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Abstract—Cloud workflow scheduling is a significant topic in
both commercial and industrial applications. However, the grow-
ing scale of workflow has made such a scheduling problem
increasingly challenging. Many current algorithms often deal
with small- or medium-scale problems (e.g., less than 1000 tasks)
and face difficulties in providing satisfactory solutions when
dealing with the large-scale problems, due to the curse of dimen-
sionality. To this aim, this article proposes a dynamic group
learning distributed particle swarm optimization (DGLDPSO)
for large-scale optimization and extends it for the large-scale
cloud workflow scheduling. DGLDPSO is efficient for large-scale
optimization due to its following two advantages. First, the entire
population is divided into many groups, and these groups are coe-
volved by using the master–slave multigroup distributed model,
forming a distributed PSO (DPSO) to enhance the algorithm
diversity. Second, a dynamic group learning (DGL) strategy is
adopted for DPSO to balance diversity and convergence. When
applied DGLDPSO into the large-scale cloud workflow schedul-
ing, an adaptive renumber strategy (ARS) is further developed
to make solutions relate to the resource characteristic and to
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make the searching behavior meaningful rather than aimless.
Experiments are conducted on the large-scale benchmark func-
tions set and the large-scale cloud workflow scheduling instances
to further investigate the performance of DGLDPSO. The com-
parison results show that DGLDPSO is better than or at least
comparable to other state-of-the-art large-scale optimization
algorithms and workflow scheduling algorithms.

Index Terms—Adaptive renumber strategy (ARS),
dynamic group learning distributed particle swarm
optimization (DGLDPSO), dynamic group learning strat-
egy, large-scale cloud workflow scheduling, master–slave
multigroup distributed.

I. INTRODUCTION

WORKFLOW, which contains a set of tasks
interconnected via data or computing dependence

between each other, is widely used and applicated in many
real-world applications [1]. For example, Montage workflow
can be used to generate custom mosaics of the sky and
CyberShake workflow can be used to characterize earthquake
hazards in a region [2]. The workflow scheduling problem is
to find the most suitable resource to execute each task of the
workflow, so as to satisfy users’ quality of service (QoS).

In the past, researchers often studied the workflow schedul-
ing based on distributed environment like grids [3], [4]. With
the popularity of cloud computing [5]–[8], workflow schedul-
ing on cloud resource has gradually become a significant
research topic in recent years [9]–[11], but it is also more
challenging. Different from the fixed and limited computing
resources in grid computing, the computing resources in cloud
computing are elastic and almost unlimited, which can be
leased in any amount at any time and according to the pay-
per-use pricing principle. Leasing more resources or expensive
resources can shorten the executing time, but also requires
a larger cost.

Therefore, taking both the time and cost into consid-
eration is necessary in workflow scheduling on cloud.
Rodriguez and Buyya [12] proposed a cost-minimization
and deadline-constrained workflow scheduling (CMDCWS)
model, where the tasks are required to execute with a mini-
mum cost and within a given deadline constraint. This has
become a popular scheduling model because it can find
a potential balance between time and cost, with a number of
following works on this model [12]–[17]. For example, due to
the success of evolutionary algorithms (EAs) [18]–[26], some
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EAs have been proposed to deal with the CMDCWS model,
such as coevolutionary genetic algorithm (GA) [13],
dynamic objective GA (DOGA) [14], cost effective
GA [15], particle swarm optimization (PSO) [12], renumber
PSO (RNPSO) [16], ant colony system (ACS) [17], and
multiobjective ACS (MOACS) [1]. Thus, we also adopt this
CMDCWS model in this article.

Even though the above approaches are competitive in solv-
ing the small- or medium-scale CMDCWS (e.g., less than
1000 tasks), when the scale of workflow increases, sev-
eral challenges occur, such as the huge search space and
exponentially increasing number of local optima.

To deal with these challenges, this article proposes
a dynamic group learning distributed PSO (DGLDPSO) for
large-scale optimization and extends it for solving the large-
scale CMDCWS. Specifically, three major novel designs and
advantages that help DGLDPSO balance diversity and conver-
gence for finding the feasible solution under a tight deadline
and minimizing the cost in the large-scale cloud workflow
scheduling are described as follows.

1) During the evolutionary process, we randomly divide
the entire population into several equal groups in every
generation, and these groups are coevolved by using
the master–slave multigroup distributed model, forming
a distributed PSO (DPSO) framework. This is promis-
ing to enhance the population diversity to efficiently
deal with the complex search challenge of large-scale
optimization.

2) In the particle’s evolution, a dynamic group learn-
ing (DGL) strategy is adopted for DPSO. On the one
hand, the size of each group is dynamically changed
in every generation. On the other hand, each group is
treated as a big “particle.” In this sense, the best parti-
cle in the group is regarded as the personal best pbest
of the big particle, while the best pbest of all big par-
ticles (groups) is regarded as the globally best gbest of
the entire population. Besides, only the worst particle
in each group is updated by learning from the pbest of
the current group and the gbest of the entire population.
Therefore, in the DGL strategy, the dynamically changed
group size can control the learning strength and find
a potential balance between diversity and convergence
for large-scale optimization. Moreover, only updating
the worst particle in the group can save more fitness
evaluations (FEs) budget for other particles to search
more regions of large-scale space and to further refine
the solution accuracy.

3) In the traditional cloud workflow scheduling algorithms,
each dimension of the solution represents a task, while
the value of each dimension stands for the index of cloud
resource that is scheduled to execute the correspond-
ing task. However, the index of resource in fact is only
a meaningless index number which does not reflect the
characteristic of resource. Learning from the index of
resource might make particles sightless. That is when
the value xd on dimension d in a particle moves toward
pbestd or gbestd, it seems that the resource pbestd or
gbestd is more suitable for task td. However, the resource

number between xd and pbestd or gbestd does not rep-
resent anything. Therefore, in the particle’s learning, an
adaptive renumber strategy (ARS) is proposed to make
the index of resource meaningful. We adaptively use two
metrics that are related to execution time and execution
cost, respectively, to sort and renumber the resources in
order to make the learning among particles more clear
and reasonable.

