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Abstract

Domain adaptation (DA) aims to generalize a learning model across training and testing data despite the mismatch of their
data distributions. In light of a theoretical estimation of upper error bound, we argue in this paper that an effective DA method
should 1) search a shared feature subspace where source and target data are not only aligned in terms of distributions as most
state of the art DA methods do, but also discriminative in that instances of different classes are well separated; 2) account for
the geometric structure of the underlying data manifold when inferring data labels on the target domain. In comparison with a
baseline DA method which only cares about data distribution alignment between source and target, we derive three different DA
models, namely CDDA, GA-DA, and DGA-DA, to highlight the contribution of Close yet Discriminative DA(CDDA) based on
1), Geometry Aware DA (GA-DA) based on 2), and finally Discriminative and Geometry Aware DA (DGA-DA) implementing
jointly 1) and 2). Using both synthetic and real data, we show the effectiveness of the proposed approach which consistently
outperforms state of the art DA methods over 36 image classification DA tasks through 6 popular benchmarks. We further carry
out in-depth analysis of the proposed DA method in quantifying the contribution of each term of our DA model and provide
insights into the proposed DA methods in visualizing both real and synthetic data.

Index Terms

Domain adaptation, Transfer Learning, Visual classification, Discriminative learning, Data distribution matching, Data manifold
geometric structure alignment.

I. INTRODUCTION

TRADITIONAL machine learning tasks assume that both training and testing data are drawn from a same data distribution[29],
[31], [5]. However, in many real-life applications, due to different factors as diverse as sensor difference, lighting changes,

viewpoint variations, etc., data from a target domain may have a different data distribution w.r.t. the labeled data in a source
domain where a predictor can be can not be reliably learned due to the data distribution shift. On the other hand, manually
labeling enough target data for the purpose of training an effective predictor can be very expensive, tedious and thus prohibitive.

Domain adaptation (DA) [29], [31], [5] aims to leverage possibly abundant labeled data from a source domain to learn an
effective predictor for data in a target domain despite the data distribution discrepancy between the source and target. While
DA can be semi-supervised by assuming a certain amount of labeled data is available in the target domain, in this paper we
are interested in unsupervised DA[32] where we assume that the target domain has no labels.

State of the art DA methods can be categorized into instance-based [29], [7], feature-based [30], [22], [42], or classifier-
based. Classifier-based DA is not suitable to unsupervised DA as it aims to fit a classifier trained on the source data to the
target data through adaptation of its parameters, and thereby require some labels in the target domain[38] . The instance-based
approach generally assumes that 1) the conditional distributions of source and target domain are identical[44], and 2) certain
portion of the data in the source domain can be reused[29] for learning in the target domain through re-weighting. Feature-based
adaptation relaxes such a strict assumption and only requires that there exists a mapping from the input data space to a latent
shared feature representation space. This latent shared feature space captures the information necessary for training classifiers
for source and target tasks. In this paper, we propose a feature-based adaptation DA method.

A common method to approach feature adaptation is to seek a low-dimensional latent subspace[31], [30] via dimension
reduction. State of the art features two main lines of approaches, namely data geometric structure alignment-based or data
distribution centered. Data geometric structure alignment-based approaches, e.g., LTSL[35] , LRSR[42], seek a subspace
where source and target data can be well aligned and interlaced in preserving inherent hidden geometric data structure via
low rank constraint and/or sparse representation. Data distribution centered methods aim to search a latent subspace where the
discrepancy between the source and target data distributions is minimized, via various distances, e.g., Bregman divergence[36]
based distance, Geodesic distance[13] or Maximum Mean Discrepancy (MMD) [14]. The most popular distance is MMD due
to its simplicity and solid theoretical foundations.

A cornerstone theoretical result in DA [2], [17] is achieved by Ben-David et al., who estimate an error bound of a learned
hypothesis h on a target domain:
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eT (h) ≤ eS(h) + dH(DS ,DT )+
min {EDS [|fS(x)− fT (x)|] , EDT [|fS(x)− fT (x)|]} (1)

Eq.(1) provides insight on the way to improve DA algorithms as it states that the performance of a hypothesis h on a
target domain is determined by: 1) the classification error on the source domain eS(h); 2) data divergence dH(DS ,DT ) which
measures the H-divergence[17] between two distributions(DS , DT ); 3) the difference in labeling functions across the two
domains. In light of this theoretical result, we can see that data distribution centered DA methods only seek to minimize the
second term in reducing data distribution discrepancies, whereas data geometric structure alignment-based methods account
for the underlying data geometric structure and expect but without theoretical guarantee the alignment of data distributions.
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Fig. 1: Illustration of the proposed DGA-DA method. Fig.1 (a): source data and target data, e.g., mouse, bike, smartphone
images, with different distributions and inherent hidden data geometric structures between the source in red and the target in
blue. Samples of different class labels are represented by different geometrical shapes, e.g., round, triangle and square; Fig.1 (b)
illustrates JDA which closers data distributions whereas CDDA (Fig.1 (c)) further makes data discriminative using inter-class
repulsive force. Both of them makes use of the nonparametric distance, i.e., Maximum Mean Discrepancy (MMD). Fig.1 (d):
accounts for geometric structures of the underlying data manifolds and initial label knowledge in the source domain for label
inference; In the proposed DA methods, MMD matrix Mmmd and label matrix Y are updated iteratively within the processes
in Fig.1 (b-d); Fig.1 (e): the achieved latent joint subspace where both marginal and class conditional data distributions are
aligned between source and target as well as their data geometric structures; Furthermore, data instances of different classes
are well separated from each other, thereby enabling discriminative DA.

In this paper, we argue that an effective DA method should: P1) search a shared feature subspace where source and target
data are not only aligned in terms of distributions as most state of the art DA methods do, e.g., TCA[28], JDA[22], but also
discriminative in that instances of different classes are well separated; P2) account for the geometric structure of the underlying
data manifold when inferring data labels on the target domain.

As a result, we propose in this paper a novel Discriminative Geometry Aware DA (DGA-DA) method which provides
a unified framework for a simultaneous optimization of the three terms in the upper error bound in Eq.(1). Specifically,
the proposed DGA-DA also seeks a latent feature subspace to align data distributions as most state of the art DA methods
do, but also introduces a repulsive force term in the proposed model so as to increase inter-class distances and thereby
facilitate discriminative learning and minimize the classification error of the learned hypothesis on source data. Furthermore,
the proposed DGA-DA also introduces in its model two additional constraints, namely Label Smoothness Consistency and
Geometric Structure Consistency, to account for the geometric structure of the underlying data manifold when inferring data
labels in the target domain, thereby minimizing the third term of the error bound of the underlying learned hypothesis on the
target domain. Fig.1 illustrates the proposed DA method.

