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Abstract—In real-world applications, not all instances in multi-
view data are fully represented. To deal with incomplete data,
Incomplete Multi-view Learning (IML) rises. In this paper, we
propose the Joint Embedding Learning and Low-Rank Approx-
imation (JELLA) framework for IML. The JELLA framework
approximates the incomplete data by a set of low-rank matrices
and learns a full and common embedding by linear transforma-
tion. Several existing IML methods can be unified as special cases
of the framework. More interestingly, some linear transformation
based complete multi-view methods can be adapted to IML
directly with the guidance of the framework. Thus, the JELLA
framework improves the efficiency of processing incomplete
multi-view data, and bridges the gap between complete multi-
view learning and IML. Moreover, the JELLA framework can
provide guidance for developing new algorithms. For illustra-
tion, within the framework, we propose the Incomplete Multi-
view Learning with Block Diagonal Representation (IML-BDR)
method. Assuming that the sampled examples have approximate
linear subspace structure, IML-BDR uses the block diagonal
structure prior to learn the full embedding, which would lead
to more correct clustering. A convergent alternating iterative
algorithm with the Successive Over-Relaxation optimization tech-
nique is devised for optimization. Experimental results on various
datasets demonstrate the effectiveness of IML-BDR.

Index Terms—Incomplete multi-view learning, embedding
learning, low-rank approximation, block diagonal representation

I. INTRODUCTION

In last decades, multi-view learning has experienced a

rapid development, as more and more multi-view data are

produced and collected [1], [2], [3], [4], [5], [6], [7], [8],

[9], [10]. Conventional multi-view learning algorithms are

mostly developed requiring that each sample is represented

fully with all views, i.e., in the complete multi-view setting.

Nevertheless, not all objects can be observed on all views in

real-world applications [11], [12], [13], [14], [15], [16], [17],

[18], [19]. For instance, in video surveillance, the same scene

is monitored by multiple cameras from different angles simul-

taneously, but some cameras could be out of work for some
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reasons, leading to missing views for some examples (missing-

view setting); Moreover, if some cameras work but there are

occlusions, then the corresponding variables are vacant in

these views. The mix of missing views and missing variables

are regarded as the incomplete-view setting. In traditional

multi-view learning algorithms, there are usually two ways to

handle the incomplete multi-view data. One way is to discard

the incomplete examples, which results in losing available

information [20]. The other way is to fill in the missing

samples with the mean of the available ones and complete the

missing variables by traditional matrix completion algorithms

[13], [21]. This saves some useful information, but will still

produce inaccuracies.

To handle multi-view data with missing views, the Partial

multi-View Clustering (PVC) algorithm is proposed [13].

Though PVC only deals with the missing-view case, it is a pi-

oneering work of the Incomplete Multi-view Learning (IML).

Concretely, PVC learns a full representation by employing

the Nonnegative Matrix Factorization (NMF). The Multiple

Incomplete views Clustering (MIC) [14] algorithm is also

based on NMF. It first fills the missing views by the mean

of available examples and then utilizes NMF by allocating

smaller weights to the incomplete examples. To capture the

nature of incomplete views and learn a full representation,

MIC imposes ℓ2,1 regularization on each view’s feature matrix,

and pushes them towards a common consensus. Based on

the assumption that multiple views are generated from a

common subspace, the method named Multi-View Learning

with Incomplete Views (MVL-IV) is proposed to recover the

incomplete instances by multi-view matrix completion [21].

Recognizing that the previous methods just simply project

multiple views to a common subspace, Zhao et al. proposed

to incorporate geometric information into the representation

and designed the Incomplete Multi-modality Grouping (IMG)

method [22]. Specifically, IMG imposes a manifold regu-

larization with automatically learned graph on the common

representation to enhance the grouping discriminability. Yin et

al. learned the cluster indicator matrix for incomplete multi-

view data directly by preserving both the inter-view and

intra-view data similarities in regression [23]. To unfold the

shared information from different views, Zhang et al. proposed

an Isomorphic Linear Correlation Analysis model to learn

a feature-isomorphic subspace. Then, based on the learned

feature representation, they utilized an Identical Distribution

Pursuit Completion model to complete the missing samples

[20]. Based on weighted semi-nonnegative matrix factorization

http://arxiv.org/abs/1812.10012v2
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(semi-NMF), Hu et al. [24] developed the Doubly Aligned In-

complete Multi-view Clustering (DAIMC) algorithm simulta-

neously aligning samples and the basis matrices. Liu et al. [25]

adopted the late fusion strategy to learn a consensus cluster

indicator matrix based on the incomplete base cluster indicator

matrices produced by incomplete based kernel matrices.

Though being proposed from different perspectives, several

existing IML algorithms, e.g., PVC [13], MVL-IV [21], IMG

[22] and DAIMC [24] are found to have similarities in their

forms of formulations. Hence, in this paper, we propose a gen-

eral IML framework to reveal their common properties. The

proposed framework performs Joint Embedding Learning and

Low-rank Approximation (JELLA), thus we also name it as

JELLA. Concretely, a set of low-rank matrices are introduced

to approximate the incomplete representations. The entries of

the approximate matrices are constrained to be equal to those

of the original data matrices if they are not missing. Then,

the concept of mapping function (e.g., linear transformation)

is employed to learn a full and common embedding from

multiple views. That is, the approximate data matrices are

mapped to a common representation matrix by using the

compatible and complementary information of multiple views.

With this framework, we gain some insight into IML. On

one hand, some popular IML methods, like PVC, MVL-IV,

IMG and DAIMC are unified as special cases of the proposed

JELLA framework. As we will show later, the original two-

view PVC and two-view IMG in the missing-view setting can

be naturally extended to the multi-view case in the incomplete-

view setting. On the other hand, with the guidance of this

framework, some previous multi-view algorithms developed

for complete multi-view data, can be adapted to IML directly.

For demonstration, the Robust Multi-view K-Means Clustering

(RMKMC) [26] and Multi-view Concept Learning (MCL) [27]

are adapted to IML in this paper. Thus, we can deal with the

incomplete multi-view data immediately, by taking advantages

of the complete multi-view methods, instead of designing a

new algorithm. This bridges the gap between complete multi-

view learning and IML, and is of practical significance in

improving the efficiency of dealing with incomplete multi-

view data.

Within the framework, we propose a specific IML approach

for illustration. Concretely, we assume that the incomplete

multi-view data are generated from a union of multiple sub-

spaces. Note that methods with the block diagonal property

would possibly lead to correct subspace clustering [28]. To

increase the discriminability between groups, we learn the

full embedding by Block Diagonal Representation (BDR) [28].

That is, the learned full representation matrix is self-expressed

with an affinity matrix, on which the block diagonal regularizer

is imposed to directly pursue the block diagonal property.

We refer to the proposed method as IML-BDR and adopt

the alternating iterative strategy to address it. A successive

over-relaxation (SOR) technique is employed to speed up the

convergence.

The contributions are summarized as follows.

• The JELLA framework is proposed for IML, which

includes some popular IML methods as special cases.

Moreover, with the guidance of the framework, some

existing complete multi-view methods can be adapted to

IML directly. Thus, JELLA provides a unified perspective

for analyzing IML methods, improves the efficiency of

processing incomplete multi-view data and bridges the

gap between complete multi-view learning and IML.

• The JELLA framework provides guidance for designing

new IML algorithms. Within the guidance of this frame-

work, we use the block diagonal property to enhance

the representation capability of the latent embedding and

propose the IML-BDR method.

• An algorithm with the successive over-relaxation opti-

mization technique is developed to address the IML-BDR

problem, and its convergence is theoretically analyzed.

• The effectiveness of IML-BDR is validated by comparing

with several state-of-the-art IML methods on various

datasets.

The structure of the paper is as follows. Section II introduces

the problem setting of IML and briefly reviews some related

works. Section III presents the JELLA framework. The pro-

posed IML-BDR method is introduced in Section IV, and the

corresponding experimental results are displayed in Section V.

Finally, we make conclusion in Section VI.

II. PROBLEM SETTING AND RELATED WORKS

In this section, we first introduce the problem setting of

IML. Then, we review several previous works.

Matrices and vectors are denoted by boldface uppercase

letters and boldface lowercase letters, e.g., M and m, respec-

tively. The (i, j)-th entry of M is denoted as mij or Mij . We

use Diag(m) to denote the diagonal matrix with the elements

of m on the main diagonal. Denote diag(M) as a vector which

is composed of the main diagonal elements of M ∈ R
n×n.

The trace, transpose and the Moore-Penrose pseudo-inverse of

M are denoted as Tr(M), MT and M†, respectively. [M]+
is defined as max(M, 0). M ≥ 0 means M is nonnegative.