Therefore, the contributions of this article are two-fold, from
both the algorithm design aspect and the real-world application
aspect. One the one hand, in the algorithm design aspect, we
propose a novel DPSO with DGL strategy, called DGLDPSO,
to efficiently solve the large-scale optimization problems.
This is an algorithm innovation in both PSO and large-scale
optimization. On the other hand, in the real-world applica-
tion aspect, we have enhanced the DGLDPSO with ARS
and extended the algorithm to efficiently solve the large-scale
cloud workflow scheduling problems. This is a significant
contribution to the cloud computing field.

Experiments are conducted on a large-scale benchmark
function set from the CEC2010 test suite and the large-
scale instances of cloud workflow scheduling (e.g., up to
5000 tasks). The results obtained by DGLDPSO are better
than, or at least comparable to those obtained by the state-
of-the-art large-scale optimization algorithms and the cloud
workflow scheduling algorithms, showing the effectiveness of
our DGLDPSO algorithm.

The remainder of this article is organized as follows.
Section II describes the basic PSO algorithm, the application
of PSO in cloud workflow scheduling, and the CMDCWS
model. Section III describes the proposed DGLDPSO algo-
rithm in detail. In Section IV, experimental results are
presented and discussed. Finally, Section V draws the
conclusions.

II. PSO AND ITS APPLICATION IN SCHEDULING

A. PSO Framework

In PSO [27], the member of the swarm is called parti-
cle, which means a possible solution in the search space.
Each particle Pi is associated with two vectors. The vector
Vi = [v1

i , v2
i , . . . , vD

i ] means the velocity of Pi, while the vec-
tor Xi = [x1

i , x2
i , . . . , xD

i ] means the position of Pi, where D
stands for the dimensions of the search space. Moreover, each
particle Pi has a memory on its historical best position, called
personal best pbesti = [pbest1i , pbest2i , . . . , pbestDi ]. The best
one of all the pbesti is treated as the globally best of the
entire population, called gbest = [gbest1, gbest2, . . . , gbestD].
In every generation, each particle Pi adjusts its velocity and
position based on its own pbesti and the gbest of the entire
population. The velocity Vi and position Xi of each particle
are updated according to the following formulas:

vd
i = ω × vd

i + c1 × r1d
i ×

(
pbestdi − xd

i

)

+ c2 × r2d
i ×

(
gbestd − xd

i

)
(1)

xd
i = xd

i + vd
i (2)
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where ω is the inertia weight to balance global and local search
performance. c1 and c2 are the acceleration coefficients, where
parameter c1 pulls the particle to its own pbest, ensuring the
diversity of the population; while c2 pushes the swarm to con-
verge to the current gbest, ensuring the speed of convergence.
r1d

i and r2d
i are the two uniformly distributed random num-

bers within [0, 1]. A particle’s velocity and position on each
dimension are clamped in [−Vmax, Vmax] and [Xmin, Xmax],
respectively.

B. Application of PSO in Cloud Workflow Scheduling

Many improved PSO variants were proposed to solve the
tasks scheduling problem in cloud computing, which aims
to find the most suitable resource for each task to meet
users’ QoS, where the tasks are uncorrelated with each
other [28]–[35]. For example, Alkhashai and Omara [29]
merged the best-fit algorithm into PSO for generating the
initial population and utilized tabu search algorithm to do
the local search. Zhao et al. [34] proposed an adaptive
inertia weight PSO (AIWPSO) to relieve the sensitivity of
inertia weight and make PSO more adaptive and effec-
tive to obtain better scheduling. Apart from the adaptive
inertia weight, an adaptation of acceleration coefficients was
also used in the mutation time-varying PSO (MTV_PSO) [35]
for task scheduling.

Even though these task scheduling algorithms have achieved
a great success in cloud computing, the workflow scheduling
problems are much more challenging because the tasks are
dependent on each other and require a specific execution order.

Over the past few years, many PSO-based cloud
workflow scheduling algorithms have been extensively
researched [36]–[40]. Some scheduling algorithms focus on
reducing the financial cost. For example, Wu et al. [37]
proposed a revised discrete PSO (RDPSO) to schedule applica-
tions among cloud services that takes both data transmission
cost and computation cost into account. Pandey et al. [39]
proposed a novel PSO-based approach to reduce the cost, it
shows the PSO-based approach can achieve almost three times
cost saving as the compared algorithms. Some scheduling
algorithms focus on minimizing the execution time. For
instance, Manasrah and Ali [40] proposed a hybrid schedul-
ing algorithm (GA-PSO) which combines PSO and GA to
reduce the workflow execution time.

However, cost and time often conflict with each other, the
scheduling which can shorten the executing time may also
require a larger cost, while a low investment often greatly pro-
longs the executing time. Therefore, taking both the time and
cost into consideration is necessary in workflow scheduling
on cloud.

C. CMDCWS Model

To take both the time and cost into consider-
ation, the CMDCWS model is first proposed by
Rodriguez and Buyya [12]. It focuses on finding a schedule
to execute a workflow so that the total execution cost (TEC)
is minimized and the total execution time (TET) should not

Fig. 1. Example of workflow.

exceed the deadline. These are depicted in

Minimize TEC (3)

TET ≤ deadline. (4)

A simple workflow example is shown in Fig. 1. Besides,
there is a set of available resources rj, where each resource
has its own specific processing capacity PCj and cost per unit
time Cj. Often, the resource with higher processing capacity
can deal with tasks faster, but is relatively more expensive.