To gain insight into the proposed method and highlight the contribution of P1) and P2) in comparison with a baseline DA
method, i.e., JDA [22], which only cares about data distribution alignment, we further derive two partial DA methods from our
DA model, namely Close yet Discriminative DA (CDDA) which implements P1), Geometry Aware DA (GA-DA) based on P2),
in addition to our Discriminative and Geometry Aware DA (DGA-DA) which integrates jointly P1) and P2). Comprehensive
experiments carried out on standard DA benchmarks, i.e., 36 cross-domain image classification tasks through 6 datasets, verify
the effectiveness of the proposed method, which consistently outperforms the state-of-the-art DA methods. In-depth analysis
using both synthetic data and two additional partial models further provide insight into the proposed DA model and highlight
its interesting properties.
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To sum up, the contributions of this paper are fourfold:
• We propose a novel repulsive force term in the DA model to increase the discriminative power of the shared latent

subspace, aside from narrowing discrepancies of both the marginal and conditional distributions between the source and
target domains.

• We introduce data geometry awareness, through Label Smoothness and Geometric Structure Consistencies, for label
inference in the proposed DA model and thereby account for the geometric structures of the underlying data manifold.

• We derive from our DA model three novel DA methods, namely CDDA, GA-DA and DGA-DA, which successively
implement data discriminativeness, geometry awareness and both, and quantify the contribution of each term beyond a
baseline DA method, i.e., JDA, which only cares alignment of data distributions.

• We perform extensive experiments on 36 image classification DA tasks through 6 popular DA benchmarks and verify the
effectiveness of the proposed method which consistently outperforms twenty-two state-of-the-art DA algorithms with a
significant margin. Moreover, we also carry out in-depth analysis of the proposed DA methods, in particular w.r.t. their
hyper-parameters and convergence speed. In addition, using both synthetic and real data, we also provide insights into
the proposed DA model in visualizing the effect of data discriminativeness and geometry awareness.

The paper is organized as follows. Section 2 discusses the related work. Section 3 presents the method. Section 4 benchmarks
the proposed DA method and provides in-depth analysis. Section 5 draws conclusion.

II. RELATED WORK

Unsupervised Domain Adaptation assumes no labeled data are provided in the target domain. Thus in order to achieve
satisfactory classification performance on the target domain, one needs to learn a classifier with labeled samples provided only
from the source domain as well as unlabelled samples from the target domain. In earlier days, this problem is also known
as co-variant shift and can be solved by sample re-weighting [37]. These methods aim to reduce the distribution difference
by re-weighting the source samples according to their relevance to the target samples. While proving useful when the data
divergence between the source and target domain is small, these methods fall short to align source and target data when this
divergence becomes large.

As a result, recent research in DA has focused its attention on feature-based adaptation approach [22], [44], [35], [23],
[42], [25], which only assumes a shared latent feature space between the source and target domain. In the learned latent
space, the divergence between the projected source and target data distributions is supposed to be minimized. Therefore a
classifier learned with the projected labeled source samples could be applied for classification on target samples. To find such
a latent shared feature space, many existing methods, e.g.,[28], [22], [44], [23], [1], embrace the dimensionality reduction and
propose to explicitly minimize some predefined distance measures to reduce the mismatch between source and target in terms
of marginal distribution [36] [27] [28], or conditional distribution [33], or both [22]. For example, [36] proposed a Bregman
Divergence based regularization schema, which combines Bregman divergence with conventional dimensionality reduction
algorithms. In [28], the authors use a similar dimensionality reduction framework while making use of the Maximum Mean
Discrepancy (MMD) based on the Reproducing Hilbert Space (RKHS) [3] to estimate the distance between distributions. In
[22], the authors further improve this work by minimizing not only the mismatch of the cross-domain marginal probability
distributions, but also the mismatch of conditional probability distributions.

In line with the focus of manifold learning [45], an increasing number of DA methods, e.g., [24], [35], [42], emphasize the
importance of aligning the underlying data manifold structures between the source and the target domain for effective DA.
In these methods, low-rank and sparse constraints are introduced into DA to extract a low-dimension feature subspace where
target samples can be sparsely reconstructed from source samples [35], or interleaved by source samples [42], thereby aligning
the geometric structures of the underlying data manifolds. A few recent DA methods, e.g., RSA-CDDA[24], JGSA[44], further
propose unified frameworks to reduce the shift between domains both statistically and geometrically.

However, in light of the upper error bound as defined in Eq.(1), we can see that data distribution centered DA methods only
seek to minimize the second term in reducing data distribution discrepancies, whereas data geometric structure alignment-based
methods account for the underlying data geometric structure and expect but without theoretical guarantee the alignment of data
distributions. In contrast, the proposed DGA-DA method optimizes altogether the three error terms of the upper error bound
in Eq.(1).

The proposed DGA-DA builds on JDA [22] in seeking a latent feature subspace while minimizing the mismatch of both the
marginal and conditional probability distributions across domains, thereby decreasing the data divergence term in Eq.(1). But
DGA-DA goes beyond and differs from JDA as we introduce in the proposed DA model a repulsive force term so as to increase
inter-class distances for discriminative DA, thereby optimizing the first term of the upper error bound in Eq.(1), i.e., the error
rate of the learned hypothesis on the source domain. Furthermore, the proposed DGA-DA also accounts in its model for the
geometric structures of the underlying data manifolds, through label smoothness consistency (LSC) and geometric structure
consistency (GSC) which require the inferred labels on the source and target data be smooth and have similar labels on nearby
data. These two constraints thus further optimize the third term of the upper error bound in Eq.(1). DGA-DA also differs much
from a recent DA method, i.e., SCA[11], which also tries to introduce data discriminativeness through the between and within
class scatter only defined on the source domain. However, besides data geometry awareness that it does not consider, SCA



JOURNAL OF LATEX 2017 4

does not seek explicitly data distribution alignment as we do in heritage of JDA, nor it has the repulsive force term as we
introduce in our model in pushing away inter-class data based on both source and target domain. Using both synthetic and real
data, sect.IV-F provides insights into and visualizes the differences of the proposed model with a number of state of the art DA
methods, e.g., SCA, and highlights its interesting properties, in particular data distribution alignment, data discriminativeness
and geometry awareness.

III. DISCRIMINATIVE GEOMETRY AWARE DOMAIN ADAPTATION

We first introduce the notations and formalize the problem in sect.III-A, then present in sect.III-B the proposed model for
Discriminative and Geometry Aware Domain Adaptation (DGA-DA), and solve the model in sect.III-C. Sect.III-D further
analyzes the kernelization of the proposed DA model for nonlinear DA problems.

A. Notations and Problem Statement

Matrices are written as boldface uppercase letters. Vectors are written as boldface lowercase letters. For matrix X = (xij),
its i-th row is denoted as xi, and its j-th column is denoted by xj . We define the Frobenius norm ‖.‖F as: ‖X‖F =√∑

n
i=1

∑
m
j=1x

2
ij .