The element-wise product between matrices is denoted by the

symbol ⊙. The identity matrix, the zero matrix, and the vector

with all ones are denoted by I, 0 and 1, respectively.

The Frobenius norm (or ℓ2-norm of a vector) is defined as

‖M‖ =
√

∑

ij m
2
ij (or ‖m‖ =

√
∑

im
2
i ). The ℓr,p-norm

(r ≥ 1, p ≥ 1) of M ∈ R
d×n is defined as ‖M‖r,p =

(
d
∑

i=1

(
n
∑

j=1

mr
ij)

p

r )
1
p . For example, ‖M‖2,1 =

d
∑

i=1

√

n
∑

j=1

m2
ij ,

‖M‖1,1 =
d
∑

i=1

n
∑

j=1

|mij |, ‖M‖∞,1 =
d
∑

i=1

max
1≤j≤n

|mij |.

A. Problem Setting

Given a data set of n instances X = {xi}
n
i=1, its data

matrix is denoted as X = [x1, · · · ,xn] ∈ R
d×n. Assume that

there are V different views, i.e., xi = [x
(1)
i ; · · · ;x

(V )
i ], where

x
(v)
i ∈ R

d(v)

represents the v-th view of the i-th data point.

Note that d =
V
∑

v=1

d(v). The data matrix of the v-th view is

denoted as X(v) = [x
(v)
1 , ...,x

(v)
n ].

The incomplete multi-view setting is defined as the situation

that each view lacks some data. In more detail, one sample
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TABLE I
NOTATIONS

Notations Descriptions

d The total dimensionality of data

d(v) The dimensionality of the v-th view
n The data size
k The number of classes
r The low-rank parameter
V The number of views
1 A vector of all ones for an arbitrary number
I The identity matrix

xi ∈ R
d The i-th data point

x
(v)
i ∈ R

d(v) The i-th data points in the v-th view

X(v) ∈ R
d(v)×n The data matrix of the v-th view

Z(v) ∈ R
d(v)×n The approximate data matrix with rank r

Γ
(v) ∈ {0, 1}d

(v)
×n The v-th view’s existence-indicating matrix

W ∈ R
r×n The common representation matrix

U
(v) The transformation matrix of the v-th view

Ω(v) The set of index of available samples
(in the missing-view setting)

could lose its entire representation on a certain view (i.e.,

missing view) or lose some entries of the data matrix (i.e.,

missing variables). That is, some columns of the data matrix

X(v) may be completely or partially vacant. For represen-

tational convenience, an existence-indicating matrix Γ(v) ∈

{0, 1}d
(v)×n is used to record the availability of variables in

X(v) (v = 1, · · · , V ). Γ
(v)
ij equals to 1 if and only if X

(v)
ij is

not missing. For the missing-view setting, the set of indexes of

available examples on the v-th view is notated as Ω(v), and the

corresponding data matrix is X̄(v) = X
(v)

i:i∈Ω(v) ∈ R
d(v)×n(v)

,

where n(v) = |Ω(v)|(≤ n) is the number of available examples

on the v-th view.

Table I lists the descriptions of some frequently used

variables in this paper.

B. Partial Multi-view Clustering

PVC [13] is originally designed for two-view data in the

missing view setting. It learns a full representation from in-

complete multi-view data based on the NMF. Denote X̂(1,2) =

[X
(1)
c ;X

(2)
c ] as the examples presented in both views, and

denote X̂(1), X̂(2) as the examples only presented in the

first view and the second view, respectively. The optimization

problems of PVC is1

min
U

(1),U(2),

W̄
(1),W̄(2)

‖[X
(1)
c , X̂(1)]−U(1)[Wc,Ŵ

(1)]‖2 + α‖W̄(1)‖1,1

+ ‖[X
(2)
c , X̂(2)]−U(2)[Wc,Ŵ

(2)]‖2 + α‖W̄(2)‖1,1
s.t. U(v) ≥ 0,W̄(v) ≥ 0, v = 1, 2,

(1)

where W̄(v) = [Wc,Ŵ
(v)] ∈ R

r×n(v)

(v = 1, 2) is the latent

representation for the v-th view, and U(v) ∈ R
d(v)×r is the

basis matrix, r is the dimension of the latent space, and α > 0
is the trade-off parameter for the regularization terms.

1From codes (http://lamda.nju.edu.cn/code PVC.ashx) published by the
authors, it can be known that the ℓ1-norm in PVC [13] is actually the ℓ1,1-
norm of matrix.

C. Multi-view Learning with Incomplete Views

Based on multi-view matrix completion, MVL-IV tends

to recover the incomplete multi-view data {X(v)}Vv=1 by

exploring the connection among multiple views [21]. Denote

the reconstructed data matrices as {Z(v) ∈ R
d(v)×n}Vv=1, the

formulation of MVL-IV is

min
{U(v),Z(v)}V

v=1,
W

V
∑

v=1
‖Z(v) −U(v)W‖2

s.t. Γ(v) ⊙ (Z(v) −X(v)) = 0,

(2)

where U(v) ∈ R
d(v)×r is the basis matrix, and W ∈ R

r×n is

the full representation matrix, and ⊙ denotes the element-wise

product between matrices. MVL-IV is able to cope with the

complex incomplete-view setting with both missing views and

missing variables.

D. Incomplete Multi-modality Grouping

The Incomplete Multi-modality Grouping (IMG) approach

can be regarded as an enhanced version of PVC. Differently,

IMG gets rid of the nonnegative constraint and considers

the global structure in the latent space [22]. Using the same

notations with PVC, the latent representation of all samples

can be denoted as W = [Wc,Ŵ
(1),Ŵ(2)]. With a Laplacian

graph regularization (LGR) to capture the global structure, the

objective function of IMG is

min
U

(1),U(2),W,
A1=1,A≥0

‖[X
(1)
c , X̂(1)]−U(1)[Wc,Ŵ

(1)]‖2 + α‖U(1)‖2

+‖[X
(2)
c , X̂(2)]−U(2)[Wc,Ŵ

(2)]‖2 + α‖U(2)‖2

+βTr(WLAWT ) + γ‖A‖2

(3)

where LA = Diag(A1) − A is the Laplacian matrix of

similarity matrix A, α, β and γ are positive parameters.

E. Doubly Aligned Incomplete Multi-view Clustering

The Doubly Aligned Incomplete Multi-view Clustering

(DAIMC) [24] method adopts the weighted semi-nonnegative

matrix factorization (semi-NMF) to learn a common latent

matrix W ∈ R
r×n. Meanwhile, DAIMC uses the ℓ2,1-

norm regularized regression (ℓ2,1-RR) to align different basis

matrices {U(v) ∈ R
d(v)×n}Vv=1. The formulation of DAIMC

is

min
{U(v),B(v)}V

v=1,
W≥0

V
∑

v=1

{

||(X(v) −U(v)W)P(v)||2

+α(‖(B(v))TU(v) − I‖2 + β‖B(v)‖2,1)
}

,
(4)

where α and β are nonnegative trade-off parameters, I is the

identity matrix, and P(v) is a diagonal matrix. P
(v)
ii = 1 if the

i-th instance is in the v-th view, otherwise P
(v)
ii = 0.

III. IML VIA JOINT EMBEDDING LEARNING AND

LOW-RANK APPROXIMATION

In this section, the formula of the proposed framework

and its optimization strategy are presented firstly. Then, we

http://lamda.nju.edu.cn/code_PVC.ashx
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show some previous IML methods are special cases of the

framework. Finally, we show that some complete multi-view

methods can be adapted to IML directly with the guidance of

the framework.

A. The Formulation

To complete a matrix with random missing values, one

usually uses the low-rank assumption [20], [29], [30], [31].

When dealing with missing views, the low-rank assumption

alone is not able to produce satisfactory results [21]. For-

tunately, Xu et al. [21] have shown that the missing views

can be restored by low-rank matrices with the help of the

connection between multiple views. Thus, in the proposed

framework, the original incomplete representations {X(v)}Vv=1

are approximated by a set of low-rank matrices {Z(v)}Vv=1.

