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Abstract—Multi-instance learning (MIL) has been extensively
applied to various real tasks involving objects with bags of
instances, such as in drugs and images. Previous studies on MIL
assume that data are entirely complete. However, in many real
tasks, the instance is fragmentary. In this article, we present
probably the first study on multi-instance classification with
fragmentary data. In our proposed framework, called fragmen-
tary multi-instance classification (FIC), the fragmentary data are
completed and the multi-instance classifier is learned jointly. To
facilitate the integration between the completion and classifier
learning, FIC establishes the weighting mechanism to measure
the importance levels of different instances. To validate the com-
patibility of our framework, four typical MIL methods, including
multi-instance support vector machine (MI-SVM), expectation
maximization diverse density (EM-DD), citation-K nearest neigh-
bors (Citation-KNNs), and MIL with discriminative bag mapping
(MILDM), are embedded into the framework to obtain the cor-
responding FIC versions. As an illustration, an efficient solving
algorithm is developed to address the problem for MI-SVM,
together with the proof of convergence behavior. The experimen-
tal results on various types of real-world datasets demonstrate
the effectiveness.

Index Terms—Fragmentary data, multi-instance learning
(MIL), weighting mechanism.

I. INTRODUCTION

THE MULTI-INSTANCE learning (MIL) model is a gen-
eralization of supervised classification in which each

training example is a bag of instances, instead of a single
instance [1]. Standard supervised learning, in which each bag
contains a single instance, can be regarded as a special case of
MIL [2]. There is only one single label for each bag in MIL
and it depends on the maximum label among all instances in
the bag, where the maximum label refers to the maximum
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value of the labels of all the instances in a bag. In the multi-
instance classification task, a bag is positive if there is at least
one positive instance in it. A bag is negative if all the member
instances are negative [3]. The goal of MIL is to learn a clas-
sifier from the labeled bags of instances, which can predict
the labels of unseen bags based on their member instances.
MIL is receiving growing attentions in the machine-learning
field [4]–[6].

MIL roots from many real applications. It is originally intro-
duced to solve the drug activity prediction problem, where
each molecule contains many possible conformations [3]. Each
molecule is viewed as a bag and the conformations in it are
viewed as its member instances. The efficacy of a molecule
can be tested experimentally, but that of each individual con-
formation cannot be identified. A molecule is active if there
are at least one of its conformations binding to the target
protein and inactive otherwise. Dietterich et al. [3] solved
this problem by learning axis-parallel rectangles (APRs). The
second application is region-based image classification and
retrieval [1], [6]–[8]. An image is divided into several regions
and each region has different contents. Each image can be
viewed as a bag of local image regions. When searching for
the images with a predefined semantics meaning from the pool
of images, an image is selected if at least one of its mem-
ber regions possess that semantics meaning. For retrieval, an
image receives a certain label if at least one of its instances
possesses the label. The third application is the video recog-
nition [6]. Each video scene is viewed as a bag of shots via
shot detection. The key frame of each shot is extracted as
an instance of the scene. Other application problems such as
text categorization [1] and Web mining [9] can also be solved
efficiently with the MIL model.

Different from the traditional supervised classification set-
ting, only bag labels are available in MIL and each bag
contains multiple instances. Besides, the numbers of instances
may be different among various bags. These characters make
it hard to deal with the MIL problem. Existing methods can
be roughly divided into three categories: 1) modifying meth-
ods [1], [9], [10]; 2) redesigning methods [2], [11], [12]; and
3) deep MIL methods [13]–[15]. The first category includes
modifying methods that modify the single instance algorithm
to fit the multi-instance problem. Multi-instance support vec-
tor machine (MI-SVM) [1], a representative method, extends
SVM [16] to MIL by finding the most positive instance in each
bag to represent the bag. Here, the most positive instance refers
to the one which is most likely to be positive. It is farthest
from the interval in the positive area. The second category
includes the redesigning methods that design new models to
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solve multi-instance problem directly. For example, MIL with
discriminative bag mapping (MILDM) [12] uses bag mapping
to transform a bag into a single instance in a new space via
instance selection. It aims to identify the best instances to
directly distinguish bags in the new mapping space. Recently,
with the combination of MIL and deep learning, methods in
the third category have significantly improved the prediction
accuracy. The difference among these deep MIL methods is
the variation in constructing the neural networks according
to different combination mechanisms between deep learn-
ing and MIL. For example, the attention method [14] learns
the Bernoulli distribution of the bag labels parameterized
by neural networks. The multiple instance neural networks
(MINNs) [13] construct MINN to learn bag representations.
In the deep multiple instance learning (DMIL)-based spatial–
spectral classification for PAN and MS imagery method [15],
an end-to-end learning framework based on deep multiple
instance learning is proposed using the joint spectral and
spatial information based on the feature fusion.

Although the above-mentioned MIL methods have achieved
prominent performance, they all assume that the data are
entirely complete. Nevertheless, in some real applications, due
to the environmental disturbances, detector faults, or trans-
mission distortions [17], [18], the collected instances are
often fragmentary. For example, in image and sound cap-
ture, the shelter and shadow can be regarded as environmental
disturbances, which makes the data fragmentary. In video
classification, captured video data may also be contaminated
or incomplete. In drug activity prediction, drug molecules
may be shielded from each other, which makes the detection
instrument unable to locate the edge in some direction. Other
applications such as text categorization and Web mining may
also suffer from the data missing problem [19].

The fragmentary character of data prevents the direct utility
of above-mentioned MIL methods. There are two surrogate
ways to apply existing multi-instance classification methods.
The first strategy is deleting, that is, removing the examples
with missing attributes. It contradicts the target of classifica-
tion, that is, learning the classifier from all examples. The
second strategy is completion, that is, filling in the miss-
ing attribute with matrix completion (MC) approaches divided
into two categories: 1) simple value completion and 2) com-
plex estimation. The simple value completion methods include
constant (like 0, etc.) completion and statistics (like feature
average, etc.) completion. Complex estimation uses learning
strategies, such as regression estimation [20], [21]; expec-
tation maximization [22]; decision tree prediction; Bayesian
prediction [23]; and low-rank completion [24], [25]. Different
complex estimation methods have different assumptions. For
example, low-rank completion assumes that the incomplete
matrix is not full rank since its rows (or columns) are often
correlated in many real applications, such as recommenda-
tion or rating systems [24], [25]. Although traditional MC
methods make MIL methods applicable, they often neglect
the requirement of following multi-instance classification. The
completion and multi-instance classification are conducted
separately and the complementarity between them is not fully
considered. The ideal case is that the completion strategy takes

the requirement of multi-instance classification into consid-
eration and the multi-instance classifier is also aware of the
completeness of fragmentary instances. Besides, there are also
some researches about feature missing problem in multiview
learning [26], where a single data is characterized by more
than one kind of descriptions. Our setting is totally different
from it since we studied a feature missing problem in MIL.