A domain D is defined as an m-dimensional feature space χ and a marginal probability distribution P (x), i.e., D = {χ, P (x)}
with x ∈ χ. Given a specific domain D, a task T is composed of a C-cardinality label set Y and a classifier f(x), i.e.,
T = {Y, f(x)}, where f(x) = Q(y|x) can be interpreted as the class conditional probability distribution for each input sample
x.

In unsupervised domain adaptation, we are given a source domain DS = {xsi , ysi }
ns
i=1 with ns labeled samples XS =

[xs1...x
s
ns

], which are associated with their class labels YS = {y1, ..., yns
}T ∈ Rns×c, and an unlabeled target domain DT =

{xtj}
nt
j=1 with nt unlabeled samples XT = [xt1...x

t
nt

], whose labels are YT = {yns+1, ..., yns+nt
}T ∈ Rnt×c are unknown.

Here, source domain labels yi ∈ Rc(1 ≤ i ≤ ns) is a binary vector in which yji = 1 if xi belongs to the j-th class. We define
the data matrix X = [XS ,XT ] ∈ Rm∗n in packing both the source and target data. The source domain DS and target domain
DT are assumed to be different, i.e., χS = χT , YS = YT , P(χS) 6= P(χT ), Q(YS |χS) 6= Q(YT |χT ).

We also define the notion of sub-domain, denoted as D(c)
S , representing the set of samples in DS with the label c. Similarly,

a sub-domain D(c)
T can be defined for the target domain as the set of samples in DT with the label c. However, as samples in

the target domain DT are unlabeled, the definition of sub-domains in the target domain, requires a base classifier, e.g., Nearest
Neighbor (NN), to attribute pseudo labels for samples in DT .

The maximum mean discrepancy (MMD) is an effective non-parametric distance-measure that compares the distributions of
two sets of data by mapping the data to Reproducing Kernel Hilbert Space[3] (RKHS). Given two distributions P and Q, the
MMD between P and Q is defined as:

Dist(P,Q) =‖ 1

n1

n1∑
i=1

φ(pi)−
1

n2

n2∑
i=1

φ(qi) ‖H (2)

where P = {p1, . . . , pn1
} and Q = {q1, . . . , qn2

} are two random variable sets from distributions P and Q, respectively, and
H is a universal RKHS with the reproducing kernel mapping φ: f(x) = 〈φ(x), f〉, φ : X → H.

The aim of the Discriminative and Geometry Aware Domain Adaptation (DGA-DA) is to learn a latent feature subspace
with the following properties: P1) the distances of both marginal and conditional probabilities between the source and target
domains are reduced; P2) The distances between each sub-domain to the others are increased so as to increase inter-class
distances and thereby enable discriminative DA; and P3) label inference accounts for the underlying data geometric structure.

B. The model

The proposed DA model (sect.III-B5) builds on TCA (sect.III-B1) and JDA (sect.III-B2) to which discriminative DA (CDDA)
is introduced (sect.III-B3) and the data geometry awareness (GA-DA) is accounted for in label inference and the search of the
shared latent feature subspace (sect.III-B4).

1) Search of a Latent Feature Space with Dimensionality Reduction (TCA): The search of a latent feature subspace with
dimensionality reduction has been demonstrated useful for DA in several previous works, e.g., [28], [22], [24], [35], [44].
In projecting original raw data into a lower dimensional space, the principal data structure is preserved while decreasing its
complexities. In the proposed method, we also apply the Principal Component Analysis (PCA) to capture the major data
structure. Mathematically, given an input data matrix X = [DS ,DT ], X ∈ Rm×(ns+nt), the centering matrix is defined as
H = I − 1

ns+nt
1, where 1 is the (ns + nt) × (ns + nt) matrix of ones. The optimization of PCA is to find a projection

transformation A which maximizes the embedded data variance.

max
AT A=I

tr(ATXHXTA) (3)
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where tr(·) denotes the trace of a matrix, XHXT is the data covariance matrix, and A ∈ Rm×k with m the feature dimension
and k the dimension of the projected subspace. The optimal solution is calculated by solving an eigendecomposition problem:
XHXT = AΦ, where Φ = diag(φ1, . . . , φk) are the k largest eigenvalues. Finally, the original data X is projected into the
optimal k-dimensional subspace using Z = ATX .

2) Joint Marginal and Conditional Distribution Domain Adaptation (JDA): However, the previous feature subspace calcu-
lated via PCA does not align explicitly data distributions between the source and target domain. Following [22], [21], we also
empirically measure the distance of both marginal and conditional distributions across domain via the nonparametric distance
measurement MMD in RKHS [3] once the original data projected into a low-dimensional feature space. Formally, the empirical
distance of the two domains is defined as:

Distmarginal(DS ,DT ) =∥∥∥∥∥ 1
ns

ns∑
i=1

ATxi− 1
nt

ns+nt∑
j=ns+1

ATxj

∥∥∥∥∥
2

= tr(ATXM0XTA)
(4)

where M0 represents the marginal distribution between DS and DT and its calculation is obtained by:

(M0)ij =


1

nsns
, xi, xj ∈ DS

1
ntnt

, xi, xj ∈ DT
−1
ntns

, otherwise
(5)

where xi, xj ∈ (DS ∪DT ). The difference between the marginal distributions P(XS) and P(XT ) is reduced in minimizing
Distmarginal(DS ,DT ).

Similarly, the distance of conditional probability distributions is defined as the sum of the empirical distances over the class
labels between the sub-domains of a same label in the source and target domain:

Distconditional
C∑
c=1

(DSc,DT c) =

∥∥∥∥∥ 1

n
(c)
s

∑
xi∈DS (c)

ATxi − 1

n
(c)
t

∑
xj∈DT (c)

ATxj

∥∥∥∥∥
2

= tr(ATXMcX
TA)

(6)
where C is the number of classes, DS (c) = {xi : xi ∈ DS ∧ y(xi) = c} represents the cth sub-domain in the source domain,
n
(c)
s =

∥∥∥DS (c)∥∥∥
0

is the number of samples in the cth source sub-domain. DT (c) and n(c)t are defined similarly for the target
domain. Finally, Mc represents the conditional distribution between sub-domains in DS and DT and it is defined as:

(Mc)ij =



1

n
(c)
s n

(c)
s

, xi, xj ∈ DS (c)
1

n
(c)
t n

(c)
t

, xi, xj ∈ DT (c)

−1
n
(c)
s n

(c)
t

,

{
xi ∈ DS (c), xj ∈ DT (c)

xi ∈ DT (c), xj ∈ DS (c)
0, otherwise

(7)

In minimizing Distconditional
C∑
c=1

(DS
c, DT

c), the mismatch of conditional distributions between DSc and DT c is reduced.