The entries of the approximate matrices are constrained to

be equal to those of the original data matrices if they are not

missing. To learn a common and full embedding from multiple

views, the concept of mapping function is employed. More

concretely, the widely-used linear transformation is employed

as the mapping function, due to its convenience in computation

and easy-to-explain nature in many applications [32]. Recall

that the low-rank factorization is a special case of linear

transformation. That is, a matrix Z(v) ∈ R
d(v)×n with rank no

more than r can be decomposed into the form Z(v) = U(v)W,

where U(v) ∈ R
d(v)×r and W ∈ R

r×n. Hence, the objective

function of the JELLA framework can be formulated as

min
W,

{U(v),Z(v)}

V
∑

v=1
f (v)(Z(v),U(v)W)+γ1R1(U

(v))+γ2R2(W)

s.t. Γ(v) ⊙ (Z(v) −X(v)) = 0,U(v) ∈ C
(v)
1 ,W ∈ C2, ∀v,

(5)

where f (v)(Z(v),U(v)W) is the loss function, Z(v) is the

reconstructed low-rank data matrix, W is the learned common

and full embedding matrix, U(v) is the linear transformation

matrix between Z(v) and W, and r ≤ min{d(1), · · · , d(V ), n}
is a parameter to be determined. R1(U

(v)) and R2(W) are

the regularization term on U(v) and W with nonnegative

parameters γ1 and γ2. The constraint Γ(v)⊙(Z(v)−X(v)) = 0

imposes the entries of Z(v) to be equal to those of X(v), at

the positions where corresponding variables are not missing.

C
(v)
1 and C2 are constraints on U(v) and W, respectively.

Remark 1. When the original data {X(v)}Vv=1 are full, it is

unnecessary to introduce the low-rank matrices {Z(v)}Vv=1,

and the formulation reduces to a complete multi-view model.

Thus, the JELLA framework is scalable to deal with full or

missing multi-view data, bridging the gap between complete

multi-view learning and IML.

If the incomplete data are all with missing views, i.e., only

in the missing-view setting, then the objective function of

JELLA can be rewritten as

min
W,

{U(v)}V
v=1

V
∑

v=1
f (v)(X̄(v),U(v)W̄(v))+γ1R1(U

(v))+γ2R2(W)

s.t. U(v) ∈ C
(v)
1 ,W ∈ C2, ∀v,

(6)

where X̄(v) = X
(v)

i:i∈Ω(v) ∈ R
d(v)×n(v)

and W̄(v) =

Wi:i∈Ω(v) ∈ R
r×n(v)

denote the data matrix and latent

representation of the survived samples on the v-th view,

respectively, Ω(v) is the set of indexes of survived samples

on the v-th view and |Ω(v)| = n(v).

B. Optimization Strategy

Since the resultant formulations usually have multiple

groups of unknown variables and the objective are non-convex,

it is hard to optimize all unknown variables simultaneously.

Hence, this kind of objectives are often solved by the alter-

native minimizing strategy. That is, iteratively optimizing one

group of variables at a time with the other variables fixed

as constants. Algorithm 1 describes the details for solving

the general problem (5). If the regularization and constraint

on W are separable, then problem (6)2 can be addressed by

Algorithm 2.

Algorithm 1 The algorithm to solve problem (5)

Input: {X(v)}Vv=1, {Γ(v)}Vv=1, initial {Z
(v)
0 }

V
v=1 and W0,

and nonnegative parameters λ1, λ2, t = 0;

Output: W, U(v), and Z(v)(∀v ∈ [1, V ]).
while not converged do

1: Update U
(v)
t+1 (∀v ∈ [1, V ] ) by solving

min
U(v)∈C(v)

1

f (v)(Z
(v)
t ,U(v)Wt) + λ1R1(U

(v)).

2: Update Wt+1 by solving

min
W∈C2

V
∑

v=1

f (v)(Z
(v)
t ,U

(v)
t+1W) + λ2R2(W).

3: Update Z
(v)
t+1 by solving

min
Γ(v)⊙(Z(v)−X(v))=0

f (v)(Z(v),U
(v)
t+1Wt+1).

4: t = t+ 1.

end while

C. Unifying Existing IML Methods

In this subsection, we analyze the relationship between the

framework and some popular IML methods. Concretely, Eq.

(5) or Eq. (6) includes MVL-IV [21], PVC [13], IMG [22]

and DAIMC [24] as special cases.

Let f (v)(Z(v),U(v)W) = ‖Z(v) − U(v)W‖2, it can be

easily seen that MVL-IV (as shown in Eq. (2)) [21] is a

special case of JELLA in Eq. (5) with squared ℓ2-norm loss

and without any constraint and regularization.

In the next, we formulate PVC, IMG and DAIMC under

the general model. As a result, PVC and IMG are naturally

extended to the case with more than two views, and all the

three methods can deal with the incomplete-view setting.

2Sometimes, we may need to introduce an auxiliary variable for W and
optimize the corresponding augmented Lagrangian function.
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TABLE II
A SUMMARY OF SEVERAL IML METHODS BASED ON DIFFERENT CHOICES OF LOSS FUNCTIONS, REGULARIZATIONS AND CONSTRAINTS UNDER THE

JELLA FRAMEWORK.

Methods f(v)(Z(v),U(v)W) R1 R2 C
(v)
1 C2

Originally
PVC[13] ‖X̄(v) −U(v)W̄(v)‖2 - ‖W‖1,1 U(v) ≥ 0 W ≥ 0

MVL-IV[21] ‖Z(v) −U(v)W‖2 - - - -

designed for IML
IMG[22] ‖X̄(v) −U(v)W̄(v)‖2 ‖U(v)‖2 LGR - -

DAIMC [24] ‖X̄(v) −U
(v)

W̄
(v)‖2 ℓ2,1-RR - - W ≥ 0

IML-BDR ‖Z(v) −U
(v)

W‖2 - BDR - -

Adapted from complete iRMKMC (α(v))γ
∑

i∈Ω(v)

‖x
(v)
i −U

(v)
wi‖ - - -

W ∈ {0, 1}k×n,

WT1 = 1

multi-view methods iMCL ‖Z(v) −U
(v)

W‖2 ‖(U(v))T ‖∞,1
‖W‖1,1 ,

U
(v) ≥ 0 W ∈ [0, 1]k×n

LGR on labeled part

Algorithm 2 The algorithm to solve problem (6)

Input: {X̄(v)}Vv=1, {Ω(v)}Vv=1, initial W0, and nonnegative

parameters λ1, λ2, t = 0;

Output: U(v)(∀v ∈ [1, V ]) and W.

while not converged do

1: Update U
(v)
t+1 (∀v ∈ [1, V ]) by solving

min
U(v)∈C(v)

1

f (v)(X̄(v),U(v)W̄
(v)
t ) + λ1R1(U

(v)).

2: Update wi,t+1, ∀i ∈ [1, n] by solving

min
wi∈C2

∑

v∈{v′|i∈Ω(v′)}

f (v)(x
(v)
i ,U

(v)
t+1wi) + λ2R2(wi),

{v′|i ∈ Ω(v′)} denotes the set of views where xi is not

missing.

3: t = t+ 1.

end while

PVC is originally designed for two-view data in the

missing-view setting. Its formulation is shown in Eq. (1).

Note that the loss term of PVC is actually equal to
V
∑

v=1

∑

i∈Ω(v)

∥

∥

∥
x
(v)
i −U(v)wi

∥

∥

∥

2

(=
V
∑

v=1

∥

∥X̄(v) −U(v)W̄(v)
∥

∥

2
)

with V = 2. Thus, Eq. (1) can be naturally extended to the

multi-view case with the following compact form:

min
{U(v)}V

v=1,W

V
∑

v=1

∑

i∈Ω(v)

‖x
(v)
i −U(v)wi‖

2 + α‖W‖1,1

s.t. U(v) ≥ 0,W ≥ 0, v = 1, · · · , V,
(7)

where W = [w1, · · · ,wn] is the latent representation. Ap-

parently, Eq. (7) is a special case of JELLA (Eq. (6)) in the

missing-view setting.

Moreover, if the low-rank matrices {Z(v)}Vv=1 are intro-

duced to approximate the original data matrices, then the

formulation of PVC for the incomplete-view setting is

min
{Z(v)}V

v=1,W

{U(v)}V
v=1

V
∑

v=1

∥

∥Z(v) −U(v)W
∥

∥

2
+ α‖W‖1,1

s.t. Γ⊙ Z(v) = Γ⊙X(v),U(v) ≥ 0,W ≥ 0, ∀v.

(8)

IMG (Eq. (3)) [22] can be deemed to be an enhanced version

of PVC. It can be extended to the multi-view case in the same

way with PVC. The extended formulations of IMG in the

missing-view setting and the incomplete-view setting are

min
{U(v)}V

v=1,W,
A1=1,A≥0

V
∑

v=1

∑

i∈Ω(v)

∥

∥

∥
x
(v)
i −U(v)wi

∥

∥

∥

2

+α‖U(v)‖2 + βTr(WLAWT ) + γ‖A‖2,

(9)

and

min
{Z(v)}V

v=1,W

{U(v)}V
v=1

V
∑

v=1

∥

∥Z(v) −U(v)W
∥

∥

2
+ α‖U(v)‖2

+βtr(WLAWT ) + γ‖A‖2

s.t. Γ⊙ Z(v) = Γ⊙X(v),A1 = 1,A ≥ 0.