In this article, we have proposed the fragmentary multi-
instance classification (FIC) framework to handle such frag-
mentary multi-instance data, which completes data and
learns MIL classifier simultaneously. Considering that var-
ious instances have different levels of importance in MIL,
in our method, more positive instances have been given
larger weights in completing. To verify the compatibility
and efficiency of our framework, we have embedded four
typical MIL methods into this framework to obtain the
corresponding FIC models, that is, fragmentary MI-SVM
(F-MI-SVM), fragmentary expectation maximization diverse
density (F-EM-DD), fragmentary citation-KNN (F-C-KNN),
and fragmentary aMILGDM (F-aMILGDM). Since the mean-
ings of more positive in different MIL methods are different,
we have designed different weight functions. We have also
extended the augmented Lagrange multiplier (ALM) method
to solve the proposed problem within our framework in an
efficient way. Together with the provable convergence for
F-MI-SVM model, comparison of experimental results on var-
ious types of benchmark datasets have indicated that our FIC
framework can improve the performances of all the four tra-
ditional MIL methods. The contributions of this article are as
follows.

1) We have proposed a unified framework for MIL with
fragmentary data, which can jointly complete the frag-
mentary data and learn the multi-instance classifier by
considering the measurement of instance’s importance.

2) The proposed framework is compatible with different
MIL methods. We have derived different weight func-
tions for different FIC models based on the definition of
positiveness in different MIL methods.

3) As an illustration, we have developed an efficient algo-
rithm with provable convergence to solve our formulated
F-MI-SVM problem.

The remainder of this article is organized as follows.
Section II provides the notations and related works. Section III
presents the proposed framework and its optimization.
Section IV provides our F-MI-SVM model and the algo-
rithm. Section V analyzes the convergence and complexity.
Section VI provides the comparison results on various kinds
of datasets and Section VII provides the concluding remarks.

II. RELATED WORK

A. Notations

Denote D = {〈B1, y1〉, . . . , 〈BN, yN〉} as the labeled dataset.
It contains a set of N bags and the corresponding labels.
Here, bag BI = {BI1, . . . , BIj, . . . , BINI }, with BIj denotes
the jth instance in bag BI . The labels of the instances in
BI are yI1, . . . , yIj, . . . , yINI , which cannot be obtained. yI =
yI1 ∨ . . .∨ yINI for Boolean labels and yI = max{yI1, . . . , yINI }
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TABLE I
NOTATIONS

for real-value labels. NI is the number of instances in BI .
n is the total number of instances of all bags, that is,
n = ∑N

i=1 Ni. X ∈ R
d×n denotes the completed data

matrix which we want to learn. We simply stack all the
instances of all bags to construct the data matrix X, that
is, X = [B11, . . . , B1N1 , B21, . . . , B2N2 , . . . , BN1, . . . , BNNN ].
Thus, each column of X is an instance and each row is a fea-
ture. For simplicity, denote xi ∈ R

d(i = 1, 2, . . . , n) as the ith
column of X and X = [x1, x2, . . . , xn]. Denote T ∈ R

d×n as
the observed data matrix, in which all the missing indices have
no elements. Denote � as the set of indices of the available
elements and X� as the observed elements of X. Assume that
X̂ ∈ R

d×N consists of the key instances of all bags. There
is only one key instance in each bag, which refers to the
most positive instance and best represents the bag. Denote
x̂I ∈ R

d(I = 1, 2, . . . , N) as the key instance of the Ith bag.
Thus, X̂ = [x̂1, x̂2, . . . , x̂N]. Denoting ŷI as the label of key
instance x̂I . It is also the label of the Ith bag. Denoting h ∈ R

d

as the concept point (the point with the highest density of all
the instances in a positive bag) and Pcenter ∈ R

d as the cen-
ter point of all positive instances. In summary, the notations
are listed in Table I and we will explain its concrete meaning
when it is first used.

B. MI-SVM

MI-SVM [1] is an extension of SVM [16], which leads to
a mixed-integer quadratic program (QP) that can be solved
heuristically. It is based on the fact that the margin is defined
by the distance of the most positive instance (witness) in each
bag. In other words, once these witness instances have been

identified, the other instances in each bag become irrelevant
to the classification boundary.

MI-SVM can be cast as a mixed-integer program. In deriv-
ing the optimization heuristics, for the given selector variables,
that is, the key instance of each bag, the problem reduces to a
QP. It alternates the following two steps: 1) for the given key
instances, solving the associated QP and finding the optimal
discriminant and 2) for the given discriminant, updating the
key instance in each bag that is the most positive. With this
alternation, MI-SVM has achieved competitive results.

C. EM-DD

EM-DD [2] is a general-purpose MI learning method
that combines EM [22] with the extended diversity density
(DD) [11] algorithm. It starts with an initial concept point
h, which has the highest density of all the instances in a
positive bag, then repeats the following two steps (E-step
and M-step) to search for the maximum-likelihood hypoth-
esis. In the E-step, the current hypothesis concept h is used to
identify the most representative instance in each bag. In the
M-step, the two-step gradient ascent search of the standard
DD algorithm [7] is used to find a new concept h′ that maxi-
mizes DD(h). Once the final optimal concept h is identified,
a bag is deemed as positive if the weighted distance from h
to any of its instances is below the threshold, an artificially
given parameter, which is often set to 0.5 as in [2].

D. Citation-KNN

Based on the Hausdorff distance among bags, C-KNN [10]
is an adapted KNN algorithm to the multiple-instance problem.
It is inspired by the notion of citation from library and
information science [27]. When identifying the label of bag
b, it takes into account not only the neighbors (R-nearest ref-
erences) of b but also the bags that count b as a neighbor
(C-nearest citers).

For the R-nearest references of a bag b, Rp and Rn denote
the numbers of positive and negative bags, respectively. For
the C-nearest citers of b, Cp and Cn denote the numbers of
positive and negative bags, respectively. Let p = Rp + Cp and
n = Rn + Cn. If p > n, then the bag b is predicted as positive;
otherwise, negative.

E. MILDM

MILDM [12] is one of the most recent and advanced MIL
methods, which uses bag mapping to transform a bag BI into
a single instance Bφ

I in a new space via instance selection.
It aims to identify the best instances to directly distinguish
bags in the new mapping space. It consists of two steps. The
first is to map each bag to a new feature space using the
selected discriminative instances pool (DIP), a hidden instance
set constructed from bags of instances. The second is to utilize
any instance-based learning algorithm to derive multi-instance
classification models. This article contains four different bag
mapping models, that is, aMILGDM, pMILGDM, aMILLDM,
and pMILLDM. They differ in at least one of the following
two aspects to select instance in constructing the DIP: 1) the
number of selected instance from each bag and 2) the scope of
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training bags in selecting instance. aMILGDM and pMILGDM
measure the discriminative power of the instances across the
bags. aMILGDM uses all the training bags to generate the
global DIP. pMILGDM only uses the positive bags. aMILLDM
and pMILLDM compare the discriminative scores inside each
individual bag. aMILLDM uses all the training bags to gen-
erate the local DIP. pMILGDM only uses the positive bags.
Experiments show that aMILGDM performs better than the
other models because more information is used to construct
the DIP [12].

III. PROPOSED FRAMEWORK

A. Fragmentary Multi-Instance Classification Framework

Inspired by the low-rank methods [25], [28]–[30], we aim
to seek a matrix that appropriately fits the observed values of
the fragmentary data matrix and fills the missing values, by
constraining the rank of the approximation matrix lower than
or equal to a predefined value k. This task can be addressed
by solving the following problem:

min
X

‖X� − T�‖2 (1)

s.t. rank(X) ≤ r

where T is the given incomplete data matrix. X is the low-rank
matrix to approximate T. � is the set of indices of observed
elements in T.