3) Close yet Discriminative Domain Adaptation (CDDA): However, the previous joint alignment of the marginal and
conditional distributions across domain does not explicitly render data discriminative in the searched feature subspace. As a
result, we introduce a Discriminative domain adaption via a repulsive force term, so as to increase the distances of sub-domains
with different labels, and improve the discriminative power of the latent shared features, thereby making it possible for a better
predictive model for both the source and target data.

Specifically, the repulsive force term is defined as: Distrepulsive = DistrepulsiveS→T +DistrepulsiveT→S , where S → T and T → S
index the distances computed from DS to DT and DT to DS , respectively. DistrepulsiveS→T represents the sum of the distances
between each source sub-domain DS (c) and all the target sub-domains DT (r); r∈{{1...C}−{c}} except the one with the label c.
The sum of these distances is explicitly defined as:

DistrepulsiveS→T =
C∑
c=1

∥∥∥∥∥∥ 1

n
(c)
s

∑
xi∈DS (c)

ATxi − 1∑
r∈{{1...C}−{c}}

n
(r)
t

∑
xj∈D(r)

T

ATxj

∥∥∥∥∥∥
2

=
C∑
c=1

tr(ATXMS→TXTA)

(8)
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where MS→T is defined as

(MS→T )ij =



1

n
(c)
s n

(c)
s

, xi, xj ∈ DS (c)
1

n
(r)
t n

(r)
t

, xi, xj ∈ DT (r)

−1
n
(c)
s n

(r)
t

,

{
xi ∈ DS (c), xj ∈ DT (r)

xi ∈ DT (r), xj ∈ DS (c)
0, otherwise

(9)

Symmetrically, DistrepulsiveT→S represents the sum of the distances from each target sub-domain DT
(c) to all the the source

sub-domains DS (r); r∈{{1...C}−{c}} except the source sub-domain with the label c. Similarly, the sum of these distances is
explicitly defined as:

DistrepulsiveT→S =
C∑
c=1

∥∥∥∥∥∥ 1

n
(c)
s

∑
xi∈DT

(c)

ATxi − 1∑
r∈{{1...C}−{c}}

n
(r)
t

∑
xj∈D(r)

S

ATxj

∥∥∥∥∥∥
2

=
C∑
c=1

tr(ATXMT→SXTA)

(10)
where MT→S is defined as

(MT→S)ij =



1

n
(c)
t n

(c)
t

, xi, xj ∈ DT (c)

1

n
(r)
s n

(r)
s

, xi, xj ∈ DS (r)

−1
n
(c)
t n

(r)
s

,

{
xi ∈ DT (c), xj ∈ DS (r)

xi ∈ DS (r), xj ∈ DT (c)

0, otherwise

(11)

Finally, we obtain

Distrepulsive =
C∑
c=1

tr(ATX(MS→T + MT→S)XTA) (12)

We define Mĉ = MS→T + MT→S as the repulsive force matrix.While the minimization of Eq.(4) and Eq.(6) makes closer
both marginal and conditional distributions between source and target, the maximization of Eq.(12) increases the distances
between source and target sub-domains, thereby improve the discriminative power of the searched latent feature subspace.

4) Geometry Aware Domain Adaptation (GA-DA): In a number of state of the art DA methods, e.g.,[27], [28], [22], the
simple Nearest Neighbor (NN) classifier is applied for label inference. In JDA and LRSR[42], NN-based label deduction is
applied twice at each iteration. NN is first applied to the target domain in order to generate the pseudo labels of the target
data and enable the computation of the conditional probability distance as defined in sect. III-B2. Once the optimized latent
subspace identified, NN is then applied once again at the end of an iteration for the label prediction of the target domain.
However, given the neighborhood usually based on the L2 or L1 distance, NN could fall short to measure the similarity of
source and target domain data which may be embedded into a manifold with complex geometric structures.

To account for the underlying data manifold structure in data similarity measurement, we further introduce two consistency
constraints, namely label smoothness consistency and geometric structure consistency for both the pseudo and final label
inference.

Label Smoothness Consistency (LSC)：LSC is a constraint designed to prevent too much changes from the initial query
assignment YS .

Distlable =
C∑
j=1

ns+nt∑
i=1

∥∥∥Y(F )
i,j −Y

(0)
i,j

∥∥∥ (13)

where Y = YS∪YT , Y
(F )
i,j is the calculated probability of ith data belonging to jth class. Each data xi has a predicted label

yi = arg maxj≤cY
F
ij . Y

(0)
i,j is the initial prediction. As for unlabeled target data XT , traditional ranking methods[18], [43]

assign the labels YT = 0nt∗c. However, this definition lacks discriminative properties due to the equal probability assignments
in XT . In this work, we define the initial Y(0) as:



JOURNAL OF LATEX 2017 7

Y
(0)
S(ij) =

{
y
(0)
S(ij) = 1 (1 ≤ i ≤ ns), j = c, yij ∈ D(c)

S
0 else

Y
(0)
T(ij) =


y
(0)
T(ij) = 1 ((ns + 1) ≤ i ≤ ns + nt), j = c,

yij ∈ D(c)
T

0 else

(14)

where D(c)
T is defined as pseudo labels, generated via a base classifier, e.g., NN.

Geometric Structure Consistency (GSC): GSC is designed to ensure that inferred data labels comply with the geometric
structures of the underlying data manifolds. We propose to characterize alignment of label inference with the underlying data
geometric structure through the Laplace matrix L:

YTLY = YT (I−D−
1
2 WD−

1
2 )Y =

ns+nt∑
i=1

dii

(
yi√
dii

)2
−
ns+nt∑
i,j=1

dii

(
yi√
di

yj√
dj

)2

wij = 1
2

ns+nt∑
i,j=1

wij

(
yi√
dii
− yj√

djj

)2

,

(15)
where W = [wij ](ns+nt)×(ns+nt) is an affinity matrix [26], with wij giving the affinity between two data samples i and

j and defined as wij = exp(−‖xi−xj‖2
2σ2 ) if i 6= j and wii = 0 otherwise, D = diag{d11...d(ns+nt),(ns+nt)} is the degree

matrix with dii =
∑
j wij . When Eq.(15) is minimized, the geometric structure consistency ensures that the label space does

not change too much between nearby data.
5) the final model (DGA-DA): Our final DA model integrates: 1) alignment of both marginal and conditional distributions

across domain as defined by Eq.(4) and Eq.(6), 2) the repulsive force as in Eq.(12), and 3) data geometry aware label inference
through both the label smoothness (Eq.(13)) and geometric structure (Eq.(15)) consistencies. Therefore, our final model is
defined as:

min(Distmarginal +Distconditional +Distlabel + YTLY) + max(Distrepulsive) (16)

It can be re-written mathematically as:

min
ATXHXTA=I

(
C∑
c=0

tr(ATXMcX
TA) + λ ‖A‖2F+µ(

C∑
j=1

ns+nt∑
i=1

∥∥∥Y(F )
ij −Y

(0)
ij

∥∥∥) + YTLY

)
+ max

ATXHXTA=I
tr(ATXMĉX

TA)

(17)
where the constraint ATXHXTA = I removes an arbitrary scaling factor in the embedding and prevents the above opti-

mization collapse onto a subspace of dimension less than the required dimensions. λ is a regularization parameter to guarantee
the optimization problem to be well-defined. µ is a trade-off parameter which balances LSC and GSC.

