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Abstract—Supply chain network design (SCND) is a compli-
cated constrained optimization problem that plays a significant
role in the business management. This article extends the SCND
model to a large-scale SCND with uncertainties (LUSCND),
which is more practical but also more challenging. However, it
is difficult for traditional approaches to obtain the feasible solu-
tions in the large-scale search space within the limited time. This
article proposes a cooperative coevolutionary bare-bones parti-
cle swarm optimization (CCBBPSO) with function independent
decomposition (FID), called CCBBPSO-FID, for a multiperiod
three-echelon LUSCND problem. For the large-scale issue, binary
encoding of the original model is converted to integer encod-
ing for dimensionality reduction, and a novel FID is designed
to efficiently decompose the problem. For obtaining the feasible
solutions, two repair methods are designed to repair the infea-
sible solutions that appear frequently in the LUSCND problem.
A step translation method is proposed to deal with the variables
out of bounds, and a labeled reposition operator with adaptive
probabilities is designed to repair the infeasible solutions that vio-
late the constraints. Experiments are conducted on 405 instances
with three different scales. The results show that CCBBPSO-FID
has an evident superiority over contestant algorithms.
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I. INTRODUCTION

THE SUPPLY CHAIN network (SCN) has attracted
increasing attention in different fields, such as produc-

tion manufacturing [1], [2] and business management [3], [4].
The members of SCN include suppliers, manufacturers, ware-
houses, distributors, retailers, and customers. These members
and the flows of finances and materials among them make up
the entire network. The aim of the design of SCN (SCND) is
to minimize the total cost of the entire system and to meet
demands of different members [5]–[7]. An excellent SCND
can optimize enterprise management, improve efficiency, and
finally encourage consumptions.

Different SCND models have different features. For exam-
ple, SCND under uncertainties (USCND) has uncertain fac-
tors, such as uncertain demand of customers and uncertain
supply of suppliers [8]. These uncertain factors make it diffi-
cult to evaluate the solutions and generate feasible solutions.
There are two main simulation methods of uncertainties to help
the fitness evaluation (FE): 1) the scenario analysis and 2) the
Monte Carlo method (MCM). The scenario analysis only ana-
lyzes limited scenarios of uncertainties [9]. Differently, MCM
simulates the uncertainties in each evaluation of solutions and
is more complicated [10]. This article also adopts MCM to
the USCND.

The SCND/USCND problem can be regarded as a con-
strained optimization problem (COP). Due to the great
potential of evolutionary algorithms (EAs) in solving
COPs, some researchers have already used EAs for SCND
problems [11]. Salem and Haouari [10] applied the particle
swarm optimization (PSO) to solve a more complex USCND
problem with multiple periods and uncertainties in both sup-
ply and demand. Sahebjamnia et al. [12] used the red deer
algorithm (RDA) for the sustainable tire closed-loop SCND
problem.
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However, it is still difficult for the existing algorithms to
effectively solve the large-scale USCND (LUSCND) problem,
which involves both the large-scale challenge and the uncer-
tain challenge. On the large-scale issue, a large number of
suppliers and customers are included in the LUSCND to
meet the growing market demand [13]. Unfortunately, these
increasing SCN members lead to a larger solution space and
more constraints, making it more difficult to find feasible
and optimal solutions. An efficient method for the large-scale
issue is in great need to obtain the satisfactory solutions
within the limited time. Besides, as the scale of the LUSCND
becomes large, the number of constraints will increase sharply,
and infeasible solutions may appear frequently in this com-
plex problem. Most of the current works for SCND only
apply penalty functions on infeasible solutions, being use-
less to find a feasible solution for the LUSCND problem.
Moreover, in the uncertain environment, the constraints in
the LUSCND are also uncertain [10]. These uncertain con-
straints will also increase the number of constraints. Therefore,
it is hard for traditional approaches to obtain feasible solu-
tions of the LUSCND problem. New methods are needed to
replace the penalty functions and to help finding the feasible
solutions.

Therefore, this article focuses on the practical and chal-
lenging LUSCND problem and proposes an efficient approach
to solve this problem. On the aspect of the problem model,
the USCND in [10] is extended with large-scale variables. On
the aspect of the algorithm design, an efficient method for
the large-scale issue and two new methods for constraint han-
dling are proposed for the LUSCND problem with complex
constraints.

First, to relieve the large-scale challenges, the model is sim-
plified by replacing the binary coding of the location with
the integer coding (under the assumption that a member, like
a supplier, can choose one location at most), which helps
to reduce the solution space of the problem. If there are n
binary values (n locations to be chosen), the solution space of
the location will reduce from 2n to n. Moreover, a coopera-
tive coevolutionary bare-bones PSO (CCBBPSO) with func-
tion independent decomposition (FID) is proposed to solve
the LUSCND problem. The cooperative coevolutionary (CC)
strategy is a promising solver for large-scale optimization
problems [14]–[16]. It decomposes the problems into several
parts and solves these parts independently via different pop-
ulations, which can search solutions in different directions
and help to increase the solution diversity. Although there
have been many decomposition methods, determining how
to decompose problems effectively is still a critical problem
for the CC strategy. Differential grouping (DG) via inter-
dependencies between variables (IaV) has a high grouping
accuracy [15], [16]. However, the IaV is always difficult to
be obtained because it needs complex calculations and con-
sumes many FEs. On the contrary, the problem structure of
LSCND is relatively specific because the variables have dif-
ferent functions. That is, the variables of LSCND belong to
different kinds of SCN members which perform different tasks
in the problem. Therefore, this article proposes an FID-based
CC strategy to decompose the LSCND problem according to
different functions of variables.

Second, to deal with the infeasible solutions of the
LUSCND problem, two repair methods are designed. In the
traditional works for COPs, the gradient-based repair method
is effective to repair the infeasible solutions by the gradi-
ent information from the infeasible solutions to the feasible
region [17], [18]. However, it is extremely difficult to obtain
the gradient information of the LUSCND problem because
there are a large number of variables. In this article, a step
translation method (STM) is designed to map the out-of-bound
values within the boundaries, and a labeled reposition opera-
tor with adaptive probabilities (LROap) is designed to repair
infeasible solutions that violate the constraints.

The main contributions of this article are shown as follows.
1) A new encoding scheme for the LUSCND model is

proposed to reduce the solution space.
2) The CCBBPSO with FID is proposed to solve the

LUSCND problem. During the evolution, the problem
is decomposed into several subproblems by FID, and
these subproblems are solved independently.

3) STM and LROap are designed to repair infeasible
solutions and improve the solving efficiency of the
CCBBPSO-FID algorithm.

These innovative strategies enable CCBBPSO-FID to deal
with larger data scales from thousands to hundreds of thou-
sands dimensions. To evaluate the performance of CCBBPSO-
FID, three scales of the instance sets are generated. The
proposed algorithm is compared with several existing algo-
rithms. First, as the LUSCND model is extended from the
USCND model in [10], the global version PSO (GPSO) used
in [10] is compared. Also, BBPSO [19] is compared because
it is the basic algorithm of CCBBPSO-FID. Second, the com-
petitive swarm optimizer (CSO) [20] is compared because it is
an efficient algorithm for large-scale optimization. Moreover,
two novel algorithms, including the social engineering opti-
mizer (SEO) [21] and RDA [12], are compared because the
SEO is a recent algorithm for complex problems and the
RDA is a recent algorithm used for the LUSCND problems.
Third, CCBBPSO-FID is compared with non-PSO (e.g., differ-
ential evolution (DE)-based [22]) algorithms and CCBBPSO
with other decomposition schemes to verify the advantages
by combining CCBBPSO with FID. For the fair compari-
son, these algorithms are all combined with the proposed
repair methods, including STM and LROap. Fourth, all algo-
rithms without the repair methods are compared to prove the
effectiveness of STM and LROap. The experimental results
show that CCBBPSO-FID obtains a better performance on the
LUSCND problem.