Aiming to propose an MIL framework which can deal
with fragmentary data efficiently, we design a complementary
mechanism between completion and MIL. Here, the comple-
mentary mechanism means the combination of completion and
MIL. They are expected to benefit from each other and make
the entire performance better. In MIL, the importance of an
instance can be reflected by its possibility to be a positive
instance. With the consideration that more positive instance
is more important, we assign a more positive instance with
a larger weight so that the completing loss of more positive
instance in the observed domain should be less. Here, the com-
pleting loss of more positive instance means the loss function
in completing the more positive instance. Intuitively, the more
positive the instance is, the more important it is and it should
be completed more accurately by making more emphasis on
its completing loss. Therefore, it enables the completion of
more positive instances to be more accurate. Given the mea-
surements on data matrix T, we propose the following FIC
framework to fit most of the MIL methods:

min
α,X

C(α, X, Y) + μ‖F(α, X)(X� − T�)T‖2 (2)

s.t. rank(X) ≤ r

where C(·) is the objective of the MIL classifier to minimize
the classification error. α represents the set of all model param-
eters of the classifier and X is the completed data matrix. Y
denotes the label vector of all bags. μ is the regularization
coefficient that balances the first term and second term. F(·)
is a weight function which counts the weights of instances.
The weights of different instances are determined according
to the classification results and the positive degree of instances.

The second term is to minimize the weighted loss of observed
entries. The constraint term requires X to be of low rank.

To validate the effectiveness of the FIC framework, we
embed four typical MIL methods, that is, MI-SVM, EM-
DD, citation-K nearest neighbor (Citation-KNN), and aMIL-
GDM into our framework and generate four corresponding
FIC models, that is, F-MI-SVM, F-EM-DD, F-C-KNN, and
F-aMILGDM. Since the meanings of more positive in these
four methods are different, for each method, we design the
corresponding weight functions. In the next section, we will
present the concrete forms of the MIL classifier objective
C(α, X, Y) and the weight function F(α, X).

B. Typical Examples

1) F-MI-SVM: Here, the MIL parameter set α contains
w and b. C(α, X, Y) is based on the formulation of MI-SVM

min
w,b,ξ

1

2
‖w‖2 + L

N∑

I=1

ξI

s.t. ∀I : yI max
i∈I

(〈w, xi〉 + b) ≥ 1 − ξI, ξI ≥ 0 (3)

where w is the projection matrix, b is the bias vector, {ξI}N
I=1

are the slack variables of SVM, yI is the label of the bag BI ,
and L is the tradeoff parameter. It is noticed that for each
bag BI , we identify a representative instance to characterize
it. Other instances have no impact on the objective. If we
utilize the square hinge loss, it is considered to minimize the
following objective function:

C(w, b, X, Y) = 1

2
‖w‖2 + L

N∑

I=1

(

1 − max
i∈I

(
wTxi + b

)
yI

)2

+
.

(4)

Here, (·)+ is a function, which is equal to the variable if it is
positive and 0 otherwise.

As in MI-SVM, the more positive instance means that it is
farther from the hyperplane on positive direction of the nor-
mal vector of the hyperplane. Thus, we design the weight of
instance xj as

F
(
w, b, xj

) =
(
δ
(

wxT
j + b

)
+ 1

)0.5
(5)

where (δ(wTxj + b) + 1) denotes the weight of the instance
xj and δ ≥ 0 is a parameter to adjust the weight. If δ = 0,
δ(wTxj + b) + 1 = 1(∀j = 1, . . . , n) and instances of all bags
have equal importance.

2) F-EM-DD: In this model, the MIL parameter α repre-
sents the concept point h to be optimized. Considering the fact
that the importance of each feature varies greatly in most appli-
cations, we associate each attribute with an unknown scale
factor [7]. To estimate the label of bag BI for hypothesis
h = {h1, . . . , hd, v1, . . . , vd}, the following generative model
is introduced in advance:

Label(BI |h) = max
j

exp

[

−
d∑

d′=1

(
vd′

(
BIjd′ − hd′

))2

]

(6)

where BIjd′ is the feature value of instance BIj for dimen-
sion d′, hd′ is the feature value of h on dimension d′, and vd′
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TABLE II
FOUR SPECIFIC METHODS AND THEIR CORRESPONDING TERMS AND PARAMETERS IN OUR FRAMEWORK

is the scale factor to indicate the importance of feature d′.
Label(BI |h) is the label which would be given to BI if h is
the correct hypothesis concept point.

Inherited from EM-DD, C(α, X, Y) is

C(h, X, Y) =
N∑

I=1

(− log Pr(yI |h, BI)) (7)

where BI denotes the Ith bag. Pr(yI |h, BI) is estimated as
1 − |yI − Label(BI |h)|.

In F-EM-DD, the closer an instance xj to the concept point
h is, the more likely xj is positive. Therefore, the weight of
xj is estimated by

F
(
h, xj

) = ‖xj − h‖−0.5. (8)

3) F-C-KNN: In this model, C(α, X, Y) has no explicit
formulation since Citation-KNN is a lazy approach. In other
words, it has no training process.

In F-C-KNN, we assume that the closer an instance xj to
center Pcenter of all the positive instances is, the more likely
xj is positive. Thus, the weight function of the xj is

F
(
Pcenter, xj

) =
(
δ exp

(
−‖xj − Pcenter‖2

)
+ 1

)0.5
. (9)

4) F-aMILGDM: In this model, C(α, X, Y) also has no
explicit formulation since F-aMILGDM takes KNN as classi-
fier when bags are transformed into single instances in a new
space via selected instance pool. It has no training process.

In F-aMILGDM, the bag BI is transformed into Bφ
I ∈ R

m

as a single instance in a new feature space, whose dimen-
sionality is m, using the DIP, denoted as P. A transitional
supervised learning classifier, that is, KNN, is then trained on
the instances in the new feature space. We assume that the
closer an instance Bφ

I to center Pφ
center ∈ R

m of all the positive
instances is, the more likely Bφ

I is positive. Thus, the weight
function of BIj in Ith bag is

F
(

Pφ
center, BIj

)
=

(
δ exp

(
−‖Bφ

I − Pφ
center‖2

)
+ 1

)0.5
. (10)

In summary, Table II presents our four specific models and
their corresponding parameters, MIL classifiers and weight
functions within this framework.

C. Optimization

To solve the problem of our framework, we will derive
an algorithm by introducing auxiliary variables based on the
ALM method. Different from other penalty-based approaches,
the ALM method estimates the solution and Lagrange
multipliers simultaneously in an iterative way. In order to
estimate the classifier accurately, we introduce the auxiliary

function t(α, X, s) to approximate C(α, X, Y) and rewrite (2)
to minimize the following augmented Lagrangian function:

AL
(
α, X, s, ρ, ρ′)

= t(α, X, s) + μ
∥
∥F(α, X)(X� − T�)T

∥
∥2

+ ρ′

2

∥
∥
∥
∥C(α, X, Y) − t(α, X, s) + ρ

ρ′

∥
∥
∥
∥

2

(11)

s.t. rank(X) ≤ r

where ρ′ is the penalty coefficient. ρ ∈ R
N×1 is used to adjust

the difference between C(α, X, Y) and t(α, X, s). They are
parameters of ALM and their update rules will be provided.
As ρ′ augments to infinity, the last term of (11) will force
C(α, X, Y) = t(α, X, s).