(10)

With the same trick, DAIMC (Eq. (4)) [24] can also be uni-

fied into the JELLA framework for the missing-view setting,

and extended to the incomplete-view setting. The formulations

are

min
{U(v),B(v)}V

v=1,
W≥0

V
∑

v=1

{
∑

i∈Ω(v)

‖x
(v)
i −U(v)wi‖

2

+α(‖(B(v))TU(v) − I‖2 + β‖B(v)‖2,1)
}

,
(11)

and

min
{U(v),B(v)}V

v=1,
W≥0

V
∑

v=1

{

‖Z(v) −U(v)W‖2

+α(‖(B(v))TU(v) − I‖2 + β‖B(v)‖2,1)
}

s.t. Γ⊙ Z(v) = Γ⊙X(v).
(12)

The extended PVC, IMG and DAIMC can be addressed

using the optimization procedure in Algorithm 1 or Algorithm

2. For instance, we provide the updating steps for solving PVC

in Eq. (7):

U
(v)
ij ←max

(

0,U
(v)
ij +

(

U(v)W̄(v)(W̄(v))T−X̄(v)(W̄(v))T
)

ij

(W̄(v)(W̄(v))T)jj

)

,

(13)

wij ← max
(

0,wij +
bij + 2α

Cjj

)

, (14)

where bi =
∑

v∈{v′|i∈Ω(v′)}

(

x
(v)
i U(v)−U(v)(U(v))Twi

)

, C =

∑

v∈{v′|i∈Ω(v′)}
U(v)(U(v))T , and {v′|i ∈ Ω(v′)} denotes the set

of views where xi is not missing.
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D. Adapting complete multi-view methods to IML

In this subsection, we show that with the similar spirit of

the framework, some existing complete multi-view approaches

can be adapted to IML. In particular, RMKMC [26] and MCL

[27], which learn a unified pattern from multiple views by

linear transformation, are adapted for demonstration.

a) RMKMC for the missing-view setting.: To make the

algorithm more robust to outliers, RMKMC [26] utilizes the

structured sparsity-inducing norm to combine multiple views

together. The formulation of RMKMC is

min
U(v),W,α(v)

V
∑

v=1
(α(v))γ‖X(v) −U(v)W‖2,1

s.t. W ∈ {0, 1}k×n,WT1 = 1,
∑V

v=1 α
(v) = 1,

(15)

where U(v) is the centroid matrix for the v-th view, W =
[w1, · · · ,wn] is the cluster indicator matrix (i.e., Wji = 1
if the i-th point belongs to the j-th cluster, and 0 otherwise),

k is the number of clusters, α(v) ≥ 0 is the weight for the

v-th view, and γ ≥ 1 is the parameter to control the weight

distribution.

Respectively, taking the cluster indicator matrix and the cen-

troid matrices as the latent embedding and the transformation

matrices in Eq. (6), the objective of RMKMC for the missing-

view setting3 can be written as

min
U(v),W,α(v)

V
∑

v=1

∑

i∈Ω(v)

(α(v))γ‖x
(v)
i −U(v)wi‖

s.t. W ∈ {0, 1}k×n,WT1 = 1,
∑V

v=1 α
(v) = 1,

(16)

which is referred to as incomplete RMKMC (iRMKMC) for

convenience.

b) Incomplete MCL.: Multi-view Concept Learning

(MCL) [27] is a semi-supervised nonnegative latent represen-

tation learning algorithm for multi-view data. To preserve the

semantic relationships between labeled samples and explore

the association between latent components and views, MCL

imposes the graph regularization on the labeled samples’

representation matrix and adds structured sparsity constraints

on the basis matrices. Specifically, its formulation is

min
{U(v)},

W,α

1
2

V
∑

v=1
‖X(v) −U(v)W‖2 + α

V
∑

v=1
‖(U(v))T ‖∞,1

+β
2Tr(Wl(Lw − Lb)W

T
l ) + γ‖W‖1,1

s.t. U(v) ≥ 0, 1 ≥Wij ≥ 0, ∀i, j, v,
(17)

where Wl denotes the embedding of the labeled points, Lw

and Lb are the Laplacian matrices for the within-class affinity

graph and between-class penalty graph, respectively, α, β and

γ are positive parameters.

3Since W is constrained to be the cluster indicator matrix, the recovery ca-
pability of the model may be limited if we introduce the low-rank approximate
matrices. Hence, here we only adapt RMKMC to the missing-view setting.

To adapt MCL to IML, we just need introducing the low-

rank matrices {Z(v)}Vv=1 and the corresponding constraints.

Thus, the formulation of the incomplete MCL (iMCL) is

min
{U(v)},

W,α

1
2

V
∑

v=1
‖Z(v) −U(v)W‖2 + α

V
∑

v=1
‖(U(v))T ‖∞,1

+β
2Tr(Wl(Lw − Lb)W

T
l ) + γ‖W‖1,1

s.t. Γ⊙ Z(v)=Γ⊙X(v),U(v) ≥ 0, 1≥Wij ≥ 0, ∀i, j, v.
(18)

In summary, the analysis in Sec. III-C and Sec. III-D

indicates that JELLA is a unified framework in viewing

different IML methods, which are originally designed for

IML or adapted from complete multi-view methods. Table II

presents a summary of these special cases of JELLA with

different loss functions, regularizations and constraints.

It also can be seen that one can cope with incomplete

multi-view data immediately, by adapting complete multi-view

methods to IML within the JELLA framework. Compared

with designing new algorithms, the efficiency of dealing with

incomplete multi-view data is largely improved. Therefore, the

proposed JELLA framework is of practical significance.

IV. INCOMPLETE MULTI-VIEW LEARNING WITH BLOCK

DIAGONAL REPRESENTATION

In this section, within the JELLA framework, we formulate

a specific model with the Block Diagonal Representation

(BDR) for IML.

A. The Method

In the proposed method, we assume that the incomplete

multi-view data are generated from a union of k subspaces.

Correspondingly, the learned unified and full embedding W is

seen as the authentic samples lying exactly on the subspaces. A

recently research reveals that method with the block diagonal

property would possibly lead to correct subspace clustering

[28]. To increase the discriminability of the learned embedding

W, we introduce the k-block diagonal representation matrix

[28] B ∈ R
n×n to self-express W, i.e., W = WB. To ensure

the k-block diagonal property of B, the k-block diagonal

regularizer is exploited.

Definition 1 (k-block diagonal regularizer, [28]). Given a

similarity matrix B ∈ R
n×n, the k-block diagonal regularizer

is defined as the sum of the k smallest eigenvalues of LB, i.e.,

‖B‖
k
=

k
∑

i=1

σi(LB), (19)

where LB = Diag(B1) − B is the Laplacian matrix of B,

and σi(LB) is the i-th smallest eigenvalue of LB.

Substituting the Block Diagonal Representation (BDR) term

(i.e., self-expression term and the block diagonal regularizer)

into the JELLA framework, we obtain the formulation of
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the Incomplete Multi-view Learning with Block Diagonal

Representation (IML-BDR) algorithm:

min
W,B

{U(v),Z(v)}

V
∑

v=1

∥

∥Z(v) −U(v)W
∥

∥

2
+α‖W −WB‖2+γ‖B‖

k

s.t. B ∈ B,Γ(v) ⊙ Z(v) = Γ(v) ⊙X(v), ∀v,
(20)

where B = {B|diag(B) = 0,B = BT ,B ≥ 0}, α and

γ are positive parameters. To maintain the reconstruction

performance of IML-BDR, no constraint is imposed on the

transformation matrix U(v). Since B is an affinity matrix, it

is required to be nonnegative and symmetric. Noting that these

constraints on B will restrict its capability in representation,

an intermediate term P is introduced

min
W,P,B

{U(v),Z(v)}

V
∑

v=1

∥

∥Z(v) −U(v)W
∥

∥

2
+α‖W−WP‖2

+β‖P−B‖2 + γ‖B‖
k

s.t. B ∈ B,Γ(v) ⊙ Z(v) = Γ(v) ⊙X(v), ∀v.

(21)

Problem (21) is equivalent to problem (20) when β > 0
is sufficiently large. Moreover, as we will show in next

subsection, the term β‖P−B‖2 makes the subproblems with

respect to (w.r.t.) P and B strongly convex.

