same time, thus ignoring their dependency unreasonably. To
this end, we transform this problem into a bilevel optimization
problem and prove that the original problem and the bilevel
optimization problem have the same optimal solution. In the
bilevel optimization problem, the upper level aims to optimize
the offloading decision and the lower level is to find the
optimal allocation of computation resources under the given
offloading decision. In this way, the dependency between the
offloading decision and computation resource allocation can
be fully considered.

The main contributions of this work are summarized as
follows:
• A multi-user MEC offloading system, i.e., the CoMECO

system, is investigated in a multi-user interference
environment, in which delay-sensitive tasks may be exe-
cuted on local devices, cooperative devices, or the P-MEC
server.

• In order to effectively tackle the bilevel optimization
problem, a bilevel optimization approach, called BiJOR,
is proposed, which employs ant colony system (ACS)
and the monotonic optimization method to solve the
offloading decision and computation resource allocation,
respectively. ACS has the ability to handle combinato-
rial optimization problems with categorical variables. To
construct feasible offloading decisions efficiently, the can-
didate mode pruning is implemented in the initialization
phase and a sorting strategy is incorporated into ACS.

Also, a local search operator is devised in ACS, with
the aim of accelerating the convergence. In addition,
without adding any additional components, BiJOR can
be extended to deal with the channel selection to further
allocate communication resources.

• Extensive experiments have been carried out on two
instance suites with up to 400 mobile users. The ex-
perimental results have demonstrated the effectiveness
of BiJOR. In addition, the superiority of the CoMECO
system has been verified by comparing BiJOR with four
other algorithms.

The rest of this paper is organized as follows. In Section II,
the related work is summarized. Section III introduces the
system model and presents the joint offloading decision and
computation resource allocation problem. Section IV describes
the details of our proposed approach, followed by the ex-
tension in Section V. The experimental studies are shown in
Section VI. Finally, Section VII concludes this paper.

II. RELATED WORK

A. Offloading Decision and Resource Allocation in Offloading
Systems

Many methods have been presented for offloading decision.
Chen [5] proposed a game theoretic approach for multi-user
offloading decision making and obtained a Nash equilibri-
um solution. This approach is then used to optimize multi-
user offloading decision in a multi-channel environment [9].
Plachy et al. [16] developed a novel path selection algori-
thm for offloading tasks between mobile users and cloud-
enhanced small cells in a dynamic scenario. Considering
the NP-hardness of offloading decision, Deng et al. [17]
exploited a genetic algorithm to produce the offloading de-
cision for service workflow. Other heuristic methods have
also been successfully applied to optimize offloading decision,
such as greedy method [18] and particle swarm optimization
(PSO) [19]. On the other hand, resource allocation is optimized
in a single-user MEC offloading system [20], and multi-user
MEC offloading systems [21], [22].

However, the above-mentioned studies deal with offloading
decision and resource allocation separately. Due to the fact
that both of them are related to QoS, many methods have
been proposed to deal with the joint optimization of off-
loading decision and resource allocation. For instance, in [23]
and [24], the joint offloading decision and resource allocation
problems in the binary MEC offloading system are optimized.
Tran et al. [25] designed the joint optimization of offloading
decision and resource allocation for a multi-cell, multi-server
offloading system. Wang et al. [26] developed a decentral-
ization algorithm for jointly optimizing offloading decision,
resource allocation, and Internet content caching in hetero-
geneous wireless cellular networks with MEC. Nevertheless,
these methods are designed for delay-tolerant tasks. Very
recently, Lyu et al. [27] investigated a joint offloading decision
and resource allocation problem of delay-sensitive tasks. Note
that, no interference among mobile users is considered in [27].
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TABLE I
COMPARISON BETWEEN THE COMECO SYSTEM (OUR WORK) AND THE

CURRENT WORK.

Ref.
Offloading
decision

Resource
allocation

Cooperative
computing

Multiple
users

Multi-user
interference

Delay-sensitive
task

[5]
√ √ √

[9]
√ √ √

[16]
√ √

[17]
√ √

[18]
√ √

[19]
√ √

[20]
√

[21]
√ √ √

[22]
√ √ √ √

[23]
√ √ √

[24]
√ √ √

[25]
√ √ √ √

[26]
√ √ √ √

[27]
√ √ √ √

[11]
√ √ √

[12]
√ √ √ √

[13]
√ √ √

[14]
√ √ √ √

Our work
√ √ √ √ √ √

-1-

mobile
user 1

mobile
user 2

mobile
user 3

mobile
user 4

mobile
user n∙ ∙ ∙

base 
station

P-MEC
server

selected links
candidate links

Fig. 1. The CoMECO system involving a base station with a P-MEC server
and a set of n mobile users. In this scenario, U1, U2, and U3 are executed
on the P-MEC server; U4 is executed on the mobile device of mobile user 3;
and Un is executed locally.

B. Combination of CC and MEC

As a means to enhance MEC’s capabilities, the combination
of CC and MEC has recently attracted significant attention.
Tao et al. [11] considered a cooperative MEC offloading sys-
tem with two mobile users. In this system, one mobile user can
share the computation resources with the other. Cao et al. [12]
studied a three-node MEC offloading system that consists of
a user node, a helper node, and an access point node attached
with the MEC server. In contrast to the two-user cooperative
MEC offloading systems in [11] and [12], Pu et al. [13]
researched a multi-user MEC offloading system based on
network-assisted D2D collaboration. In this system, each task
may be executed locally or offloaded to one of nearby devices.
Cui et al. [14] developed a novel multi-user MEC offloading
system, which integrates the hybrid computation resources
of the MEC servers and Internet of Things devices. As a
result, the tasks may be executed on local devices, cooperative
devices, or the MEC servers. Subsequently, a fully distributed
online learning approach is proposed to asymptotically mini-
mize the time-average cost of the system. Despite in both the
CoMECO system and [14], tasks may be executed on local
devices, cooperative devices, or MEC servers, the CoMECO
system is different from [14] by taking delay-sensitive tasks

and multi-user interference into account. Under this condition,
the CoMECO system is more complicated. In addition, we
need to consider whether the tasks can be completed under the
delay constraint. A comparison between the CoMECO system
and the current work is summarized in Table I.

III. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider the CoMECO system
involving a base station with a P-MEC server and a set of
n mobile users2 denoted as N = {1, 2, . . . , n}. Note that
each mobile user has a task to be executed. For the sake of
simplicity, we denote the task of mobile user i as Ui, which
can be defined by a 4-tuple: Ui = (Ci, Di, Bi, T

max
i ), i ∈ N .

Herein, Ci describes the total computation resource (i.e., the
number of the CPU cycles) to complete task Ui, Di and Bi
denote the size of input data and results, respectively, and
Tmaxi specifies the delay constraint of Ui. In other words, Ui
should be completed within time [0, Tmaxi ].

In the CoMECO system, we assume that all mobile devices
can be considered as MEC servers and are willing to share
computation resources with each other. As a result, tasks may
be executed on local devices, cooperative devices, or the P-
MEC server in the base station. Therefore, there are (n +
1) candidate modes for Ui, denoted as M = {0, 1, . . . , n}.
Specifically, for j ∈M
• j = 0 indicates the P-MEC computing mode;
• j = i indicates the local computing mode;
• Otherwise, j indicates the cooperative computing mode,

in which the mobile device of mobile user j is the
cooperative device.

In addition, we assume that each mobile device can only
accept at most one task but the P-MEC server can accept
multiple tasks. As a result, multiple tasks may be executed in
the P-MEC computing mode simultaneously. We also assume
that there are (n+ 1) wireless channels. The tasks executed in
the same mode are transmitted through the same channel, and
the tasks executed in different modes are transmitted through
different channels. Furthermore, we define matrix o as the
offloading decision, where oij = 1 (i ∈ N and j ∈M) if Ui
is executed in mode j; otherwise, oij = 0. In Fig. 1, U1, U2,
and U3 are executed on the P-MEC server; U4 is executed on
the mobile device of mobile user 3; and Un is executed locally.
Therefore, o10, o20, o30, o43, and onn = 1. Additionally, we
define another matrix r as the computation resource allocation,
where rij (i ∈ N and j ∈ M) represents the computation
resources allocated to Ui in mode j.

We next introduce the computation model, transmission
model, and delay model, respectively.