In order to decouple the term F(α, X) from the term
(X� − T�)T , we introduce the auxiliary function f (s) that
approximates F(α, X). Besides, we introduce the auxiliary
M that approximates X. Here, for maintaining the conci-
sion and convergence of the optimization, we use quadratic
penalty method to approximate F(α, X) and X instead of ALM
method. Thus, we rewrite the following approximation to (11)
for large enough values of λ and η:

AL
(
α, X, s, M, ρ, ρ′)

= t(α, X, s) + μ
∥
∥f (s)(X� − T�)T

∥
∥2

+ ρ′

2

∥
∥
∥
∥C(α, X, Y) − t(α, X, s) + ρ

ρ′

∥
∥
∥
∥

2

+ λ

∥
∥
∥F(α, X) − f (s)‖2 + η‖X − M

∥
∥
∥

2
(12)

s.t. rank(M) ≤ r.

When M is fixed, (12) becomes

min
α,X,s

t(α, X, s) + μ
∥
∥f (s)(X� − T�)T

∥
∥2

+ ρ′

2

∥
∥
∥
∥C(α, X, Y) − t(α, X, s) + ρ

ρ′

∥
∥
∥
∥

2

+ λ‖F(α, X) − f (s)‖2 + η‖X − M‖2 (13)

where the gradient of any term can be obtained directly. Thus,
(13) can be solved by the cyclic coordinate decent method.

When α, X, and s are fixed, (2) becomes

min
M

‖X − M‖2 (14)

s.t. rank(M) ≤ r.

Assuming the SVD decomposition of X is FSGT , then the
solution to M is

M = FrSrGT
r (15)
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Algorithm 1 Algorithm to Solve FIC
Input: Observed data matrix T; bag labels Y; parameters:
{μ, λ, η, r};
Output: Completed data matrix X; MIL parameter set α; auxiliary
variables {s, M}
1. Initialize X, α, s, M
Repeat
2. Fixing M, update X, α, s by Eq. (13) with cyclic coordinate

decent method
3. Fixing X, α, s, update M by Eq. (15)
4. Update ρ by Eq. (16)

Until converges

where Sr contains the top r largest values and Fr and Gr are
the singular vector matrices corresponding to Sr.

In the kth iteration, the ALM parameter ρ is updated by

ρ(k) = ρ(k−1) + ρ′
(k)(C(α, X, Y) − t(α, X, s)). (16)

The detailed algorithm to solve our proposed FIC is shown
in Algorithm 1.

IV. FRAGMENTARY MI-SVM

As an illustration, we present the detailed model and
optimization of the F-MI-SVM.

A. Model

In MI-SVM, once the representative instances have been
identified, the relative position of other instances in each bag
with respect to the classification boundary becomes irrelevant.
The most positive instances have crucial effect on learning
the classification boundary. Thus, these key instances should
be completed correctly in observed data domain and given
relatively large weight. The detailed illustration is presented in
Fig. 1. According to the above analysis, we have the following
minimization problem for F-MI-SVM model:

min
w,b,ξ,X

1

2
‖w‖2 + L

N∑

I=1

ξI

+ μ
∑

(i,j)∈�

(
δ
(
wTxj + b

) + 1
)(

Xij − Tij
)2 (17)

s.t. ∀I : yI max
i∈I

(〈w, xi〉 + b) ≥ 1 − ξI

ξI ≥ 0, rank(X) ≤ r

where (δ(wTxj + b)+ 1) denotes the weight of the instance xj

and δ ≥ 0 is a parameter to adjust the weight. This model
is obtained by embedding the MI-SVM objective function
C(·) and the corresponding weight function F(·) into our FIC
framework (2) directly.

B. Solution

A scheme of optimization is the alternation of the following
two steps: 1) for the given representative instances of each
bag, finding the optimal discriminant and completing the data
matrix and 2) for the given discriminant and completed data,
updating the representative instance of each bag.

Fig. 1. Weight for different instances. There are two bags with one positive
and one negative. The instances in the positive bag P are marked with “+”
and instances in the negative bag N are marked with “-.” Here, all instances
are complete. We can calculate the weight of instances in every bag based on
the optimal hyperplane “h” (the normal vector “a” of “h”). Intuitively, among
these instances in the two bags, instance ⊕ has the largest weight and � has
the smallest weight. For bag P, ⊕ is the key instance because it is the “most
positive” among the instances in P. For bag N,  is the key instance because
it is the “least negative” among the instances in N.

1) Finding the Optimal Discriminant and Completing the
Data Matrix: Given the representative instances, (17) becomes

min
X,w,b,ξ

1

2
‖w‖2 + L

N∑

I=1

ξI

+ μ
∑

(i,j)∈�

(
δ
(
wTxj + b

) + 1
)(

Xij − Tij
)2 (18)

s.t. ∀I : yI
(〈w, x̂I〉 + b

) ≥ 1 − ξI

ξI ≥ 0, rank(X) ≤ r

where x̂I denotes the representative instance of the Ith bag.
We select the squared hinge loss and (18) becomes

min
X,w,b

1

2
‖w‖2 + L

N∑

I=1

(
1 − (

wT x̂I + b
)
yI

)2
+

+ μ
∑

(i,j)∈�

(
δ
(
wTxj + b

) + 1
)(

Xij − Tij
)2 (19)

s.t. rank(X) ≤ r

which is derived by employing the loss function to remove the
constraint ∀I : yI(〈w, x̂I〉 + b) ≥ 1 − ξI, ξI ≥ 0.

We observe that in (19), there is a coupling between
X2

ij((i, j) ∈ �) and xj in the last term. Therefore, it is diffi-
cult to optimize X directly. We introduce the auxiliary variable
sj(j = 1, 2, . . . , n) that approximates wTxj +b and rewrite (19)
into the following problem for a large enough parameter λ:

min
X,w,b,s

1

2
‖w‖2 + L

N∑

I=1

(
1 − (

wT x̂I + b
)
yI

)2
+

+μ
∑

(i,j)∈�

(
δsj + 1

)(
Xij − Tij

)2

+λ

2
‖XTw + 1b − s‖2 (20)

s.t. rank(X) ≤ r.

We introduce an auxiliary variable M ∈ R
d×n that

approximates X and rewrite (20) to minimize the following
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approximation for large enough η:

obj(X, w, b, s, M)

= 1

2
‖w‖2 + L

N∑

I=1

(
1 − (

wT x̂I + b
)
yI

)2
+ + η

2
‖X − M‖2

+ μ
∑

(i,j)∈�

(
δsj + 1

)(
Xij − Tij

)2 + λ

2
‖XTw + 1b − s‖2

s.t. rank(M) ≤ r. (21)

By solving (21), we can complete the data matrix X and obtain
the optimal discriminant.

2) Updating the Representative Instance of Each Bag: With
the given discriminant (w, b) and completed data matrix X, the
representative instance is the one that makes wTx+b maximum
in each bag.

The process of step 2) is direct. Next, we will solve the
problem in (21) in step 1). The optimization of (21) consists of
two steps: 1) updating X, w, b, s with fixed M and 2) updating
M with fixed X, w, b, s.