In the CMDCWS model, a schedule for each task can be
formulated as Si = [ti, rx[i], STi, ETi], which means the task ti
is executed on resource rx[i], and is started at the start time STi

and ended at the end time ETi. Besides, the resource rx[i] has
two important parameters called the lease start time LSTx[i]
and lease end time LETx[i]. The equations of calculating TEC
and TET are shown as

TEC =
|T|∑
i=1

Cx[i] × (
LETx[i] − LSTx[i]

)
(5)

TET = max{ETi}, 1 ≤ i ≤ |T|. (6)

III. DGLDPSO FOR THE LARGE-SCALE CLOUD

WORKFLOW SCHEDULING

In order to deal with the large-scale cloud workflow schedul-
ing problems efficiently, DGLDPSO is proposed, together
with the following three novel designs and advantages. First,
DGLDPSO uses a master–slave multigroup distributed model,
forming a DPSO, where multiple groups are coevolved concur-
rently to enhance the population diversity. Second, the DGL
strategy is proposed for DPSO. On the one hand, the size of
group is dynamically changed, so as to control the learning
strength and find a potential balance between diversity and
convergence for large-scale optimization. On the other hand,
we treat each group as a big particle and only one update is
performed in each group (big particle), which can save FEs
to search more regions of the large-scale space and to further
refine the solution accuracy. Third, considering the character-
istics of cloud workflow scheduling, ARS is further proposed,
which can adaptively choose two metrics to sort and renumber
the resources in order to make the learning among particles
more clear and reasonable.

Before we introduce DGLDPSO, we first describe three crit-
ical issues when using PSO for solving the cloud workflow
scheduling problem.

The first one is the encoding. Here, the dimension of parti-
cle is equal to the number of tasks in the workflow, while the
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Fig. 2. Example of the encoding of a particle’s position.

Fig. 3. Example of exetime and transfertime.

search range of each dimension in particle is the real num-
ber between 1.0 and the number of resources plus one. For
example, assume the workflow is as Fig. 1 with eight tasks
and there are four resources can be leased, then each particle
is 8-D and the range of each dimension is [1.0, 5.0). In other
words, each dimension stands for each task, and the integer
part of its value represents the index of resource scheduled to
execute the corresponding task. Fig. 2 shows a simple schedul-
ing, where d1 stands for task t1, and its value 2.2 represents
that resource r2 will be assigned to task t1; d2 stands for task
t2, and its value 3.5 indicates that resource r3 will be allocated
to task t2, and so on.

The second one is the FE. As mentioned above, we use (5)
and (6) to calculate TEC and TET, respectively. However, in
order to obtain TEC and TET, the time that each task is exe-
cuted on each resource needs to be known. The execution time
is stored in the matrix exetime, where the exetime[i][j] repre-
sents the time that task ti runs on resource rj. Besides, when
the parent task and its child task are executed on different
resources, the parent needs time to transfer data to its child.
As a result, the transfer time stored in the matrix transfertime
is used, where the transfertime[i][j] indicates the time that the
task ti transfers data to tj. Fig. 3 presents an example of the
matrices exetime and transfertime. After getting the exetime
and transfertime, the TEC and TET values of a solution can
be calculated as the pseudocode shown in Algorithm 1.

The last one is the fitness comparison. As we wish to min-
imize TEC and let TET not exceed the deadline, so if both
solutions are feasible (TET does not exceed the deadline), the
one with smaller TEC is better. While if only one solution is
feasible, obviously, the feasible solution is preferred. However,
if both solutions are infeasible (TET exceeds the deadline), the
one with smaller constraint violation (smaller TET) is selected.

A simple workflow scheduling corresponding to Figs. 1–3 is
shown in Fig. 4.

A. Master–Slave Multigroup Distributed Framework

The master–slave multigroup distributed framework is illus-
trated in Fig. 5, where the master node dominates the multiple
slave nodes in parallel hardware.

Algorithm 1 Calculate TEC and TET
Begin
1. TEC = 0; TET = 0;
2. Initialize each STi, ETi, LSTj, LETj as 0;
3. For each task ti
4. If ti has no parents
5. STi = LETx[i];
6. Else
7. STi = max{max{ETp}, LETx[i]}; /* p indicates each parent of i */
8. End If
9. transfer = 0;
10. For each tc /* c indicates each child of i */
11. If x[c] �= x[i]
12. transfer = transfer + transfertime[i][c];
13. End If
14. End For
15. ETi = STi + exetime[i][x[i]] + transfer;
16. LSTx[i] = STi;
17. LETx[i] = ETi;
18. TEC = TEC + Cx[i] × (LETx[i] − LSTx[i]);
19. End For
20. TET = max{ETi};
End

Fig. 4. Example of the workflow scheduling.

Fig. 5. Master–slave multigroup distributed model.

During the evolutionary process, the master always ran-
domly divides the entire population into N/M equal groups,
where N is the population size, and M is the size of the group
which will be dynamically changed. Note that if N%M �= 0,
the last group will have M + N%M particles. After the
population partition, the master will send each group to its
corresponding slave, and different groups are coevolved con-
currently on their slave nodes. After the evolution, each slave
sends the updated group back to the master. Up to now, we
have finished a loop sequent. The process will be repeated
until the termination criterion is satisfied.
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Fig. 6. Learning strategy in DGLDPSO.

As we can see, this master–slave multigroup distributed
model can enhance the population diversity by coevolution,
which matches the search requirement of the large-scale
optimization problems.

B. DGL Strategy

The DGL strategy has the following two novel
characteristics.