A. Computation Model

Given computation resource rij , the computation time of Ui
in mode j is [28]

T cij(rij) =
Ci
rij
, ∀i ∈ N , j ∈M (1)

2In this paper, we assume that mobile users are static unless otherwise
stated.
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Due to the fact that the computation of tasks on the P-MEC
server does not consume any energy of mobile devices, similar
to [29], we ignore the computation energy consumption of the
P-MEC server. If Ui is executed in mode j, the computation
energy consumption is given as [28]

Ecij(rij) = k(rij)
2Ci, ∀i ∈ N , j ∈M\{0} (2)

where k > 0 is the effective capacitance coefficient.

B. Transmission Model

For the P-MEC computing mode and cooperative computing
mode, mobile users must first upload data to the P-MEC server
or cooperative devices. After the computation is completed,
results are returned to mobile users via downlinks. The uplink
data rate of Ui in mode j is given as [5]

Rij(o) = W log2

1 +
ptiHij

w +
n∑

h=1,h 6=i
ohjpthHhj

 ,

∀i ∈ N , j ∈M\{i}

(3)

where W is the channel bandwidth, pti is the transmission
power of mobile device i and can be obtained by the power
control algorithm [30], w denotes the background noise power,
Hij denotes the channel gain of mobile device i in mode j,

and
n∑

h=1,h 6=i
ohjp

t
hHhj is the interference among mobile uers

in the same channel.
Remark 1. In a static scenario, the uplink data rate Rij and

downlink data rate Rji are symmetric. In a dynamic scenario,
for example, in the case that mobile users are moving, the
conditions in uplink and downlink are usually different [16].
As a result, Rij and Rji are asymmetric, the effect of which
is investigated in the experimental studies.

Afterward, the transmission time of Ui in mode j is com-
puted as [13]

T tij(o) =
Di

Rij(o)
+

Bi
Rji(o)

, ∀i ∈ N , j ∈M\{i} (4)

For the P-MEC computing mode, the transmission energy
consumption of Ui is the energy consumption of mobile device
i for transmitting input data and receiving results, which is
given as [13]

Etij(o) =
ptiDi

Rij(o)
+

priBi
Rji(o)

, ∀i ∈ N , j = 0 (5)

where pri represents the power of mobile user i for receiving
results.

For the cooperative computing mode, the transmission en-
ergy consumption of Ui consists of the energy consumption
of mobile device i and cooperative mobile device j for
transmitting input data and receiving results. In addition, the
time of cooperative mobile device j for receiving results is
the same as that of mobile device i for transmitting input
data and vice versa [31]. Therefore, the transmission energy

consumption of Ui is computed as [13]

Etij(o) =
ptiDi

Rij(o)
+

prjDi

Rij(o)
+

ptjBi

Rji(o)
+

priBi
Rji(o)

,

∀i ∈ N , j ∈M\{0, i}.
(6)

Note that in the transmission model, we ignore the circuit
power consumed by mobile devices. This assumption is used
widely in the literature [5], [13], [28].

C. Delay Model

The total time spent in executing Ui in mode j is given as

Tij(o, rij) =

{
T cij(rij), if j = i

T tij(o) + T cij(rij), otherwise
, ∀i ∈ N (7)

D. Problem Formulation

Considering that both the offloading decision and computa-
tion resource allocation are related to QoS, we jointly optimize
them to minimize the total energy consumption of all mobile
users, which consists of the total computation and transmission
energy consumption. The joint offloading decision and com-
putation resource allocation problem is expressed as follows:

P : min
o,r

n∑
i=1

 n∑
j=1

oijE
c
ij(rij) +

n∑
j=0,j 6=i

oijE
t
ij(o)

 (8)

s.t. C1 :

n∑
j=0

oij = 1,∀i ∈ N ,

C2 :

n∑
i=1

oij ≤ 1,∀j ∈M\{0},

C3 :

n∑
i=1

oijrij ≤ rmaxj ,∀j ∈M,

C4 : rij > 0,∀oij = 1 (i ∈ N and j ∈M),

C5 : rij = 0,∀oij = 0 (i ∈ N and j ∈M),

C6 : 0 ≤
n∑
j=0

oijTij(o, rij) ≤ Tmaxi ,∀i ∈ N .

where C1 guarantees that each task is executed; C2 states
that each mobile device can only accept at most one task; C3
assumes that at most computation resource rmaxj is provided
in mode j; C4 and C5 represent that if Ui is executed in mode
j, rij should be greater than 0; otherwise, rij should be equal
to 0; and C6 ensures that each task has to be completed under
the delay constraint.

We can observe that P is a mixed-variable nonlinear op-
timization problem, since o is an integer matrix and r is a
continuous matrix. It is difficult to solve P by using traditional
optimization methods. By further analyzing P , we can find
the following two characteristics. Firstly, the amount of avail-
able computation resources may vary with different modes
depending on the result of offloading decision. Secondly, the
performance of offloading decision cannot be assessed until the
computation resource allocation has been generated; hence, it
is affected by the result of computation resource allocation.
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Furthermore, only if the computation resource allocation is
optimal, the quality of offloading decision can be assessed
accurately. In brief, the offloading decision and computation
resource allocation are closely coupled. If P is solved directly,
the offloading decision and computation resource allocation
are generated separately; thus, their dependence is ignored
unreasonably. Therefore, in order to solve P effectively, there
are two challenges:

• Can this mixed-variable nonlinear optimization problem
be transformed into another optimization problem which
is easy to be solved?

• How can we take the dependency between the offloading
decision and computation resource allocation into ac-
count?

IV. PROPOSED APPROACH

A. Problem Transformation

Considering the above two challenges, we first transform
P into a bilevel optimization problem. Bilevel optimization
involves addressing the upper level optimization problem
under the premise of ensuring the optimality of the lower level
optimization problem [32], [33]. In this paper, the offloading
decision is regarded as the upper level optimization problem
with the aim of minimizing the total energy consumption of
all mobile users, and the computation resource allocation is
considered as the lower level optimization problem with the
purpose of minimizing the total computation energy consump-
tion of all mobile users. This bilevel optimization problem is
formulated as

P1 : min
o,r

n∑
i=1

 n∑
j=1

oijE
c
ij(rij) +

n∑
j=0,j 6=i

oijE
t
ij(o)

 (9)

s.t. r ∈ arg min
r


n∑
i=1

n∑
j=1

oijE
c
ij(rij) : C3− C6


C1 and C2.

Before presenting the relationship between P and P1,
lemma 1 is given below.

Lemma 1. The optimal solution of P is a feasible solution of
P1.

Proof : A detailed proof is given in Appendix A of the
supplementary file.

Theorem 1. P and P1 have the same optimal solution.

Proof : A detailed proof is given in Appendix B of the
supplementary file.

Apart from keeping the optimal solution of P , the above
transformation has the following additional advantages:

• The original mixed-variable nonlinear optimization prob-
lem is transformed into a combinatorial optimization
problem in the upper level and a continuous optimization
problem in the lower level, which are more tractable than
the original one.

Algorithm 1 General Framework of BiJOR
1: gen = 0;
2: Generate the feasible candidate mode sets M1, . . . ,Mn based on

Algorithm 2;
3: while gen < genmax do
4: Construct NP offloading decisions via ACS based on Algorithm 3:

O = {o1, . . . ,oNP };
5: Calculate the optimal allocations of computation resources under the

given O: R = {r1, . . . , rNP };
6: Evaluate the total energy consumption of each offloading decision with

the corresponding optimal allocation of computation resources;
7: Perform the local search operator on the iteration-best solution

{ob, rb};
8: Update the global pheromone in ACS based on (28);
9: gen = gen+ 1;

10: end while
11: Output: the best offloading decision and the corresponding optimal

allocation of computation resources

• In P1, the dependency between the offloading decision
and computation resource allocation can be fully con-
sidered. To be specific, since the computation resource
allocation is generated based on the offloading decision,
the limitation of available computation resources enforced
by the offloading decision is taken into account. In
addition, since the optimal allocation of computation
resources corresponding to each offloading decision is
obtained in the lower level, the quality of each offloading
decision can be assessed accurately.