3) Updating X, w, b, s With Fixed M: When M is fixed,
(21) becomes

min
X,w,b,s

= 1

2
‖w‖2 + L

N∑

I=1

(
1 − (

wT x̂I + b
)
yI

)2
+

+ μ
∑

(i,j)∈�

(
δsj + 1

)(
Xij − Tij

)2

+ λ

2

∥
∥XTw + 1b − s

∥
∥2

+ η

2
‖X − M‖2. (22)

Inspired by [31], we introduce the auxiliary variables êI =
ŷI − wT x̂I − b and ê = [ê1, ê2, . . . , êN]T ∈ R

N . Based on
ALM [32], the augmented Lagrangian function of (22) is

AL
(
ê, X, w, b, s, ρ, ρ′)

= 1

2
‖w‖2 + L

N∑

I=1

(
ŷI êI

)2
+

+ ρ′

2

∥
∥
∥
∥X̂Tw + 1b − ŷ + ê + ρ

ρ′

∥
∥
∥
∥

2

+ μ
∑

(i,j)∈�

(
δsj + 1

)(
Xij − Tij

)2

+ λ

2

∥
∥XTw + 1b − s

∥
∥2

+ η

2
‖X − M‖2 (23)

where ρ′ is the penalty coefficient and ρ ∈ R
N×1 is used to

adjust the difference between ê and ŷ − X̂Tw − 1b. They are
all parameters of ALM and their updating rules will be pro-
vided later. We now derive the optimal solutions with respect
to ê, X, w, b, and s in (22) by the cyclic coordinate decent
method with the following alternative steps: optimizing ê with
fixed X, w, b, s; optimizing X with fixed ê, w, b, s; optimizing
w with fixed ê, X, b, s; optimizing b with fixed ê, X, w, s; and
optimizing s with fixed ê, X, w, b.

Optimizing ê With Fixed X, w, b, s: When X, w, b, s are
fixed, optimizing êI in (23) becomes

min
êI

L
(
ŷI êI

)2
+ + ρ′

2

∥
∥
∥
∥êI −

(

ŷI − X̂T
I w − 1b − ρI

ρ′

)∥
∥
∥
∥

2

= min
êI

L
(
ŷI êI

)2
+ + ρ′

2

(
êI − vI

)2

= min
êI

γ
(
ŷI êI

)2
+ + 1

2

(
êI − vI

)2 (24)

where γ = L/ρ′, vI = ŷI − X̂T
I w − b − (ρI/ρ

′) is a constant.
Equation (24) is similar to [31, eq. (10)] and the following
optimal eI is similar to [31, eq. (13)]:

êI =
{

vI/(1 + 2γ ) ŷIvI > 0
vI ŷIvI ≤ 0.

(25)

Optimizing X With Fixed ê, w, b, s: When ê, w, b, s are
fixed, we denote the objective of the subproblem with respect
to X as OX. Then, the optimization of X in (23) becomes

min
X

OX ≡ ρ′

2
‖X̂Tw + 1b − ŷ + ê + ρ

ρ′ ‖2

+ λ

2
‖XTw + 1b − s‖2

+ μ
∑

(i,j)∈�

(
δsj + 1

)(
Xij − Tij

)2 + η

2
‖X − M‖2.

(26)

For each element Xij of X, we set the derivative with respect
to Xij to be zero and the first-order equation with respect to
X1j, X2j, . . . , Xdj can be derived. Thus, for each column xj

of Xij, d equations with respect to X1j, X2j, . . . , Xdj can be
derived so that these equation sets can be solved to obtain
X1j, X2j, . . . , Xdj. To obtain xj(j = 1, 2, . . . , n), there are two
cases with respect to instance xj (xj ∈ X̂ and xj /∈ X̂). To obtain
Xi,j(i = 1, 2, . . . , d) in xj, there are two cases with respect to
Xij (Xij ∈ � and Xij /∈ �).

When the instance xj ∈ X̂ and Xij /∈ �, the derivative of OX
with respect to Xij is

∂OX

∂Xij
=

∑

l �=i

(
λ + ρ′)wiwlXlj + (λwiwi + η)Xij

+ λwi
(
b − sj

) + η′Mij + λwi
(
b − ŷj + êj

)
. (27)

If xj ∈ X̂ and Xij ∈ �, the derivative of OX with respect to
Xij is

∂OX

∂Xij
=

∑

l �=i

(
λ + ρ′)wiwlXlj + (

λwiwi + η + 2μ
(
δsj + 1

))
Xij

+ λwi
(
b − sj

) + ηMij + λwi

(

b − ŷj + êj + ρj

ρ′

)

− 2μTij
(
δsj + 1

)
. (28)

When the instance xj /∈ X̂ and Xij /∈ �, the derivative of OX
with respect to Xij is

∂OX

∂Xij
=

∑

l �=i

λwiwlXlj + (λwiwi + η)Xij + λwl
(
b − sj

) + ηMij.

(29)
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If xj /∈ X̂ and Xij ∈ �, the derivative of OX with respect to
Xij is

∂OX

∂Xij
=

∑

l �=i

λwiwlXlj + (
λwiwi + η + 2μ

(
δsj + 1

))
Xij

+ λwl
(
b − sj

) + ηMij − 2μTij
(
δsj + 1

)
. (30)

Thus, we can solve for X with the gradient descent method.
Optimizing w, b With Fixed ê, X, s: When ê, X, s are fixed,

(23) becomes

min
w,b

Ow,b ≡ 1

2
‖w‖2 + ρ′

2
‖X̂Tw + 1b − ŷ + ê + ρ

ρ′ ‖2

+ λ

2
‖XTw + 1b − s‖2. (31)

The gradients of Ow,b with respect to w and b are

∂Ow,b

∂w
= w + ρ′X̂X̂Tw + ρ′X̂

(

1b − ŷ + ê + ρ̂

ρ′

)

+ λXXTw + λX(1b − s) (32)
∂Ow,b

∂b
= ρ′Nb + ρ′1T

(

X̂Tw − ŷ + ê + ρ̂

ρ′

)

+ λnb + λ1T(
XTw − s

)
. (33)

Following [31], we use an optimal step-size gradient method
to update w and b in each iteration, which only costs O(nd̄).
Here, d̄ is the average number of nonzero elements per
instance. It is as costly as calculating the matrix inverse.

Optimizing s With Fixed ê, X, w, b: When ê, X, w, b are
fixed, (23) becomes

min
s

μ
∑

(i,j)∈�

(
δsj + 1

)(
Xij − Tij

)2

+ λ

2
‖XTw + 1b − s‖2. (34)

Denote τj = ∑
(i,j)∈�(Xij −Tij)

2, ∀j = 1, 2, . . . , n, (34) can
be rewritten as

min
s

λ

2
‖s − XTw − 1b‖2 + μ

n∑

j=1

τj
(
δsj + 1

)
. (35)

We can obtain the optimal sj(∀j = 1, 2, . . . , n) by solving

min
sj

λ

2

(
sj − wTxj − b

)2 + μτj
(
δsj + 1

)
. (36)

Taking the derivative of (36) with respect to sj and setting
it to zero, we have

si = wTxj + b − μδ

λ
τj. (37)

Following the iterative thresholding method [33], at the kth
iteration, the amount of violation linear computational cost
solver is used to update the Lagrangian multiplier vector ρ

ρ(k) = ρ(k−1) + ρ′
(k)

(
ê − ŷ + X̂Tw + 1b

)
. (38)

Algorithm 2 Algorithm to Solve the Problem in (21)
Input: The observed data matrix T; bag label yI(I =
1, 2, · · · , N); representative instance index of each bag; param-
eters: {C, μ, δ, λ, η, k, ρ′

(1)
, ρ′

(2)
, · · · , ρ′

(∞)
};

Output: The completed data matrix X; discriminant {w, b}; auxil-
iary variables {ê, s, M}
1. Initializing X, w, b, s, M;

Repeat
2. Fixing M, deriving the optimal solutions w.r.t ê, X, w, b and s

in Eq. (22) by Eq. (23) with the cyclic coordinate decent method;
3. Updating ρ by Eq. (38);
4. Fixing ê, X, w, b, s, updating M by Eq.(39);

Until converges

4) Updating M With Fixed X, w, b, s: When ê, X, w, b, s
are fixed, optimizing M in (21) becomes

min
M

‖M − X‖2 (39)

s.t. rank(M) ≤ r

where the solution of M is in (15).
The algorithm to solve the problem in (21) is shown in

Algorithm 2. Nevertheless, we have been able to achieve
competitive results in experiments even with the following
simpler optimization heuristic. With the data matrix completed
initially, alternate the following three steps: 1) finding the
optimal discriminant function; 2) calculating the weight of
each instance by the weight function; and 3) completing the
fragmentary data matrix with weight mechanism.