First, after the population partition, each group is regarded
as a big particle, and the best particle in the group is denoted
as the pbest of the big particle (group). Besides, only the worst
particle xw in the group will update its velocity and position
by learning from the pbest in the current big particle (group)
and from the gbest of the entire population, while other parti-
cles in the group will enter to the next generation directly. In
other words, only N/M particles will be updated in the entire
population.

Second, the group size M is dynamically changed in every
generation, which is randomly selected from a fixed interval.
That is because for a given population size, if the group size
is large, the pbest is selected from a large group of parti-
cles, which would be relatively greedy. On the contrary, if the
group size is small, pbest is selected from a small group of
particles, which becomes relatively diverse. However, with-
out any prior knowledge about the landscape of a problem, it
is hard to precisely determine a proper group size M in dif-
ferent evolutionary stages. Therefore, to make a compromise,
the M is randomly selected from a fixed interval. Although
this scheme is simple, it is effective and readily applicable
to a wide range of uses. For example, if the current group
gets trapped in the local optima, the group size M has the
opportunity to be smaller to improve the population diversity.
In contrast, if the global optima region is found, the group
size M can become larger to accelerate the convergence. As
a result, we can achieve a potential balance between popula-
tion diversity and fast convergence. Meanwhile, the random
selection also relieves the sensitivity of parameter.

Fig. 6 illustrates the main idea of this novel DGL strat-
egy. The formula of updating velocity of the worst particle is
shown as (7), which is similar to (1), but with the following
differences:

vd = ωd × vd + c1 × r1d ×
(

pbestd − xd
)

+ c2 × r2d ×
(

gbestd − xd
)
. (7)

1) The first part is similar to the inertia term in the tradi-
tional PSO. The only difference is that the inertia weight
ω in PSO is often set as linearly decreasing from 0.9 to
0.4, while herein it is replaced by the random number in
DGLDPSO. The random number is helpful to improve
the learning diversity and the population diversity.

2) The second part is also learning from the pbest, which
is same to the traditional PSO. However, the pbest in
DGLDPSO is regarded as the best particle of the big
particle (group), as we mentioned above.

3) Parameters c1 and c2 are often set as 2.0 in the traditional
PSO. But in DGLDPSO, c1 is set as 1.0 and c2 is set
as 0.1, respectively. That is because when dealing with
the large-scale optimization problems, we should con-
centrate more on diversity maintaining to avoid local
trapped. In this sense, c1 and c2 should be smaller to
ensure the population diversity, while c2 which con-
trols the convergence speed to the gbest should be much
smaller.

Therefore, there are several superiorities of this DGL strat-
egy shown as follows.

1) The random selection of M and redefinition of the big
particle and its pbest can control the learning strength
effectively and can find a potential balance between
diversity and convergence, which can further improve
the performance of DGLDPSO.

2) Only the worst particle in each group is updated, which
is helpful to save more FEs for other particles.

3) Resetting the parameters c1 and c2 will make DGLDPSO
focus more on population diversity, which matches
the search requirement of the large-scale optimization
problems.

With the above descriptions, the pseudocode of DGLDPSO
can be summarized in Algorithm 2.

C. ARS

DGLDPSO performs particularly well on many large-scale
optimization problems, which will be further discussed in
Section IV-B. However, when applied to the large-scale cloud
workflow scheduling, an extra strategy called ARS is incor-
porated in DGLDPSO due to the characteristics of the cloud
workflow scheduling.

Consider a situation. When the cloud provider offers a large
amount of resources with random number, the particles will
become blind in the traditional PSO during the learning pro-
cess. That is when the value xd on dimension d in a particle
moves toward pbestd or gbestd, it seems that the resource
pbestd or gbestd is more suitable for task td. However,
the resource number between xd and pbestd or gbestd does
not represent anything. How to make the searching process
meaningful is quite important, especially when the scale of
workflow is large.

The renumber strategy is first proposed by Li et al. [16].
It used the cost per unit time as the metric to renumber the
resources where the resource ri represents the resource with
the ith lowest cost per unit time. In that way, when xd flies
toward pbestd or gbestd, it predicts a tendency that task td
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is suitable for a cheaper resource or an expensive one. As
a consequence, the searching process will become meaningful.

Even though it achieved the relatively promising results,
there is still much room for improvement. As there are two
objectives (i.e., time and cost) when evaluate the scheduling,
only using the cost metric to renumber the resources is not
wise, especially when the deadline is tight. As a result, in this
article, we proposed a novel ARS by adaptively selecting the
metric to further improve the learning process.

At the beginning, DGLDPSO uses the metric of process-
ing capacity to renumber the resources. This metric is used
because that until the population finds a feasible solution,
TET is the primary optimization objective we should concern.
The metric of processing capacity is more related to the TET,
which can help the algorithm find solutions that satisfy the
deadline constraint. Once the population finds a feasible solu-
tion, what we concerned turns to the cost. At this moment,
DGLDPSO adaptively turns to use the metric of cost per unit
time to renumber the resources. As a result, DGLDPSO will
predict a tendency for each task that the current task is suitable
for a cheaper resource or an expensive one, which is useful to
minimize the TEC. There are two advantages of our ARS to
solve the large-scale cloud workflow scheduling.

1) The renumber strategy can predict a searching tendency
for each task, which can make the searching and learning
process more meaningful.

2) Adaptively selecting the two metrics can make the pop-
ulation find the feasible solution and minimize the cost
more quickly, which is more suitable for the large-scale
cloud workflow scheduling, especially when the deadline
is tight.

D. Complete Algorithm DGLDPSO

Based on all the components described above, the pseu-
docode of the complete procedure of DGLDPSO for the large-
scale cloud workflow scheduling is outlined in Algorithm 3.
The superiority of DGLDPSO is shown as follows.

1) Several groups are coevolved by using the master–slave
multigroup distributed model, forming a DPSO, which
can enhance the population diversity.

