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Abstract—The multimodal optimization problem (MMOP)
requires the algorithm to find multiple global optima of the
problem simultaneously. In order to solve MMOP efficiently,
a novel differential evolution (DE) algorithm based on the local
binary pattern (LBP) is proposed in this paper. The LBP makes
use of the neighbors’ information for extracting relevant pattern
information, so as to identify the multiple regions of interests,
which is similar to finding multiple peaks in MMOP. Inspired by
the principle of LBP, this paper proposes an LBP-based adaptive
DE (LBPADE) algorithm. It enables the LBP operator to form
multiple niches, and further to locate multiple peak regions in
MMOP. Moreover, based on the LBP niching information, we
develop a niching and global interaction (NGI) mutation strat-
egy and an adaptive parameter strategy (APS) to fully search the
niching areas and maintain multiple peak regions. The proposed
NGI mutation strategy incorporates information from both the
niching and the global areas for effective exploration, while APS
adjusts the parameters of each individual based on its own
LBP information and guides the individual to the promising
direction. The proposed LBPADEalgorithm is evaluated on the
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extensive MMOPs test functions. The experimental results show
that LBPADE outperforms or at least remains competitive with
some state-of-the-art algorithms.

Index Terms—Adaptive differential evolution (DE), DE, local
binary pattern (LBP) strategy, multimodal optimization problems
(MMOPs).

I. INTRODUCTION

D IFFERENTIAL evolution (DE) is a kind of evolutionary
algorithm (EAs) proposed by Storn and Price in 1995 [1].

Like other EAs, DE is a class of heuristic optimization
algorithms that includes mutation, crossover, and selection
operators. The DE algorithm is efficient for solving many
real-world optimization problems [2]–[5].

With the increasing complexity of the real-world prob-
lems, many problems have multiple optimal solutions,
namely, multimodal optimization problems (MMOPs).
Over the past decades, MMOPs have drawn considerable
attention [6]. Many researchers try to use EAs [7] and
swarm intelligence algorithms [8] to solve MMOPs, such
as the genetic algorithm [9], ant colony optimization [10],
estimation of distribution algorithm [11], particle swarm
optimization (PSO) [12], and DE [13]. Although tremendous
efforts have been put into utilizing the above algorithms to
solve MMOPs, there are still many drawbacks as discussed
in [14]. First, how to efficiently form niches to locate as many
peaks as possible is still a challenge. Second, the parameters
of the algorithm are still difficult to set for balancing the
exploration and exploitation in solving MMOPs. Third, it is
still difficult to maintain the found optima until the end of
the evolution.

When dealing with the above difficulties, the existing meth-
ods have the following limits. First, some of the existing
methods try to divide the population into several separate
niches. However, it is difficult to determine the niche param-
eters, such as the number of niches and their sizes. Second,
if we use only the local information from the niche in the
evolutionary operator to guide the individuals, the algorithms
may get trapped in local optima. This problem would be more
serious especially by the influence of the structural bias of
the algorithms [15], [16]. Third, some of the existing meth-
ods adopt fixed parameters during the entire evolution, which
is not efficient to balance the exploration and exploitation abil-
ities in solving MMOPs. Although self-adaptive parameters
may sometimes tend to have weak exploration ability and are
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more prone to premature convergence [17], they can be effi-
cient if the diversity is well addressed by cooperating with the
niche information. Therefore, there is a great need to design
an efficient niching method that can form niches without sen-
sitive parameters to find as many peaks as possible. Moreover,
an efficient evolutionary operator and an adaptive parameter
control strategy that cooperate with the niche strategy are in
great need to balance the exploration and exploitation abili-
ties to refine the found peaks and to maintain them during the
entire evolution process.

To these aims, this paper borrows the idea of the local
binary pattern (LBP) operator from image processing to the
optimization domain for solving MMOPs efficiently. Similar
to the multiple peaks detection in MMOPs, researchers also
want to find all of the regions of interest in a picture in the
image processing. LBP is a simple yet efficient multiresolution
approach used in the image processing [18], which can pro-
cess the grayscale and rotation-invariant texture classification
based on the nonparametric discrimination of prototype distri-
butions. Meanwhile, LBP uses the local pattern information to
identify multiple textures in order to identify multiple objects,
which can be analogous to locate multiple peaks in MMOPs.
Therefore, by borrowing this idea, a novel LBP-based niching
strategy is proposed, which also uses the local information
of each individual to help the individual construct niche. In
this way, more peak regions can be detected because all of
the individuals can form their own LBP niches. Moreover, the
current individual can be guided by both the local information
from niche and the global information from the population,
in order to prevent individuals from being trapped into local
optima. Furthermore, we can adaptively control the relevant
parameters according to the neighbors’ information from the
LBP niche to reduce the limitation of fixed parameters.

Inspired by the aforementioned motivations, we incorporate
the LBP-based niching strategy in DE and propose an LBP-
based adaptive DE (LBPADE) in this paper. The proposed
LBPADE algorithm has the following three advantages.

1) A novel niching strategy based on LBP is designed to
identify as many peaks as possible. This strategy avoids
the sensitive niching parameters, such as the number of
niches and their sizes.

2) A new mutation strategy called the niching and global
interaction (NGI) mutation strategy is developed to
guide the individual to a more promising position by
using both the local information of the LBP niche and
the global information of the entire population.

3) Instead of using fixed parameters in DE, this paper
proposes a new adaptive parameter strategy (APS) for
each individual according to its fitness and distribution
information about the LBP niche, to relieve the sensi-
tivity of parameters like scaling factor F and crossover
rate CR.

The LBP-based niching strategy can help the LBPADE to
locate as many peaks as possible, while the NGI and APS
based on the LBP niche can help the LBPADE to balance the
exploration and exploitation abilities efficiently. The numerical
experiments are conducted on all 20 widely used multimodal
benchmark functions in CEC’2013. The experimental results

show that the LBPADE is superior to other algorithms in
comparison.

The remainder of this paper is structured as follows.
Section II describes the basic DE algorithm and the related
works on MMOPs. Section III presents the details of the
proposed LBPADE. Next, Section IV shows the extensive
experimental studies. Finally, Section V draws the conclusion
of this paper.

II. RELATED WORKS

A. DE

The basic idea of DE is to generate new individuals through
the difference between individuals and select the better indi-
vidual to enter the next generation. The standard DE process
includes the following steps.

1) Initialization: The initial population is randomly gener-
ated within a given boundary domain as

xi,j = Lj + rand(0, 1) × (
Uj − Lj

)
(1)

where i = 1, 2, . . . , NP and j = 1, 2, . . . , D. Herein, NP rep-
resents the population size, and D is the problem dimension.
rand(0, 1) is a random number uniformly distributed in the
interval of (0, 1), and Lj and Uj denote the lower and upper
bounds of the jth dimension, respectively.