V. DISCUSSION

A. Convergence Analysis

Step 1) is pivotal in solving the problem of F-MI-SVM. We
now provide its convergence behavior as in Algorithm 2.

Theorem 1: Algorithm 2 will monotonically decrease the
objective of (21) in each iteration and it converges to a local
optimum.

As in [25], when ê, X, w, b, and s are fixed, the solution
to M obtained by Algorithm 2 will decrease the objective.
Thus, Theorem 1 is true if the solution to ê, X, w, b, and s
obtained by Algorithm 2 with fixed M decreases the objective.
To prove it, our convergence and optimality theorems require
the boundedness of some sequences, which is based on the
following lemma.

Lemma 1: Let H be a real Hilbert space endowed with an
inner product 〈·, ·〉 and a corresponding norm ‖·‖, u and v are
functions, v ∈ ∂‖u‖, where ∂u is the subgradient of u. Then,
‖v‖∗ = 1 if u �= 0, and ‖v‖∗ ≤ 1 if u = 0, where ‖ · ‖∗ is the
dual norm of ‖ · ‖.

In Lemma 1, both v and u are the elements in a real Hilbert
space H. If H is a function space, then both v and u are
functions. If H is a vector space, then both v and u are vectors.
Readers interested in the proof of Lemma 1 may refer to [28].

Lemma 2: The sequences {ρ(k)} in Algorithm 2 are
bounded.

Proof: From

w(k) = arg min
w

AL(ê(k), X(k), w, b(k), s(k), ρ(k−1)

ρ′
(k), λ(k−1), λ

′
(k), η(k−1), η

′
(k))
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b(k) = arg min
b

AL(ê(k), X(k), w(k), b, s(k), ρ(k−1)

ρ′
(k), λ(k−1), λ

′
(k), η(k−1), η

′
(k))

ê(k) = arg min
ê

AL(ê, X(k), w(k), b, s(k), ρ(k−1)

ρ′
(k), λ(k−1), λ

′
(k), η(k−1), η

′
(k))

X̂(k) = arg min
X̂

AL(ê(k), X, w, b(k), s(k), ρ(k−1)

ρ′
(k), λ(k−1), λ

′
(k), η(k−1), η

′
(k)). (40)

We have

0 ∈ ∂wAL(ê(k), X(k), w, b(k), s(k), ρ(k−1)

ρ′
(k), λ(k−1), λ

′
(k), η(k−1), η

′
(k))

0 ∈ ∂bAL(ê(k), X(k), w, b(k), s(k), ρ(k−1)

ρ′
(k), λ(k−1), λ

′
(k), η(k−1), η

′
(k))

0 ∈ ∂êAL(ê(k), X(k), w, b(k), s(k), ρ(k−1)

ρ′
(k), λ(k−1), λ

′
(k), η(k−1), η

′
(k))

0 ∈ ∂X̂AL(ê(k), X(k), w, b(k), s(k), ρ(k−1)

ρ′
(k), λ(k−1), λ

′
(k), η(k−1), η

′
(k)). (41)

Therefore,

ρ(k) ∈ ∂‖1/
√

2 · w(k)‖2 + ∂‖XTw(k) + 1b − s‖2

ρ(k) ∈ ∂‖C(ŷT ê(k))+‖2

ρ(k) ∈ ∂‖√(λ/2) · (XTw + 1b(k) − s)‖2

ρ(k) ∈ ∂μ
∑

(i,j)∈�

(δsj + 1)(X(k)ij − Tij)
2

+ ∂
λ

2
‖XT

(k)w + 1b − s‖2 + ∂
η

2
‖X(k) − M‖2. (42)

Then, by Lemma 1, the sequence {ρ(k)} in Algorithm 2 is
bounded since the dual norm of ‖ · ‖2 is ‖ · ‖2 [34].

Denote G(k) = 0.5‖w(k)‖2 + ‖L(ŷT ê(k))+‖2 +
0.5ρ′

(k)‖X̂T
(k)w(k) + 1b(k) − ŷ + ê(k)‖2 + μ

∑
(i,j)∈�(δs(k)j +

1)(X(k)ij −Tij)
2 +0.5λ‖XT

(k)w(k) +1b(k) − s(k)‖2 +0.5η‖X(k) −
M‖2, we have the following lemma.

Lemma 3: The sequences ê(k), X(k), w(k), b(k), and s(k) in
Algorithm 2 are all bounded if G(k+1) ≤ G(k), ∀k > 0 and∑∞

k=1 [(ρ′
(k+1))/ρ

′2
(k)] < ∞.

Proof: As G(k) is nonincreasing as Algorithm 2 iterates, by
substituting (38) to eliminate ρ(k−1), we have

AL
(

ê(k), X(k), M, w(k), b(k), s(k), ρ(k−1), ρ
′
(k)

)

≤ AL
(

ê(k−1), X(k−1), M, w(k−1), b(k−1), s(k−1), ρ(k−2)ρ
′
(k−1)

)

+ 0.5ρ′−2
(k−1)

(
ρ′

(k−1)+(k−2)

)
‖ρ(k−1) − ρ(k−2)‖2. (43)

Thus, AL(ê(k), X(k), M, w(k), b(k), s(k), ρ(k−1), ρ
′
(k)) is

upper bounded due to the boundedness of ρ(k) and
∑∞

k=1 [(ρ′
(k) + ρ′

(k+1))/ρ
′2
(k)] ≤ ∑∞

k=1 [(2ρ′
(k+1))/ρ

′2
(k)] ≤ ∞.

Furthermore, we have

‖w(k)‖2 + 0.5

∥
∥
∥
∥L

(
ŷT ê(k)

)

+

∥
∥
∥
∥

2

+ μ
∑

(i,j)∈�

(
δs(k)j + 1

)(
X(k)ij − Tij

)2

+ λ‖XT
(k)w(k) + 1b(k) − s(k)‖2 + η‖X(k) − M‖2

= AL
(

ê(k), X(k), w(k), b(k), s(k), ρ(k−1), ρ
′
(k)

)
− ‖ρ(k)‖2

2ρ′
(k)

(44)

be upper bounded. Thus, ê(k), X(k), w(k), b(k), and s(k) in
Algorithm 2 are all bounded.

Lemma 3 implies the upper limit of ρ′
(k) to generate the

sequence ρ(k)

ρ′
(k+1) =

(
0.5ρ′

(k)‖X̂T
(k)w(k) + 1b(k) − ŷ + ê(k)‖2 + G(k)

− G(k+1)

)/(
0.5‖X̂T

(k)w(k) + 1b(k) − ŷ + ê(k)‖2
)
.