The remainder of this article is organized as follows.
Section II introduces the definitions of LUSCND and the orig-
inal BBPSO algorithm. Section III describes all components
of CCBBPSO-FID in detail. Section IV presents the exhaus-
tive experiments and analyzes the results in different aspects.
Finally, Section V gives a conclusion of this article.

II. BACKGROUNDS

A. LUSCND Problem Definition

SCND is to design a network which is composed of a logis-
tic system, a supply system, and a distribution system [23].



4456 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 50, NO. 10, OCTOBER 2020

The logistic system records the order information of customers
and warehouses; the supply system reflects the production pat-
terns of suppliers; and the distribution system describes how
products are distributed among different members. This arti-
cle focuses on the LUSCND with a large-scale logistic system
under supply and demand uncertainties [10]. There have been
some relevant studies on the LUSCND problem, and the main
similarities and differences between them and this article are
shown in Table S.I in the supplementary material, from both
the model formulation aspect and the algorithm design aspect.
The main similarity is that the algorithms used in these stud-
ies are all EAs, and the main differences include different
problem models and algorithm design details. As shown in
Table S.I in the supplementary material, this article mainly
focuses on and contributes to the algorithm design like the
large-scale tackling and the constraint handling to propose an
efficient algorithm but not the new problem model. In this
sense, we adopt the USCND model in [10] because it consid-
ers multiple periods. Moreover, this model considers only the
economic dimension so that it fits our objective to minimize
the total cost of the entire system. Nevertheless, we extend the
USCND to the large-scale model to make it more practical.
To make the LUSCND model more reasonable, the following
suppositions and constraints are considered in this article.

1) Different from most of the existing works that consider
only one period, our model considers multiple periods
and three echelons, including suppliers, warehouses, and
customers.

2) This model has the capacity limitation. For example,
the order quantity of a supplier cannot exceed its capac-
ity; the inventory and the order quantity of a warehouse
cannot exceed its capacity; and the supply of a customer
cannot exceed its demand.

3) A supplier or warehouse can choose one location
at most.

4) Each supplier can supply for several warehouses, and
each warehouse can transport to several customers, and
vice-versa.

This model is applicable in the three-echelon LUSCND that
includes suppliers, warehouses, and customers. Fig. 1 illus-
trates the application scenario of this LUSCND with S sup-
pliers, W warehouses, and C customers. In this model, the
workflow mainly includes four stages.

1) Customers send the uncertain demands to warehouses
(C_demand) in a continuous period of time.

2) Some warehouses with the optimal locations (W_open)
are chosen to serve the customers and will send order
to the suppliers (WS_order).

3) Some suppliers with the optimal locations (S_open)
are chosen to serve warehouses and provide products
to warehouses (WS_order × S_yield, where S_yield
represents the uncertain output rates of suppliers).

4) Warehouses chosen in the second stage will transport
the products to the customers (WC_ship).

It should be noted that as shown in Fig. 1, the uncertainties
include the demand of customers and the supply of suppli-
ers to make the model closer to the practical applications.
To satisfy the uncertain demand of customers, it is better to

Fig. 1. Illustration of LUSCND.

supply materials as much as possible, but too much supply will
cost more, including the fixed cost, the inventory cost, and the
shipping cost. Therefore, to satisfy the demand and cut the
cost simultaneously, the competent locations of suppliers and
warehouses (S_open and W_open) should be optimally cho-
sen. Moreover, the order quantity of warehouses to suppliers
(WS_order) and the transport quantity of warehouses to cus-
tomers (WC_ship) should be reasonably optimized to satisfy
the demand of customers with the minimum cost.

In order to clearly describe the relationship between the
decision variables and the objective function of the model, the
details of the model formulation are described as follows. For
customer k(k = 1, 2, . . . , C), in period t(t = 1, 2, . . . , T), it
has a random demand quantity C_demandk,t and the penalty
C_penaltyk for a unit of the demand unmet. For warehouse
j(j = 1, 2, . . . , W), it has W_n locations that can be cho-
sen, and the lth (l = 1, 2, . . . , W_n) location is with the
capacity of W_capacityj,l and the fixed cost W_fixedCostj,l
(e.g., the rent cost, the maintenance cost, etc.). The inven-
tory cost is W_inventoryCostj for storing a unit of goods in
a period, and the initial inventory is W_inventoryj,0. For sup-
plier i (i = 1, 2, . . . , S), it has S_n locations to be chosen. The
capacity of the rth (r = 1, 2, . . . , S_n) location is S_capacityi,r

and the fixed cost is S_fixedCosti,r (e.g., the production cost,
the management cost, etc.). Besides, if a unit of capacity of
supplier i is unused in a period, the penalty is S_penaltyi. The
random output rate of supplier i at period t is denoted by
S_yieldi,t, and the real supply quantity is the total order quan-
tity of warehouses multiplied by S_yieldi,t. The transportation
costs from supplier i to warehouse j and from warehouse j to
customer k with a unit of goods are denoted by T_sup2wari,j

and T_war2cusj,k, respectively.
The decision variables include S_open (the chosen locations

of suppliers), W_open (the chosen locations of warehouses),
WS_order (the order quantity of warehouses to suppliers), and
WC_ship (the shipping quantity of warehouses to customers).
S_openi,r represents whether the rth location of supplier i is
selected (S_openi,r = 1) or not (S_openi,r = 0), and W_openj,l

represents whether the lth location of warehouse j is selected
(W_openj,l = 1) or not (W_openj,l = 0). WS_orderi,j,t rep-
resents the order quantity of supplier i from warehouse j at
period t, and WC_shipj,k,t represents the shipping quantity of
warehouse j to customer k at period t. The objective is to obtain
the optimal S_open, W_open, WS_order, and WC_ship to
minimize the total cost. The structure of the solution is shown
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Fig. 2. Structure of the solution.

in Fig. 2, where S_open and W_open are binary numbers, and
WS_order and WC_ship are real numbers.

The total cost totalCost of LUSCND can be divided into
four parts, including the fixed cost, the inventory cost, the ship-
ping cost, and the penalty. Specifically, the fixed cost fixedCost
can be formulated as

fixedCost =
S∑

i=1

S_n∑

r=1

S_fixedCosti,r × S_openi,r

+
W∑

j=1

W_n∑

l=1

W_fixedCostj,l × W_openj,l. (1)

The inventory cost inventoryCost can be formulated as

inventoryCost =
W∑

j=1

T∑

t=1

W_inventoryCostj × W_inventoryj,t

(2)

where W_inventoryj,t is the inventory quantity of warehouse
j at period t, and it is calculated as follows to keep the
production–inventory balance of warehouse j:

W_inventoryj,t =
(

S∑

i=1

S_outputi,j,t + W_inventoryj,t−1

)

−
C∑

k=1

WC_shipj,k,t

=
t∑

l=1

(
S∑

i=1

S_outputi,j,l −
C∑

k=1

WC_shipj,k,l

)

+ W_inventoryj,0 (3)

where S_outputi,j,t is the real output quantity of supplier i to
warehouse j at period t and is calculated as follows:

S_outputi,j,t = S_yieldi,t × WS_orderi,j,t. (4)

The shipping cost shippingCost can be formulated as

shippingCost =
S∑

i=1

W∑

j=1

T∑

t=1

T_sup2wari,j × S_outputi,j,t

+
W∑

j=1

C∑

k=1

T∑

t=1

T_war2cusj,k × WC_shipj,k,t.