2) The DGL strategy is proposed for DPSO, which can
control the learning strength effectively and can find
a potential balance between diversity and convergence.

3) ARS is proposed to make the index of the resource
and the searching process meaningful, which matches
the searching requirements and characteristics of cloud
workflow scheduling.

E. Complexity Analysis

Herein, we denote the population size, the dimension of
problem, the group size, and the maximum number of FEs
as N, D, M, and MaxFEs, respectively. First, in the initializa-
tion, the time complexity of DGLDPSO is O(N × D)+ O(N),
which is obtained by steps 1–3 in the MASTER process
of Algorithm 2. Then, as for individual evolution, since
DGLDPSO only updates the worst particle in each group, as
a result, the time complexity is O(N/M × D) + O(N/M) in

every generation, as obtained by steps 8–11 in the MASTER
process and steps 1–6 in the SLAVE process of Algorithm 2.
DGLDPSO will evolve MaxFEs/(N/M) generations, so the
overall time complexity of DGLDPSO is MaxFEs/(N/M) ×
(O(N/M × D) + O(N/M)), which is actually reduced to the
O(MaxFEs × D) and is similar to many other state-of-the-
art large-scale optimization algorithms. Detailed comparisons
of time complexity of different large-scale optimization algo-
rithms are listed in Table S.I in the supplementary material.

When apply DGLDPSO to the large-scale cloud work-
flow scheduling, ARS is proposed and we add two sorting
operators in DGLDPSO, as shown in steps 1 and 8 in the
MASTER process of Algorithm 3, respectively. Denote the
number of resources as Nr, the time complexity of ARS in
DGLDPSO is O(Nr × log(Nr)). Therefore, the overall time
complexity of DGLDPSO for the large-scale cloud workflow
scheduling is O(MaxFEs × D) + O(Nr × log(Nr)). Detailed
comparisons of time complexity of different cloud work-
flow scheduling algorithms are listed in Table S.II in the
supplementary material.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

To test the performance of DGLDPSO, we conduct the fol-
lowing two experiments. The first one is on the 20 widely used
1000-D optimization benchmark functions from CEC2010 test
suite [41], which is used to illustrate the superiority of
DGLDPSO for dealing with the large-scale optimization prob-
lems. The second one is on the large-scale extension of the
CMDCWS model proposed in [12], which is also used to show
the preponderance of DGLDPSO for solving the large-scale
cloud workflow scheduling. For more details about the test
functions and the cloud workflow scheduling model, please
refer to [12] and [41], respectively.

For the implementation of DGLDPSO, the master–slave
model of DGLDPSO is built in a multiprocessor distributed
environment that consists of a number of distributed com-
puting servers. The CPU of each server has eight processors
configured with Intel Core i5-7400, 3.00 GHz. Therefore, we
obtain the multiprocessor distributed environment and we can
assign each group to one processor through MPI. The popu-
lation size is set as 500 and the interval for the group size M
is [2, 10].

In the first experiments on the large-scale benchmark func-
tions, we compare DGLDPSO with seven state-of-the-art
large-scale optimization algorithms. The first four competi-
tors are based on the cooperative coevolution (CC) frame-
work, that is, multilevel CC (MLCC) [42], cooperative
coevolving PSO (CCPSO2) [43], and cooperative coevolv-
ing DE (DECC), including DECC with random grouping
(DECC-G) [44] and DECC with differential grouping (DECC-
DG) [45]. The other four competitors are non-CC-based
large-scale optimization algorithms, including competitive
swarm optimizer (CSO) [46], social learning PSO (SL-
PSO) [47], dynamic multiswarm PSO (DMS-L-PSO) [48], and
dynamic level-based learning swarm optimizer (DLLSO) [49].
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(a) (b) (c) (d)

Fig. 7. Topology structures of four different scientific workflows: (a) CyberShake, (b) LIGO, (c) SIPHT, and (d) Montage.

Although DLLSO also has the dynamic technique, it is differ-
ent that DLLSO dynamic selects a number from a level pool
(contain only a few choices) as the number of levels, while
DGLDPSO dynamic selects a number from an interval (con-
tain a large number of choices) as the group size. In the second
experiments on the large-scale cloud workflow scheduling, we
compare DGLDPSO with seven typical cloud scheduling algo-
rithms, including five PSO-based scheduling algorithms, such
as PSO [12], RNPSO [16], AIWPSO [34], MTV_PSO [35],
and RDPSO [37], and two GA-based scheduling algorithms,
such as DOGA [14] and GA-PSO [40]. The parameters of
these competitors are set according to their original proposals
because they have been well turned for these related problems.

For fair comparisons, the MaxFEs is set as 3 000 000 for
all competitors. Moreover, all the experiments run 30 times
independently for statistics and the mean results are reported.
In addition, the coefficient of variance (C.V) of the 30 runs
is calculated to show the stability of the algorithm. Moreover,
the Wilcoxon’s rank-sum test at α = 0.05 between DGLDPSO
and other state-of-the-art algorithms is performed to evaluate
the statistical significance of the results. The symbols “+,”
“≈,” and “−” indicate DGLDPSO performs significantly bet-
ter (+), similarly (≈), or significantly worse (−) than the
corresponding algorithm in comparison.

B. Comparison Results on Large-Scale Benchmark Functions

These functions are with 1000 dimensions and can be classi-
fied into three groups. The first group includes three separable
functions f 1–f 3. The second group consists of the following
15 functions f 4–f 18, which are partially separable functions.
The last group consists of the last two functions f 19–f 20 that
are nonseparable functions. All these functions are shifted and
rotated, which are more difficult to solve and make our test
more comprehensive and convincing. Due to the space limita-
tion, the properties of these functions are given in Table S.III
in the supplementary material. For more details about these
test functions, please refer to [41].