2) Mutation Operator: At each generation, a mutation vec-
tor vi is obtained based on the difference between individuals.
Here, we list some typical mutation strategies as follows.

DE/rand/1:

vi = xr1 + F × (
xr2 − xr3

)
. (2)

DE/best/1:

vi = xbest + F × (
xr1 − xr2

)
. (3)

DE/current-to-best/1:

vi = xi + F × (xbest − xi) + F × (xr1 − xr2). (4)

DE/current-to-rand/1:

vi = xi + rand(0, 1) × (xr1 − xi) + F × (xr2 − xr3). (5)

DE/current-to-pbest/1 (without archive):

vi = xi + F × (
xp

best − xi
) + F × (xr1 − xr2). (6)

DE/current-to-pbest/1 (with archive):

vi = xi + F × (
xp

best − xi
) + F × (

xr1 − x∗
r2

)
(7)

where vi = [vi,1, vi,2, . . . , vi,D], i �= r1 �= r2 �= r3, r1, r2,
r3 ∈ {1, 2, . . . , NP}, and F is the scaling factor. xbest is the
best individual that has the best fitness value in the population.
xp

best is randomly chosen as one of the top 100p% individuals
in the current population with p ∈ (0, 1). x∗

r2 is randomly
chosen from the union of P and A, where P is the set of current
population and A is the set of archived inferior solutions [19].
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3) Crossover Operator: After the mutation operation, the
crossover operator is performed on the individuals vi and xi
to form a trial vector ui = [ui,1, ui,2, . . . , ui,D]. Herein, we
describe two typical crossover operators, namely, the binomial
crossover and exponential crossover. The binomial crossover
is used in this paper.

In binomial crossover, each dimension of ui is separately
determined to come from vi or xi by a crossover rate CR as

ui,j =
{

vi,j, if rand(0, 1) ≤ CR or j = jrand
xi,j, otherwise

(8)

where rand(0, 1) returns a random number between 0 and 1,
while the jrand is a random index in {1, 2, . . . , D} to ensure
that at least one dimension of ui comes from vi.

In exponential crossover, L consecutive dimensions come
from vi as

ui,j =
{

vi,j, ∀j ∈ {k, 〈k + 1〉D, . . . , 〈k + L − 1〉D}
xi,j, otherwise

(9)

where dimension k is randomly selected from {1, 2, . . . , D}.
Then, all of the following L dimensions come from vi. Note
that <·>D means modulo D and returns D if the result is 0.
Moreover, L is the length of the sequence, which is no longer
than D and is determined by the crossover rate CR as shown
in Algorithm S.I in the supplementary material.

4) Selection Operator: The selection operator is conducted
by comparing the objective values of the original individual xi

and the trial vector ui using (10) for a maximization problem,
where the better one is selected for the next generation

xi =
{

ui, if f (ui) ≥ f (xi)

xi, otherwise.
(10)

The DE repeats the above mutation, crossover, and selection
operators until it meets the terminal conditions. The pseu-
docode of a traditional DE variant called DE/rand/1/bin is
given in Algorithm S.II in the supplementary material.

B. Related Works on MMOPs

The algorithm for solving MMOPs is required to maintain
the diversity of population to find as many peaks as possible.
Moreover, due to the limited budget on the fitness evalua-
tions (FEs), the algorithm is also required to converge fast in
each peak region. To better review the related works on these
efforts to solve MMOPs, we attempt to describe them in three
aspects.

1) Niching Strategies: In order to localize as many peaks
as possible, a fruitful research line is based on the usage
of niching schemes [20], [21]. The two most famous nich-
ing methods are the crowding method [20] and the speciation
method [21]. The crowding DE (CDE) compares the fitness
of an offspring individual with the nearest parental individ-
ual of the crowd formed by some parental individuals. The
offspring will replace its nearest parental individual if it has
a better fitness value. Otherwise, the offspring will be ignored.
The speciation DE (SDE) solves MMOPs by evolving multiple
species, each of which evolves independently around a peak
region to locate more global optima. However, both of the two
niching methods introduce additional parameters, that is, the

crowding size in crowding and the species radius in specia-
tion, which are problem-dependent and highly sensitive to the
algorithm performance.

To reduce the influence of parameters in niching meth-
ods, some improved niching methods have been proposed.
Li [22] proposed using parameter-free ring topology accord-
ing to the index of the individual for niching, resulting
in R2PSO and R3PSO. Gao et al. [23] introduced a self-
adaptive cluster-based DE (Self-CCDE) for MMOPs. It
adopted the multipopulation strategy to locate different optima,
and employed the self-adaptive parameter control to enhance
searchability

Therefore, designing an efficient niching method that can
form niches without sensitive parameters is in great need. To
this aim, this paper proposes an LBP-based niching method
where the neighbors that form the niche can be determined
similar to the idea of the LBP operator in image processing.
Moreover, our proposed APS based on the LBP information
can be adaptive control of the parameters in DE. The proposed
LBPADE algorithm will be compared with the above algo-
rithms with different niching strategies.

2) New Evolutionary Operators: Since MMOP requires the
algorithm to find all of the peaks and refine their accuracy,
the population diversity and convergence ability are both very
important. Therefore, many new evolutionary operators have
been proposed to combine with the niching strategy. Using
the clustering methods to initialize population can increase
the diversity [24] and may be good in dealing with MMOPs.
Qu et al. [25] proposed a neighborhood mutation strategy
to design the neighborhood CDE (NCDE) and neighborhood
SDE (NSDE) algorithms. These algorithms are promising
in maintaining the multiple optima found during evolution.
Qu et al. [26] also proposed a distance-based locally informed
particle swarm (LIPS) algorithm, which utilized several local
bests to guide the evolution of particles. Biswas et al. [27]
introduced an improved parent-centric normalized neighbor-
hood mutation operator for DE (PNPCDE), which contained
a niching scheme by combining the parent-centric muta-
tion operator with the crowding replacement rule. They also
introduced an information-sharing mechanism among the indi-
viduals to enhance the niching behavior and proposed the
LoICDE algorithm [28].

Therefore, how to design an efficient evolutionary operator
to balance the population diversity and convergence ability
is significant in solving MMOP. To this aim, this paper pro-
poses the NGI mutation strategy that can combine the niche
information and global information to balance the explo-
ration (diversity) and exploitation (convergence) abilities of
the algorithm. The proposed LBPADE algorithm will be com-
pared with the above algorithms with different evolutionary
operators.