B. Solution to IML-BDR

The main difficulty to address problem (21) is due to the

non-convex term ‖B‖
k

. According to the Ky Fan’s Theorem

[33], we have

‖B‖
k
=

k
∑

i=1

σi(LB) = min
F∈F

Tr(FTLBF), (22)

where F = {F|F ∈ R
n×k,FTF = I}. Therefore, the problem

(21) is equivalent to

min
W,P,B,F,

{U(v),Z(v)}

V
∑

v=1

∥

∥Z(v)−U(v)W
∥

∥

2
+α‖W−WP‖2

+β‖P−B‖2F + γT r(FTLBF)

s.t. B ∈ B,F ∈ F ,Γ(v) ⊙ Z(v) = Γ(v) ⊙X(v), ∀v.

(23)

Following Algorithm 1, the alternating minimization strat-

egy is adopted to address Eq. (23). With the current solutions

{U
(v)
t ,Z

(v)
t }

V
v=1, Wt, Pt, Bt and Ft, we update each variable

separately by minimizing Eq. (23) with the other variables

being fixed as constant. Concretely, the solutions to each

variable is obtained by addressing the following subproblems

in sequence:

U
(v)
t+1= argmin

U(v)∈Rd(v)×r

‖Z
(v)
t −U

(v)Wt‖
2 (24)

= Z
(v)
t WT

t (WtW
T
t )

†, ∀v,

Wt+1=argmin
W∈Rr×n

V
∑

v=1

‖Z
(v)
t −U

(v)
t+1W‖

2+α‖W−WPt‖
2,

(25)

Pt+1 = argmin
P∈Rn×n

‖Wt+1−Wt+1P‖
2+

β

α
‖P−Bt‖

2, (26)

= (WT
t+1Wt+1 +

β

α
I)−1(WT

t+1Wt+1 +
β

α
Bt),

Bt+1 = argmin
B∈B

β‖Pt+1 −B‖2 + γT r(FT
t LBFt), (27)

Ft+1 = argmin
F∈F

Tr(FTLBt+1F), (28)

Z
(v)
t+1 = argmin

Γ(v)⊙(Z(v)−X(v))=0

‖Z(v) −U
(v)
t+1Wt+1‖

2, ∀v. (29)

Setting the derivative of Eq. (25) w.r.t. W to zeros, we have

(

V
∑

v=1

(U
(v)
t+1)

TU
(v)
t+1

)

W + αW(I−Pt)
2 =

V
∑

v=1

(U
(v)
t+1)

TZ
(v)
t .

(30)

Eq. (30) is a Sylvester equation, and its solution is

unique while the spectra of
V
∑

v=1
(U

(v)
t+1)

TU
(v)
t+1 and −α(I −

Pt)
2 are nonoverlapping [34]. For convenience, we use

Syl(W;U
(v)
t+1,Z

(v)
t ,Pt) to denote the Sylvester equation de-

fined in Eq. (30).

The B-subproblem in Eq. (27) is equivalent to

Bt+1 = argmin
B∈B

‖B−Pt+1+
γ

2β
(diag(FT

t Ft)1
T −FT

t Ft)‖
2,

whose solution can be obtained in a closed form by using the

following lemma [28].

Lemma 1 ([28]). Given A ∈ R
n×n. Let Â = A −

Diag(diag(A)), then the solution to min
B∈B
‖B −A‖2 is given

by B∗ =
[

(Â+ ÂT )/2
]

+
.

Denote Q = Pt+1 −
γ
2β

(

diag(FT
t Ft)1

T − FT
t Ft

)

and

Q̂ = Q − Diag(diag(Q)). Bt+1 is updated by Bt+1 =
[

(Q̂+ Q̂T )/2
]

+
.

Then, the optimal solution Ft+1 is formed by the k eigen-

vectors corresponding to the k smallest eigenvalues of LBt+1 .

Finally, Z
(v)
t+1 is updated by Z

(v)
t+1 = U

(v)
t+1Wt+1 + Γ(v) ⊙

(X(v) −U
(v)
t+1Wt+1) (∀v).

C. An Accelerated Implementation

The basic procedures in Eqs. (24) - (29) is commonly used

and reliable, but it is of low efficiency for large data. To

speed up the convergence, we incorporate the successive over-

relaxation (SOR) [21], [35] method into the basic procedures

in Eqs. (24) - (29). The SOR method is generalized from

the Gauss-Seidel method by using the extrapolation method

[36]. When searching for U
(v)
t+1 from U

(v)
t , a certain amount
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is moved along the direction U
(v)
t+1−U

(v)
t . Note that U

(v)
t+1 =

U
(v)
t +(U

(v)
t+1−U

(v)
t ). Assume that the direction U

(v)
t+1−U

(v)
t

takes us closer, but not always, to the truth. Then, there might

be advantages by moving along the direction U
(v)
t+1 − U

(v)
t

more far away, i.e., U
(v)
t+1 = U

(v)
t + λ(U

(v)
t+1 − U

(v)
t ) with

λ > 1. This iterative step reduces to the Gauss-Seidel method

when λ = 1. It has been suggested that the convergence from

U
(v)
t+1 to its ground truth is usually faster if we use the SOR-

like updating scheme.

By exploiting the SOR technique, the new updating equation

for U(v) is

U
(v)
t+1,λ = λU

(v)
t+1 + (1− λ)U

(v)
t , λ ≥ 1. (31)

Define the residual on the v-th view as R(v) = Γ(v) ⊙
(X(v) − U(v)W). According to Eq. (29), we have Z

(v)
t+1 =

U
(v)
t+1,λWt+1 +R

(v)
t+1. Define

Z
(v)
t+1,λ = U

(v)
t+1,λWt+1 + λR

(v)
t+1. (32)

Since

λZ
(v)
t+1 = λU

(v)
t+1,λWt+1 + λR

(v)
t+1, (33)

then, we have

Z
(v)
t+1,λ = λZ

(v)
t+1 + (1− λ)U

(v)
t+1,λWt+1. (34)

Multiplying both sides of Eq. (34) with WT
t+1(Wt+1W

T
t+1)

†,

we obtain

Z
(v)
t+1,λW

T
t+1(Wt+1,λW

T
t+1)

†

= λU
(v)
t+2 + (1− λ)U

(v)
t+1,λ = U

(v)
t+2,λ.

(35)

Thus, the steps in Eqs. (24) and (31) can be merged, and

U
(v)
t+1,λ is updated by

U
(v)
t+1,λ = Z

(v)
t,λW

T
t (WtW

T
t )

†. (36)

Wt+1, Pt+1, Bt+1, Ft+1 and Z
(v)
t+1 are updated by solving

subproblems (25) - (29) as before. Then we calculate Z
(v)
t+1,λ

according to Eq. (32). The whole procedure is as follows.

U
(v)
t+1,λ = Z

(v)
t,λW

T
t (WtW

T
t )

† (37)

Wt+1 = solution to Syl(W;U
(v)
t+1,λ,Z

(v)
t,λ ,Pt), (38)

Pt+1 = (WT
t+1Wt+1 +

β

α
I)−1(WT

t+1Wt+1 +
β

α
Bt), (39)

Bt+1 =
[

(Q̂+ Q̂T )/2
]

+
,
(

Q̂ = Q− Diag(diag(Q)) (40)

Q = Pt+1 −
γ

2β

(

diag(FT
t Ft)1

T − FT
t Ft

)

)

,

Ft+1 = argmin
F∈F tr(FTLBt+1F), (41)

Z
(v)
t+1=U

(v)
t+1,λWt+1+Γ(v)⊙(X(v)−U

(v)
t+1,λWt+1), (42)

Z
(v)
t+1,λ = λZ

(v)
t+1 + (1− λ)U

(v)
t+1,λWt+1. (43)

λ controls the amount that we exceed the standard Gauss-

Seidel correction. It is usually not good enough to use a fixed

λ. Hence, we adjust λ accordingly based on the change of two

consecutive objective values. More concretely, we calculate the

ratio of two consecutive objective values after all variables are

updated:

ρ(λ) =
gt+1

gt
, (44)

where gt = g({Z
(v)
t }

V
v=1, {U

(v)
t }

V
v=1,Wt,Pt,Bt,Ft) de-

notes the objective value of the t-th iteration.

ρ(λ) < 1 means that the objective value is decreased and

the currently obtained point is acceptable. Otherwise, we just

need to set λ = 1 and run the steps in Eqs. (24) - (29), then,

ρ(λ) < 1 is guaranteed. ρ(λ) measures the degree of decrease

in objective values brought by λ. If ρ(λ) is small, then it

suggests that the current λ is effective and can be remained

unchanged. When ρ(λ) < 1 but is larger than a threshold ρ1
(0 < ρ1 < 1), it is deemed that the objective value is not

decreased enough. Thus, λ is increased to min(λ+ δ, λmax),
where δ > 0 is the step size and λmax is the allowed maximum

value for λ. Algorithm 3 summarizes the above SOR-like

optimization procedure for the IML-BDR approach.