The offloading decision is a typical combinatorial opti-
mization problem. Due to the NP-hard characteristic [9],
seeking the optimal offloading decision is generally deemed
to be a challenging task. Although deterministic algorithms
have the capability to find the optimal offloading decision,
they suffer from high computational burden in large-scale
problems, and the optimal solution cannot be provided within a
reasonable time [34]. Further, since there is no logical ordering
relationship among candidate modes, the offloading decision is
also considered as a combinatorial optimization problem with
categorical variables; thus, a categorical optimization approach
is necessary [35].

Due to the resource limitation, it is likely that some tasks
cannot be completed in most candidate modes when consid-
ering the delay constraint. As a result, most of offloading
decisions are infeasible. It is because an offloading decision is
infeasible as long as any task is not completed under the delay
constraint. Therefore, it poses a grand challenge to generate
feasible offloading decisions. Additionally, in order to obtain
the optimal offloading decision as soon as possible, a strategy
that can speed up the optimization is required.

Therefore, the following three challenges should be consid-
ered:

• How to deal with the combinatorial optimization problem
with categorical variables in the upper level?

• How can we construct feasible offloading decisions effi-
ciently?

• How to design a strategy to speed up the optimization?
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B. BiJOR

To address the above three challenges, a bilevel optimization
approach named BiJOR is proposed to solve P1. The general
framework of BiJOR is presented in Algorithm 1. In the
initialization phase, the feasible candidate mode set of each
task is generated by the candidate mode pruning (line 2). In
the main loop, both the upper level optimization and lower
level optimization are implemented at each generation, where
the latter is nested within the former. To be specific, ACS with
the sorting strategy is used to construct NP offloading deci-
sions (line 4). In the lower level optimization, the monotonic
optimization method is adopted to obtain the corresponding
optimal allocations of computation resources based on the
given offloading decisions (line 5). Then, the performance
of the offloading decisions and their corresponding optimal
allocations of computation resources is evaluated (line 6).
Subsequently, the local search operator is performed on the
iteration-best solution to accelerate the convergence (line 7).
Finally, the global pheromone in ACS is updated (line 8). The
above procedure will continue until the stopping criterion is
met. In the following, we will introduce BiJOR in detail.

C. Candidate Mode Pruning

The size of the solution space for the upper level opti-
mization problem, i.e., the number of offloading decisions,
depends on the number of mobile users in the CoMECO
system. For instance, as shown in Fig. 1, since each task has
(n+1) candidate modes, the number of offloading decisions is
(n+ 1)n. Obviously, it is extremely large. Indeed, as stated in
Section IV-A, most of them are infeasible. In order to reduce
the number of infeasible offload decisions, we prune infeasible
candidate modes of each task in the initialization phase. Next,
the conditions to judge the feasibility of a candidate mode are
given below.

Because the computation resources available to mobile users
are limited and may vary with different modes, if the minimum
demand of computation resources of a task in a mode is
not satisfied, this mode is an infeasible candidate mode for
this task. Specifically, based on C6, the minimum demand of
computation resources of Ui in mode j can be given as

rminij =


Ci

Tmaxi

, if j = i

Ci

Tmaxi − Di

Rij
− Bi

Rji

, otherwise
, ∀i ∈ N (10)

Then, based on C3 − C5, a feasible candidate mode should
satisfy the following conditions:

n∑
i=1

oijr
min
ij ≤ rmaxj and rminij ≥ 0, ∀i ∈ N , j ∈M (11)

For a mode that can only be assigned to one task, such as
the local computing mode or cooperative computing mode,
the minimum demand of computation resources is readily
available in (10). Then, by substituting it to (11), the feasible
candidate modes in the local computing mode and cooperative

Algorithm 2 Candidate Mode Pruning
1: for i = 1 to n do
2: Mi = ∅;
3: for j = 0 to n do
4: if j = i and 0 ≤

Ci

Tmax
i

≤ rmax
j then

5: Mi ←Mi
⋃
{i};

6: else if j 6= i and 0 ≤
Ci

Tmax
i − Di

Rij
− Bi

Rji

≤ rmax
j then

7: Mi ←Mi
⋃
{j};

8: end if
9: end for

10: end for
11: return M1, . . . ,Mn

computing mode are subject to (12) and (13), respectively,

0 ≤ Ci
Tmaxi

≤ rmaxj , ∀i ∈ N , j = i (12)

and

0 ≤ Ci

Tmaxi − Di

Rij
− Bi

Rji

≤ rmaxj , ∀i ∈ N , j 6= i, and j 6= 0

(13)
However, for a mode that can be assigned to multiple tasks,

such as the P-MEC computing mode, since it is impossible
to predict which tasks are executed in this mode in advance
during the initialization phase, the interference in the same
channel cannot be obtained. As a result, the data rate is also
not obtained, which results in the minimum demand of com-
putation resources in (10) being unavailable. In this situation,
(11) cannot be used directly for judging the feasibility of
a candidate mode. Although the P-MEC server can accept
multiple tasks simultaneously, if we assume that only one task
is executed in the P-MEC server, the upper bound of the uplink
data rate Rij can be obtained based on (3)

Rij = Wlog2(1 +
piHij

w
), ∀i ∈ N , j = 0 (14)

The upper bound of the downlink data rate Rji can be obtained
in a similar way.

Then, the lower bound of the minimum demand of compu-
tation resources is given as

rminij =
Ci

Tmaxi − Di

Rij
− Bi

Rji

, ∀i ∈ N , j = 0 (15)

From (11) and (15), if the P-MEC computing mode is feasible,
it at least satisfies

0 ≤ Ci

Tmaxi − Di

Rij
− Di

Rji

≤ rmaxj , ∀i ∈ N , j = 0 (16)

Note that, (16) is a necessary condition that the P-MEC
computing mode is feasible. That is, even if (16) is satisfied,
there is no guarantee that a task can be executed on the P-
MEC server. Therefore, in the process of offloading decision
construction, it is necessary to check whether (11) is satisfied
to ensure that the P-MEC computing mode is feasible.

Since Rij and Rji are equal to Rij and Rji in the cooper-
ative computing mode, respectively, (13) is equivalent to (16).
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In conclusion, a feasible candidate mode of Ui is subject to
0 ≤ Ci

Tmaxi

≤ rmaxj , if j = i

0 ≤ Ci

Tmaxi − Di

Rij
− Bi

Rji

≤ rmaxj , if j 6= i
, ∀i ∈ N

(17)
The details of the candidate mode pruning are shown in

Algorithm 2. Based on (17), the feasibility of each candidate
mode for each task is checked in turn. For a candidate mode,
if (17) is satisfied, it is considered feasible and added to the
feasible candidate mode set; otherwise, it is pruned. Finally,
the feasible candidate mode set of each task is generated.

After pruning, the size of the solution space is
n∏
i=1

|Mi|, where

Mi denotes the feasible candidate mode set of Ui and |Mi|
denotes its size. Due to |Mi| ≤ n+ 1,

n∏
i=1

|Mi| ≤ (n+ 1)n.

As a result, the size of the solution space may be reduced
significantly. More importantly, since infeasible modes have
been pruned, it is beneficial to rapidly construct feasible
offloading decisions.

D. Lower Level Optimization

The objective of the lower level optimization is to minimize
the total computation energy consumption of all mobile users
through optimizing the computation resource allocation r
under given offloading decision o, which can be formulated
as

min
r

n∑
i=1

n∑
j=1

oijE
c
ij(rij) (18)

s.t. C3− C6.

Substituting (2) to (18), the lower level optimization prob-
lem can be rewritten as

min
r

n∑
i=1

n∑
j=1

oijk(rij)
2Ci (19)

s.t. C3− C6.