(5)

At last, the penalty Penalty can be formulated as

Penalty =
S∑

i=1

T∑

t=1

S_penalyi × S_resti,t

+
C∑

k=1

T∑

t=1

C_penaltyk × C_unmetk,t (6)

where S_resti,t is the unused capacity of supplier i at period t,
and C_unmetk,t is the unmet quantity of customer k at period t,
and they can be calculated as follows:

S_resti,t =
S_n∑

r=1

S_capacityi,r × S_openi,r

− S_yieldi,t ×
W∑

j=1

WS_orderi,j,t (7)

C_unmetk,t = C_demandk,t −
W∑

j=1

WC_shipj,k,t. (8)

Therefore, the final objective function of LUSCND can be
formulated as

Minimize totalCost = fixedCost + inventoryCost

+ shippingCost + Penalty (9)

subject to:
S_n∑

r=1

S_openi,r ∈ {0, 1}, i = 1, 2, . . . , S (10)

W_n∑

l=1

W_openj,l ∈ {0, 1}, j = 1, 2, . . . , W (11)

WS_orderi,j,t ≥ 0, i = 1, 2, . . . , S

j = 1, 2, . . . , W, t = 1, 2, . . . , T (12)

WC_shipj,k,t ≥ 0, j = 1, 2, . . . , W

k = 1, 2, . . . , C, t = 1, 2, . . . , T (13)
W∑

j=1

WS_orderi,j,t ≤
S_n∑

r=1

S_capacityi,r × S_openi,r

i = 1, 2, . . . , S, t = 1, 2, . . . , T (14)

W_inventoryj,t−1 +
S∑

i=1

WS_orderi,j,t

≤
W_n∑

l=1

W_capacityj,l × W_openj,l

j = 1, 2, . . . , W, t = 1, 2, . . . , T (15)

W_inventoryj,t ≥ 0, j = 1, 2, . . . , W, t = 1, 2, . . . , T

(16)

C_unmetk,t ≥ 0, k = 1, 2, . . . , C, t = 1, 2, . . . , T.

(17)

The model formulation is clarified according to the work-
flow of the LUSCND problem, as shown in Fig. 1. In the first
stage, customers send demands to warehouses (C_demand)
in a continuous period of time (T). In the second stage,
some warehouses with the optimal locations are chosen to
serve the customers (W_open) and will send order to suppli-
ers (WS_order). In constraint (11), if

∑W_n
l=1 W_openj,l = 0,

warehouse j is not open; otherwise, the lth location with
W_openj,l = 1 represents the location that warehouse j selects.
The order quantity of warehouses to suppliers (WS_order)
should not be smaller than 0, as shown in (12), and should
be not larger than the capacity of suppliers (S_capacity), as
shown in (14). In addition, the current inventory of ware-
houses [W_inventory calculated by (3)] and the order quantity
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TABLE I
NOTATIONS IN THE LUSCND PROBLEM

of warehouses to suppliers (WS_order) should not be larger
than the capacity of warehouses (W_capacity), as shown
in (15). The current inventory of warehouses (W_inventory)
should not be smaller than 0, as shown in (16). In the
third stage, some suppliers with the optimal locations are
chosen to serve warehouses (S_open) and provide products
to warehouses (S_yield × WS_order). In constraint (10), if∑S_n

r=1 S_openi,r = 0, supplier i is not open; otherwise, the
rth location with S_openi,r = 1 represents the location that
supplier i selects. In the fourth stage, the warehouses chosen
in the second stage will transport the products to the cus-
tomers (WC_ship). The transport quantity (WC_ship) should
not be smaller than 0, as shown in (13). In addition, the unmet
quantity of customers (C_demand – WC_ship) should not be
smaller than 0, as shown in (17).

Table I summarizes the notations of all the indices, parame-
ters, and decision variables used in the LUSCND. To make the
real-world applications of our proposed approach clearer for

Fig. 3. Example of the LUSCND problem.

the managers of SCND, Fig. 3 shows an example of how to
use the solutions obtained by an optimization algorithm to the
LUSCND problem at a period. In this solution, there are one
open supplier S1,3 (the third location is chosen for S1), two
open warehouses W1,3 and W2,2 (the third location is chosen
for W1, and the second location is chosen for W2), and four
customers (C1, C2, C3, and C4). The capacities of S1,3, W1,3,
and W2,2 are shown at the top left in the figure, and the initial
inventory quantities of W1,3 and W2,2 are shown in parenthe-
ses. In this period, it is assumed that the yield rate of S1,3 is
0.8, and WS_order and WC_ship (the decision variables) are
shown as solid lines with a number on the left.

The example can be stated in four steps. First, customers
send demands to warehouses. It is assumed that the total
demand quantities of the four customers are 3, 2, 4, and 3,
respectively. It is noted that there is no need to calculate the
demand quantity of each customer to each warehouse in the
FE, since the related cost (the penalty from customers) can
be obtained by WC_ship in (6) and (8). Second, warehouses
with the optimal locations are chosen to serve the customers
(W_open, W1,3 and W2,2 in this example), and send orders to
the supplier (WS_order). For example, W1,3 sends 2 units of
order to S1,3. Third, the supplier with the optimal location is
chosen (S_open, S1,3 in the example) and transports goods to
warehouses (S_yield × WS_order), shown as the dotted lines
with a number on the right. The yield rate of S1,3 is 0.8, and
it can deliver 2 × 0.8 = 1.6 units of goods to W1,3. Similarly,
S1,3 sends 3 × 0.8 = 2.4 units of goods to W2,2. After getting
the supply, the quantities of W1,3 and W2,2 including supplies
and inventory are 1.6 + 3 = 4.6 and 2.4 + 2 = 4.4, respec-
tively. Finally, the warehouses that have been chosen in the
second step deliver goods to customers (WC_ship). As shown
in the parentheses, C1, C2, C3, and C4 get 3, 2, 2.6, 1.4 units
of goods, respectively. The demands of C3 and C4 are not
satisfied.