(45)

Theorem 2: ê(∞), X(∞), w(∞), b(∞), and s(∞) obtained by
step 2 in Algorithm 2 are the optimal solutions to (22).

Proof: According to the property of the ALM algorithm,
that is, when using ALM to solve the minimization problem,
adding the constraint will make the minimum value of the
objective function greater than or equal to the minimum value
of the unconstrained objective function, the following is true:

AL(ê(k), X(k), w(k), b(k), s(k), ρ(k−1), ρ
′
(k))

= min
e,X,w,b,s

AL(ê, X, w, b, s, ρ(k−1), ρ
′
(k))

≤ min
e,X,w,b,s,X̂T w+1b−ŷ+ê=0

AL(ê, X, w, b, s, ρ(k−1), ρ
′
(k))

= min
e,X,w,b,s,X̂T w+1b−ŷ+ê=0

0.5‖w‖2 + ‖L(ŷT ê)+‖2

+ μ
∑

(i,j)∈�

(δsj + 1)(Xij − Tij)
2 + 0.5λ‖XTw + 1b − s‖2

+ 0.5η‖X − M‖2 + ‖ρ(k−1)‖2

2ρ′
(k)

= min
X,w,b,s

0.5‖w‖2 + ‖L(1 − (wT x̂I + b)yI)+‖2

+ μ
∑

(i,j)∈�

(δsj + 1)(Xij − Tij)
2 + 0.5λ‖XTw + 1b − s‖2

+ 0.5η‖X − M‖2 + ‖ρ(k−1)‖2

2ρ′
(k)

= obj∗ + ‖ρ(k−1)‖2

2ρ′
(k)

(46)

where obj∗ is the minimum value of objective function in (22).
The third equality holds due to the fact that when the constraint
with respect to e is satisfied, the third term in (23) degenerates
to ‖ρ(k)‖2/2ρ′

(k).

We denote the term 0.5‖w(k)‖2 + ‖L(ŷT ê(k))+‖2 +
μ

∑
(i,j)∈�(δsj + 1)(X(k)ij − Tij)

2 + 0.5λ‖XT
(k)w(k) + 1b(k) −

s(k)‖2 + 0.5η‖X(k) − M‖2 by H(k), the following equation is
true:

H(k) = AL
(

ê(k), X(k), w(k), b(k), s(k), ρ(k−1), ρ
′
(k)

)
− ‖ρ(k)‖2

2ρ′
(k)

.

(47)

According to (46), we have

H(k) ≤ obj∗ + ‖ρ(k−1)‖2

2ρ′
(k)

− ‖ρ(k)‖2

2ρ′
(k)

. (48)
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Due to the boundedness of {ρ(k)}, the term [‖ρ(k−1)‖2/

2ρ′
(k)] − [‖ρ(k)‖2/2ρ′

(k)] is negligible when k → ∞. Thus

H(∞) ≤ obj∗. (49)

Besides, (38) leads to ê(k) − ŷ + X̂T
(k)w(k) + 1b(k) = (ρ(k) −

ρ(k−1))/ρ
′
(k). The constraint is satisfied when k → ∞

ê(∞) − ŷ + X̂T
(∞)w(∞) + 1b(∞) = 0. (50)

Therefore, (ê(∞), X(∞), w(∞), b(∞), s(∞)) is an optimal
solution to (22), and the solution to ê, X, w, b, and s obtained
by step 2 in Algorithm 2 with fixed M will decrease the
objective. Theorem 1 holds and step 1) converges.

Since step 2) contains a discrete optimization problem, ana-
lyzing the convergence of F-MI-SVM solution, which contains
both steps 1) and 2), becomes complicated. We will analyze
that in future work.

B. Complexity Analysis

Since F-MI-SVM is solved in an alternative way, we
calculate their total time by analyzing the complexity in solv-
ing each subproblem. Each iteration contains two steps. In
step 1),we find the optimal discriminant and complete the data
matrix. In step 2), we update the representative instance of
each bag. In step 1), the time complexity to optimize ê is
O(Nd); the time complexity to optimize X is O(nd); the time
complexity to optimize w and b is O(nd̄); the time complexity
to optimize s is O(nd); and the time complexity to optimize
M is O(nd2). Therefore, the time complexity of step 1) is
O(nd2). The time complexity of step 2) is O(nd). As a result,
the total time complexity of F-MI-SVM is O(tnd2), where t
is the number of iterations. In each iteration, the completed
data matrix X occupies the most memory space. Therefore,
the memory complexity of F-MI-SVM is O(nd).

VI. EXPERIMENTS

A. Dataset

1) MUSK benchmark datasets are used in almost all the
studies of MIL. Both MUSK1 and MUSK2 [3] datasets
consist of descriptions of molecules using multiple low-
energy conformations. Here, we regard each molecule
as a bag, and regard its conformations as the instances
in the bag. MUSK1 contains 47 positive and 45 nega-
tive molecules, and each molecule contains on average
approximately 6 conformations. MUSK2 contains 39
positive and 63 negative molecules, and each molecule
contains on average more than 60 conformations.

2) COREL IMAGE MIL datasets are generated by
Andrews et al. [1] for an image annotation task. The
datasets are from the Corel datasets preprocessed and
segmented with the Blobworld method [35]. An image
(bag) contains a set of blobs (instances), each repre-
sented by a 166-D feature vector. We utilize categories
of elephant, fox, and tiger in our experiments. It has 100
positive and 100 negative images in each experiment and
the negative images are drawn from the images of the
other two animals randomly.

3) COREL-2000 consists of 20 categories of COREL
images. Each category contains 100 images. Each image
represents a bag, and the regions of interest (ROIs) in
the image represent instances, which are represented by
a 9-D feature vector [36]. In our experiments, we use
two pairs of categories [“Fashion”–“Sunsets” (F–S) and
“Mountains and Glaciers”–“Food” (M–F)].

4) SIVAL contains 25 different objects in 10 scenes [37].
There are six different images taken for each object–
scene pair. Thus, each object has 60 images. All
the images have been segmented into regions. Each
region is described by 30 visual features. We utilize
objects “BlueScrunge” and “CandleWithHolder” for our
experiments.

5) PROCESS is a text dataset [38], [39]. It is obtained as
part of Task 2 of the BioCreative Text Mining Challenge.
Given a name of a human protein and a full-text journal
article, the task is to determine whether this protein–
article pair can be annotated with a particular gene
ontology (GO) term. For the MIL setting, each article
represents a bag, and a paragraph in an article represents
a member instance. The dataset contains 757 positive
bags and 10961 negative bags, with 118 417 instance in
total. Each paragraph instance is described by a set of
word count and numerical features with 200 dimensions.

B. Comparison Between FIC Methods and Baselines

For each proposed model, we compare its classification
performance with its baseline, that is, completing the data
matrix and then learning the multi-instance classifier. For a
fair comparison, we complete the data with the Robust Rank-k
MC (RRMC) method [25], which is one of the most recent
and advanced completion methods. Thus, the inputs can also
be regarded as the fragmentary data.

Since the above datasets are all completed, to simulated the
fragmentary case, we randomly choose a fixed missing per-
centage of locations in instance-feature matrix and hide their
true values. Thus, the greater the missing proportion is, the
less data and attributes that completion can depend on and it
may result in greater error in completion and lower classifi-
cation performance of the MIL classifiers. On each dataset,
every category is randomly divided into half, with one sub-
set for training and the other one for testing. We repeat each
experiment for 10 random splits and record the average results.