It can be seen from (19) that there is a strictly monotonic
increasing relationship between computation resources and the
total computation energy consumption. In order to minimize
the total computation energy consumption of all mobile users,
the computation resources allocated to each task should be
as few as possible. However, when Ui is executed in mode
j (i.e., oij = 1), to ensure that C6 is satisfied, the amount
of the computation resources allocated to Ui must at least
satisfy the minimum demand rminij in (10). In addition, if rij =
rminij , C3 − C5 are certainly satisfied. The reason is that if
they are not satisfied, mode j cannot be assigned to Ui when
constructing the offloading decision. Therefore, the optimal
resource allocation can be given as

r∗ij =

{
rminij , if oij = 1

0, otherwise
, ∀i ∈ N , j ∈Mi (20)

Algorithm 3 Offloading Decision Construction
1: Generate task priorities based on the sorting strategy: L = {l1, . . . , ln};

// lk (k ∈ {1, . . . , n}) denotes the index of the task with priority level
k

2: o = 0; // Initialize the offloading decision
3: for k = 1 to n do
4: i← lk;
5: if {0} ⊂ Mi then
6: if (11) is not satisfied then
7: Mi ←Mi\{0};
8: end if
9: end if

10: if Mi 6= ∅ then
11: Calculate the probability that each feasible candidate mode inMi

is assigned to Ui based on (21);
12: Select mode j from Mi based on (24) and set oij = 1;
13: if j > 0 then
14: Update the feasible candidate mode sets of the tasks that have

not yet been assigned any modes;
15: end if
16: Update the local pheromone in ACS based on (27);
17: end if
18: end for
19: return o

E. Upper Level Optimization

The goal of the upper level optimization is to optimize
the offloading decision for minimizing the total energy con-
sumption of all mobile users including the total transmission
and computation energy consumption. As introduced in Sec-
tion IV-A, making use of deterministic algorithms such as
branching is not a good choice to seek the optimal solution
of this problem. As population-based stochastic algorithms,
evolutionary algorithms (EAs), such as PSO, differential evo-
lution (DE), and ACS, are widely applied to address NP-hard
problems [36]–[38]. In this paper, ACS is applied to optimize
the offloading decision. The reasons are listed as follows:
• The offloading decision in this paper is a combinatorial

optimization problem with categorical variables, and ACS
has been shown to be particularly successful in solving
such kind of problems [35].

• Because all variables in the solution obtained by other
EAs, such as PSO and DE, are generated simultaneously,
all tasks are assigned modes simultaneously when using
other EAs to optimize the offload decision. As a result,
multiple tasks may be executed on the same mobile
device. However, each mobile device can only accept
at most one task in this paper (i.e., C2). In contrast,
since each variable in the solution obtained by ACS is
generated one by one, each task is assigned a mode one
by one when using ACS to optimize the offload decision.
Once a task is assigned to a mobile device, this mobile
device will not accept other tasks, which ensures that each
mobile device can only accept at most one task.

In this paper, ACS consists of four components: offloading
decision construction, fitness evaluation, local search, and
pheromone management.

1) Offloading Decision Construction: For each task, an
ant selects a mode from its feasible candidate mode set. By
doing this, an offloading decision is obtained. Note that if the
feasible candidate mode set is empty, the corresponding task
is abandoned. Algorithm 3 presents the construction of an
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(b) Task priorities after applying
the sorting strategy

Fig. 2. Illustration of the working principle of the proposed sorting strategy.
There are three tasks, i.e., U1, U2, and U3, and three feasible candidate mode
sets. Each task is assigned one of the feasible candidate modes in turn.

offloading decision.
Before assigning the mode, task priorities should be gen-

erated, which are random in general [36], [39]. However, in
this way, it is not conducive to constructing feasible offloading
decisions. Fig. 2(a) shows an example with random priorities,
where U1, U2, and U3 are assigned modes in turn. In this case,
if U1 or U2 is executed in mode 1, U3 cannot be executed
since it can only be executed in mode 1. To construct feasible
offloading decisions efficiently, in this paper, a sorting strategy
is proposed to generate task priorities L = {l1, . . . , ln},
where lk (k ∈ {1, . . . , n}) denotes the index of the task with
priority level k (line 1). This sorting strategy sorts all tasks in
ascending order of the number of feasible candidate modes,
which means that the tasks with fewer feasible candidate
modes have higher priorities. Fig. 2(b) shows the task priorities
after applying the sorting strategy, where L = {3, 2, 1}, i.e.,
U3 is the first, U2 is the second, and U1 is the last. It is easy
to find that all tasks can be executed (i.e., U1, U2, and U3 are
executed in modes 3, 2, and 1, respectively).

After task priorities are generated, the offloading decision is
initialized (i.e., o = 0). According to the priority of a task, a
mode selected from the feasible candidate mode set is assigned
to this task. For Ui, if mode 0 (i.e., the P-MEC computing
mode) is one of its feasible candidate modes, as mentioned
earlier, it is necessary to check whether (11) is satisfied when
Ui is executed on the P-MEC server. If not, this mode should
be removed from its feasible candidate mode set Mi (lines
5− 9).

Next, if Mi is not empty, the probability that each feasible
candidate mode is assigned to Ui is given as [40]

prij =
τijη

β
ij∑

k∈Mi

τikη
β
ik

, ∀i ∈ N , j ∈Mi (21)

where τ is the pheromone, η is the heuristic information, and
β is a parameter to determine the relative importance between
the pheromone and heuristic information. In this paper, the
heuristic information is defined as

ηij =
1

EIij
, ∀i ∈ N , j ∈Mi (22)

where EIij is the increment of the total energy consumption

when mode j is assigned to Ui. Thus, the smaller the increment
of the total energy consumption, the higher the probability that
mode j is assigned to Ui in (21). EIij is calculated as

EIij =


∑

k∈A
⋃
{i}
Etkj(o)−

∑
k∈A

Etkj(o), if j = 0

Ecij(r
min
ij ), if j = i

Etij(o) + Ecij(r
min
ij ), otherwise

, ∀i ∈ N

(23)
where A denotes the set of all tasks that have been implement-
ed in the P-MEC computing mode, and rminij is the minimum
demand of computation resources given in (10).

Then, mode j is selected and assigned to Ui (i.e., oij = 1),
according to the following rule [40]

j =

arg max
k∈Mi

τikη
β
ik, if q ≤ q0

J, otherwise
(24)

where q is a random number uniformly distributed over [0,
1], q0 is a parameter, and J is a mode selected from Mi by
using the roulette wheel selection based on (21).

Afterward, if j > 0, that is, Ui is executed in the local
computing mode or cooperative computing mode, other tasks
cannot be executed in mode j in order to ensure that C2 is
satisfied. Therefore, the feasible candidate mode sets of the
tasks that have not yet been assigned any modes are updated by
removing mode j (lines 16−18). Finally, the local pheromone
is updated (line 19), which will be introduced in Section IV-E4.
The above procedure is repeated until NP offloading decisions
are constructed.

2) Fitness Evaluation: After offloading decisions have been
constructed, the corresponding optimal allocation of compu-
tation resources of each offloading decision is obtained in the
lower level optimization, which has been introduced in Section
IV-D. Then, the performance of a solution consisting of an
offloading decision and its optimal allocation of computation
resources can be evaluated. In fact, it is difficult to guarantee
that all tasks can be completed under a heavy load condition.
It is because some tasks may have no feasible candidate
mode under this condition. As a result, these tasks will be
abandoned, which means that there may not exist any feasible
solution for P . To this end, we first maximize the number
of tasks being completed, and then minimize the total energy
consumption of these tasks. Thus, two fitness functions are
proposed to evaluate the performance of solutions. The first
fitness function calculates the number of tasks in a solution that
can be completed, and the second fitness function calculates
the total energy consumption to complete these tasks. These
two fitness functions are given as

F1(o) =

n∑
i=1

n∑
j=0

oij , (25)

F2(o, r∗) =

n∑
i=1

(

n∑
j=1

oijE
c
ij(r
∗
ij) +

n∑
j=0,j 6=i

oijE
t
ij(o)) (26)

For two solutions, the solution with a large F1 value is
preferred. If they have the same F1 value, the solution with a
small F2 value is preferred.
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total energy consumption as heuristic 

information in Section IV-E
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Incorporate a sorting strategy into 

ACS  to produce feasible offloading 

decisions with a higher probability

 in Section IV-E1

Monotonic optimization method 

in Section IV-D

Fig. 3. Challenges and our techniques used in this paper.

3) Local Search: After the fitness evaluation, if the
iteration-best solution {ob, rb} is a feasible solution, a local
search operator is performed on it to accelerate the conver-
gence. Note that if the mode assigned to a task is switched to
the P-MEC computing mode or from the P-MEC computing
mode to another, the interference among mobile uers will be
changed, resulting in a change in their uplink data rate. As a
result, the optimal allocations of computation resources need
to be recomputed. It is a complicated process. For simplicity, in
this paper, we only consider that the mode of a task is switched
from one to another, each of them is not the P-MEC computing
mode. In addition, to ensure that each mobile device accepts
at most one task, the switched mode should not be assigned
to other tasks.