Algorithm 3 SOR-like optimization for IML-BDR

Input: {X(v)}Vv=1, {Γ(v)}Vv=1, initial {Z
(v)
0,λ = Z

(v)
0 }

V
v=1

and W0, α > 0 and β > 0, λ = 1, ρ1 = 0.7, δ = 0.2,

λmax = 5, t = 0.

Output: W, F, U(v), and Z(v)(∀v ∈ [1, V ]).
while not meeting the stoping criterion do

1: if t > 0
2: Compute Z

(v)
t+1,λ according to Eq. (43).

3: end if

4: Update U
(v)
t+1,λ, ∀v ∈ [1, V ] by Eq. (37).

5: Update Wt+1 by Eq. (38).

6: Update Pt+1 by Eq. (39).

7: Update Bt+1 by Eq. (40).

8: Update Ft+1 by Eq. (41).

9: Update Z
(v)
t+1, ∀v ∈ [1, V ] by Eq. (42).

10: Compute ρ(λ) according to Eq. (44).

11: if ρ(λ) ≥ 1
12: Set λ = 1; continue;

13: elseif ρ(λ) ≥ ρ1
14: λ = min(λ+ δ, λmax), k = k + 1.

15: else

16: t = t+ 1.

17: end if

end while

D. Convergence Analysis

Note that each iterative step of the basic algorithm in Eqs.

(24) - (29) will obtain the global solution to the corresponding

subproblems. Thus, the procedures in Eqs. (24) - (29) will not

increase the objective value of Eq. (23). Now, we look at the

SOR-like optimization in Algorithm 3. After each iteration, the

ratio ρ(λ) of two consecutive objective values is calculated.

When this ratio is larger than 1, then the algorithm will go

back to the basic algorithm in Eqs. (24) - (29) (Lines 11 - 12

of Algorithm 3). Since the basic algorithm will not increase

the objective value, it is easy to see that Algorithm 3 will

also not increase the objective value of Eq. (23). Note that

LB is positive semi-definite. It holds that Tr(FTLBF) ≥

min
F∈F

Tr(FTLBF) =
k
∑

i=1

σi(LB) = ‖B‖
k
≥ 0. Thus, Eq.

(23) is lower bounded by 0. We have the following conclusion.
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Proposition 1. The sequence
{

{Z
(v)
t }

V
v=1, {U

(v)
t }

V
v=1, Wt,

Pt,Bt,Ft

}

generated by Algorithm 3 has the following

properties:

1) The objective g({Z
(v)
t }

V
v=1, {U

(v)
t }

V
v=1,Wt,Pt,Bt,Ft)

is monotonically decreasing, and the sequence of

objective values will converge;

2) Pt+1−Pt → 0, Bt+1−Bt → 0, Z
(v)
t+1−Z

(v)
t → 0(1 ≤

v ≤ V ), and Ft+1 − Ft → 0;

3) The sequences {Pt}, {Bt}, {Z
(v)
t }(1 ≤ v ≤ V ) and

{Ft} are bounded.

Assume the sequence {{U
(v)
t }

V
v=1,Wt} generated by Al-

gorithm 3 is bounded, then we further have the following

conclusion.

Proposition 2. Assume
{

{U
(v)
t }

V
v=1,Wt

}

generated by Al-

gorithm 3 is bounded and Wt+1 −Wt → 0 and U
(v)
t+1 −

U
(v)
t → 0 (∀v), then there exists at least one subsequence

that converges to a stationary point of Eq. (23).

The proofs of the above propositions are provided in the

supplementary material.

E. Computational Complexity

Algorithm 3 has six steps. To solve {U(v)}Vv=1, we need to

calculate (WWT )† and multiply matrices, which cost O(r3)
and O(nrd(v)), respectively. Then, the solution of W requires

to solve a Sylvester equation. The computational complexity

of this step is O(r3). Solving P needs O(n3), as the matrix

inversion is involved. To update B, one needs to calculate Q,

which costs O(n2k). The optimal F is obtained by eigenvalue

decomposition, spending O(n3). The updating of Z(v) costs

O(nrd(v)). Hence, the overall time complexity of each itera-

tion of Algorithm 3 is O(2n3+2r3+n2k+2ndr). Recall that

r < min({d(v)}, n)) is the low-rank parameter, and is usually

set as a small integer (such as r = k). Thus, the dominate

time complexity of each iteration is O(2n3 + n2k + 2ndr).

V. EXPERIMENT

In this section, we first verify the effectiveness of IML-

BDR. Then, we study how IML-BDR is affected by varying

parameters. Finally, we show the advantages of the SOR-like

algorithm in convergence.

A. Data Preparation

We perform experiments on six different real-world datasets.

They are Microsoft Research Cambridge Volume 14 (MSRC-

v1), Yale5, Corel5k6, Caltech1017, Trecvid20038 (Trecvid),

and PIE9. The detailed information of these datasets is de-

scribed as follows. We annotate the dimensionality of each

view in the subsequent brackets.

4https://www.microsoft.com/en-us/research/project/imageunderstanding/
5http://vision.ucsd.edu/content/yale-face-database
6http://lear.inrialpes.fr/people/guillaumin/data.php
7http://www.vision.caltech.edu/Image Datasets/Caltech101/
8http://bigml.cs.tsinghua.edu.cn/∼ningchen/data.htm
9https://www.ri.cmu.edu/project/pie-database/

• MSRC-v1 has 240 images belonging to 8 classes. As the

same in [26], we discard the background class, resulting

in a dataset with 210 images in 7 classes. The SIFT (200)

[37] and LBP (256) [38] features are used.

• The Yale dataset is a face image database. There are 165

grayscale images of 15 individuals, and each subject has

11 images. SIFT (50), GIST (512) [39], and LBP (256)

features are extracted for experiments.

• The Corel5k contains 4,999 images from 50 categories.

We use 3 kinds of pre-extracted features by M. Guillau-

min et al. [40] for experiments. The features are GIST

(512), DenseSIFT (1000), and DenseHue (100).

• Caltech101 is a collection of images for object recogni-

tion. It consists of 101 kinds of objects. Following [26],

we use a subset that contains 441 images of 7 classes

for experiments. The subset is referred to as Caltech7.

SIFT (200), SURF (200) [41], and LBP (256) features

are extracted.

• The Trecvid dataset consists of 1078 video shots be-

longing to 5 categories. Each shot has two kinds of fea-

ture representations, i.e., the text feature (1894) and the

HSV color histogram (165) extracted from the associated

keyframe.

• The PIE dataset is a subset of the CMU PIE face

database. This subset is composed of the images of five

near frontal poses (C05, C07, C09, C27, C29) and all

the images under different illuminations and expressions.

The resultant dataset has 11,554 samples belonging to

68 categories. SIFT (50) and LBP (256) features are

extracted.

We prepared datasets for the missing-view setting and the

incomplete-view setting, respectively. In the missing-view set-

ting, the datasets used are MSRC-v1, Yale and Corel5k. Since

the datasets are originally complete, we construct the missing-

view setting as follows. We randomly select m percent (10%

to 50%) examples and randomly discard one view from each

example. In the incomplete-view setting, Caltech7, Trecvid

and PIE are used. In this setting, datasets have both the missing

views and missing variables, which are prepared as follows.

The first step is the same as the missing-view setting, i.e., m
percent (10% to 50%) examples are randomly selected with

one random view being removed for each example. Then, on

each view, m percent (10% to 50%) entries are randomly

removed from the matrix formed by the rest examples. For

both settings, to avoid the inaccuracy brought by randomness,

the construction process is repeated 5 times for Corel5k and

PIE and 10 times for the rest datasets.

B. Baselines and Evaluation Metrics

Firstly, we evaluate the performance of different IML

methods by conducting clustering on the learned embedding

matrix, in the missing-view setting and the incomplete-view

setting respectively. In the missing view setting, IML-BDR is

compared with PVC [13], MIC [14], MVL-IV [21], IMG [22],

DAIMC [24], and iRMKMC which is adapted from RMKMC

[26] in Sec. III-D. The iMCL adapted from MCL [27] in Sec.

III-D is not included into the comparison, since it is a semi-

supervised method while all the above mentioned algorithms
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Fig. 1. Comparisons on MSRC-v1, Yale and Corel5k (from left to right) w.r.t. NMI (1st row) and AdjRI (2rd row), respectively.