C. Solving the model

Direct solution to Eq.(17) is nontrivial. We divide it into two sub-problems.
Sub-problem (a):

min

ATXHXTA=I,Mcyd=
C∑

c=0
Mc−Mĉ

(
C∑
c=0

tr(ATXMcydX
TA) + λ ‖A‖2F

)
, (18)

Sub-problem (b):

min

(
µ

C∑
j=1

ns+nt∑
i=1

∥∥∥Y(F )
ij −Y

(0)
ij

∥∥∥+ YTLY

)
(19)

These two sub-problems are then iteratively optimized.
Sub-problem (a) amounts to solving the generalized eigendecomposition problem. Augmented Lagrangian method [10], [22]

can be used to solve this problem. In setting its partial derivation w.r.t. A equal to zero, we obtain:

(XMcydXT + λI)A = XHXTAΦ (20)

where Φ= diagram(ϕ1, ...ϕk) ∈ Rk∗k is the Lagrange multiplier. The optimal subspace A is reduced to solving Eq.(20)
for the k smallest eigenvectors. Then, we obtain the projection matrix A and the underlying embedding space Z = ATX.

Sub-problem (b) is nontrivial. Inspired by the solution proposed in [45] [18] [43], the minimum is approached where the
derivative of the function is zero. An approximate solution can be provided by:

Y? = (D− (
1

1 + µ
)W)−1Y(0) (21)
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where Y? is the probability of prediction of the target domain corresponding to different class labels, W is an affinity matrix
and D is the diagonal matrix.

For sake of simplicity, we define α= 1
1+µ and then Eq.(21) is reformulated as Eq.(22):

Y? = (D− αW)−1Y(0) (22)

To sum up, at a given iteration, sub-problem (a) as in Eq.(18) searches a latent feature subspace Z in closering both marginal
and conditional data distributions between source and target while making use of source and current target labels in pushing
away interclass data; sub-problem (b) as in Eq.(19) infers through Eq.(22) novel labels for target data in line with source data
labels while making use of the geometric structures of the underlying data manifolds in the current subspace Z. This iterative
process eventually ends up in a latent feature subspace where : 1) the discrepancies of both marginal and conditional data
distributions between source and target are narrowed; 2) source and target data are rendered more discriminative thanks to the
increase of interclass distances; and 3) the geometric structures of the underlying data manifolds are aligned.

The complete learning algorithm is summarized in Algorithm 1 - DGA-DA.

Algorithm 1: Discriminative Geometry Aware Domain Adaptation (DGA-DA)
Input: Data X, Source domain labels YS , subspace dimension k, number of iterations T , regularization parameters λ

and α
1 Step 1: Initialize the iteration counter t=0 and compute M0 as in Eq.(5).
2 Step 2: Initialize pseudo target labels YT and projection space A:
3 (1) Solve the generalized eigendecomposition problem[10], [22] as in Eq.(20) (replace Mcyd by M0 ) and obtain

adaptation matrix A, then embed data via the transformation, Z = ATX;
4 (2)Initialize pseudo target labels YT via a base classifier, e.g., 1-NN, based on source domain labels YS .
5 while not converged and t < T do
6 Step 3: Update projection space A
7 (i) Compute Mc (Eq.(7))
8 (ii) Compute Mĉ = MS→T + MT→S as in Eq.(11) and Eq.(9) via YT .
9 (iii) Calculate Mcyd = Mc + M0 −Mĉ;

10 (iv) Solve Eq.(20) then update A and Z = ATX;
11 Step 4: Label deduction
12 (i) construct the label matrix Y(0) as in Eq.(14);
13 (ii) design the affinity matrix[26] W and diagonal matrix D;
14 (iii) obtain Yfinal in solving Eq.(21);
15 Step 5: update pseudo target labels {Y(F )

T = Yfinal [:, (ns + 1) : (ns + nt)]};
16 Step 6: t = t+ 1; Return to Step 3;

Output: Adaptation matrix A, embedding Z, Target domain labels Y
(F )
T

D. Kernelization Analysis

The proposed DGA-DA method can be extended to nonlinear problems in a Reproducing Kernel Hilbert Space via the
kernel mapping φ : x → φ(x), or φ(X) : [φ(x1), ..., φ(xn)], and the kernel matrix K = φ(X)Tφ(X) ∈ Rn∗n. We utilize the
Representer theorem to formulate Kernel DGA-DA as

min
ATKHKTA=I

(
C∑
c=0

tr(ATKMcK
TA) + λ ‖A‖2F+

C∑
j=1

ns+nt∑
i=1

∥∥∥Y(F )
ij −Y

(0)
ij

∥∥∥+ YTLY

)
+ max

ATKHKTA=I
tr(ATKMĉK

TA) (23)

IV. EXPERIMENTS

In this section, we verify and analyze in-depth the effectiveness of our proposed domain adaptation model, i.e., DGA-DA, on
36 cross domain image classification tasks generated by permuting six datasets (see Fig.2). Sect.IV-A describes the benchmarks
and the features. Sect.IV-B lists the baseline methods which the proposed DGA-DA is compared to. Sect.IV-C presents the
experimental setup and introduces in particular two partial DA methods, namely CDDA and GA-DA, in addition to the proposed
DGA-DA based on our full DA model. Sect.IV-D discusses the experimental results in comparison with the state of the art.
Sect.IV-E analyzes the convergence and parameter sensitivity of the proposed method. Sect.IV-F further provides insight into
the proposed DA model in visualizing the achieved feature subspaces through both synthetic and real data.
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A. Benchmarks and Features
As illustrated in Fig.2, USPS[15]+MINIST[20], COIL20[22], PIE[22] and office+Caltech[22], [42], [?], [35] are standard

benchmarks for the purpose of evaluation and comparison with state-of-the-art in DA. In this paper, we follow the data
preparation as most previous works[40], [42], [12], [11], [6], [24] do. We construct 36 datasets for different image classification
tasks.

Office+Caltech consists of 2533 images of ten categories (8 to 151 images per category per domain)[11]. These images
come from four domains: (A) AMAZON, (D) DSLR, (W) WEBCAM, and (C) CALTECH. AMAZON images were acquired
in a controlled environment with studio lighting. DSLR consists of high resolution images captured by a digital SLR camera
in a home environment under natural lighting. WEBCAM images were acquired in a similar environment to DSLR, but with
a low-resolution webcam. CALTECH images were collected from Google Images.