B. BBPSO

BBPSO, developed by Kennedy [19], is a simplified version
of PSO. Instead of using the velocity vector to update the
position vector, BBPSO applies the Gaussian distribution to
set the position information directly, as shown in (18)

xi,d(g + 1) = N
(
μi,d(g), σ 2

i,d(g)
)

(18)

μi,d(g) = 0.5 × (
pbesti,d(g) + gbestd(g)

)
(19)

σi,d(g) = ∣∣pbesti,d(g) − gbestd(g)
∣∣ (20)

where xi,d(g + 1) is the dth dimension of the ith individual at
iteration g+1; N(μi,d(g), σi,d(g)) is a random number obeying
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Minimize totalCost = fixedCost + inventoryCost + shippingCost + Penalty

=
S∑

i=1

S_fixedCosti,S_openi +
W∑

j=1

W_fixedCostj,W_openj

+
W∑

j=1

T∑

t=1

W_inventoryCostj ×
(

t∑

l=1

(
S∑

i=1

S_yieldi,l × WS_orderi,j,l −
C∑

k=1

WC_shipj,k,l

)
+ W_inventoryj,0

)

+
S∑

i=1

W∑

j=1

T∑

t=1

T_sup2wari,j × S_yieldi,t × WS_orderi,j,t +
W∑

j=1

C∑

k=1

T∑

t=1

T_war2cusj,k × WC_shipj,k,t

+
S∑

i=1

T∑

t=1

S_penalyi ×
⎛

⎝S_capacityi,S_openi − S_yieldi,t ×
W∑

j=1

WS_orderi,j,t

⎞

⎠+
C∑

k=1

T∑

t=1

C_penaltyk

×
⎛

⎝C_demandk,t −
W∑

j=1

WC_shipj,k,t

⎞

⎠ (21)

S_openi ∈ {0, 1, 2, . . . , S_n}, i = 1, 2, . . . , S (22)

W_openj ∈ {0, 1, 2, . . . , W_n}, j = 1, 2, . . . , W (23)
W∑

j=1

WS_orderi,j,t ≤ S_capacityi,S_openi, i = 1, 2, . . . , S, t = 1, 2, . . . , T (24)

t−1∑

l=1

(
S∑

i=1

S_yieldi,l × WS_orderi,j,l −
C∑

k=1

WC_shipj,k,l

)
+ W_inventoryj,0 +

S∑

i=1

WS_orderi,j,t ≤ W_capacityj,W_openj

j = 1, 2, . . . , W, t = 1, 2, . . . , T (25)
t∑

l=1

(
S∑

i=1

S_yieldi,l × WS_orderi,j,l −
C∑

k=1

WC_shipj,k,l

)
+ W_inventoryj,0 ≥ 0, j = 1, 2, . . . , W, t = 1, 2, . . . , T (26)

C_demandk,t −
W∑

j=1

WC_shipj,k,t ≥ 0, k = 1, 2, . . . , C, t = 1, 2, . . . , T (27)

the Gaussian distribution with the mean value μi,d(g) and the
deviation σi,d(g); pbesti,d(g) is the personal best of the ith
individual; and gbestd(g) is the dth dimension of the global
best individual. Another advantage of BBPSO is that there are
no parameters needed to be tuned. Thus, BBPSO has attracted
great attention in diverse applications [24]–[27].

III. CCBBPSO-FID APPROACH

A. Solution Encoding for Dimensionality Reduction

According to the LUSCND problem definition, the dimen-
sion of a solution (including S_open, W_open, WS_order,
and WC_ship) is equal to S × S_n + W × W_n + S ×
W × T + W × C × T . When the LUSCND problem con-
sists of tens of suppliers, warehouses, and periods and
one hundred customers, the dimension increases sharply
to 10 000. It needs a large storage for a solution, which
increases the problem-solving difficulty. An effective approach
is to reduce the dimensionality of the model. From the
view of data types of decision variables, WS_order and
WC_ship with real numbers cannot be compressed. For
S_open (

∑S_n
r=1 S_openi,r ∈ {0, 1}) with binary numbers, the

array [S_openi,1, S_openi,2, . . . , S_openi,S_n] ∈ {0, 1}S_n can

be replaced by an integer S_openi ∈ {0, 1, 2, . . . , S_n}. If
S_openi is 0, supplier i is not open; otherwise, S_openi rep-
resents the location that supplier i selects. Similar to S_open,
[W_openj,1, W_openj,2, . . . , W_openj,W_n] ∈ {0, 1}W_n can be
replaced by W_openj ∈ {0, 1, 2, . . . , W_n}. Then, the dimen-
sion will be reduced from S × S_n + W × W_n to S + W.
Meanwhile, the runtime will be reduced during the entire
evolutionary process. Fig. 4 illustrates an example of the
encoding scheme of S_open and WS_order in this article.
Because the real number coding is used in the program-
ming, values in S_open are needed to be rounded down to
be feasible. For example, in Fig. 4, after being rounded down,
S_open1 = 3 represents that the first supplier (S1) is open in
the third location, and S_open2 = 0 represents that the sec-
ond supplier (S2) is not open. Values in WS_order represent
the order quantity of warehouses to suppliers. For example,
WS_order1,2,0 = 3.6 (in the first row and the second col-
umn) represents that the first warehouse (W1) sends an order
of 3.6 units to the second supplier (S2) at the period t = 0.
The encoding schemes of W_open and WC_ship are similar
to these of S_open and WS_order, respectively, and they are
not shown in the figure.
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Fig. 4. Illustration of the encoding schemes of S_open and WS_order.

After these modifications and removing the intermediate
variables, the final model formulation of the objective func-
tion is more clearly shown in (21), as shown at the top
of the previous page, whose relationship with the deci-
sion variables, including S_open, W_open, WS_order, and
WC_ship, is also clearer. Moreover, the objective function
is subject to (12), (13), and (22)–(27), as shown at the top
of the previous page. Constraints (22)–(27) are equivalent
to (10), (11), and (14)–(17), respectively. In order to mini-
mize the totalCost of (21), the locations of suppliers (S_open)
have to be optimally chosen so that they not only satisfy (22)
and (24), but also have low S_fixedCost and small S_capacity.
Also, the locations of warehouses (W_open) have to be opti-
mally chosen so that they satisfy (23) and (25) and have low
W_fixedCost. Moreover, the WS_order and WC_ship have to
be optimized to be subject to (12), (13), and (24)–(27).

B. Fitness Evaluation With Uncertainties

Apart from the large-scale challenge in the LUSCND, how
to deal with the uncertainties is an another difficulty. The
FEs of solutions in the uncertain problems and the dynamic
optimization problems (DOPs) are both not fixed during the
entire evolution of algorithms. It is noted that the fitness func-
tion of DOPs in each certain environment is fixed although it
changes in different environments [28]–[30]. However, in the
LUSCND problem, the fitness function is always uncertain,
with the uncertain demand of customers (C_demand) and the
uncertain supply of suppliers (S_yield). Therefore, the strate-
gies for DOPs are not suitable for the LUSCND problem.
In this article, the MCM is used to evaluate the LUSCND
problem by multiple samplings of the uncertain factors.

In the literature, the MCM, also called statistic testing
method or random sampling, is used to solve mathematical
and physical problems with uncertainties [31]–[33]. It simu-
lates uncertain factors through random sampling and obtains
approximate fitness values. Due to its simplicity, this method is
widely applied in the USCND problems [10], [34]. Therefore,
the MCM is also used to deal with the supply and demand
uncertainties in this article. For each solution, ten simulations
with different S_yield and C_demand are randomly sampled.
The fitness value of each simulation is calculated as (21) by
using certain values of uncertain factors. Then, the mean result
of the ten simulations is regarded as the final fitness value.