TABLE III
NMI (MEAN(STD.)) RESULTS OF THE COMPARED METHODS AS THE INCOMPLETE RATIO m VARIES. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Datasets m PVC MVL-IV IMG DAIMC IML-BDR

Caltech7

0.1 0.403(0.058) 0.602(0.027) 0.609(0.010) 0.363(0.042) 0.684(0.014)
0.2 0.322(0.059) 0.628(0.033) 0.614(0.012) 0.281(0.034) 0.677(0.020)
0.3 0.235(0.029) 0.637(0.023) 0.556(0.066) 0.236(0.024) 0.666(0.019)
0.4 0.161(0.060) 0.617(0.028) 0.513(0.081) 0.199(0.018) 0.650(0.018)
0.5 0.127(0.049) 0.610(0.028) 0.420(0.024) 0.149(0.026) 0.636(0.020)

Trecvid

0.1 0.143(0.051) 0.236(0.036) 0.251(0.003) 0.155(0.028) 0.281(0.008)
0.2 0.167(0.029) 0.234(0.028) 0.226(0.007) 0.142(0.009) 0.270(0.010)
0.3 0.113(0.043) 0.213(0.044) 0.210(0.010) 0.114(0.016) 0.261(0.015)
0.4 0.034(0.039) 0.197(0.040) 0.195(0.009) 0.090(0.021) 0.252(0.012)
0.5 0.009(0.002) 0.168(0.042) 0.175(0.005) 0.069(0.025) 0.235(0.012)

PIE

0.1 0.141(0.005) 0.140(0.015) 0.160(0.003) 0.139(0.014) 0.172(0.004)
0.2 0.132(0.010) 0.107(0.004) 0.143(0.001) 0.119(0.001) 0.173(0.008)
0.3 0.115(0.005) 0.110(0.007) 0.132(0.003) 0.103(0.003) 0.175(0.007)
0.4 0.101(0.001) 0.124(0.009) 0.122(0.003) 0.090(0.000) 0.137(0.012)
0.5 0.096(0.002) 0.092(0.005) 0.106(0.005) 0.079(0.002) 0.114(0.008)

are unsupervised. In the incomplete-view setting, since MIC

and iRMKMC are not applicable, IML-BDR is compared with

MVL-IV and the extended PVC (Eq. (8)), IMG (Eq. (10)) and

DAIMC (Eq. (12)).

Then, we compare IML-BDR with two completion methods

in terms of reconstruction ability in the incomplete-view

setting. The two completion methods are Robust Principle

Component Analysis (RPCA) [42] and Robust Rank-k Matrix

Completion (RRMC) [43]. After completion, we run the com-

plete Robust Auto-Weighted Multi-View Clustering (RAMC)

[10] method on the recovered matrices, and compare the

clustering performance with that of IML-BDR.

As the previous works [13], [22] do, the dimensionality

of the embedding in all compared IML methods is set to

be the number of clusters, i.e., r = k. The regularization

parameter α in PVC is tuned from {10−4, 10−3, 10−2, 10−1}.
For MIC, The co-regularization parameters {αi} of MIC are

set to 0.01, and the robust parameters {βi} are all tuned from

{10−3, 10−2, 10−1} according to the parameter study in the

original paper. As suggested by the authors [22], γ in IMG

are fixed as 100, and α and β of IMG are selected from

{0.001, 0.01, 0.1} and {0.1, 1, 10}, respectively. For DAIMC,

both α and β are tuned from {0.1, 1, 10}. The γ (≥ 1) in

iRMKMC is chosen from {2, 3, 5}. There is no parameter need

to be tuned in RPCA and RAMC. For RRMC, the rank of the
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recovered matrix r is tuned from {k, 50, 100}, where k is the

number of clusters. For IML-BDR, β is set as 104, α and γ
are tuned from {10−2, 1, 102} and {1, 10, 102}, respectively.

For the fairness of comparisons, except for iRMKMC, all

the other compared IML methods conduct k-means clustering

on the learned embedding matrix to obtain the final partitions.

The normalized mutual information (NMI) and the adjusted

rand index (AdjRI) are utilized for clustering performance

evaluation. The higher the two metrics’ scores are, the better

the clustering performance is. The k-means clustering is

repeated 20 times, and the mean value of NMI (or AdjRI) is

used as the result for each independently constructed missing-

view or incomplete-view repetition. Finally, the average per-

formance over all the repetitions is presented.

As for the reconstruction error, we use the widely used

root mean square error (RMSE) for comparison. Denote the

recovered matrix and the ground truth matrix as M and M∗ ∈
R

m×n respectively, then RMSE is defined as 1√
mn
‖M∗−M‖.

The smaller RMSE is, the better the recovered matrix is.

C. Comparison Results

Fig. 1 and Tables III - IV show the clustering results

in the missing-view setting and incomplete-view setting, re-

spectively. According to these results, we have the following

observations.

As the ratio of incomplete examples increases, it can be seen

that the performance of all the compared methods is degener-

ated in most cases. This is consistent with the intuition. Some

exceptions exist may be because of the random construction

of incomplete datasets.

MIC consistently outperforms PVC on the three datasets in

the missing-view setting. Both of them are based on NMF.

What is different is that, PVC directly learns a common

embedding matrix and imposes sparse ℓ1,1 regularization onto

it, while MIC learns the common embedding by pushing

each view’s ℓ2,1-norm regularized embedding matrix towards

a common consensus with a weighting scheme. It is probably

that the weighting scheme and ℓ2,1 regularization make MIC

more robust to missing views than PVC.

Based on semi-NMF, DAIMC has more fluctuant perfor-

mance than PVC and MIC over different datasets. This might

be because that simultaneously learning a common latent

embedding matrix and establishing a consensus basis matrix

limit DAIMC’s representation ability for various datasets.

Although MVL-IV does not employ any regularization on

the common embedding or the basis matrices, sometimes its

performance is not bad due to its flexibility.

Compared with its performance in the missing-view setting,

IMG suffers from more performance degeneration as the

incomplete ratio increases in the incomplete-view setting. The

possible reason is that the Laplacian graph regularization is

not robust to random missing variables.

Despite the performance of iRMKMC is not very good, it

can provide a means to process multi-view data with missing

views, which is an alternative when there is no time to design

new IML algorithms. This verifies that the proper use of the

proposed JELLA framework can improve the efficiency of

processing incomplete multi-view data.

In the missing-view setting, the proposed IML-BDR con-

sistently outperforms the existing methods in terms of both

metrics. In the incomplete-view setting, it also achieves the

highest NMI or AdjRI score in most cases. These results verify

the effectiveness of IML-BDR. Compared with the baselines,

the utilization of the BDR term enables IML-BDR to focus

more on exploring the underlying clustering structures and

preserve the representation capability in case of missing views

and missing variables. As a result, the embedding matrix

learned by IML-BDR is more discriminative, which further

leads to the clustering performance improvements of IML-

BDR.

Table V displays the comparison results of the recon-

struction error between IML-BDR and the two completion

methods: RPCA and RRMC, in the incomplete-view setting.

Since RPCA and RRMC are single-view methods, for each

datasets, we first concatenate the incomplete data matrices

from different views into a big matrix and then apply the

completion methods. As shown in Table V, as the incomplete

ratio increases, the reconstruction error becomes larger in

most cases. RPCA gets considerable results on Caltech7 and

PIE. RRMC is founded to be not good at restoring the

missing views and missing variables on all datasets. IML-

BDR achieves the smallest RMSE values for different datasets

for all incomplete ratios. Compared with RPCA and RRMC,

the advantage of IML-BDR with respect to recovery ability

mainly results from the following factor. That is, IML-BDR

employs the BDR term to exploit the useful information from

different views in a more elegant way rather than using the

simple concatenation.

Table V also presents the clustering results of running

the RAMC [10], which is a complete multi-view clustering

method, on the recovered data matrices by RPCA and RRMC.

The corresponding methods are denoted as “RPCA + RAMC”

and “RRMC + RAMC”, respectively. When the incomplete

ratio is 0, i.e., when the input data matrices are complete,

RAMC can be directly applied. As either RPCA or RRMC is

not implemented, the clustering results for “RPCA + RAMC”

and “RRMC + RAMC” are the same. The results show

that IML-BDR outperforms the state-of-the-art RAMC on all

three datasets. When the data is incomplete, first filling the

missing values by RPCA or RRMC and then applying RRMC

degenerates the clustering performance in comparison with

the complete case. In different missing ratios, the clustering

results of “RPCA + RAMC” and “RRMC + RAMC” are worse

than those of IML-BDR in most cases. These results show

that IML-BDR is effective bor both complete and incomplete

multi-view data.