As for the evaluation metrics, the area under the receiver-
operating characteristic curve (AUC) [40], [41] and classifica-
tion accuracy (ACC) are used in our experiments. The AUC
represents the probability that a randomly chosen negative
image will be ranked lower than a randomly chosen positive
image. Different from the recall curve, it is insensitive to the
class-imbalance. We vary the missing ratio (MR) from 10%
to 50% with 10% as an interval on every dataset.

The comparisons results of average ACC and the standard
deviations are given in Table III. The comparisons of aver-
age AUC are shown in Fig. 2. For each of the four MIL
approaches, if our method performs better than its baseline
method, its result is highlighted in boldface.
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TABLE III
EXPERIMENTAL CLASSIFICATION ACCURACY (ACC, THE HIGHER THE BETTER) RESULTS [MEAN(STD)] ON 8 DATASETS. WE COMPARE OUR FOUR

METHODS WITH THEIR CORRESPONDING BASELINES. IF OUR METHOD PERFORMS BETTER, ITS RESULT IS HIGHLIGHTED IN BOLDFACE

As seen from the experimental results in Table III and Fig. 2,
we have the following observations. Although ACC and AUC
are two different evaluation metrics, they both indicate the
advantages of our methods. In almost all cases, our framework
has improved the performances of their counterparts. It may be
caused by the fact that our weight mechanism has taken into
account the importance measurements of instances. Besides,
the proposed weight function effectively facilitates the integra-
tion between completion and classifier learning. Besides, in a
few cases, our methods perform slightly worse than their base-
lines. For example, when MR = 0.1 on ELEPHANT dataset,
the ACC of F-EM-DD is 0.002 lower than that of EM-DD.
It may be caused by that we use a fixed parameter δ for all
MR values. This fixed δ may not be suitable for all the MR
values.

C. Efficiency of RRMC Method

In this section, we compare the performances of the RRMC
method and the mean completion method, that is, filling
the missing attributes of each example with the mean of

the observed attribute values on two datasets (MUSK1 and
ELEPHANT), to verify the efficiency of RRMC. For intu-
ition, we separate the matrix completing process from classifier
learning process for each method, that is, first completing the
fragmentary data matrix and then learning the classifier from
the completed data. Table IV shows the comparison results for
MR varying from 10% to 50% with 10% as interval. From
Table IV, we observe that the RRMC method outperforms the
mean completion method in almost all cases, which validates
its efficiency.

D. Parameter Study

We tune δ for three different MR values, that is, 0.5, 0.7,
and 0.9, in four different method–dataset pairs. As in the afore-
mentioned experiments, on each dataset, we randomly divide
each category into half, with one subset for training and the
other one for testing. Then, an MR value of features of all
the training data are randomly selected to be missing. Such
process is repeated ten times. The effect of the parameter δ is
shown in Fig. 3.
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(a)

(d) (e) (f)

(g) (h) (i)

(b) (c)

Fig. 2. AUC results for the nine datasets. For each method on each dataset, the bars from left to right represent the cases that MR = 0.5, MR = 0.4,
MR = 0.3, MR = 0.2, and MR = 0.1, respectively. For each bar, the green part represents the performance of the baseline, the yellow part represents the
improvement degree of our method, and the red part represents the performance level reduction of our method. (a) MUSK1. (b) MUSK2. (c) ELEPHANT.
(d) FOX. (e) TIGER. (f) F-S. (g) M-F. (h) SIVAL. (i) PROCESS.

TABLE IV
AUC PERFORMANCES OF RRMC METHOD AND MEAN COMPLETION METHOD ON TWO DATASETS. IF RRMC METHOD

PERFORMANCE BETTER THAN ITS BASELINE, ITS RESULT IS HIGHLIGHTED IN BOLDFACE

From Fig. 3, we can see that in all cases, our methods
achieve stable and good performance with a very large vari-
ance of δ in all MR settings, which validates the robustness
of our methods. On the whole, the optimal range of δ is
[10−4, 10−2] in F-MI-SVM (MUSK1) cases. Our experiments
also indicate that on the whole, the optimal range of δ is
[10−5, 10−1] for F-EM-DD method, [10−3, 10−5] for F-C-
KNN method, and [10−6, 10−1] for F-aMILGDM method. For
each method, the optimal ranges of δ on different datasets
are the same, which may be caused by the normalization of
all datasets. On each dataset, however, different methods have

different optimal δ ranges, which may be caused by the differ-
ences between the result scales of weight functions of different
methods.

E. Convergence Behavior

To verify the convergence of Algorithm 2, we show the con-
vergence behavior curves on two datasets MUSK1 and SIVAL
with MR = 0.3 in Fig. 4. As shown in Fig. 4, the objective
values are nonincreasing during the iterations and converge to
a fixed value. In addition, it only takes around 20 rounds to
converge.
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(a)

(c) (d)

(b)

Fig. 3. Effect of the parameter δ in four cases of method-dataset pairs with
different three MR values. (a) F-MI-SVM(MUSK1). (b) F-EM-DD(MUSK1).
(c) F-C-KNN(MUSK1). (d) F-aMILGDM(MUSK1).

(a) (b)

Fig. 4. Objective values of (21) with different numbers of iterations.
(a) MUSK1. (b) SIVAL.

TABLE V
TRAINING TIME (MEASURED IN SECONDS) OF OUR ALGORITHMS

AND CORRESPONDING BASELINES ON FIVE DATASETS

F. Runtime Comparison

Since the testing phase of each of our four algorithms is the
same as that of the corresponding baseline, each of our algo-
rithms and the corresponding baselines have the same running
time in the testing phase. We only report the running time of
the training phase. Table V shows the running time on five
datasets.

As seen from Table V, we know that our methods have
equivalent time spent by the other methods. In our four algo-
rithms (F-MI-SVM, F-EM-DD, F-C-KNN, and F-aMILGDM),
F-MI-SVM always has the best runtime performance, due to
the efficiency of MI-SVM. The aMILGDM and F-aMILGDM
often perform the worst because in each iteration, discrimina-
tive scores of all instances must be recalculated and all the
bags must be remapped to instances. Besides, all the algo-
rithms take the most time on PROCESS dataset because it has
the largest data scales.

VII. CONCLUSION

In this article, we proposed probably the first framework to
deal with multi-instance classification with fragmentary data.
Our proposed FIC framework combines completion and clas-
sifier learning by the derived weight mechanism where more
positive instances are given larger weights. Four MIL methods
are embedded into the framework to verify the compatibility of
our framework. As an example, the detailed algorithm of one
model is provided. We further present the convergence guar-
antees. The experimental results on real datasets show that
our framework can improve the performances of all the four
MIL baselines, which validates the effectiveness and robust-
ness of our framework. The first further work is to explore the
feasibility of introducing other completion methods. Another
one is to verify the compatibility of our framework with other
MIL methods. For example, due to the great representation
power of deep features, combining MIL with deep learning is
an emerging topic. There are some challenging problems in
this direction. For instance, how to incorporate the deep MIL
algorithms into our framework or directly design a deep learn-
ing algorithm based on MIL with missing features. Since the
instance is fragmentary, we should analyze the influence of
incompleteness in constructing the neural networks, together
with the consideration of instance correlation in MIL. They
can extend the application scenario of the deep MIL.
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