In the local search, firstly, task priorities are generated.
Then, each task of {ob, rb} is checked according to its priority.
For each feasible candidate mode (denoted as j′) of Ui, if the
total energy consumption is reduced after the mode assigned
to Ui is switched to j′, then this adjustment is successful and
acceptable. The above procedure is repeated until each feasible
candidate mode of each task is checked.

4) Pheromone Management: After a task is assigned a
mode, the local pheromone is updated to reduce the probability
that the same task is assigned the same mode in different
solutions. The local pheromone updating rule is given as

τij = (1− ϕ)τij + ϕτ0, ∀i ∈ N , j ∈Mi (27)

where ϕ is the pheromone decay coefficient and τ0 is the initial
value of the pheromone.

At the end of each generation, the global pheromone is
updated based on {ob, rb}, with the aim of increasing the
pheromone values associated with the promising solutions.
The global pheromone updating rule is given as

τij =

{
(1− ρ)τij + ρ∆τij , if obij = 1

τij , otherwise
, ∀i ∈ N , j ∈Mi

(28)

where ρ is the pheromone decay parameter, and

∆τij =
1

F2(ob, rb)
, ∀i ∈ N , j ∈Mi (29)

F. Discussion

1) Challenges and Our Techniques: Fig. 3 summarizes
the challenges and our techniques used in this paper. To
address challenges 1 and 2, P in (8) is first transformed
into a bilevel optimization problem P1 in (9). Then, an ACS
with the sorting strategy and the local search is proposed for
handing challenges 3, 4 and, 5 derived from the offloading
decision in the upper level. In addition, we also perform
the candidate mode pruning to alleviate challenge 4. Finally,
the monotonic optimization method is employed to allocate
computation resources in the lower level. By utilizing these
techniques to tackle challenges 1-5, the optimal offloading
decision and computation resource allocation can be obtained.

2) Computational Time Complexity of BiJOR: In the
initialization phase, we check the feasibility of each mode
for each task; thus, the computational time complexity of
the candidate mode pruning is O(n2). In the offloading
decision construction phase, each ant selects one mode from
the feasible candidate mode set for each task. Therefore, each
ant requires n · |Mi| computations and NP ants require
NP · n · |Mi| ≤ NP · n · (n + 1) computations due to
|Mi| ≤ n + 1. In the lower level optimization phase, for
each task, it is necessary to calculate the optimal allocation of
computation resources for the given offloading decision; thus,
it requires NP · n computations. In addition, since the mode
of each task is adjusted at most (n − 1) times in the local
search, the computational time complexity of the local search
is O(n2). Thus, the overall computational time complexity of
BiJOR is O(NP · n2).

3) Implementation of BiJOR: The implementation of
BiJOR consists of the following three steps.
• Step 1: All mobile devices submit their own information,

e.g., the channel states and the information of compu-
tation tasks (i.e., Ci, Di, Bi, and Tmaxi ), to the base
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station. Such information can be transmitted through the
physical uplink control channel (PUCCH) in the current
LTE network or the corresponding control channel in the
future 5G network, as it only includes several bits and
does not incur much cost.

• Step 2: The base station conducts BiJOR, which will
decide the scheduling and the computation resource al-
location for each mobile device. The base station then
sends the above instructions to each mobile device. This
information can be sent via the physical downlink control
channel (PDCCH) in the current LTE or the future 5G
network.

• Step 3: Each mobile device executes the offloading deci-
sion and applies the corresponding computation resource
allocation based on the instructions received from the
base station. The information transmission to the P-
MEC can be done via the physical uplink shared channel
(PUSCH) in the current LTE or the future 5G network.
In addition, the information transmission to other mobile
devices can be done via the Device to Device (D2D)
mode, which has been standardized in LTE [41].

To sum up, our algorithm can be incorporated into existing
LTE standard.

Remark 2. In real networks, poor network conditions may
result in retransmissions, which can increase the transmission
time of tasks. Therefore, tasks may not be completed under the
preset delay constraint. A possible way to solve this problem
is to tighten the delay constraint in the optimization process
of BiJOR. This will be achieved in our future work by the fol-
lowing three steps: checking the network status, estimating the
possible delay, and adjusting the delay constraint accordingly
in our algorithm.

V. EXTENSION

In this section, we extend BiJOR to deal with a complex
scenario with the channel selection to further optimize com-
munication resources. We assume that there are k wireless
channels denoted as K = {1, 2, . . . , k}, and matrix c indicates
the channel selection, where cil = 1 (i ∈ N and l ∈ K) if
Ui is transmitted via channel l; otherwise, cil = 0. Different
from Section III, we assume that the tasks executed in different
modes can be transmitted through the same channel. In this
scenario, the transmission model and delay model should be
reformulated accordingly.

The uplink data rate of Ui in mode j via channel l can be
formulated as

Ruijl(c) = Wlog2

1 +
ptiHij

w +
n∑

h=1,h6=i
chlpthHhj

 ,

∀i ∈ N , j ∈M\{i}, k ∈ K

(30)

Subsequently, the transmission time of Ui in mode j via
channel l is given as

T tijl(c) =
Di

Ruijl(c)
+

Bi
Rdjil(c)

, ∀i ∈ N , j ∈M\{i}, l ∈ K

(31)

We can obtain the transmission energy consumption of Ui in
the P-MEC computing mode and cooperative computing mode
via channel l. They are expressed as (32) and (33), respectively

Etijl(c) =
ptiDi

Rijl(c)
+

priBi
Rjil(c)

, ∀i ∈ N , j = 0, l ∈ K (32)

and

Etijl(c) =
ptiDi

Rijl(c)
+

prjDi

Rijl(c)
+

ptjBi

Rjil(c)
+

priBi
Rjil(c)

,

∀i ∈ N , j ∈M\{0, i}, l ∈ K
(33)

Also, the total time to execute Ui in mode j is given as

Tij(c, rij) =


T cij(rij), if j = i
k∑
l=1

cilT
t
ijl(c) + T cij(rij), otherwise

, ∀i ∈ N

(34)
For minimizing the total energy consumption of all mobile

users, we jointly optimize the offloading decision, channel
selection, and computation resource allocation, which is for-
mulated as

P2 : min
o,c,r

n∑
i=1

 n∑
j=1

oijE
c
ij(rij) +

n∑
j=0,j 6=i

k∑
l=1

oijcilE
t
ijl(c)


(35)

s.t. C1− C5,

C6 : 0 ≤
n∑
j=0

oijTij(c, rij) ≤ Tmaxi ,∀i ∈ N ,

C7 :

k∑
l=1

cil ≤ 1,∀i ∈ N

where C6 ensures that each task is completed under the delay
constraint, and C7 states that data can only be uploaded
through at most one channel.
P2 can also be transformed into a bilevel optimization

problem. The offloading decision and channel selection are
optimized in the upper level to minimize the total energy
consumption of all mobile users, and the computation resource
allocation is obtained in the lower level, with the purpose of
minimizing the total computation energy consumption of all
mobile users. This bilevel optimization problem is formulated
as

P3 : min
o,c,r

n∑
i=1

 n∑
j=1

oijE
c
ij(rij) +

n∑
j=0,j 6=i

k∑
l=1

oijcilE
t
ijl(c)


(36)

s.t. r ∈ arg min
r


n∑
i=1

n∑
j=1

oijE
c
ij(rij) : C3− C6


C1, C2, and C7

We can see that P2 and P3 have the same optimal solution.
Proof : The proof is similar to Theorem 1 in Appendix of

the supplementary file and it is omitted.

In fact, the change from P1 to P3 does not affect the
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Fig. 4. Performance comparison of exhaustive search and BiJOR in terms
of the average EC(J) value on instance suite I.

candidate mode pruning and the lower level optimization in
BiJOR. However, compared with P1, we need to not only
optimize the offloading decision, but also select the channel
in the upper level optimization of P3; therefore, the upper
level optimization of BiJOR should be updated.

In the upper level optimization, for each task, an ant selects
a combination of a mode and a channel. The probability that
each combination of mode j and channel l is assigned to Ui
is calculated as

prijl =
τijlη

β
ijl∑

h∈Mi

∑
v∈Ki

τihvη
β
ihv

, ∀i ∈ N , j ∈Mi, l ∈ Ki (37)

where Ki denotes the candidate channel set of Ui.
The heuristic information is calculated as

ηijl =
1

EIijl
, ∀i ∈ N , j ∈Mi, l ∈ Ki (38)

where EIijl represents the increment of the total energy con-
sumption when mode j and channel l are assigned to Ui.