It is worth mentioning that fixedCost and the shipping cost
of warehouses to customers (shippingCost2) are not related

(a)

(b)

Fig. 5. Calculation of the fitness values. (a) Calculation of a feasible
solution. (b) Calculation of an infeasible solution.

to uncertain factors, so there is no need to recalculate them
in the simulation. Other costs, including inventoryCost, the
shipping cost of suppliers to warehouses (shippingCost1), and
Penalty, are calculated ten times with ten different samples of
S_yield and C_demand. The sum of fixedCost and shipping-
Cost2, and the mean result of ten simulations is recorded as the
final fitness value. During the calculation, the feasibility of the
solution is judged, and an error code (ecode) is recorded which
will be used in the repair operator LROap in Section III-F. If
ecode is equal to 0, it means that the individual is feasible, and
the calculation continues until the MCM is executed ten times;
otherwise, it means that the individual is infeasible, and this
calculation will end in advance. The fitness value of infeasi-
ble solutions is set to 10 000 000. Fig. 5 shows two cases in
the calculation, including a feasible solution and an infeasi-
ble solution. It is noted that Fig. 5(b) illustrates an infeasible
solution case, where the number 7 is only an example and it
can also be any other values smaller than 10.

C. Initialization

Random initialization is used to increase the popula-
tion diversity and distribute individuals among the solution
space widely. For S_open and W_open, they are generated
randomly within {0, 1, 2, . . . , S_n} and {0, 1, 2, . . . , W_n},
respectively. For WS_order and WC_ship, two generation
methods are designed, and the common point of them is
to ensure that WS_order and WC_ship are smaller than
S_capacity and W_capacity, respectively. The first method is
that they are set randomly within [0, capacity], where capac-
ity is a known parameter to set S_capacity and W_capacity.
The second method is to deduce their values from for-
mulas, being more complicated. From (24), it is deduced
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that WS_order can be set randomly within [0, capacity/W].
In (3) and (4), if S_yieldi,t is 1 and the inventory of ware-
house j (including W_inventoryj,t and W_inventoryj,t−1) is 0,∑S

i=1 WS_orderi,j,t ≈ ∑C
k=1 WC_shipj,k,t and WC_ship can be

set randomly within [0, (capacity/W × S)/C].
The initialization includes two steps. First, the global

optimal solution xbest is generated randomly by the first
method. Second, four subpopulations (swarm1, swarm2,
swarm3, and swarm4) are set separately via the second
method according to the construction method introduced in
Section III-D. For example, a solution x in swarm1 con-
sists of x.S_open (initialized in swarm1) and xbest.W_open,
xbest.WS_order, xbest.WC_ship.

D. Cooperative Coevolution

Inspired by the idea of “divide-and-conquer,” Potter and
De Jong [35] designed the CC strategy. It is an effective
method for large-scale optimization [14]–[16], [36]–[38]. The
first step of this strategy is to divide the variables into sev-
eral parts with a specific decomposition strategy, which can
be regarded as the dimensionality reduction. Then, these parts
are solved with different subpopulations independently, and the
local best solutions of subpopulations are obtained to update
xbest.

1) FID-Based Decomposition: Since the CC strategy
was proposed, there have been several decomposition
methods [14]–[16]. The aim is to assign interacting variables
to one group as more as possible. If interdependent variables
are placed in different groups, they will be blind to the syn-
chronized information of other interdependent variables, since
different groups are evolved separately, and it will also be dif-
ficult to find the best values of these interdependent variables.
The popular approach is to group variables via IaV [14]–[16],
but it has high computational complexity, especially for
super-large-scale problems. However, with the clear solution
structure of LUSCND, there is no need to calculate IaV.

In this article, FID is devised to divide the problem accord-
ing to different functions of different parts of the solution
structure. The solution structure consists of four parts (S_open,
W_open, WS_order, and WC_ship). Different parts have
different functions, since they belong to different kinds of
SCN members which perform different tasks. Specifically,
the decision variables of S_open belong to suppliers which
decide the locations of suppliers; the decision variables of
W_open belong to warehouses which decide the locations of
warehouses; the decision variables of WS_order belong to
warehouses which decide the order quantities of warehouses
to suppliers; and the decision variables of WC_ship belong
to warehouses which decide the transportation quantities of
warehouses to customers. Therefore, this article decomposes
the LUSCND problem into four parts to deal with differ-
ent subproblems, including locations of suppliers, locations of
warehouses, order quantities of warehouses to suppliers, and
transportation quantities of warehouses to customers. The four
decomposed parts include S_open, W_open, WS_order, and
WC_ship. In the proposed CCBBPSO algorithm, four different

subpopulations, called swarm1, swarm2, swarm3, and swarm4,
are used to evolve the four different parts, respectively.

Different from other decomposition methods that have to
learn the IaV or to regroup variables during the evolution, FID
based on different functions divides the problem naturally. It
is executed only at the beginning of the evolution and does
not consume FEs. In addition, FID has more general appli-
cability in large-scale realistic problems, since it decomposes
the solution by functions of different roles in problems.

2) Construction of Solutions in Subpopulations: Although
decomposed parts of the solution space are evolved separately,
it is necessary to constitute the entire solution to obtain the
fitness value. In the proposed algorithm, a partial solution of
an individual is integrated with other parts of xbest to obtain
a complete solution, same as [14]. For example, a solution x in
swarm1 is composed of x.S_open (variables solved in swarm1)
and xbest.W_open, xbest.WS_order, xbest.WC_ship. That is,
those variables not solved in this swarm are borrowed from
the global best solution xbest.

E. STM-Based Boundary Processing

After updating the individual x by (18), if some variables
exceed the search ranges, they will be restricted within reason-
able ranges to satisfy the constraints. For variables belonging
to S_open and W_open, they are limited within {0, 1, . . . , S_n}
and {0, 1, . . . , W_n}, respectively.

For variables belonging to WS_order, such as WS_orderi,j,t,
it is limited within [0, min(S_capacityi,r, W_capacityj,l)],
where i and j are the corresponding supplier and warehouse,
and r and l are the corresponding locations. It indicates that
the order quantity of supplier i from warehouse j at period t
cannot exceed the capacity of warehouse j and supplier i.

For variables belonging to WC_ship, such as WC_shipj,k,t, it
is limited within [0, min(W_capacityj,l, C_demandk,t)], where
k and t are the corresponding customer and period. It shows
that the shipping quantity of warehouse j to customer k at
period t cannot exceed the capacity of warehouse j and the
demand of customer k.

For variables out of bounds, if they are simply set to the
bound values, many infeasible variables will have the same
value (i.e., the bound value). This method also decreases the
diversity of solutions. Therefore, STM is proposed in this arti-
cle to map illegal values to legal values. The illustration of
STM is shown in Fig. 6, where X is the illegal value and X′ is
the corresponding legal value after the STM operation. Herein,
L and U are the lower bound and the upper bound, respectively,
and len is the length between L and U. Then, X is translated to
X′ by the step of len, where

−→
XX′ is the motion vector. That is,

if X > U, X will be moved to the left until it becomes smaller
than U(X = X − ceil((X − U)/(U − L))× (U − L)); otherwise
if X < L, X will be moved to the right until it becomes larger
than L(X = X + ceil((L − X)/(U − L)) × (U − L)).