3) Multiobjective Techniques: In recent years, some
researchers also transformed MMOPs into multiobjective
optimization problems [29]–[31]. Generally, the first objective
can be the multimodal function itself and the second objective
is a specially designed function. Cheng et al. [32] proposed an
estimation of the potential optimal areas method, which uti-
lized an adaptive diversity indicator as the second optimization
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Fig. 1. Process of LBP in image processing.

objective. Basak et al. [33] defined mean distance-based
selection as the second objective. Differently, a very effi-
cient way was proposed by Wang et al. [34] where the
MMOP was transformed into a multiple objective optimization
problem whose two objectives are designed according to the
definition of multiobjective optimization, so that the two objec-
tives conflict. This is the MOMMOP algorithm and shows
general better performance than other multiobjective-based
methods. Therefore, the MOMMOP algorithm will be adopted
to compare with our proposed LBPADE algorithm.

III. LBPADE

In this section, we first introduce the detailed process of
the niching strategy based on LBP. Next, we describe the NGI
mutation strategy, the new APS based on LBP, and a bound-
ary constraint strategy (BCS). Finally, the complete LBPADE
algorithm is derived.

A. LBP Operator in Image Processing

LBP is widely used to extract the local texture feature of the
image in image processing [18]. More specifically, LBP marks
the difference between the center-point pixel and its neighbor-
hood pixel by a threshold value, where the neighborhood is
defined as a window of 3 × 3. Therefore, a local area of LBP
has nine pixels. LBP uses the gray value of the window center
as a threshold, and compares the gray value of the center with
the other eight adjacent pixels. As shown in Fig. 1, if the gray
value of the surrounding pixel is not smaller than that of the
center pixel, the pixel is marked as 1; otherwise 0. The LBP
in the window is used to reflect the texture information of this
local area. Using the LBP operator, we can find the edge of
the image in the local area, so we can identify different objects
in an image.

Similar to the idea of LBP in image processing, we can also
describe the information of the neighbors around each indi-
vidual in DE when solving MMOPs. That is, we regard each
individual as a pixel. Each individual (pixel), together with its
similar M individuals (M nearest surrounding pixels), forms
a niche (local area). Herein, the similarity is measured by the
Euclidean distance to simulate the surrounding information,
and M can be set as 8 due to the original LBP being within a
3 × 3 window with 8 surrounding pixels. We also regard the
fitness value of each individual as the gray value of each pixel.
Then, we can compare the fitness value of each individual in
the current niche with the fitness value of the current (cen-
ter) individual. For example, for maximization MMOPs, if
a neighboring individual has a fitness value larger than or equal
to the current individual (i.e., the neighboring individual has
a better fitness value), it is marked with 1. Otherwise, it is
marked with 0. Then, we introduce an external archive set S

to store all of the individuals marked with 1 in the current
niching. Note that each individual forms its own LBP-based
niche and has its own set S to store the individuals in the
current niche that are equal or better than itself. In this way,
the current individual can learn from the better individuals in
S via a novel-designed NGI mutation strategy, which will be
discussed in the following section.

B. NGI Mutation Strategy

In classic DE, the differential vector(s) in the mutation
operator are generated by individuals randomly selected from
the entire population, without concerning the distance among
them. Even individuals far from each other can be used to
produce the differential vector(s). Such a mutation opera-
tor might not be suitable for MMOPs, because it may slow
down the convergence toward the global optima in each peak
region, despite not increasing the overall population diversity.
In many DE algorithms specifically designed for MMOPs,
the mutation strategy is modified to make use of the nich-
ing information [20], [21], that is, the differential vector(s) in
mutation are generated by individuals from the same niche.
These methods are helpful in locating more peaks, but may
also increase the risk of getting trapped into local optima due
to the potential loss of population diversity.

In order to accurately locate the regions with optimal solu-
tions and maintain global searchability, an NGI mutation
strategy is proposed, which combines the local information of
the niche and the global information of the entire population.
This strategy not only increases the diversity of the population
but also enhances the convergence of the population. That is,
for an individual xi, the NGI mutation strategy is as

vi =

⎧
⎪⎪⎨

⎪⎪⎩

xi + Fi × (xnbest − xi) + Fi × (
xg_r1 − xg_r2

)

if |S| ≥ 1, g_r1 �= g_r2 �= i ∈ N
xi + Fi × (

xr1 − xr2

)

otherwise |S| = 0, r1 �= r2 �= i ∈ M

(11)

where M is the set that stores the M neighbors, N is the set
that stores the entire population, and |N| = NP. The set S
stores the individuals that have an equal or better fitness value
than the value of f (xi), that is, S = {xj|f (xj) ≥ f (xi)}, xj ∈ M.
r1 and r2 are randomly selected from the set M, while g_r1
and g_r2 are randomly selected from the set N, and xnbest is
the best individual in the current niche.

In our proposed NGI mutation strategy, there are two sit-
uations. One situation is that |S| ≥ 1, meaning that better
individual(s) exit in the niche, which can guide the current
individual xi. In this case, xnbest is used to guide xi, so
that the individual xi can locate the potential optima quickly.
Meanwhile, in order to prevent individuals from being trapped
into local optima, the global disturbance is also added in the
NGI mutation strategy, that is, g_r1 and g_r2 are randomly
selected from the entire population. This situation is shown as
the if statement of (11). The other situation is that |S| = 0,
meaning that the current individual xi is the best in the LBP-
based niche. In this case, xi may be close to the optimum.
Therefore, we randomly select two individuals from the set
M to generate local exploitation information for xi. This way,
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we can improve the convergence speed to the current potential
optimum.

C. LBP-Based APS

In this section, to balance the exploration and exploitation
abilities, a method of APS is proposed. APS can adjust the
parameters based on the information of the fitness and the
LBP niche of each individual.

1) Adaptive Parameter F: According to the LBP-based
niche, we utilize the neighbor’s information of each individ-
ual to find the promising direction of evolution in MMOPs.
Generally speaking, when |S| is larger, the number of better
individuals (the fitness is equal to or better than current indi-
vidual xi) is large, and xi needs to learn more from these better
individuals, so Fi should be larger. On the contrary, if |S| is
smaller, the fitness of the current individual is promising, and
the number of better individuals is less, so xi does not need
too much learning, and Fi should be smaller. Therefore, the
value of |S|/|M| can be used to guide the learning scale (i.e.,
the parameter Fi) of the current individual.