We use two types of image features extracted from these datasets, i.e., SURF and DeCAF6, that are publicly available.
The SURF[13] features are shallow features extracted and quantized into an 800-bin histogram using a codebook computed
with K-means on a subset of images from Amazon. The resultant histograms are further standardized by z-score. The Deep
Convolutional Activation Features (DeCAF6)[8] are deep features computed as in AELM[40] which makes of use VLFeat
MatConvNet library with different pretrained CNN models, including in particular the Caffe implementation of AlexNet[19]
which is trained on the ImageNet dataset. The outputs from the 6th layer are used as deep features, leading to 4096 dimensional
DeCAF6 features. In this experiment, we denote the dataset Amazon,Webcam,DSLR,and Caltech-256 as A,W,D,and C,
respectively.

In denoting the direction from “source”to “target”by an arrow “→”is the direction from “source”to “target”,
4 × 3 = 12 DA tasks can then be constructed, namely A → W . . . C → D, respectively. For example, “W → D”means
the Webcam image dataset is considered as the labeled source domain whereas the DSLR image dataset the unlabeled target
domain.

USPS+MNIST shares ten common digit categories from two subsets, namely USPS and MNIST, but with very different data
distributions (see Fig.2). We construct a first DA task USPS vs MNIST by randomly sampling 1,800 images in USPS to form
the source data, and randomly sampling 2,000 images in MNIST to form the target data. Then, we switch the source/target
pair to get another DA task, i.e., MNIST vs USPS. We uniformly rescale all images to size 16×16, and represent each one
by a feature vector encoding the gray-scale pixel values. Thus the source and target data share the same feature space. As a
result, we have defined two cross-domain DA tasks, namely USPS → MNIST and MNIST → USPS.

COIL20 contains 20 objects with 1440 images (Fig.2). The images of each object were taken in varying its pose about
5 degrees, resulting in 72 poses per object. Each image has a resolution of 32×32 pixels and 256 gray levels per pixel. In
this experiment, we partition the dataset into two subsets, namely COIL 1 and COIL 2[42]. COIL 1 contains all images taken
within the directions in [00, 850]∪ [1800, 2650] (quadrants 1 and 3), resulting in 720 images. COIL 2 contains all images taken
in the directions within [900, 1750] ∪ [2700, 3550] (quadrants 2 and 4) and thus the number of images is 720. In this way, we
construct two subsets with relatively different distributions. In this experiment, the COIL20 dataset with 20 classes is split into
two DA tasks, i.e., COIL1 → COIL2 and COIL2 → COIL1

PIE face database consists of 68 subjects with each under 21 various illumination conditions[6], [22]. We adopt five pose
subsets: C05, C07, C09, C27, C29, which provides a rich basis for domain adaptation, that is, we can choose one pose as
the source and any rest one as the target. Therefore, we obtain 5 × 4 = 20 different source/target combinations. Finally, we
combine all five poses together to form a single dataset for large-scale transfer learning experiment. We crop all images to
32 ×32 and only adopt the pixel values as the input. Finally, with different face poses, of which five subsets are selected,
denoted as PIE1, PIE2, etc., resulting in 5× 4 = 20 DA tasks, i.e., PIE1 vs PIE 2 . . . PIE5 vs PIE 4, respectively.

DSLR Webcam DSLR Caltech MNIST USPS COIL PIE

DSLR Amazon Webcam Caltech

157 958 295 1123

10 10 10 10

Decaf(4096)/SURF(800) Same Same Same

COIL1 COIL2

720 720

20 20

Pixel (1024) same

MNIST USPS

2000 1800

10 10

256 256

Dataset

No. Images

Classes

Feature Dimensions

PIE1 PIE2 PIE3 PIE4 PIE5

3332 1629 1632 3329 1632

68 68 68 68 68

Pixel (1024) same same same Same

Fig. 2: Sample images from six datasets used in our experiments. Each dataset represents a different domain. The OFFICE
dataset contains three sub-datasets, namely DSLR, Amazon and Webcam.

B. Baseline Methods
The proposed DGA-DA method is compared with twenty-two methods of the literature, including deep learning-based

approaches for unsupervised domain adaption. They are: (1)1-Nearest Neighbor Classifier(NN); (2) Principal Component
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Analysis (PCA) +NN; (3) Geodesic Flow Kernel(GFK) [13] + NN; (4) Transfer Component Analysis(TCA) [28] +NN; (5)
Transfer Subspace Learning(TSL) [36] +NN; (6) Joint Domain Adaptation (JDA) [22] +NN; (7) Extreme Learning Machine
(ELM) [40] +NN; (8) Augmented Extreme Learning Machine (AELM) [40] +NN; (9) Subspace Alignment (SA)[9]; (10)
Marginalized Stacked Denoising Auto-encoder (mSDA)[4]; (11) Transfer Joint Matching (TJM)[23]; (12) Robust Transfer
Metric Learning (RTML)[6]; (13) Scatter Component Analysis (SCA)[11]; (14) Cross-Domain Metric Learning (CDML)[41];
(15)Deep Domain Confusion (DDC)[39]; (16)Low-Rank Transfer Subspace Learning (LTSL)[35]; (17)Low-Rank and Sparse
Representation (LRSR)[42]; (18)Kernel Principal Component Analysis (KPCA)[34]; (19)Joint geometric and statistical align-
ment (JGSA) [44]; (20)Deep Adaptation Networks (DAN) [21]; (21)Deep Convolutional Neural Network (AlexNet) [19] and
(22)Domain adaptation with low-rank reconstruction (RVDLR) [16].

In addition, for the purpose of fair comparison, we follow the experiment settings of JGSA, AlexNet and SCA, and apply
DeCAF6 as the features for some methods to be evaluated. Whenever possible, the reported performance scores of the twenty-
two methods of the literature are directly collected from previous research [22], [40], [6], [11], [42], [44]. They are assumed
to be their best performance.

C. Experimental Setup

For the problem of domain adaptation, it is not possible to tune a set of optimal hyper-parameters, given the fact that the target
domain has no labeled data. Following the setting of previous research[24], [22], [42] , we also evaluate the proposed DGA-DA
by empirically searching in the parameter space for the optimal settings. Specifically, the proposed DGA-DA method has three
hyper-parameters, i.e., the subspace dimension k, regularization parameters λ and α. In our experiments, we set k = 100 and
1) λ = 0.1, and α = 0.99 for USPS, MNIST，COIL20 and PIE, 2) λ = 1, α = 0.99 for Office and Caltech-256.

In our experiment, accuracy on the test dataset as defined by Eq.(24) is the evaluation measurement. It is widely used in
literature, e.g.,[27], [21], [24], [22], [42], etc.

Accuracy = |x:x∈DT∧ŷ(x)=y(x)|
|x:x∈DT | (24)

where DT is the target domain treated as test data, ŷ(x) is the predicted label and y(x) is the ground truth label for a test
data x.