F. LRO-Based Infeasible Solution Repairing

The penalty function is widely used in the compli-
cated problems to calculate the fitness values of infeasible
solutions [10], [39]. However, with the scale growing, the
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(a) (b)

Fig. 6. Illustration of STM. (a) X > U. (b) X < L.

number of constraints will rise sharply, making it more difficult
to obtain a feasible solution. Therefore, the penalization is not
an effective method, and the efficient way is to repair infeasi-
ble solutions. In this article, LRO is proposed to repair illegal
values repeatedly by resetting them to reasonable values. LRO
includes four repair operators Repair1, Repair2, Repair3, and
Repair4, which are designed for constraints (24)–(27), respec-
tively. Only one kind of the operators is executed in each
repair, and the label is set to record which repair operator will
be executed. Recording the label helps to save running time,
since the algorithm does not need to rejudge which repair
operator to be used every time. For a complex problem with
multiple constraints, LRO is an effective repair method to deal
with these constraints separately, and the label helps to distin-
guish different repair operators for different constraints in the
multiple repair process.

For simplicity, each repair operator only changes a specified
part of solutions. Specifically, Repair1 only repairs S_open;
Repair2 only repairs W_open; and Repair3 and Repair4 only
repair WC_ship. Since WS_order is involved in (24)–(26) and
hard to update, it will not be changed in LRO.

In Repair1 for (24), if
∑W

j=1 WS_orderi,j,t >

maxr∈{1,...,S_n}(S_capacityi,r), it represents the total order
quantity of supplier i at period t exceeds the maximum
capacity of supplier i, and this repair operator will be useless
after changing S_open; otherwise, supplier i will choose one
location where it can hold the capacity of

∑W
j=1 WS_orderi,j,t.

Considering the corresponding costs, the legal location with
the smallest capacity and fixed cost is chosen.

In Repair2 for (25), operations are similar to those
in Repair1. If W_inventoryj,t−1 + ∑S

i=1 WS_orderi,j,t >

maxl∈{1,...,W_n}(W_capacityj,l), where W_inventoryj,t−1 is cal-
culated by (3), it represents the sum of the previous inventory
and new supplies of warehouse j at period t exceed the ware-
house’s maximum capacity, and this operator will not work
after changing W_open; otherwise, warehouse j will choose
the legal location with the smallest capacity and fixed cost.

If W_inventoryj,t is smaller than 0, it represents con-
straint (16) [equivalent to (26)] is not satisfied, and Repair3
will be used. Let difference denote −W_inventoryj,t of the
infeasible solution; then, W_inventoryj,t should increase to
0 at least to make the solution feasible. Let WC_sum
denote

∑C
k=1 WC_shipj,k,t. Since only WC_ship is changed

in this operator, it can be deduced from (3) that WC_sum
should decrease by difference. If WC_sum < difference,
the operator is useless after updating WC_ship; otherwise,
WC_shipj,k,t can decrease proportionally by difference ×
(WC_shipj,k,t/WC_sum) to satisfy the condition. It is remark-
able that the precision problem also makes the theoretical fea-
sible solutions infeasible. To solve the problem, WC_shipj,k,t

should be subtracted a small real number precision (set as
0.02 in the algorithm), if WC_shipj,k,t is bigger than precision.

(a)

(b)

Fig. 7. Two examples of LRO. (a) Solution is feasible after
repair. (b) Solution is still infeasible after repair.

Operations in Repair4 for (17) [equivalent to (27)] are sim-
ilar to those in Repair3. If C_unmetk,t is smaller than 0, it
represents constraint (17) is not satisfied. Let difference denote
−C_unmetk,t and WC_sum denote

∑W
j=1 WC_shipj,k,t in (8).

Then, if WC_sum = difference, WC_shipj,k,t can decrease
proportionally by difference × (WC_shipj,k,t/WC_sum).

After the FE, if ecode (the label) is e(e = 1, 2, 3, 4), Repaire

will be executed. At the end of a repair operator, the fitness
value is calculated again, and ecode is also returned. If ecode
is 0, it represents that the solution turns to be feasible, and
this repair operator ends with success; otherwise, if the solu-
tion is still infeasible after being repaired T (the number of
periods in the LUSCND problem) times, LRO ends with fail-
ure. Fig. 7 shows two examples of LRO, including successful
and unsuccessful repair.

LRO is useful but time consuming. In the proposed algo-
rithm, P_repairi is set adaptively to control the repair proba-
bility of individual i, and the initial value is set to 0.01 × S
(the number of suppliers in the LUSCND problem). If indi-
vidual i has been repaired in the last generation, P_repairi

will decrease by 0.001 × S; otherwise, this value will increase
by 0.001 × S. LRO with the adaptive probability is called as
LROap, and it helps to find feasible solutions of the large-
scale problem within the acceptable time, being proved in the
experiments.

G. Complete CCBBPSO-FID Algorithm

The flowchart of CCBBPSO-FID is shown in Fig. 8.
As mentioned above, the important parts of CCBBPSO-FID
include the CC strategy based on FID, the boundary processing
method STM, and the repair operator LROap.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setting

It is difficult to obtain the instance set of the LUSCND
problem in real life, especially for large-scale data, so
the instance set is generated randomly. First, all capaci-
ties (S_capacity and W_capacity) are generated randomly
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Fig. 8. Flowchart of the CCBBPSO-FID algorithm.

Fig. 9. Generation of W_inventoryj,0.

within [capacity, 2 × capacity], where capacity is set to
5.0; all costs (S_penalty, S_fixedCost, W_inventoryCost,
W_fixedCost, C_penalty, T_sup2war, and T_ware2cus) are
set randomly within [0, cost], where cost is set to 10.0. Second,
W_inventoryj,0 (j = 1, 2, . . . , W), S_yield, and C_demand are
set according to the following methods.

1) Generation of W_inventoryj,0: By analyzing (25)
and (26), it can be observed that the feasibility of solutions is
closely related to W_inventoryj,0. Equations (24) and (25) are
considered to obtain reasonable values of W_inventoryj,0, as
shown in Fig. 9.

2) Generation of Uncertain Factors: To verify the
performance of algorithms, different levels of uncertain fac-
tors are generated, similar to [10]. S_yield is generated ran-
domly within three domains (YL: [0.8, 0.9], YM: [0.7, 0.9],
and YH: [0.6, 0.9]), where YL, YM, and YH mean low,

TABLE II
SCALE CONFIGURATIONS AND EXECUTION TIME OF THE INSTANCE SETS

medium, and high level of uncertainties for the yield rate of
suppliers, respectively. Moreover, these values obey the nor-
mal distribution. C_demand is generated in three different
probability distribution function (PDF) like normal (Norm),
log-normal (Log), and triangular (Tri), and each kind of dis-
tribution includes three levels according to the coefficient of
variances (CV) (DL: CV = 0.05; DM: CV = 0.1; and DH:
CV = 0.2), where DL, DM, and DH mean low, medium,
and high level of uncertainties for the demand of customers,
respectively. For the Norm and Log distributions, their mean
values are set randomly within [capacity, 2 × capacity]. For
the Tri distribution, its lower limit a, upper limit b, and mode
c are set to 0, 1/capacity, and 2/(3 × capacity), respectively,
to ensure the height of the triangular 2/(b−a) is 2×capacity.
Totally, there are 3 × 3 × 3 = 27 uncertain factors for each
instance.

Data at three scales are generated with the same values of
S_n and W_n (S_n = W_n = 5), and other parameters are
shown in Table II. For the fair comparison, the execution time
of each algorithm is equal for the same test set. Each scale
includes five instances, such as I_0, I_1, I_2, I_3, and I_4 for
Test I. There are 3 (scales) × 5 (instances) × 27 (uncertainty
factors) = 405 uncertain instances in total.