Besides, it should be noticed that in the early stage of
the evolution, most of the individuals are in exploration.
Therefore, Fi should be larger to search more globally optimal
regions. However, in the later stage of the evolution, most of
the individuals are in exploitation. In order to accelerate the
convergence speed, it is better to reduce Fi to avoid oscillation.
Based on the above two considerations, Fi is set as

Fi =
⎧
⎨

⎩

|S|
|M| × (b − a) + a, if fe ≤ λ · MaxFEs
[ |S|

|M| × (b − a) + a
]

× 0.001, otherwise

(12)

where a and b are the lower and upper boundaries of Fi,
respectively; fe is the current number of FEs; MaxFEs is the
maximum number of FEs; and λ is a parameter that indicates
the evolutionary stage of the algorithm. As the range of F
is usually within [0.1, 0.9], a and b are simply set as 0.1
and 0.9, respectively, whose influences are also investigated
in Table S.I in the supplementary material. Moreover, through
the empirical studies, we can find that most of the individuals
finish the exploration stage after 80% of the evolutionary pro-
cess and start the exploitation stage in the last 20% process.
Therefore, we set the value of λ as 0.8, which is investigated
in Section IV-G. It should be noted that in the later stage of
the evolution, most of the individuals are in the exploitation.
In order to accelerate the convergence speed, it is better to
reduce Fi to avoid oscillation. Therefore, we set Fi to shrink
to 0.001 times in the later stage of the evolution, which helps
to balance the exploration and exploitation of the population.

2) Adaptive Parameter CR: To better balance the diversity
and convergence, the parameter CRi of xi is adaptively con-
trolled based on the location distribution information of the
individuals in its LBP niche. The detailed process of adaptively
controlling CRi is given in the following steps.

Step 1: According to the location of each individual xj in
the LBP niche, the center position of the |M| + 1 individ-
uals is denoted as center, whose kth dimension centerk is

Fig. 2. Distribution of individuals in the current niche. (a) Concentrated and
uniform. (b) Scattered and uneven.

calculated as

centerk =
∑|M|+1

j=1 xj,k

|M| + 1
(13)

where k = 1, 2, . . . , D, and xj,k is the kth dimension of the jth
individual in the current niching.

Step 2: Calculate the Euclidian distance dj between the jth
individual and the center as

dj = ∥
∥center − xj

∥
∥ (14)

where j = 1, 2, . . . , |M| + 1. The dj reflects the distribution
information of the individual xi in the niche.

Step 3: Calculate the average distance d̄ as

d =
∑|M|+1

j=1 dj

|M| + 1
. (15)

The rationale of d̄ is to reflect the uniformity of the individ-
uals distribution in the current niche. As illustrated in Fig. 2(a),
if all di have similar values, the individuals are likely to con-
centrate and distribute uniformly around the peak. Otherwise,
the distribution of individuals in the current niche is likely to
be scattered and uneven as in Fig. 2(b). In order to measure
the uniformity (UN) of the niche, step 4 is designed.

Step 4: Calculate the UN of xi in the current niche as

UNi =
∑|M|+1

j=1

(
dj − d

)2

|M| + 1
. (16)

According to (16), the concentrated and uniform niche like
Fig. 2(a) will have a small UNi. Conversely, the UNi will be
large if the individuals of the current niche are more scattered
and uneven as in Fig. 2(b).

Step 5: Adaptively control the value of CRi according to
UNi as

CRi = (
1 − e−UNi

) × (n − m) + m (17)

where m and n are similar as a and b in (12) to clamp the
range of CR. Since the range of CR in DE is usually within
[0.1, 0.9], the values of m and n are simply assigned to 0.1
and 0.9, respectively, whose influences are also investigated in
Table S.II in the supplementary material.

Fig. S.I in the supplementary material shows the rationale
and detailed changes of CRi with different UNi. It can be found
that CRi becomes larger as UNi increases until CRi reaches the
maximum value of n, that is, 0.9. For a larger value of UNi, the
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distribution of current niche is more uneven, indicating that the
current individual has not reached the convergence stage, and
needs to increase the search diversity. Therefore, a larger CRi

value is needed to obtain more information from the mutated
vectors, which is helpful for increasing the diversity. On the
contrary, when UNi is smaller, the individuals’ distribution of
the niche is more concentrated and uniform. This indicates
that the niche may have reached a convergence stage and,
therefore, the value of CRi should be smaller to make the
individual keep more information from the current position,
in order to increase the solution accuracy.

D. BCS

During evolution, the individual may exceed the search
range due to the exploration in the mutation operator. A sim-
ple handle method is to directly set the exceeded dimension
of the individual to the corresponding boundary value. This
way may be helpful to increase the search diversity of the
population in the early stage of the evolutionary process to
find more peaks. However, in the later stage of the evolution-
ary process, most of the individuals have arrived convergence
around the best individual of the niche. In this case, if the
range-exceeded individuals are still set to the boundary, the
convergence may be destroyed. Therefore, in order to balance
the diversity and convergence, a novel BCS is proposed in
this paper. The BCS deals with the range-exceeded individual
according to different stages during the evolutionary process.
In the early stage of the evolutionary process, the BCS resets
the range-exceeded individual directly to the boundary (Lj

or Uj). However, in the later stage of the evolutionary process,
the BCS adopts another method to reset the range-exceeded
individuals by using information of the best individual (xnbest)
in the current niching to accelerate the population convergence.
In conclusion, when the solution vi,j is range exceeded, vi,j can
be reset as

vi,j =
⎧
⎨

⎩

Uj, if
(
vi,j > Uj

)
and (fe < μ × MaxFEs)

Lj, if
(
vi,j < Lj

)
and (fe < μ × MaxFEs)

xnbest,j, otherwise
(18)

where μ is a parameter that controls the way of dealing
with boundary, and μ = 1E-04, which is investigated in
Section IV-F. xnbest is the best individual in the current niche.

E. Complete LBPADE Algorithm

This section provides the complete LBPADE algorithm. The
initialization and the crossover operators are inherited from
the traditional DE, and the NGI mutation operators have been
introduced as above. Therefore, only the selection operator and
the termination condition are described here.

1) Selection Operator: The selection operator is to find
the nearest individual in the parental population to the cur-
rent individual, and compare their fitness. Then, the individ-
ual with better fitness is selected for the next generation.
For maximization MMOP, after forming the trial vector ui

by the crossover operator, the selection operator needs to
find the nearest individual xp to ui in the parental population.