To provide insight into the proposed DA method and highlight the individual contribution of each term in our final model,
i.e., the discriminative term using the repulsive force as defined in Eq.(12) and the geometry aware term through label smooth
consistency as in Eq.(13) and geometry structure consistency as in Eq.(15), we evaluate the proposed DA method using three
settings:
• CDDA: In this setting, sub-problem (b) in sect. III-C as defined in Eq.(19) is simply replaced by the Nearest Neighbor

(NN) predictor. This correspond to our final DA model as defined in Eq.(18) which only makes use of the repulse force
term but without geometry aware label inference as defined by Eq.(13) and Eq.(15). This setting makes it possible to
understand how important discriminative DA is w.r.t. state of the art baseline DA methods only focused on data distribution
alignment, e.g., JDA.

• GA-DA: In this setting, we extend popular data distribution alignment-based DA methods, e.g., JDA, with geometry
aware label inference but ignore the repulsive force term, i.e., max(ATXMĉX

TA), in our final model reformulated
in Eq.(17). This setting thus jointly consider across domain conditional and marginal distribution alignment (Eq.(5) and
Eq.(6)) and geometry aware label inference (Eq.(13) and Eq.(15)). This setting enables quantification of the contribution
of the geometry aware label inference term as defined by Eq.(13) and Eq.(15) in comparison with state of the art baseline
DA methods only focused on data distribution alignment, e.g., JDA.

• DGA-DA：This setting correspond to our full final model as defined in Eq.(17). It thus contains CDDA as expressed by
sub-problem (a) as in sect. III-C to which we further add the geometry aware label inference as defined by sub-problem
(b) in sect. III-C.

D. Experimental Results and Discussion

1) Experiments on the COIL 20 Dataset: The COIL dataset (see fig.2) features the challenge of pose variations between
the source and target domain. Fig.3 depicts the experimental results on the COIL dataset. As can be seen in this figure where
top results are highlighted in red color, the two partial models, i.e., CDDA, DA-GA and the proposed final model, DGA-DA,
depict an overall average accuracy of 92.71%, 90.70% and 100.00%, respectively. They both outperform the eight baseline
DA algorithms with a significant margin.

It is worth noting that, when adding label inference based on the underlying data manifold structure, the proposed DGA-DA
improves its sibling CDDA by a margin as high as roughly 7 points, thereby highlighting the importance of data geometry
aware label inference as introduced in DGA-DA. As compared to JDA, the proposed CDDA, which adds a discriminative
repulsive force term w.r.t. JDA, also shows its effectiveness and improves the latter by more than 3 points.
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COIL1 → COIL2 COIL2 → COIL1 Average

NN 83.61 82.78 83.20

PCA 84.72 84.03 84.38

GFK 72.50 74.17 73.34

TSL 88.06 87.92 87.99

LTSL 75.69 72.22 73.96

LRSR 88.61 89.17 88.89

TCA 88.47 85.83 87.15

JDA 89.31 88.47 88.89

CDDA 91.53 93.89 92.71

GA-DA 89.86 91.53 90.70

DGA-DA 100 100 100

0.0010.0020.0030.0040.0050.0060.0070.0080.0090.00100.00

COMPARISONS OF RECOGNITION RATES(%) ON COIL 

DATABASE 

Fig. 3: Accuracy% on the COIL Images Dataset.

C→A C→W C→D A→C A→W A→D W→C W→A W→D D→C D→A D→W Average

PCA 85.60 66.10 74.50 70.30 57.20 64.90 60.30 62.50 98.70 52.00 62.70 89.10 70.40

NN 87.05 72.20 80.89 78.54 77.31 80.25 68.21 73.07 100.00 70.08 75.89 97.97 80.12

ELM 89.07 70.51 78.98 79.61 74.58 80.25 70.61 75.37 100.00 68.21 80.79 98.31 80.52

GFK 87.27 75.93 83.44 80.32 76.95 80.89 67.76 74.32 100.00 69.10 75.78 98.64 80.87

SA 87.06 75.59 80.25 79.61 78.31 81.53 68.83 75.16 100.00 69.99 73.49 98.98 80.73

mSDA 89.67 68.47 82.17 78.81 78.98 79.62 69.46 76.62 100.00 73.29 81.32 98.64 81.42

TJM 88.10 72.20 74.52 77.65 75.25 82.80 71.42 80.27 100.00 72.57 78.60 98.31 80.97

AELM 89.46 79.32 81.53 79.96 77.63 85.35 71.24 76.83 100.00 75.60 83.19 98.98 83.25

RTML 90.20 83.80 88.70 83.10 79.50 83.80 82.90 90.80 100.00 81.60 90.60 98.60 87.80

SCA 89.46 85.42 87.90 78.81 75.93 85.35 74.80 86.12 100.00 78.09 89.98 98.64 85.88

JGSA 91.44 86.78 93.63 84.86 81.02 88.54 84.95 90.71 100.00 86.20 91.96 99.66 89.98

AlexNet 91.90 83.70 87.10 83.00 79.50 87.40 73.00 83.80 100.00 79.00 87.10 97.70 86.10

DAN 92.00 90.60 89.30 84.10 91.80 91.70 81.20 92.10 100.00 80.30 90.00 98.50 90.10

DDC 91.90 85.40 88.80 85.00 86.10 89.00 78.00 84.90 100.00 81.10 89.50 98.20 88.20

JDA 89.70 83.70 86.60 82.20 78.60 80.20 80.50 88.10 100.00 80.10 89.40 98.90 86.50

CDDA 90.71 85.76 91.72 85.66 78.31 84.08 86.02 89.77 100.00 86.20 91.34 100.00 89.13

GA-DA 90.65 87.80 94.27 84.51 82.03 86.62 84.95 91.44 100.00 85.75 93.53 99.66 90.10

DGA-DA 91.25 93.56 91.72 85.20 80.98 89.81 86.46 90.81 100.00 86.20 93.11 100.00 90.76
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COMPARISONS OF RECOGNITION RATES(%) ON Caltech256+Office DATABASE (DeCAF6) 

Fig. 4: Accuracy% on the Office+Caltech Images with DeCAF6 Features.

2) Experiments on the Office+Caltech-256 Data Sets: Fig.4 and Fig.5 synthesize the experimental results in comparison
with the state of the art when deep features (i.e., DeCAF6 features) and classic shallow features (i.e., SURE features) are used,
respectively.
• As can be seen in Fig.5, both CDDA and DGA-DA outperform the state of the art method in terms of average accuracy,

thereby demonstrating the effectiveness of the proposed DA method. In particular, in comparison with JDA which only
cares about data distribution alignment between source and target and the proposed DA method is built upon, CDDA
improves JDA by 2 points thanks to the discriminative repulsive force term introduced in our model. When label inference
accounts for the underlying data structure, our final model DGA-DA further improves CDDA by roughly 1 point.