B. Experimental Setup

All algorithms were implemented in C++, and exper-
iments were run on the PC with Intel Core i7-7700
and 8.0-GB memory. Compared algorithms are classified
into three groups: the first one includes PSOs, such as
GPSO [10] and BBPSO [19]; the second one includes a large-
scale optimization algorithm—CSO [20] and two recent
algorithms—SEO [21] and RDA [12]. Furthermore, to verify
the effectiveness of combining CCBBPSO with FID, the
third group includes CCDE-FID (using DE/rand/1 in [22]
as the optimizer) and two other CCBBPSO variants called
average decomposition of CCBBPSO (CCBBPSO-AD) and
random decomposition of CCBBPSO (CCBBPSO-RD). It is
noted that four versions of DE in [22] are tested, including
DE/rand/1 with the crossover rate CR = 0.1 and 0.9, and
DE/best/1 with CR = 0.1 and 0.9 (the amplification factor
F = 0.5 + 0.5 × rand(0, 1) for all versions). Herein, only the
results of the first version (DE/rand/1 with CR = 0.1) are
present because it has generally the best performance among
the four DE variants. Besides, DG is not compared with FID
since it consumes a large number of FEs, as shown in Table
S.II in the supplementary material. STM and LROap are used
in all algorithms for the fair comparison.

The control variable method [40] is used to investigate the
parameters of all the algorithms to find out the optimal values,
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TABLE III
OPTIMAL PARAMETER SETTINGS OF ALGORITHMS

TABLE IV
EXPERIMENTAL RESULTS IN TEST I

and the results are shown as Tables S.III–S.V in the supple-
mentary material. The optimal parameter settings of algorithms
are shown in Table III. The settings of CCBBPSO-AD and
CCBBPSO-RD are the same as that of CCBBPSO-FID. Each
instance is tested 30 times independently, and the mean results
are recorded.

C. Experimental Comparisons With Other Algorithms

Exhaustive experiments are conducted on 405 instances,
including Test I, Test II, and Test III which are shown in
Table II. Each instance set contains 135 (5 × 27) instances.
For saving space, these instances (Inst.) are classified in three
different ways: 1) based on the level of S_yield, each test
set is divided into YL, YM, and YH; 2) based on the CV
level of C_demand, each test set is divided into DL, DM,
and DH; and 3) based on the PDF of C_demand, each test
set is divided into Norm, Log, and Tri. Each group includes
45 (135/3) instances (each instance has an average result of
30 times), and the average result [totalCost in (21)] of each
group is shown in Tables IV–VI. For example, to calculate
the average result of the group “YL,” we first calculate the
average result of 30 times for each instance in YL, and then
calculate the average result of 45 instances. The last row (Avg.)
in tables shows the average result of each set. Results in italic
type mean that the global best solution is infeasible in some
tests. Results in bold type are the best results among all algo-
rithms. Besides, all results of CCBBPSO-RD and the results
of SEO and RDA on Test III are equal to 10 000 000 and,
therefore, are not shown in tables, indicating that CCBBPSO-
RD, SEO, and RDA cannot obtain feasible solutions on the
corresponding test sets.

TABLE V
EXPERIMENTAL RESULTS IN TEST II

TABLE VI
EXPERIMENTAL RESULTS IN TEST III

1) Comparisons Regarding the Scale of the Problem: From
the observation of Table IV, it can be seen that CCBBPSO-
FID yields the minimum cost in each group with an obvious
advantage, followed by CSO and SEO. On the contrary,
CCBBPSO-AD and CCDE-FID obtain infeasible solutions
in most of the test groups. As S in this dataset is small,
the frequency of LROap (related to repair probability) drops,
so some algorithms cannot obtain feasible solutions. GPSO,
BBPSO, and RDA have similar results, and they perform
worse than CCBBPSO-FID.

In Table V, the results show that CCBBPSO-FID always
obtains the minimum cost results on all the tested instances,
and only its mean result is lower than 45 000. Among
the three well-performed CC algorithms, both CCDE-FID
and CCBBPSO-AD are worse than CCBBPSO-FID. CSO,
the algorithm for large-scale optimization, performs worse
than CCBBPSO-FID and obtains better results than GPSO,
BBPSO, CCDE-FID, and CCBBPSO-AD. Besides, SEO and
RDA cannot obtain the feasible solutions in most test groups.

As shown in Table VI, although the data scale increases,
the performance of CCBBPSO-FID does not deteriorate, and
all results of it on Test III are still the best. Other versions of
the CC algorithms, CCDE-FID and CCBBPSO-AD, perform
better than other contestant algorithms. The results of CSO
are better than those of classical PSOs (GPSO and BBPSO)
and are beaten by the CC algorithms.
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(a) (b)

(c)

Fig. 10. Box Plots of Results. (a) I_0_YL_DL_Norm.
(b) II_0_YL_DL_Norm. (c) III_0_YL_DL_Norm.

In conclusion, CCBBPSO-FID shows an absolute advan-
tage over the compared algorithms in different data scales.
In addition, with the data scale increasing, CCBBPSO-FID
still remains the best algorithm. Generally speaking, CSO, the
popular algorithm for the large-scale optimization problems,
also has promising performance on the LUSCND problem,
and often does much better than GPSO, BBPSO, SEO,
and RDA. However, the CC algorithms, including CCDE-
FID, CCBBPSO-AD, and CCBBPSO-FID, show a better
performance on Test II and Test III. It indicates that the
CC strategy is more effective to deal with the LUSCND
problem and more suitable for large-scale optimization. The
excellent performance of both CCDE-FID and CCBBPSO-FID
further shows that the FID is a promising strategy for large-
scale optimization. Besides, CCDE-FID is outperformed by
CCBBPSO-FID. The reason may be that some promising solu-
tions are eliminated in the selection operator of DE, which
degrades the population diversity especially for the compli-
cated COP. However, BBPSO reserves these solutions even if
they are not improved.

For further illustration, box charts of three instances are
shown in Fig. 10, and situations of other instances are similar.
I_0_YL_DL_Norm, II_0_YL_DL_Norm, and III_0_YL_DL_
Norm are with the uncertain setting of YL, DL, and Norm, and
are chosen from Test I, Test II, and Test III, respectively. As
revealed by figures, CCBBPSO-FID not only performs much
better than contestant algorithms but also is much more robust
(with the minimum volume). It indicates that CCBBPSO-FID
is excellent to solve the LUSCND problem of either small-
scale or large-scale data. Moreover, the Wilcoxon rank-sum
test at a 5% significance level is used for the statistical compar-
isons. The results of nine typical instances from three different
data scales are shown in Table S.VI in the supplementary
material. It can be seen that CCBBPSO-FID has a significant
advantage over all the other compared algorithms on the nine
instances.

2) Comparisons Regarding the Sensibility to Uncertainties:
From the aspect of S_yield, based on the observation of

TABLE VII
MAXIMUM DIFFERENCE BETWEEN RESULTS OF DIFFERENT

UNCERTAINTIES

Tables V and VI, it can be revealed that results mostly become
smaller as the yield level gets higher (from YL to YH). YH
includes a wider range [0.6, 0.9] with smaller values of the
yield rate. It can be seen that if the yield rate decreases,
the corresponding transport and inventory fees will decrease.
Therefore, results of YH are smaller than those of YM and YL.