Subsequently, the combination of mode j and channel l is
obtained as

(j, l) =

 arg max
h∈Mi,v∈Ki

τihvη
β
ihv, if q ≤ q0

J ′, otherwise
(39)

where J ′ is a combination of a mode and a channel selected
by the roulette wheel selection based on (37).

The fitness evaluation and pheromone management are
similar to those in Section IV-E. Since there exists interference
among mobile users in the cooperative computing mode in this
scenario, the implementation of the local search will be quite
complicated; thus, it is no employed any more.

In addition, since each ant selects a combination of a
mode and a channel for each task in the offloading decision
construction phase, each ant requires n · |Mi| ·k computations.
Consequently, the overall computational time complexity of
BiJOR increases from O(NP · n2) to O(NP · n2 · k). Note,
however, that we do not need to add any extra components to
BiJOR in this scenario.

VI. EXPERIMENTAL STUDIES

A. Experimental Settings

Two instance suites with different scales were used to verify
the effectiveness of BiJOR, which are instance suite I with a
small number of mobile users, i.e., n = {6, 7, 8, 9, 10}, and
instance suite II with a large number of mobile users, i.e.,
n = {20, 50, 80, 100, 120, 150, 200, 300, 400}.

The population size and maximum generation number of
BiJOR were set as NP = 50 and genmax = 300, and other
parameter settings of BiJOR were consistent with [40]: β =
2, q0 = 0.9, ϕ = ρ = 0.1, and τ0 = (n · EC)−1, where EC
is the total energy consumption obtained by the greedy search
with the sorting strategy in Section S-III of the supplementary
file. Moreover, BiJOR was independently run 30 times on each
instance.

We assumed that all mobile users were randomly distributed
in a 2000m ∗ 2000m region and the base station was located
in the center of the region. Besides, Ci (i ∈ N ) was ran-
domly distributed within [10, 2500]Mega Cycles (MCycles),
Di (i ∈ N ) was randomly distributed within [1, 600]KB,
Bi (i ∈ N ) was randomly distributed within [0.1, 100]KB,
and the computing capability of each mobile device was a
random one of four specifications, which are 0.5GHz, 0.8GHz,
1.0GHz, and 1.5GHz, respectively. Similar to [5], the channel
gain was given as H = d−4, where d is the propagation
distance. In addition, Tmaxi (i ∈ N ) was set to 1.0s, W was
20MHz, pti and pri (i ∈ N ) were 1.3W and 0.8W, respectively,
w was −100dBm, rmax0 was 200GHz, and k was 10−27.

In this paper, three performance indicators were adopted,
i.e., the acceptance number (AN) [42], success rate (SR) [43],
and total energy consumption (EC) [28]. AN records the num-
ber of tasks that can be completed under the delay constraint.
SR is the percentage of successful runs over 30 independent
runs. In this paper, a run is regarded as a successful run if all
the tasks can be completed. If an algorithm can achieve 100%
SR, EC is calculated based on (26).

B. Comparison with Exhaustive Search

To verify the effectiveness of BiJOR on small-scale in-
stances, it was compared with exhaustive search on instance
suite I. Exhaustive search is the brute-force search method
and is capable of finding the global optimal solution, but
suffers from high computational burden. In this subsection,
only the third performance indicator, i.e., EC, was employed
for comparison, since all the tasks can be completed by these
two algorithms on each instance.

Fig. 4 shows the average EC values provided by BiJOR
over 30 independent runs and the EC values resulting from
exhaustive search. From Fig. 4, we can observe that BiJOR
obtains the same results with exhaustive search on each
instance, which means that BiJOR is able to find all the global
optimal solutions of instance suite I.

C. Comparison with ACS-CLPSO

Instance suite II was further utilized to investigate the
effectiveness of BiJOR on large-scale instances. Due to the
high computational burden of exhaustive search on large-
scale instances, it was no longer a competitor. Instead, a
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Fig. 5. Performance comparison of ACS-CLPSO, BiJOR-WoL-WP, and
BiJOR-WoL in terms of the average EC(J) value on instance suite II.
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Fig. 6. Evolution of the average EC(J) values provided by ACS-CLPSO and
BiJOR-WoL on three instances.

single-level optimization approach consisting of two state-of-
the-art algorithms (i.e., ACS [40] and CLPSO [44]), called
ACS-CLPSO, was under our consideration for comparison.
CLPSO is a comprehensive learning particle swarm optimizer,
in which a learning strategy is proposed to update a par-
ticle’s velocity based on all other particles’ historical best
information. Different from the nested structure of BiJOR,
the offloading decision and computation resource allocation
of each solution in ACS-CLPSO were generated separately,
so it was viewed as a single-level optimization algorithm.
Both ACS-CLPSO and BiJOR employed ACS to generate the
offloading decision, but the difference was that CLPSO, rather
than the monotonic optimization method, was employed in
ACS-CLPSO to optimize the computation resource allocation.
The parameter settings of ACS in ACS-CLPSO were the same
with those in BiJOR. In addition, the parameter settings of
CLPSO were consistent with the original paper [44].

Since the local search of BiJOR is not suitable for ACS-
CLPSO, a BiJOR variant without the local search, named as
BiJOR-WoL, was compared with ACS-CLPSO for fairness.
Both BiJOR-WoL and ACS-CLPSO were run 30 times inde-
pendently.

Fig. 5 plots the average EC values of BiJOR-WoL and
ACS-CLPSO over 30 independent runs. Moreover, the worst-
case performance of BiJOR-WoL (called BiJOR-WoL-WP)
over 30 independent runs was also presented. From Fig. 5,
even BiJOR-WoL-WP shows better performance than ACS-
CLPSO on all instances. In addition, BiJOR-WoL can provide
an increasing advantage over ACS-CLPSO as the number of
mobile users grows. Specifically, when n = 20, 50, 80, 100,
120, 150, 200, 300, and 400, the performance improvement
rates of BiJOR-WoL against ACS-CLPSO are 6.45%, 8.88%,
12.34%, 12.82%, 13.30%, 15.00%, 16.29%, 16.58%, and
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Fig. 7. Performance comparison of BiJOR and four other algorithms in terms
of the average AN value.

17.27%, respectively. In addition, Fig. 6 presents the evolution
of the average EC values derived from BiJOR-WoL and ACS-
CLPSO when n = 200, 300, and 400. From Fig. 6, it is clear
that BiJOR-WoL can obtain high-quality solutions in the initial
phase and then converges quickly. In contrast, ACS-CLPSO
converges from poor initial solutions to local optimal solutions.

The above phenomenon can be explained as follows. In
ACS-CLPSO, the offloading decision and computation re-
source allocation are generated independently, which may
bring two drawbacks. On the one hand, the amount of the
computation resources allocated may be greater than that of
the computation resources available. It is because the avail-
able computation resources are determined by the offloading
decision, but the allocated computation resources in ACS-
CLPSO have no relationship with the offloading decision. On
the other hand, it is very possible that ACS-CLPSO generates
one solution consisting of a “good” offloading decision yet
a “bad” computation resource allocation. Then, it is deemed
unpromising as a whole based on (26) and will be discarded,
which signifies that ACS-CLPSO cannot assess the quality
of offloading decisions accurately. On the contrary, BiJOR-
WoL is able to obtain the corresponding optimal allocation
of computation resources and, as a result, the promising
offloading decisions can be maintained.

D. Effectiveness of the CoMECO System

In this subsection, we are interested in studying the effec-
tiveness of the CoMECO system. To this end, we compared
BiJOR with the following four algorithms:
• Local execution (LE): All tasks are executed locally.
• P-MEC execution (PE): The P-MEC server accepts all

the offloading requests.
• Binary MEC offloading algorithm (BOA): Tasks may be

executed on local devices or the P-MEC server, as in [23]
and [24].

• Cooperative MEC offloading algorithm (COA): Tasks
may be executed on local devices or cooperative devices,
as in [13].

Note that the resource allocation schemes of the above four
algorithms are the same as that of BiJOR defined in Sec-
tion IV-D.