Table I presents the comparison results where the best
results are highlighted in boldface. From Table I, we can see
the following.

For the first three separable functions f1–f3, DGLDPSO
performs significantly better than most of other algorithms,

especially on f 1 and f 3. Although it performs slightly worse
than MLCC and DLLSO on these three functions, MLCC
and DLLSO lose their feasibilities when dealing with the
partially separable or nonseparable functions, which will be
discussed below.

For the next 15 partially separable functions f4–f18,
DGLDPSO performs the best on five functions (f 6, f 7, f 11, f 13,
and f 16). It dominates MLCC, CCPSO2, DECC-G, DECC-
DG, CSO, and DMS-L-PSO on at least 11 functions. When
compared with SL-PSO and DLLSO, DGLDPSO also signif-
icantly performs better than SL-PSO and DLLSO on 8 and
9 functions, respectively, while only dominated by SL-PSO
and DLLSO on 6 and 5 functions, respectively.

For the last two nonseparable functions f19–f20, although
DGLDPSO performs slightly worse than some algorithms on
f 19, it almost dominates and performs better than all the
compared algorithms on f 20.

Overall, DGLDPSO performs better than MLCC, CCPSO2,
DECC-G, DECC-DG, CSO, SL-PSO, DMS-L-PSO, and
DLLSO on 14, 14, 15, 15, 15, 12, 19, and 11 functions, respec-
tively. Conversely, MLCC, CCPSO2, DECC-G, DECC-DG,
CSO, SL-PSO, DMS-L-PSO, and DLLSO can only surpass
DGLDPSO on 6, 4, 5, 5, 2, 6, 1, and 8 functions, respec-
tively. Moreover, the C.V values of DGLDPSO are generally
smaller than other state-of-the-art compared algorithms, indi-
cating that DGLDPSO always has more stable performance
than the competitors.

Therefore, DGLDPSO generally performs better than all
these competitors on most of the tested large-scale bench-
mark functions. The promising performance of DGLDPSO
also further confirms that the master–slave multigroup dis-
tributed model in coevolution helps the algorithm enhance the
population diversity to sufficiently search in the very large
space for finding the global optimum.

To further study the evolutionary behavior of different algo-
rithms, we draw their convergence curves to observe their
evolutionary processes. Besides, in order to make our compar-
ison more convincing, we choose several typical benchmark
functions from all the three groups. Herein, we select sep-
arable function f 3, partially separable functions f 6, f 11, f 13,
and f 16, and nonseparable function f 20 as the representa-
tive instances. The convergence curves of DGLDPSO, MLCC,
CCPSO2, DECC-G, DECC-DG, CSO, SL-PSO, DMS-L-PSO,
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TABLE I
EXPERIMENTAL RESULTS OF 1000-D CEC2010 FUNCTIONS f 1–f 20

and DLLSO on these six functions are plotted in Fig. S1 in
the supplementary material for saving space.

From Fig. S1(a) in the supplementary material, we can see
that only DGLDPSO and DLLSO can converge to good solu-
tions quickly on separable function f 3, while other algorithms
occur stagnation in the early stage or evolve very slow. While
on the partially separable functions f 6, f 11, and f 13, shown
in Fig. S1(b)–(d) in the supplementary material, DGLDPSO
and CSO can find the better results and converge faster than
other algorithms. Moreover, DGLDPSO is still more accu-
rate and has a faster convergence speed than CSO, showing
DGLDPSO converges the fastest to the best final results. Note
that in the partially separable function f 16 in Fig. S1(e) in the
supplementary material, only DGLDPSO and DECC-DG can
get the promising results, where DGLDPSO still obtains more
accurate result than DECC-DG does. The curves in Fig. S1(f)
in the supplementary material also show that DGLDPSO can
converge to promising results on the very difficult nonsepara-
ble function f 20, and its early convergence speed is faster than
most of the other algorithms. Overall, DGLDPSO generally
has faster convergence speed than these compared large-scale
optimization algorithms on these benchmark functions. This
may be due to that the DGL strategy in DGLDPSO can change
the group size dynamically to control the learning strength

effectively and to find a potential balance between diversity
and convergence speed.

C. Comparison Results on the Large-Scale Cloud Workflow
Scheduling

In this experiment, DGLDPSO with ARS is applied into the
large-scale cloud workflow scheduling.

Before we conduct the experiments, some extra parame-
ters in the cloud workflow scheduling model should be set.
First, for every type of resource rj, we define its processing
capability PCj as a uniformly distribution Rand(1, 10) within
[1, 10] and its cost per unit time as a normal distribution
Normal(PCj, 0.1) with mean PCj and standard deviation 0.1.
That is because the resource with good processing capability
is often expensive.

Second, for every task ti, we define its size si as
Rand(10, 30) within [10, 30], while its exetime on rj is
defined as Normal(si/PCj, 0.1). Third, the transfer time
transfertime[i][c] from parent task ti to its child tc is calculated
according to the size of task ti and the bandwidth, which can
be formulated as

transfertime[i][c] = Rand(0.1, 1) × si/bandwidth (8)

where the bandwidth is set as 2000 in our experiment.
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Two evaluation criteria called success rate (SR) and
MeanTEC are used to evaluate the performance of DGLDPSO
and other algorithms. For a given MaxFEs and a deadline,
SR denotes the percentage of successful runs out of all runs.
Here, a successful run means a run where the algorithm can
find the feasible solution. The MeanTEC is measured by the
average TEC in all successful runs since the TEC is invalid
when the algorithm cannot find a feasible solution within
MaxFEs.

1) Comparison Results on the Scientific Workflows: We
first test the performance of DGLDPSO on four widely used
scientific workflows called CyberShake, LIGO, SIPHT, and
Montage. The topology structures of these workflows are
shown in Fig. 7. More details of these workflows can be
referred to [50].