From the aspect of C_demand, it can be observed that
results are smaller when the demand level is higher (from DL
to DH). High demand level means that there is more orders of
suppliers. As a result, the unused capacity of suppliers will be
less, and the corresponding penalty will decrease. Results are
also different with different PDFs of demands (Norm, Log,
and Tri). From the observation of Tables V and VI, it can be
concluded that the results of Norm are smaller than those of
Log and Tri, and the results of Log are the biggest.

To further analyze the influence of uncertainties on these
algorithms, the mean maximum difference between results of
different uncertainties is recorded, as shown in Table VII. For
example, for the results of CCBBPSO-FID on Test I, the max-
imum difference among YL/YM/YH (6806 − 6701 = 105),
DL/DM/DH (6760 − 6746 = 14), Norm/Log/Tri (6792 −
6716 = 76) and is 105. It can be seen that the difference
of CCBBPSO-FID is smaller than that of other algorithms,
which reveals that CCBBPSO-FID is less sensible to uncer-
tain factors. The slight sensitivity is mainly due to that FID
divides solutions into relatively independent parts which are
solved by different subpopulations, helping to reduce the influ-
ence of uncertain factors on the whole. The slight sensibility
also helps to enhance the robustness of CCBBPSO-FID, as
shown in Fig. 10.

D. Analysis of Convergence Speed

To analyze the convergence speed of algorithms, the con-
vergence curves are drawn for three instances, as shown in
Fig. 11, and situations of other instances are similar. Since
the maximum FEs of algorithms are different within the same
execution time, the length of the line for each algorithm is dif-
ferent in the figures. From the observation of figures, it can be
concluded that the convergence speeds of the CC algorithms
(CCBBPSO-FID, CCBBPSO-AD, and CCDE-FID) are slower
than those of other algorithms in the beginning. However, after
some iterations, the evolution in non-CC algorithms (GPSO,
BBPSO, CSO, SEO, and RDA) stagnates quickly. On the
other hand, the CC algorithms surpass other algorithms after-
ward, except for CCBBPSO-AD on I_0_YL_DL_Norm, and
CCBBPSO-FID obtains the best results in the end. The reason
is that the CC algorithms solve the problem with four subpop-
ulations and take four times FEs more than other algorithms to
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(a) (b)

(c)

Fig. 11. Convergence curves of different algorithms. (a) I_0_YL_DL_Norm.
(b) II_0_YL_DL_Norm. (c) III_0_YL_DL_Norm.

optimize the entire solutions. Therefore, they converge slowly
at first but then converge quickly with the cooperative coop-
eration and the accumulated evolutionary information of all
subpopulations. Moreover, FID decomposes the problem effec-
tively based on different functions of different SCN members
in the LUSCND problem, and it also helps CCBBPSO-FID
and CCDE-FID to obtain the promising solutions.

E. Effectiveness of the CC Strategy

By comparing BBPSO with CCBBPSO-FID and
CCBBPSO-AD in Tables V and VI, it can be seen that
with the CC strategy, two CCBBPSO algorithms obtain better
results, and the difference is obvious. CCBBPSO decomposes
the problem into different parts, and these parts are solved
separately by different subpopulations. These operations
enhance the local search ability effectively. However, BBPSO
only uses one population to deal with the problem, which
limits the search ability of the algorithm. Further, the
CC algorithms also perform superior to other competitor
algorithms.

F. Effectiveness of FID

Random decomposition and average decomposition are
designed to validate the effectiveness of FID. As mentioned
above, CCBBPSO-RD that decomposes the problem aimlessly
cannot obtain feasible solutions in all tests. By analyz-
ing Tables IV–VI, it can be revealed that CCBBPSO-AD
shows poorer performance than CCBBPSO-FID. The reason
is that the average decomposition only divides the problem
in the same size without considering the characteristics of the
problem structure. Differently, FID decomposes the problem
based on different functions of SCN members, and these func-
tions are used to deal with different parts of the solution space.
As a result, FID helps the algorithm to solve the problem more

TABLE VIII
RESULTS OF ALGORITHMS WITH AND WITHOUT LROAP ON TEST I

TABLE IX
SUCCESS RATE OF LROAP (%)

effectively. In addition, it improves the overall convergence
speed of CCBBPSO, as shown in Section IV-D.

G. Effectiveness of LROap

Table VIII shows the results of algorithms with and with-
out LROap on Test I. It is obvious that algorithms without
LROap cannot obtain feasible results (the data are in italic
type). Moreover, results of all algorithms without LROap on
Test II and Test III are approximately equal to 10 000 000 and
not shown. It means that all algorithms without LROap cannot
obtain feasible solutions in large-scale data.

The execution number and the success number of LROap

are recorded during the evolution. The mean success rate of
LROap in all algorithms is shown in Table IX. Remarkably,
CCBBPSO-FID has the highest success rate among all the
algorithms. It indicates that solutions obtained by CCBBPSO-
FID are much more promising and closer to feasible ones.
Furthermore, with the data scale bigger, it is more difficult
for compared algorithms to repair solutions successfully, but
the situation is contrary to CCBBPSO-FID. It can also be
concluded that compared with the average decomposition of
CCBBPSO-AD, FID of CCBBPSO-FID is more capable of
finding feasible solutions. The highest mean success rate of all
instances is up to 7.46%, and it proves that LROap is effective
for the LUSCND problems.

V. CONCLUSION

SCND has important commercial values because it can help
enterprises manage and plan the production line well and,
then, cut cost and increase revenue. LUSCND is a more pop-
ular variant that extends the SCND model with large-scale
and uncertain factors, but it is more difficult for existing
approaches to solve. In this article, the efficient CCBBPSO-
FID algorithm is proposed to handle this complex optimization
problem. For the uncertain factors, MCM is used to calcu-
late the fitness values in the uncertain environment. For the
large-scale issue, the solution structure is first modified with
the dimensionality reduction. Then, the CC strategy is com-
bined with BBPSO to decompose the problem and to solve
the decomposed parts with different subpopulations. Moreover,
FID based on different functions of SCN members is devised
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in the CC strategy for the effective decomposition of the
problem. At last, the boundary processing method STM and
the repair operator LROap are proposed to repair the infeasi-
ble solutions. LROap can also be used on other problems with
multiple constraints, since it handles constraints separately and
finds feasible solutions efficiently.

Three scales of the instance set are generated to validate
the effectiveness and efficiency of CCBBPSO-FID, and the
dimension of the largest scale is up to 195 080. The experi-
mental results show that CCBBPSO-FID outperforms all the
compared algorithms on all the data scales, and the increas-
ing of the data scale does not hamper the performance of
CCBBPSO-FID. Moreover, the CC strategy with FID helps
the proposed algorithm to have a slight sensibility to uncertain-
ties and to perform robustly. The LROap is efficient to repair
infeasible solutions of the LUSCND problem with complicated
constraints.

Therefore, it is expected that CCBBPSO-FID will make
significant contributions to the LUSCND application. To
this aim, Fig. 3 and explanations in Section II-A can give
SCN managers clear guidance to utilize the CCBBPSO-
FID algorithm and its solutions. Nevertheless, SCND is
still a developing research topic and many new features
may appear in the new application scenarios. Therefore,
future work will include solving the LUSCND problems with
more factors, such as environmental dimensions [2], social
dimensions [12], and routing decisions [41], which may be
solved by the multiobjective [42]–[44], many-objective [45],
and multimodal [46]–[48] algorithms.
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