The performance comparison between BiJOR and these four
algorithms is presented in Fig. 7. Since LE, PE, BOA, and
COA cannot guarantee 100% SR on all instances, the AN
values were investigated. From Fig. 7, it can be observed that
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BiJOR and BOA can obtain the best results on instance suite I.
On instance suite II, BiJOR provides the best results, followed
by COA. In addition, LE and PE show the worst performance
on instance suite I and instance suite II, respectively. With
respect to LE and PE, we would like to give the following
comments:
• Owing to the physical limitations of mobile devices,

it is difficult for them to complete tasks that require
high computation resources. Therefore, LE is unable to
ensure that all tasks can be completed even on small-scale
instances. It is interesting to see that the rate between
the mean AN value and the number of tasks in LE is
similar on each case of instance suite II. It is because
each task is executed locally and the interference among
mobile users can be avoided. Thus, its performance is not
affected significantly by the scale of the instances.

• The P-MEC server can provide rich computation re-
sources for mobile users, which can help mobile users to
execute resource-intensive tasks. Therefore, PE performs
well on small-scale instances. However, due to the system
bandwidth limitation, the P-MEC server can only accept
a certain number of tasks. As a result, the performance
of PE drastically degrades as the scale of the instances
increases.

By combining the advantages of the P-MEC server and
mobile devices, the CoMECO system can effectively alleviate
the above problems and BiJOR achieves the best performance.

Remark 2. In the supplementary file, we investigated the
feasibility of BiJOR in the dynamic scenario, effect of the up-
per level optimization method, and effectiveness of the sorting
strategy and the local search. In addition, we also studied the
effects of the number of mobile users and generations, channel
number, and delay constraint.

VII. CONCLUSION

In this paper, a multi-user cooperative MEC offloading
(CoMECO) system for delay-sensitive tasks in a multi-user
interference environment was studied. A joint offloading deci-
sion and computation resource allocation problem was formu-
lated to achieve the energy-efficient task execution in this sys-
tem under the delay constraint. This problem was transformed
into a bilevel optimization problem, in which the offloading
decision is the upper level optimization problem and the
computation resource allocation is the lower level optimization
problem. Afterward, a bilevel optimization method (BiJOR)
was proposed. In the upper level optimization of BiJOR, ant
colony system (ACS) with a sorting strategy was adopted
to seek the promising offloading decisions, and then the
optimal resource allocation corresponding to each offloading
decision was obtained by the monotonic optimization method
in the lower level optimization. Moreover, if the iteration-best
solution is a feasible solution, a local search operator was
designed to accelerate the evolution. Additionally, BiJOR was
extended to deal with a complex scenario with the channel
selection.

BiJOR was applied to two instance suites with different
scales and compared with exhaustive search and a single-level

optimization method (ACS-CLPSO). The experimental results
demonstrated the effectiveness of BiJOR. In addition, the
superiority of the CoMECO system was tested by comparing
BiJOR with four other algorithms. In the future, we will study
the multi-objective optimization and take retransmissions into
account in the CoMECO system.
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Approach for Joint Offloading Decision and

Resource Allocation in Cooperative Mobile Edge
Computing”

S-I. FEASIBILITY OF BIJOR IN THE DYNAMIC SCENARIO

TABLE S-I
THE MAXIMUM TIME TO COMPLETE ALL TASKS ON INSTANCE SUITE II IN THE DYNAMIC SCENARIO.

n 20 50 80 100 120 150 200 300 400
T (s) 1.0011 1.0027 1.0017 1.0003 1.0017 1.002 1.0085 1.0017 1.0019

In previous experiments, all the scenarios are static. However, the real scenarios may be dynamic. To investigate the feasibility
of BiJOR in the dynamic scenario, we considered a dynamic scenario where mobile users are moving and the maximum speed
is 5m/s. Due to the fact that the delay constraint Tmax

i was set to 1s in this paper, the distance between the positions where
each mobile user uploads data and receives results is no more than 5m. Therefore, we first defined a circular area. The center of
this circular area was the location where a mobile user uploads data and its radius was 5m. The location where the mobile user
receives results was then randomly generated within this circular area. Subsequently, the offloading decision and computation
resource allocation obtained by BiJOR in the static scenario were applied to this dynamic scenario and the maximum time to
complete all tasks on instance suite II are recorded in Table S-I.

As shown in Table S-I, the maximum time to complete all tasks exceeds the delay constraint, which means that some tasks
cannot be completed under the delay constraint due to the mobility of mobile users. However, the maximum time in each
instance is less than 1.01s, i.e., the time exceeded is less than 0.01s. If this exceeded time is acceptable, it is clear that BiJOR
is feasible. If not, we can tighten the delay constraint in the optimization process. Specifically, we set Tmax

i to 0.99s. Through
experiments, we find that in this way, all tasks are completed under the delay constraint. We can conclude that BiJOR in the
dynamic scenario is still feasible.
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S-II. EFFECT OF THE UPPER LEVEL OPTIMIZATION APPROACH

TABLE S-II
PERFORMANCE COMPARISON OF BIJOR-GS, BIJOR-PSO, AND BIJOR IN TERMS OF THE AVERAGE AN VALUE, SR VALUE, AND AVERAGE EC(J)

VALUE ON INSTANCE SUITE II.

n
BiJOR-GS BiJOR-PSO BiJOR

Average AN SR Average EC Average AN SR Average EC Average AN SR Average EC
20 20.0 100.0% 7.9624 14.2 0.0% \ 20.0 100.0% 6.8197
50 50.0 100.0% 30.6620 31.6 0.0% \ 50.0 100.0% 22.4660
80 79.8 90.0% \ 47.4 0.0% \ 80.0 100.0% 33.8958
100 98.2 6.7% \ 58.5 0.0% \ 100.0 100.0% 53.2827
120 117.7 0.0% \ 72.1 0.0% \ 120.0 100.0% 66.9925
150 141.1 0.0% \ 87.8 0.0% \ 150.0 100.0% 86.2902
200 198.2 0.0% \ 116.9 0.0% \ 200.0 100.0% 112.5012
300 282.3 0.0% \ 172.4 0.0% \ 300.0 100.0% 174.2470
400 395.0 0.0% \ 245.6 0.0% \ 400.0 100.0% 273.5903

The upper level optimization plays a vital role in BiJOR because BiJOR may be inefficient if the upper level optimization
is unable to find the promising offloading decisions. To verify this, an additional experiment was conducted, in which greedy
search and PSO were adopted to replace ACS as the upper level optimization approach of BiJOR, and the resultant algorithms
were recorded as BiJOR-GS and BiJOR-PSO, respectively. BiJOR-GS firstly randomly generates task priorities, and then each
task is assigned a mode in turn. Specifically, if a feasible candidate mode set of a task is not empty, the mode that generates
the smallest increment of total energy consumption is assigned to this task; otherwise, this task will not be executed. In BiJOR-
PSO, a discrete version PSO (BPSO) was adopted as the upper level optimization approach [1]. Since it cannot be directly
used to optimize the offloading decision with multiple candidate modes, BPSO was slightly modified to assign the mode with
the maximum speed to the task. Our experiment focused on instance suite II and the AN values, SR values, and average EC
values of BiJOR-GS, BiJOR-PSO, and BiJOR over 30 independent runs are presented in Table S-II.

As shown in Table S-II, the average EC values derived from BiJOR-GS are greater than those derived from BiJOR on
the instances with a small number of mobile users, e.g., n = 20 and 50. In addition, in the case of n ≥ 80, BiJOR-GS
cannot ensure that all tasks can be completed in each run. When n ≥ 120, BiJOR-GS cannot provide any successful run. In
addition, the average AN value derived from BiJOR-PSO is less than the number of mobile users on each instance, which
means that BiJOR-PSO cannot guarantee that all tasks are completed under the delay constraint on each instance. Moreover,
we can observe that the SR value provided by BiJOR-PSO is 0% on each instance, which further demonstrates that BiJOR-PSO
cannot achieve any successful run. The above experimental results suggest that as the upper level optimization approach of
BiJOR, ACS is significantly superior to greedy search and PSO, and that the upper level optimization method greatly affects
the performance of BiJOR.
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S-III. EFFECTIVENESS OF THE SORTING STRATEGY
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Fig. S-1. Performance comparison of BiJOR-WoS and BiJOR in terms of the average EC(J) value on instance suite II.