We generate three test instances for each scientific work-
flow, where the numbers of tasks are 1000, 1500, and 2000,
respectively, and the numbers of resources are 100, 150, and
200, respectively. For each test instance, we set three dead-
lines which are loose, medium, and tight, respectively, to test
whether a given algorithm can find the feasible solution within
the MaxFEs. For the test instance with 1000 tasks, we use
the deadlines as 200, 170, and 140, respectively. For the test
instance with 1500 tasks, we use the deadlines as 300, 250,
and 200, respectively. For the test instance with 2000 tasks,
we use the deadlines as 400, 340, and 280, respectively.

The detailed comparison results over 30 runs are shown in
Table II. For clarity, the best results are highlighted in bold-
face. Table II shows that with the scale of tasks increases
and the deadline becomes tighter, the performances of many
algorithms are largely weakened, while the DGLDPSO is still
promising.

For the CyberShake workflow, only DGLDPSO, GA-PSO,
and DOGA and can always find the feasible solution on all the
three test instances and within all the three deadlines. However,
DGLDPSO can achieve the best performance on MeanTEC
compared with the other algorithms.

For the LIGO workflow, which has a relatively simpler
topology structure, DGLDPSO, RNPSO, RDPSO, GA-PSO,
and DOGA can all find the feasible solution on all the
three test instances and within all the three deadlines. RNPSO
performs even better than DGLDPSO on 2000 tasks instance,
while DOGA achieves smaller MeanTEC than DGLDPSO
on 1000 tasks instance when deadline = 200. Even so,
DGLDPSO still outperforms all the other algorithms on other
test instances.

For the SIPHT workflow, GA-PSO achieves the smallest
MeanTEC and outperforms DGLDPSO on instances with 1000
and 2000 tasks. However, DGLDPSO still outperforms other
scheduling algorithms and performs the best on instance with
1500 tasks.

For the Montage workflow, which has a relatively more
complicated topology structure, the performance of many
compared algorithms is further weakened. MTV_PSO and
DOGA achieve the similar performance with DGLDPSO
on instances with 1500 and 2000 tasks, while DGLDPSO
dominates almost all the other algorithms on instance with
1000 tasks.

DGLDPSO

Overall, on all the 12 test instances and all the 36 cases
with different deadlines, DGLDPSO performs better than
PSO, RNPSO, AIWPSO, MTV_PSO, RDPSO, GA-PSO, and
DOGA on 36, 33, 34, 34, 34, 27, and 23 cases, respectively.
Conversely, RNPSO, MTV_PSO, GA-PSO, and DOGA can
only surpass DGLDPSO on 1, 1, 5, and 2 cases, respectively.
PSO, AIWPSO, and RDPSO cannot surpass DGLDPSO on
any cases. Moreover, the smaller C.V values of DGLDPSO
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TABLE II
EXPERIMENTAL RESULTS IN SR AND MEANTEC ON SCIENTIFIC WORKFLOWS

also indicate the better stability of DGLDPSO. Therefore,
DGLDPSO achieves the best performance on the large-scale
scientific workflows.

2) Comparison Results on the Randomly Generated
Workflows: To further make our test more convincing
and comprehensive, we designed an algorithm shown in
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TABLE III
EXPERIMENTAL RESULTS IN SR AND MEANTEC ON TEST INSTANCES T1–T9

Algorithm 4 using the stochastic mechanism similar to the one
used in [17] to randomly generate the relatively complicated
topological structure of the workflows.

We randomly generate nine test instances to further illustrate
the superiority of DGLDPSO when solving the large-scale
cloud workflow scheduling problems. The first three test
instances T1–T3 are with 1000 tasks and 100 resources. The
following three test instances T4–T6 are with 1500 tasks and
150 resources. The last three test instances T7–T9 are with
2000 tasks and 200 resources. For the test instance with
1000 tasks, we use the deadlines as 2000, 1700, and 1400,

respectively. For the test instance with 1500 tasks, we use the
deadlines as 3000, 2500, and 2000, respectively. For the test
instance with 2000 tasks, we use the deadlines as 4000, 3400,
and 2800, respectively.

The detailed comparison results over 30 runs are shown
in Table III. For clarity, the best results are highlighted
in boldface. According to Table III, we can conclude the
following.

For the first three test instances T1–T3 with 1000 tasks,
only DGLDPSO, RNPSO, GA-PSO, and DOGA can always
find the feasible solution within all the deadlines. However,
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TABLE IV
EXPERIMENTAL RESULTS IN SR AND MEANTEC ON 5000-D TEST INSTANCES T1–T3

Algorithm 4 Generate the Workflow Topology Structure
Begin
1. For i = 1 : T //T is the number of tasks in the workflow
2. Pc = 0.1 + 0.2 × i/T;
3. For c = i + 1 : T
4. If Rand(0, 1) ≤ Pc
5. task tc is the child of task ti;
6. End If
7. End For
8. End For
End

DGLDPSO can achieve the best performance on MeanTEC
compared with the other algorithms.

For the following three test instances T4–T6 with 1500 tasks,
PSO, RNPSO, AIWPSO, MTV_PSO, and RDPSO all lose
their feasibilities when the deadline is tight. Especially, when
deadline = 2000, PSO is totally unfeasible on T4. Although
GA-PSO and DOGA can achieve the similar performance on
SR compared with DGLDPSO, they are totally dominated by
DGLDPSO on MeanTEC on T5, no matter on which deadline.

For the last three test instances T7–T9 with 2000 tasks, the
performance of other compared algorithms is further weak-
ened. When deadline = 2800, PSO, RNPSO, and MTV_PSO
cannot find any feasible solution on T8. However, DGLDPSO
still achieves the better or at least comparable MeanTEC
compared with the other algorithms on all the three test
instances.