Algorithm 1 LBPADE
Begin
1: Random initialization population with size NP and set fe = 0;
2: While fe < MaxFEs do
3: For i = 1 to NP
4: Find the most nearest (measured by Euclidean distance) |M|

individuals of the current individual xi to form a niche;
5: Compute the mutation scaling factor Fi by Eq. (12) ;
6: Produce a vi using NGI mutation strategy by Eq. (11);
7: Use Eq. (18) to reset vi if the vi is range-exceeded;
8: Compute the crossover rate CRi by Eq. (17);
9: Produce a ui using crossover operator by Eq. (8);
10: End For
11: For each trial vector ui
12: Evaluate the fitness values of ui;
13: Find the individual xp that is nearest to ui in parents population;
14: Select xi by comparing the fitness values of ui and xp as Eq. (19);
15: End For
16: fe = fe + NP;
17: End While
End

TABLE I
BASIC INFORMATION OF THE TEST FUNCTION

The selection operator is represented as

xi =
{

ui, if f (ui) ≥ f
(
xp

)

xp, otherwise.
(19)

2) Termination Condition: The termination condition is
defined by the maximum number of FEs (MaxFEs). If the ter-
mination criterion is satisfied, the algorithm stops and returns
the fitness value of the final population as the result. Moreover,
if the algorithm has found all known global peaks, it also
stops.

Overall, the pseudocode of the complete LBPADE algorithm
is outlined in Algorithm 1.

IV. EXPERIMENTAL VERIFICATION AND COMPARISON

A. Test Functions and Experimental Settings

The CEC’2013 benchmark set includes 20 multimodal test
functions. All test functions are acquainted as maximization
problems. The property of these multimodal test functions has
been introduced in [35]. Basic information of the test functions
is also summarized in Table I.

In order to validate the effectiveness of the proposed
LBPADE algorithm, experimental tests on the benchmark
functions are undertaken in this section. The performance
of the proposed LBPADE algorithm will be compared with
some state-of-the-art multimodal optimization algorithms.
The related parameters used in this paper and the com-
pared algorithms are as follows: the test function is the
set of CEC’2013, and the other parameters are set as
the original paper except for population size and MaxFEs.
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Our proposed algorithm is compared with 11 state-of-the-
art multimodal algorithms. They are CDE [20], SDE [21],
R2PSO [22], R3PSO [22], Self_CCDE [23], NCDE [25],
NSDE [25], LIPS [26], PNPCDE [27], LoICDE [28], and
MOMMOP [34]. The reason for choosing these 11 algorithms
is that they are representative algorithms in the three cate-
gories of related works on MMOP, as reviewed in Section II-B.
Therefore, all 11 algorithms are adopted to be compared with
LBPADE, where the first five algorithms (i.e., CDE, SDE,
R2PSO, R3PSO, and Self-CCDE) are in the niching strate-
gies category, the second five algorithms (i.e., NCDE, NSDE,
LIPS, PNPCDE, and LoICDE) are in the new evolutionary
operators category, and the last MOMMOP is the typical
and well-performed algorithm in the multiobjective techniques
category. All of these algorithms use the parameter settings
recommended by their source literature, except for the popu-
lation size (NP) and the termination criterion (MaxFEs). As
listed in Table I, different settings of the population size and
the termination criterion are adopted for different functions
depending on their degrees of complexity, but the settings are
set the same across all algorithms, and each algorithm is tested
for 51 independent runs.

With the accuracy level ε set at 1E-04, the peak ratio (PR),
the success rate (SR), and the average FEs (AveFEs) are calcu-
lated to evaluate the algorithmic performance. PR is defined as
the average percentage of the global optima found in multiple
runs

PR =
∑TR

i=1 HFPi

HKP · TR
(20)

where HFPi is the number of have found peaks (HFP) in
the end of the ith run, HKP is the number of have known
peaks, and TR is the number of total runs. SR is defined as
the percentage of successful runs out of total runs

SR = NSR

TR
(21)

where NSR denotes the number of successful runs. A success-
ful run means that all known peaks have been found, that is,
HFP = HKP. The AveFEs over multiple runs can be calculated
as

AveFEs =
∑TR

i=1 FEi

TR
(22)

where FEi denotes the number of FEs used to find all peaks
in the ith run.

In addition, we implement LBPADE using C++ language,
and all experiments are executed on a PC with 4 Intel Core i5-
3470 3.20-GHz CPUs, 4-GB memory, and a Ubuntu 12.04 LTS
64-bit system.

B. Comparisons With State-of-the-Art Algorithms

For all test functions, each algorithm terminates if all known
peaks have been found or the termination condition is met. The
above three metrics–PR, SR, and AveFEs–are used to describe
their results.

The results of F1–F20 are shown in Table II with ε = 1.0E-
04. The boldface represents the best results in all of the
compared algorithms. Meanwhile, the Wilcoxon’s rank-sum

test [36] (α = 0.05) with respect to PR between LBPADE
and other algorithms is used to examine the significance of
the difference.

Table II compares the results of PR and SR to differ-
ent multimodal algorithms. The results show that LBPADE
performs significantly better than the other algorithms on
most test functions. For example, LBPADE obtained the best
PR results on 15 out of all 20 test functions, among all
11 compared algorithms, as indicated by the boldface. It
should be noticed that if the algorithm has the same PR,
the AveFEs can be used to measure the performance of
the algorithm. Therefore, we compare the AveFEs results of
LBPADE with CDE, Self_CCDE, NCDE, LIPS, PNPCDE,
and MOMMOP on F1–F5. These algorithms are chosen
because they are well-performing algorithms in their corre-
sponding categories according to the results in Table II, that
is, CDE and Self-CCDE in the niching strategies category,
NCDE, LIPS, and PNPCDE in the new evolutionary opera-
tors category, and MOMMOP in the multiobjective techniques
category. Moreover, F1–F5 are tested because it is not neces-
sary to measure the other complicated functions by the AveFEs
since the results on SR of these algorithms are almost 0 when
the algorithms terminate. Herein, we test the AveFEs with three
different ε levels (i.e., 1.0E-02, 1.0E-03, and 1.0E-04). The
detailed comparison results are shown in Table III, and the
best results are marked as boldface.

1) For the First Five Simple and Not Scalable Functions
F1–F5: From the observation of Table II, it can be seen that
LBPADE has the best results on F1–F5, and the results are the
same as CDE, Self_CCDE, NCDE, PNPCDE, and MOMMOP.
Moreover, these algorithms can find all global optima in each
run (i.e., SR is 1.000). Since LBPADE can form a stable niche
based on LBP, each individual is guided by the information of
the current niche, which helps LBPADE to deal with MMOPs.
Meanwhile, LBPADE performs significantly better than SDE,
R2PSO, R3PSO, NSDE, LIPS, and LoICDE on F1–F5.

From Table III, we can find that LBPADE converges faster
than all compared algorithms on F1–F5 when ε = 1.0E-02.
Meanwhile, LBPADE obtains the best AveFEs values on
F1, F2, and F4 when ε = 1.0E-03, and on F1, F2, and
F5 when ε = 1.0E-04. The significant tests also show that
LBPADE generally outperforms all compared algorithms with
significantly small AveFEs values. These indicate the fast
convergence ability of LBPADE.