TABLE S-III
PERFORMANCE COMPARISON OF BIJOR AND BIJOR-GS-WS IN TERMS OF THE SR VALUE AND AVERAGE EC(J) VALUE ON INSTANCE SUITE II.

n
BiJOR-GS-WS BiJOR

SR Average EC SR Average EC
20 100.0% 7.4973 100.0% 6.8197
50 100.0% 22.4845 100.0% 22.4660
80 100.0% 49.1191 100.0% 33.8958
100 100.0% 62.9260 100.0% 53.2827
120 100.0% 80.3290 100.0% 66.9925
150 100.0% 113.0946 100.0% 86.2902
200 100.0% 127.2854 100.0% 112.5012
300 100.0% 202.3134 100.0% 174.2470
400 100.0% 321.1865 100.0% 273.5903

In this paper, a sorting strategy is implemented in the offloading decision construction of BiJOR. In order to study how
the performance of BiJOR is influenced by this strategy, a variant of BiJOR, called BiJOR-WoS, was proposed, in which the
sorting strategy was replaced with the random sorting. The experimental results of BiJOR-WoS and BiJOR are presented in
Fig. S-1. As demonstrated in Fig. S-1, BiJOR-WoS and BiJOR almost achieve the same average EC values when n = 20, 50,
and 80. However, the performance difference between BiJOR-WoS and BiJOR is clear in terms of a large number of mobile
users. This is because the sorting strategy has the capability to produce feasible offloading decisions with a higher probability,
which is beneficial to seek the optimal solution.

Actually, this sorting strategy can also be incorporated into greedy search since it needs to generate task priorities before
assigning a mode to a task. A question which arises naturally is: how this sorting strategy affects the performance of greedy
search. The performance of greedy search with this sorting strategy (denoted as BiJOR-GS-WS) was validated by comparing
with BiJOR on instance suite II.

Table S-III presents the SR values and average EC values obtained by BiJOR-GS-WS and BiJOR over 30 independent runs.
As shown in Table S-III, BiJOR-GS-WS can ensure that all tasks are completed under the delay constraint. Hence, this sorting
strategy can significantly improve the performance of greedy search. But it is worth noting that the performance of BiJOR still
has an edge over that of BiJOR-GS-WS in terms of the average EC value, which suggests again that ACS is a better choice
for the upper level optimization approach of BiJOR.



4

S-IV. EFFECTIVENESS OF THE LOCAL SEARCH
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Fig. S-2. Performance comparison of BiJOR-WoL and BiJOR in terms of the average EC(J) value on instance suite II.
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Fig. S-3. Evolution of the average EC(J) values provided by BiJOR-WoL and BiJOR on instance suite II.

In this subsection, we investigated the contribution of the proposed local search operator on the performance of BiJOR.
To this end, we compared the performance of BiJOR with BiJOR-WoL on instance suite II. Fig. S-2 reports the comparison
results of these two algorithms in terms of the average EC value.

As can be seen, on all instances except n=20, 50, 80, and 100, BiJOR performs better than BiJOR-WoL. To further validate
the effectiveness of the local search operator, Fig. S-3 shows the evolution of the average EC values provided by BiJOR-WoL
and BiJOR when n = 200, 300, and 400. From Fig. S-3, it is clear that the convergence of BiJOR is significantly faster than
that of BiJOR-WoL. The above experimental results verify the effectiveness of the local search operator.
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S-V. EFFECT OF THE NUMBER OF MOBILE USERS AND GENERATIONS
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Fig. S-4. Evolution of the average EC(J) values provided by BiJOR for five different numbers of mobile users.

To study the effect of the number of mobile users and generations, we considered the number of mobile users with five
different values: n = 20, 120, 200, 300, and 400. The evolution of the average EC values provided by BiJOR is shown in
Fig. S-4. From Fig. S-4, with the increasing number of mobile users, BiJOR needs more generations to converge. However,
BiJOR can converge in all cases before 100 generations.
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S-VI. EFFECT OF THE CHANNEL NUMBER
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Fig. S-5. Average EC(J) values of the CoMECO system with 16 different k in the case of n = 80.

In this subsection, we studied the effect of the channel number on the performance of the CoMECO system in the complex
scenario with the channel selection. We tested the CoMECO system with 16 different channel numbers in the case of n = 80:
k = 6, 11, . . . , 81. The experimental results are shown in Fig. S-5. From Fig. S-5, the average EC value decreases as k
increases, and when k ≥ 26, it remains nearly the same. The reason is explained in the following. When k is small, the
interference among mobile devices is severe, resulting in a low transmission rate and high transmission energy consumption.
Meanwhile, the demand of computation resources increases correspondingly, which leads to an increase in the computation
energy consumption. As k increases, the interference among mobile devices becomes weak and the average EC value decreases.
When k is large, some channels are redundant; thus, the average EC value remains nearly unchanged.
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S-VII. EFFECT OF THE DELAY CONSTRAINT
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Fig. S-6. Average EC(J) values of the CoMECO system with 11 different Tmax
i in the case of n = 150.
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Fig. S-7. CDFs of delays experienced by the mobile users for LE, PE, BOA, COA, and BiJOR.

To study the effect of the delay constraint Tmax
i , we considered Tmax

i with 11 different values in the case of n = 150:
Tmax
i = 1.0, 1.1, . . . , 2.0. The average EC values over 30 independent runs are plotted in Fig. S-6. From Fig. S-6, it is clear

that the average EC value continues to decrease as Tmax
i grows. It can be attributed to the fact that the demand of computation

resources decreases with the increase of Tmax
i .

Furthermore, we studied the cumulative distribution functions (CDFs) of delays experienced by the mobile users for LE, PE,
BOA, COA (see Section VII-D), and BiJOR. The delay constraint Tmax

i follows a normal distribution over the interval [1, 2]
with mean 1.5 and variance 0.2. Note that we only considered the mobile users whose tasks can be completed under the delay
constraint. The experimental results are presented in Fig. S-7. From Fig. S-7, it is clear that the CDFs of delays experienced
by the mobile users for LE, PE, BOA, COA, and BiJOR are almost the same. It can be attributed to the fact that the resource
allocation schemes in these five algorithms are the same. Specifically, the optimal resource allocation is equal to the minimum
demand of computation resources according to (20). Therefore, the delay experienced by each mobile user is Tmax

i .
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APPENDIX

A. Proof of Lemma 1

Proof: Let {o?, r?} be the optimal solution of the original problem P . Due to the fact that {o?, r?} must satisfy constraints
C1−C6, we only need to prove that r? is the optimal solution of the lower level optimization problem of the bilevel optimization
problem P1.

Assuming that r? is not the optimal solution of the lower level optimization problem. Then, there exits a feasible solution
r′ of the lower level optimization problem such that

n∑
j=1

o?ijE
c
ij(r

′

ij) <

n∑
j=1

o?ijE
c
ij(r

?
ij) (S-1)

It is clear that {o?, r′} is also a feasible solution of P . Then, substituting (S-1) to the objective function of P , one can obtain

n∑
i=1

 n∑
j=1

o?ijE
c
ij(r

′

ij) +

n∑
j=0,j 6=i

o?ijE
t
ij(o

?)


<

n∑
i=1

 n∑
j=1

o?ijE
c
ij(r

?
ij) +

n∑
j=0,j 6=i

o?ijE
t
ij(o

?)

 (S-2)

It is contradictory with the assumption that {o?, r?} is the optimal solution of P . Therefore, r? is the optimal solution of the
lower level optimization problem, and further the optimal solution of P is a feasible solution of P1.

B. Proof of Theorem 1

Proof: Let {o?, r?} be the optimal solution of P . By applying Lemma 1, it is a feasible solution of P1. Suppose the
optimal solution of P1 is {o′, r′}, rather than {o?, r?}.

Based on the upper level optimization objective of P1, one can obtain

n∑
i=1

 n∑
j=1

o′ijE
c
ij(r

′

ij) +

n∑
j=0,j 6=i

o
′

ijE
t
ij(o

′
)


<

n∑
i=1

 n∑
j=1

o?ijE
c
ij(r

?
ij) +

n∑
j=0,j 6=i

o?ijE
t
ij(o

?)

 (S-3)

Obviously, {o?, r?} is not the optimal solution of P , so this is a contradiction. Therefore, the optimal solution of P is also
the optimal solution of P1. Similarly, it can also be proven that the optimal solution of P1 is the optimal solution of P .
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