Overall, on all the 9 test instances and all the 27 cases,
DGLDPSO performs better than PSO, RNPSO, AIWPSO,
MTV_PSO, RDPSO, GA-PSO, and DOGA on 27, 21, 22,
25, 20, 25, and 24 cases, respectively. Conversely, RNPSO,
AIWPSO, RDPSO, GA-PSO, and DOGA, can only surpass
DGLDPSO on 1, 1, 1, 2, and 3 cases, respectively. PSO and
MTV_PSO cannot surpass DGLDPSO on any cases. From
the results of C.V, we can also see that the performance

of DGLDPSO is more stable than other compared algo-
rithms. Therefore, DGLDPSO generally achieves the best
performance on the large-scale randomly generated cloud
workflow scheduling.

3) Scalability of DGLDPSO: In order to investigate the
scalability of DGLDPSO, we further randomly generated
three test instances with 5000 tasks and 500 resources using
Algorithm 4 to compare the performance of DGLDPSO with
these algorithms. Three deadlines are set as 11 000, 10 000,
and 9000, respectively. The detail experimental results on the
5000-D scheduling can be seen in Table IV. As we can see,
with the increasing scales, the performance of GA-PSO and
DOGA is greatly deteriorated. Only DGLDPSO can find all
the feasible solutions on all the three test instances and within
all the three deadlines. Besides, DGLDPSO performs signif-
icantly better and achieves smaller MeanTEC than all the
other scheduling algorithms on almost of all the nine cases.
Moreover, the performance of DGLDPSO is more stable
than the compared algorithms according to the C.V values.
These results show that DGLDPSO can also remain good
performance when the scale increases to 5000.

From Tables II–IV, DGLDPSO shows its superiority
and good scalability, on both the scientific workflows and
the randomly generated workflows. As the scale of tasks
increases and the deadline becomes tighter, the superiori-
ties of DGLDPSO are increasingly obvious. Therefore, the
DGLDPSO not only has a promising performance on the
large-scale benchmark functions but also has a promising
performance on the large-scale regular scientific workflows,
complex randomly generated workflows, and even very large
workflows up to 5000 tasks. This may be due to that the multi-
group distributed coevolution of DGLDPSO has very strong
global search ability in the large-scale optimization. Moreover,
the ARS incorporated in DGLDPSO can also make the index
of resource meaningful and the learning among particles more
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clear and more reasonable, helping to solve the large-scale
cloud workflows scheduling problems efficiently.

D. Effects of ARS on the Large-Scale Cloud Workflow
Scheduling

In order to investigate the effect of ARS, we consider
a DGLDPSO variant without ARS, called DGLDPSO-noARS,
and compare it with DGLDPSO on all the nine randomly
generated workflow instances, the same used in Section IV-
C2. The detailed comparison results with respect to SR and
MeanTEC between DGLDPSO and DGLDPSO-noARS are
listed in Table S.IV in the supplementary material.

As we can see, DGLDPSO can always find the feasible
solution on all these nine test instances and on all the dead-
lines, while DGLDPSO-noARS loses its feasibility when the
deadline is tight, such as when deadline = 1400 on T1 and
when deadline = 2000 on T4. Meanwhile, DGLDPSO always
achieves better MeanTEC when compared with DGLDPSO-
noARS. In all, DGLDPSO dominates DGLDPSO-noARS on
25 cases, and the C.V values of DGLDPSO are generally
smaller than DGLDPSO-noARS, which fully illustrates the
effectiveness of the ARS.

To further investigate the applicability of ARS, we also
adopt the ARS in all the other compared algorithms and
term their variants with ARS as algorithm-ARS. For exam-
ple, PSO with ARS is called PSO-ARS. Note that RNPSO
with ARS is also called PSO-ARS. The results between
these algorithms with and without the ARS are compared in
Table S.V in the supplementary material. The results show
that the performance of the PSO-based scheduling algorithms,
including PSO, RNPSO, AIWPSO, MTV_PSO, and RDPSO,
is greatly improved by using the ARS. This indicates that
ARS can guide the flying of particles more clearly and make
the learning among particles more reasonable. While the
performance of the GA-based scheduling algorithms, including
DOGA and GA-PSO, is also improved by using the ARS, but
not obvious. That may be due to that the evolutionary opera-
tors in GA, including selection, crossover, and mutation, do not
have the learning and flying process. Therefore, ARS has rel-
atively less influence on the GA-based scheduling algorithms.
As the compared algorithms have been enhanced by ARS, we
further compare the results obtained by their ARS variants
with those obtained by DGLDPSO (which is also with ARS)
in Table S.VI in the supplementary material. From Table S.VI
in the supplementary material, we can see that DGLDPSO still
generally outperforms other algorithms variants with ARS.

Therefore, ARS has the promising effectiveness on the
cloud scheduling algorithms, which can be widely applied
into other cloud scheduling algorithms and further improve
their performance, especially on the PSO-based scheduling
algorithms.

V. CONCLUSION

This article develops a DGLDPSO for large-scale
optimization and extends it with ARS for tackling large-
scale cloud workflow scheduling. Three major novel
designs are developed to improve the performance of the

algorithm: 1) master–slave multigroup distributed model;
2) dynamic group learning strategy; and 3) ARS.

Several groups are coevolved by using the master–slave
multigroup distributed model, forming a DPSO framework,
which can enhance the population diversity. Furthermore, the
DGL strategy in DGLDPSO can control the learning strength
effectively and can find a potential balance between diversity
and convergence. Finally, the ARS can make the index of the
resource and the searching process meaningful.

Based on these three novel designs, DGLDPSO can achieve
a promising performance when dealing with the large-scale
benchmark functions and the large-scale cloud workflow
scheduling problems.
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