Therefore, we can conclude that LBPADE generally per-
forms better than the other state-of-the-art multimodal algo-
rithms, on the performance metrics of PR, SR, and AveFEs.

2) For the Scalable Multimodal Functions F6–F10: F6–
F10 are the MMOPs that have many global optima, so that
many algorithms cannot find all global optima. However,
LBPADE has generally better performance on these difficult
problems than most of the compared algorithms. Table II
shows that only LBPADE, CDE, LoICDE, and MOMMOP
can find all global optima on F6 (i.e., PR and SR are 1.000).
For F7, LBPADE obtains the PR value of 0.889 and per-
forms better than all others except for MOMMOP. For F8
and F9, LBPADE performs better than many others like CDE,
SDE, R2PSO, R3PSO, NCDE, NSDE, LIPS, PNPCDE, and
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TABLE II
PR AND SR (TEST FUNCTIONS F1–F20)

LoICDE. Significantly, LBPADE also obtains the best PR and
SR values 1.000 on F10. All of these indicate that LBPADE
has a good ability to globally search and can find all or most
of the global optima in these complex functions.

3) For the Composition Functions F11–F20: F11–F15 are
the composite functions. Moreover, they have many local
optima. F16–F20 are also complicated functions. Moreover,
F18–F20 are the high-dimensional functions, which are 10D,
10D, and 20D, respectively. It is difficult to measure the
performance of each algorithm with SR, because the SR val-
ues of F11–F20 are equal to 0. But the PR values of them can
reflect the difference of the algorithm performances. Therefore,
only the PR values of F11–F20 are analyzed in the following
contents.

For F11, LBPADE performs better than CDE, SDE, R3PSO,
NSDE, and LoICDE. LBPADE performs the best with
F12 except for MOMMOP. For F13 and F14, the result of

PR on LBPADE is the same with NCDE and MOMMOP,
while is better than CDE, SDE, R2PSO, R3PSO, Self_CCDE,
NSDE, PNPCDE, and LoICDE. For F15, it is worth notic-
ing that only LBPADE and MOMMOP can obtain PR results
larger than 0.5 (i.e., find more than half of the global
optima). Moreover, LBPADE is also the winner, whose PR
value is 0.654, which is significantly better than that of
MOMMOP.

When dealing with F16–F20, most of the algorithms show
poor performance, and some algorithms even cannot deal
with these test functions. LBPADE still performs better than
CDE, SDE, R2PSO, R3PSO, Self_CCDE, NCDE, NSDE,
LIPS, PNPCDE, LoICDE, and MOMMOP on F16–F20.
Especially, for F18 to F20, LBPADE obtains the best results
among all compared algorithms. It indicates that LBPADE
has a strong ability to globally search when dealing with the
high-dimensional functions.
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TABLE III
AveFEs OF DIFFERENT ALGORITHMS

Fig. 3. Final solutions distribution on ten selected functions: (a) F1. (b) F2. (c) F3. (d) F4. (e) F6. (f) F7. (g) F10. (h) F11. (i) F12. (j) F13.

In general, LBPADE performs better than other algo-
rithms on most test functions. We can also conclude that
CDE, SDE, R2PSO, R3PSO, NSDE, and LIPS perform
better on simple and low-dimensional functions, but their
abilities of dealing with complicated problems are poor.
Self_CCDE, PNPCDE, LoICDE, and MOMMOP also per-
form poorly when dealing with high-dimensional func-
tions. In contrast, LBPADE always performs better in both
low- and high-dimensional functions. Overall, the LBPADE
is feasible and promising in solving most of the tested
MMOPs.

To further investigate the LBPADE, the final solution dis-
tributions of some functions (i.e., F1, F2, F3, F4, F6, F7, F10,
F11, F12, and F13) are shown in Fig. 3, which is formed when

the algorithm achieved the MaxFEs of test functions or all of
the global optima have been found in the evolutionary process.

From Fig. 3, we find that LBPADE can find most of
the global optima on these functions that have only a few
numbers of global optima, such as Fig. 3(a)–(d). More impor-
tant, for the functions with a large number of global optima,
LBPADE also can find all of the global optima, such as
Fig. 3(e)–(g). Moreover, for some complicated functions,
LBPADE still can find most of the global optima, such as
Fig. 3(h)–(j). Therefore, LBPADE has a good ability to locate
global optima in MMOPs.

Moreover, we compared the runtime of each algorithm on
F1–F20 at accuracy 1.0E-04. The results are presented in
Table S.III in the supplementary material. From Table S.III
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TABLE IV
EXPERIMENTAL RESULT IN PR AND SR BETWEEN LBPADE AND THEIR VARIANTS WITH DIFFERENT MUTATION STRATEGIES

ON F1–F20 WITH ACCURACY LEVEL ε = 1.0E-04

in the supplementary material, we find that the runtime
of LBPADE is promising compared with the other algo-
rithms. Generally speaking, although LBPADE spends slightly
more time than some algorithms like CDE, SDE, R2PSO,
R3PSO, and Self_CCDE, the runtime differences are accept-
able when combined with the comparisons on solution quality.
More important, LBPADE spends less time than other algo-
rithms like NCDE, NSDE, LIPS, PNPCDE, LoICDE, and
MOMMOP, almost on all of the functions. Therefore, the
proposed LBPADE has a very promising runtime in han-
dling MMOPs.

C. Effects of the NGI Mutation Strategy

In this section, we investigate the effect of the NGI muta-
tion strategy by comparing it with the results derived from the
usage of different mutation strategies on LBPADE, such as
DE/rand/1 and DE/best/1, which are denoted as LBPADE-rand
and LBPADE-best, respectively. Meanwhile, we also com-
pare the LBPADE with better DE mutation strategy, such as
DE/current-to-pbest/1 with or without archive and DE/current-
to-rand/1, which are denoted as LBPADE-pbest(A), LBPADE-
pbest, and LBPADE-crand, respectively. The PR and SR results
of different LBPADE variants on ε = 1.0E-04 are listed in
Table IV.