D. Parameter Study

In this subsection, how IML-BDR is affected by varying

parameters (α and γ) is studied. We vary the value of both

parameters within {10−2, 10−1, 1, 101, 102}. Without loss of

generality, the experiments are performed when the incomplete

ratio is 0.2 in the missing-view setting. The NMI results on

MSRC-v1 and Yale are shown in Fig. 2. It can be seen that

the performance of IML-BDR is not much changed as the

parameter varies.
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TABLE IV
ADJRI (MEAN(STD.)) RESULTS OF THE COMPARED METHODS AS THE INCOMPLETE RATIO m VARIES. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Datasets m PVC MVL-IV IMG DAIMC IML-BDR

Caltech7

0.1 0.317(0.068) 0.507(0.043) 0.523(0.017) 0.298(0.047) 0.602(0.034)
0.2 0.240(0.049) 0.530(0.043) 0.529(0.022) 0.222(0.035) 0.590(0.048)
0.3 0.179(0.032) 0.555(0.037) 0.470(0.067) 0.184(0.022) 0.581(0.037)
0.4 0.110(0.053) 0.524(0.041) 0.437(0.076) 0.137(0.019) 0.563(0.027)
0.5 0.072(0.035) 0.521(0.032) 0.340(0.027) 0.081(0.020) 0.560(0.022)

Trecvid

0.1 0.109(0.047) 0.184(0.044) 0.209(0.006) 0.100(0.045) 0.237(0.006)
0.2 0.147(0.050) 0.193(0.035) 0.182(0.009) 0.129(0.019) 0.227(0.009)
0.3 0.091(0.041) 0.172(0.045) 0.160(0.014) 0.094(0.028) 0.220(0.011)
0.4 0.025(0.032) 0.142(0.046) 0.138(0.015) 0.064(0.025) 0.210(0.009)
0.5 0.003(0.005) 0.129(0.040) 0.107(0.005) 0.056(0.018) 0.191(0.010)

PIE

0.1 0.013(0.001) 0.021(0.003) 0.016(0.000) 0.015(0.004) 0.022(0.001)
0.2 0.012(0.002) 0.013(0.001) 0.013(0.000) 0.011(0.001) 0.023(0.003)
0.3 0.009(0.001) 0.015(0.001) 0.010(0.001) 0.008(0.000) 0.023(0.001)
0.4 0.007(0.000) 0.019(0.002) 0.008(0.000) 0.006(0.000) 0.016(0.004)
0.5 0.004(0.001) 0.011(0.001) 0.006(0.000) 0.005(0.000) 0.010(0.001)

TABLE V
RECONSTRUCTION ERRORS COMPARED WITH COMPLETION METHODS RPCA AND RRMC AND CLUSTERING RESULTS COMPARED WITH RUNNING

RAMC ON THE RECOVERED DATA MATRICES BY RPCA AND RRMC, RESPECTIVELY.m DENOTES THE INCOMPLETE RATIO. THE BEST RESULTS ARE

HIGHLIGHTED IN BOLD.

Datasets m
RPCA(+RAMC) RRMC(+RAMC) IML-BDR

RMSE ↓ NMI ↑ AdjRI ↑ RMSE ↓ NMI ↑ AdjRI ↑ RMSE ↓ NMI ↑ AdjRI ↑

Caltech7

0 - .592(.049) .334(.084) - .592(.049) .334(.084) - .703(.044) .644(.078)
0.1 .0477(.0001) .103(.009) .060(.021) .0955(.0013) .397(.060) .143(.085) .0331(.0001) .684(.014) .602(.034)
0.2 .0478(.0001) .086(.009) .043(.014) .1258(.0021) .372(.074) .108(.070) .0333(.0001) .677(.020) .590(.048)
0.3 .0478(.0002) .083(.009) .041(.019) .1526(.0030) .325(.081) .088(.043) .0335(.0001) .666(.019) .581(.037)
0.4 .0480(.0001) .074(.012) .039(.015) .1783(.0048) .328(.060) .089(.049) .0337(.0001) .650(.018) .563(.027)
0.5 .0481(.0002) .061(.009) .034(.014) .1962(.0033) .302(.082) .082(.054) .0342(.0001) .636(.020) .560(.022)

Trecvid

0 - .223(.007) .062(.004) - .223(.007) .062(.004) - .274(.002) .232(.008)
0.1 .1730(.0007) .086(.018) .055(.013) .1141(.0034) .191(.034) .045(.014) .0252(.0000) .281(.008) .237(.006)
0.2 .1739(.0010) .080(.009) .055(.012) .1589(.0061) .165(.032) .049(.008) .0253(.0000) .270(.010) .227(.009)
0.3 .1758(.0011) .084(.010) .058(.010) .1936(.0040) .171(.042) .047(.007) .0254(.0000) .261(.015) .220(.011)
0.4 .1761(.0012) .076(.014) .047(.009) .2212(.0047) .118(.021) .045(.014) .0257(.0001) .252(.012) .210(.009)
0.5 .1777(.0015) .069(.015) .050(.015) .2467(.0031) .114(.031) .037(.011) .0258(.0001) .235(.012) .191(.010)

PIE

0 - .186(.002) .0004(.0000) - .186(.002) .0004(.0000) - .208(.003) .029(.001)
0.1 .0456(.0000) .065(.001) .002(.000) .1083(.0011) .178(.003) .0004(.0001) .0260(.0008) .172(.004) .022(.001)
0.2 .0458(.0000) .065(.002) .002(.000) .1526(.0012) .132(.025) .0003(.0000) .0315(.0037) .173(.008) .023(.003)
0.3 .0460(.0000) .059(.000) .002(.000) .1869(.0024) .136(.034) .0002(.0000) .0306(.0010) .175(.007) .023(.001)
0.4 .0463(.0000) .060(.002) .001(.000) .2162(.0015) .124(.035) .0002(.0000) .0359(.0037) .137(.012) .016(.004)
0.5 .0468(.0000) .057(.002) .001(.000) .2432(.0011) .114(.030) .0001(.0000) .0449(.0030) .114(.008) .010(.001)
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Fig. 2. Effect of parameters (α and γ) evaluated by NMI on (a) MSRC-v1
and (b) Yale.

Besides, we also test how IML-BDR’s performance is af-

fected by the varying number of views. IML-BDR is tested on

Yale and Caltech7 in the missing-view setting and incomplete-

view setting, respectively. The results are shown in Fig. 3. Only

one of the three combinations in the 2-view case is shown,

since they have similar results. It can be seen that IML-BDR

performs better with more views. The results are as expected:

with more views, more information can be provided from the

other views for the missing values, leading to more accurate
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Fig. 3. Effect of view numbers. (a) Yale. (b) Caltech7.

learning.

E. Convergence

In this subsection, the convergence behavior of Algorithm

3 is tested. We use “basic” to denote the basic steps to solve

IML-BDR in Eqs. (24) - (29), and “basic + SOR” means

the SOR-like optimization procedure in Algorithm 3. The

algorithm is deemed to be converged, if the relative variation
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Fig. 4. Objective curves of IML-BDR on (a) Caltech7 and (b) Yale.

TABLE VI
TRAINING TIME MEASURED IN SECONDS (NUMBER OF ITERATIONS)

COMPARISON IN OPTIMIZING IML-BDR WITH DIFFERENT STRATEGIES ON

TWO DATASETS.

Strategy
Datasets

Caltech7 Trecvid

basic 7.877(109) 85.931(173)

basic+SOR 5.183(62) 47.605(84)

in objective values between two consecutive iterations is less

than 10−4. We show the objective curves of IML-BDR on

Yale and Catech7 in Fig. 4. As we can see, both strategies

converge after a number of iterations, and the “basic + SOR”

strategy converges faster than the “basic” one.

In addition, we report the training time measured in seconds

and the corresponding number of iterations in Table VI for the

two optimization strategies. It can be seen that the utilization

of the SOR technique helps to shorten the training time and

reduce the number of iterations for convergence.

VI. CONCLUSION

In this paper, we propose the JELLA framework to pro-

vide a unified perspective for understanding several existing

IML methods. With the guidance of this framework, some

linear transformation based complete multi-view methods can

be adapted to IML directly. This bridges the gap between

complete multi-view learning and IML, and is of practical

significance in improving the efficiency of dealing with in-

complete multi-view data. Moreover, this framework can also

provide guidance for developing new algorithms. As shown

in this paper, within the framework, we propose the IML-

BDR algorithm from the perspective of subspace clustering.

IML-BDR pursues the block diagonal property to obtain better

subspace clustering. An SOR-like optimization algorithm with

guaranteed convergence is developed to solve IML-BDR. Ex-

perimental results on various datasets validate the effectiveness

of IML-BDR.
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