From Table IV, we find that LBPADE significantly outper-
forms all compared mutation strategies on most test functions.
For F1 to F5, all LBPADE variants have promising results.
LBPADE locates all of the global optima in each run with F6,
which performs best among all LBPADE variants. For F7, all
LBPADE variants obtain a promising result except LBPADE-
best. This may be because the DE/best/1mutation strategy
is somehow greedy to make some individuals trapped into

local optima. But for F8, LBPADE obtains slightly worse PR
values than LBPADE-rand due to F8 having many unevenly
distributed global optima. It should be noted that LBPADE
performs better than other LBPADE variants as the func-
tion dimension increases. This phenomenon can be seen from
the PR values on F11–F20. That is, LBPADE obtains higher
PR results than LBPADE-best, LBPADE-rand, LBPADE-
pbest(A), LBPADE-pbest, and LBPADE-crand on these func-
tions. It indicates that LBPADE has better global searchability
when dealing with complicated or high-dimensional func-
tions. In conclusion, our NGI mutation strategy is a promis-
ing method by combining the niching information from the
LBP niche and the global information from the entire pop-
ulation, which helps LBPADE to solve the MMOPs more
efficiently.

D. Advantage of APS

To validate the advantage of APS, five different variants of
LBPADE are designed as follows. The first variant, namely,
LBPADE-CR, fixes F and lets CR be controlled by APS. The
second variant, namely, LBPADE-F lets F be controlled by
APS but fixes CR. The third variant, namely, LBPDE, fixes
F and CR at 0.5 and 0.1, respectively. Besides, some other
adaptive parameter mechanisms are also used to compare
with our APS, such as the adapt mechanisms introduced by
JADE [19] and LSHADE [37], which are denoted as LBP-
JADE and LBP-LSHADE, respectively. Table V shows the
PR and SR results of different LBPADE variants.

In Table V, boldface denotes the best PR values among
LBPADE and its five variants. For F1 to F6, the PR values
are 1.000 across all algorithms except for LBP-JADE, which
might cause the adaptive parameter mechanisms introduced
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TABLE V
EXPERIMENTAL RESULT IN PR AND SR RESULT IN LBPADE WITH DIFFERENT PARAMETER SETTINGS ON

F1–F20 WITH ACCURACY LEVEL ε = 1.0E-04

by JADE to trap some individuals into local optima when
dealing with F4 and F6. For F7, LBPADE, LBPADE-F,
and LBP-LSHADE achieve nearly the same results larger
than 0.8, which are 0.889, 0.891, and 0.856, respectively.
For F8, LBPADE performs slightly worse than LBPADE-CR
and LBPDE, but it still has competitive performance com-
pared to LBPADE-F and LBP-LSHADE. For F9, LBPADE
significantly outperforms the other mutation variants except
for LBP-LSHADE. We can also find that the PR values of
LBPADE and LBP-LSHADE on F9 are 0.476 and 0.475,
respectively, which indicate that the adaptive parameter mech-
anisms of LBPADE and LBP-LSHADE are effective to F9.
Besides, LBPADE, LBPADE-CR, LBPADE-F, LBPDE, and
LBP-LSHADE perform best on F10, F13, F14, and F16,
whose PR values are 1.000, 0.667, 0.667, and 0.667, respec-
tively. With respect to the remaining test function (i.e., F12,
F15, and F17–F20), LBPADE still performs best in all of the
variants, and such results indicate that the APS has an increas-
ing positive effect as the function dimension rises. It is thus
confirmed that the APS is helpful for LBPADE when dealing
with not only simple functions but also high-dimensional and
complicated functions.

Besides, for a more comprehensive analysis of LBPADE, we
further investigated the contributions of the two components
(i.e., APS and NGI) in LBPADE. In fact, the contribution of
APS can be obtained from the LBPADE variant without NGI,
namely, the LBPADE-rand, the LBPADE-best, and the other
LBPADE variant in Table IV. Similarly, the contribution of
NGI can be obtained from the LBPADE variant without APS,
such as LBPADE-F, LBP-JADE, and others in Table V.

To avoid the potential bias caused by selecting inappropriate
counterparts, we adopt a novel way herein to estimate the
contributions made by each component. First, according to
Table IV, we calculate the value of “number of +” minus
“number of −” for each compared variant. For example, for
the LBPADE-best, the value is 13 − 0 = 13, and the value for
LBPADE-crand is 15 − 0 = 15. Then, the average of these
values is calculated and the result is (13 + 12 + 10 + 12 +
15)/5 = 12.4. We can regard that this value can reflect the
contribution that NGI brings to LBPADE, the larger the value,
the more contributions it brings. Similarly, we can obtain this
value from Table V as (9+5+9+15+10)/5 = 9.6 to indicate
the contribution that APS brings to LBPADE. From the above
analyses and the result (12.4 > 9.6), we can conclude that
NGI generally contributes more than APS to the performance
of LBPADE.

E. Maintaining the Identified Optima

During evolution, the MMOPs require that the algorithm can
locate many global optima simultaneously. The algorithm with
good performance not only can maintain the global optima that
have been identified (found) but also can continue to search
for the other global optima that have not been found. To
investigate the performance of LBPADE on maintaining the
identified optima, the solution distribution of some functions
(i.e., F2, F4, and F10) is presented on some specific gen-
erations. Fig. 4 shows the solution distribution of F2 with
different generations (i.e., the generations are 1, 10, 20, and
the final generation, respectively). We can find that LBPADE
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Fig. 4. Distribution of solutions with evolutions on F2. (a) Generation = 1. (b) Generation = 10. (c) Generation = 20. (d) Final generation.

Fig. 5. Distribution of solutions with evolutions on F4. (a) Generation = 1. (b) Generation = 30. (c) Generation = 50. (d) Final generation.

Fig. 6. Distribution of solutions with evolutions on F10. (a) Generation = 1. (b) Generation = 50. (c) Generation = 100. (d) Final generation.

has obtained all of the global optima when the generation is
20 on F2 [i.e., Fig. 4(c)]. It indicates that LBPADE can locate
the global optima quickly, namely, LBPADE has a good abil-
ity of global search. Fig. 5 shows the solution distribution of
F4 with different generations (i.e., 1, 30, 50, and the final
generation, respectively). From Fig. 5, we can find that the
population nearly converges completely when the generation
is 30, but some solutions still do not achieve the convergence
state until the generation is 50. Similarly, the solution distribu-
tions of F10 with different generations are presented in Fig. 6.
With the increasing generation, all solutions gradually achieve
the convergence state. All global optima are found until the
generation is 100.

Overall, it is clear that the found solutions are not dis-
persed with the increasing evolution in LBPADE. Namely,
our LBPADE can maintain the global optima until the end
of evolution.

F. Impacts of Parameter Settings

In this section, we mainly investigate the impacts of param-
eters λ and μ on our LBPADE. The best PR are highlighted in
boldface, and the last row of the table called “#Best” counts
the number of the best PR each algorithm obtains on the total
20 functions, namely, the number of the bolded PR.

1) Effect of Parameter λ: The parameter λ is used in (12)
to control the state of exploration and exploitation during the

evolution process. Table S.IV in the supplementary material
shows the PR results with different values of λ.

From Table S.IV in the supplementary material, we have
two observations. It is found that a small λ value will cause
most of the FEs to be exhausted during exploitation. This may
lead to the ineffectiveness in exploring the search space, and it
may degrade the diversity of solutions. If the λ value is large,
most FEs are exhausted during exploration, which may lead
to a poor ability of global search. Therefore, selecting a suit-
able λ value is important to balance the state of exploitation
and exploration during evolution. We find that the #Best is
20 when λ is 0.8 in Table S.IV in the supplementary mate-
rial, which means that LBPADE performs best with different
λ. For F1 to F5, there is not much difference as the value
of λ varies. The reason is that F1 to F5 have achieved con-
vergence in the early stage, so the value of λ has less of an
effect on F1 to F5. For F6 to F20, LBPADE also performs the
best when λ is 0.8. It indicates that λ = 0.8 is a reasonable
setting.

2) Effect of Parameter μ: As introduced in Section III-E,
μ is a parameter of BCS, which controls the way to deal
with boundary during the evolution process. To investigate the
effect of μ on LBPADE’s performance, two groups of possi-
ble μ values are tested. In group 1, μ is set as 0, 1E-05,
1E-04, 1E-03, and 1E-02, respectively. In group 2, μ is set
as 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, and 1, respectively. It should
be noticed that with μ being equal to 1, the range-exceeded
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solution is reset to the boundary (Lj or Uj). With μ being equal
to 0, the range-exceeded solution is reset to the best solution
(xnbest) in the current niching. The result of PR under differ-
ent settings of μ is shown in Table S.V in the supplementary
material.

From Table S.V in the supplementary material, it is clear
that the μ has a significant effect on high-dimensional func-
tions (i.e., F11–F20). For F1, the PR result is only 0.900 when
μ is 0, implying that by directly assigning range-exceeded
solutions to xnbest, the population diversity may decrease and
thus degrade the algorithmic performance. As μ increases, the
PR results are all equal to 1.000 on F2–F6 and F10. However,
for the high-dimensional functions, such as F7, F9, F12, F15,
F17, and F20, the best values of PR are achieved when μ is
1E-04. It indicates that a suitable value of μ is helpful for the
LBPADE to locate more global optima. Moreover, the effect
of μ on LBPADE becomes more and more obvious as the
function dimension increases.

G. Comparisons With Winners of CEC Competitions

In the above experiments, LBPADE shows general
better performance than the compared state-of-the-art
multimodal algorithms when dealing with MMOPs. To
further prove the effective performance of LBPADE, we
compare LBPADE with the winners of the CEC’2013
and CEC’2015 competitions on multimodal optimization,
which are nearest-better clustering (NEA2) [38] and the
niching migratory multiswarm optimizer (NMMSO) [39],
respectively. Meanwhile, we also compare LBPADE with
a dynamic archive-niching DE algorithm (dADE2) [40].
For simplicity and convenience, we directly cite the
results of these algorithms from the corresponding compe-
titions, where the results of NEA2 and dADE2 are from
https://github.com/mikeagn/CEC2013/tree/master/NichingCom
petition2013FinalData and the results of NMMSO are from
https://github.com/mikeagn/CEC2013/tree/master/NichingCom
petition2015FinalData.

Tables S.VI–S.X in the supplementary material present
the comparison results with respect to PR and SR between
LBPADE and these algorithms (NEA2, NMMSO, and
dADE2). The results of accuracy level from 1.0E-01 to
1.0E-05 are shown in Tables S.VI–S.X in the supplementary
material, respectively. The best PR are highlighted in bold-
face, and the last row of the table called #Best counts the
number of the best PR each algorithm obtains on the total
20 functions, namely, the number of bolded PR.

From Tables S.VI–S.X in the supplementary material, we
can draw the following conclusions.

1) LBPADE performs the best in all compared algorithms
at the accuracy levels ε = 1.0E-01 and 1.0E-02. More
specifically, at ε = 1.0E-01, LBPADE can find all
of the peaks in each run except for F9, F12, and
F19. Particularly, at these accuracy levels, LBPADE
is much better than NEA2, NMMSO, and dADE2 on
F15–F20 that have many local optima.

2) At accuracy level ε = 1.0E-03, LBPADE and NMMSO
generally perform better than NEA2 and dADE2. They

both perform best in 12 of all test problems. But the
difference is that LBPADE has great advantages in deal-
ing with high-dimensional problems, while NMMSO
performs better in low-dimensional problems. For exam-
ple, LBPADE performs better than NMMSO on F15–
F20 which are in high dimension.

3) At the last two accuracy levels, LBPADE performs
better than dADE2, it also remains at its competitive
performance with NEA2 and NMMSO. Even though the
number of #Best for LBPADE, NEA2, and NMMSO is
8, 12, and 12 at ε = 1.0E-04 and 8, 10, and 11 at
ε = 1.0E-05, respectively, LBPADE can achieve very
similar performance to NEA2 and NMMSO on most
of those functions. For example, with respect to PR
at ε = 1.0E-04, on F16 and F18, LBPADE achieves
0.667 and 0.667, respectively, which is very similar to
NEA2 with 0.673 and 0.667, respectively.

Overall, we can see that LBPADE is competitive against the
winners of the CEC’2013 and the CEC’2015 competitions.

V. CONCLUSION

In this paper, a novel LBP-based niching strategy is
proposed, which forms a niche for each individual accord-
ing to its local information by simulating the LBP operator in
the image processing. Meanwhile, the NGI mutation strategy
and the APS technique are incorporated, which results in the
LBPADE algorithm, which not only can enhance the popula-
tion diversity but also can accelerate convergence speed. The
experimental results show that the proposed LBPADE can out-
perform a number of state-of-the-art multimodal optimization
algorithms on benchmark problems.

In the future, we will extend the LBPADE to solve
some real-world problems in the domains with potential
multimodal optimization requirements, including resource-
constrained project scheduling [41]; electricity markets [42];
energy resource management [43]; optical networks [44];
cloud computing [45], [46]; and image processing [47], [48].
For example, how to detect multiple equilibriums simulta-
neously is a key challenging economic game problem in
electricity markets. Herein, we can use the following two main
advantages of LBPADE to solve this problem. One is that
the NGI mutation strategy of LBPADE can locate multiple
optima simultaneously and avoid solutions trapped into local
optima; and the other is that the APS of LBPADE does
not need to input the extra sensitive parameters when deal-
ing with this problem. So LBPADE has a promising ability
to solve these real-world problems. Besides, we will try to
use the parallel/distributed computing resources to reduce the
runtime of LBPADE and further improve the performance
of LBPADE.
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