• Fig.4 compares the proposed DA method using deep features w.r.t. the state of the art, in particular end-to-end deep learning-
based DA methods. As can be seen in Fig.4, the use of deep features has enabled impressive accuracy improvement over
shallow features. Simple baseline methods, e.g., NN, PCA, see their accuracy soared by roughly 40 points, demonstrating
the power of deep learning paradigm. Our proposed DA method also takes advantage of this jump and sees its accuracy
soared from 48.22 to 89.13 for CDDA and from 49.02 to 90.43 for DGA-DA. As for shallow features, CDDA improves
JDA by 3 points and DGA-DA further ameliorates CDDA by 1 point when label inference accounts for the underlying
data geometric structure. As a result, DGA-DA displays the best average accuracy and outperforms slightly DAN.

3) Experiments on the USPS+MNIST Data Set: The UPS+MNIST dataset features different writing styles between source
and target. Fig.6 lists the experimental results in comparison with 14 state of the art DA methods. As can be seen in the
table, CDDA displays a 69.14% average accuracy and ranks the third best performer. It shows its effectiveness once more as
it improves its baseline JDA by more than 5 points on average. When accounting for the underlying data geometry structure,
the proposed DGA-DA further improves its sibling CDDA by a margin more than 7 points and displays the state of the art
performance of a 76.54% accuracy. It is worth noting that the second best DA performer on this dataset, i.e., JGSA, also
suggests aligning both statistically and geometrically data, and thereby corroborates our data geometry aware DA approach.

4) Experiments on the CMU PIE Data Set: The CMU PIE dataset is a large face dataset featuring both illumination and
pose variations. Fig.7 synthesizes the experimental results for DA using this dataset. As can be seen in the figure, similarly
as in the previous experiments, the proposed DGA-DA displays the best average accuracy over 20 cross-domain adaptation
experiments. In aligning both marginal and conditional data distributions, JDA performs quite well and displays a 60.24%
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C→A C→W C→D A→C A→W A→D W→C W→A W→D D→C D→A D→W Average

NN 23.70 25.76 25.48 26.00 29.83 25.48 19.86 22.96 59.24 26.27 28.50 63.39 31.37

PCA 36.95 32.54 38.22 34.73 35.59 27.39 26.36 31.00 77.07 29.65 32.05 75.93 39.79

GFK 41.02 40.68 38.85 40.25 38.98 36.31 30.72 29.75 80.89 30.28 32.05 75.59 42.95

KPCA 40.40 31.53 40.76 37.04 31.86 33.76 27.60 29.44 89.81 27.78 31.00 84.41 42.12

SCA 43.74 33.56 39.49 38.29 33.90 34.21 30.63 30.48 92.36 32.32 33.72 88.81 44.29

LTSL 25.26 19.32 21.02 16.92 14.58 21.02 34.64 39.56 72.61 35.08 39.67 74.92 34.55

LRSR 51.25 38.64 47.13 43.37 36.61 38.85 29.83 34.13 82.80 31.61 33.19 77.29 45.39

CDML 47.70 35.60 42.50 40.70 37.30 35.30 31.60 32.40 77.90 32.20 29.40 79.40 43.50

mSDA 45.92 37.96 46.49 40.96 40.33 36.30 31.96 33.61 87.26 30.89 35.59 87.45 46.23

ELM 49.37 37.79 45.22 40.07 33.56 34.31 31.17 33.85 88.54 28.23 28.50 73.22 43.65

AELM 53.13 49.49 50.96 41.14 35.25 36.94 34.11 38.93 89.81 33.83 33.09 80.33 48.08

SA 41.02 40.34 47.13 40.16 39.66 35.03 31.17 33.82 85.99 31.26 35.80 84.75 45.51

TJM 46.76 38.98 44.59 39.45 42.03 45.22 30.19 29.96 89.17 31.43 32.78 85.42 46.33

TSL 44.47 34.24 43.31 37.58 33.90 26.11 29.83 30.27 87.26 28.50 27.56 85.42 42.37

TCA 38.20 38.64 41.40 37.76 37.63 33.12 29.30 30.06 87.26 31.70 32.15 86.10 43.61

JDA 44.78 41.69 45.22 39.36 37.97 39.49 31.17 32.78 89.17 31.52 33.09 89.49 46.31

CDDA 48.33 44.75 48.41 42.12 41.69 37.58 31.97 37.27 87.90 34.64 33.51 90.51 48.22

GA-DA 48.96 44.41 47.13 39.09 44.07 37.58 22.89 29.13 89.81 26.45 36.53 92.54 46.55

DGA-DA 52.09 47.12 45.86 41.32 38.31 38.22 33.30 41.75 89.81 33.66 33.61 93.22 49.02
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COMPARISONS OF RECOGNITION RATES(%) ON OFFICE+CALTECH-256 DATABASE (SURF FEATURES) 

Fig. 5: Accuracy% on the Office+Caltech Images with SURF-BoW Features.
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Fig. 6: Accuracy% on the USPS+MNIST Images Dataset.

average accuracy. In integrating the discriminative repulsive force term, CDDA improves JDA by roughly 3 points. DGA-DA
further ameliorates CDDA by more than 1 point.

It is interesting to note that the second best performer on this dataset, namely LRSR, also tries to align geometrically source
and target data through both low rank and sparse constraints so that source and target data are interleaved within a novel shared
feature subspace.
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Fig. 7: Accuracy% on the PIE Images Dataset.



JOURNAL OF LATEX 2017 13

E. Convergence and Parameter Sensitivity
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Fig. 8: Sensitivity analysis of the proposed methods: (a) accuracy w.r.t. subspace dimension k of CDDA; (b)accuracy w.r.t.
subspace dimension k of GA-DA; (c) accuracy w.r.t. subspace dimension k of DGA-DA. Four datasets are used, i.e., COIL1,
COIL2, USPS and MNIST.
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Fig. 9: The classification accuracies of the proposed GA-DA and DGA-DA method vs. the parameters α and λ on the selected
four cross domains data sets, i.e., DSLR (D), Webcam (W), COIL1 and COIL2, with k held fixed at 100.

0.00

20.00

40.00

60.00

80.00

100.00

1 2 3 4 5 6 7 8 9 10

CDDA C→A GA-DA C→A 

DGA-DA C→A 

0.00

20.00

40.00

60.00

80.00

100.00

1 2 3 4 5 6 7 8 9 10

CDDA C→W GA-DA C→W 

DGA-DA C→W 

0.00

20.00

40.00

60.00

80.00

100.00

1 2 3 4 5 6 7 8 9 10

CDDA C→D GA-DA C→D 

DGA-DA C→D 

0.00

20.00

40.00

60.00

80.00

100.00

1 2 3 4 5 6 7 8 9 10

CDDA A→C GA-DA A→C 

DGA-DA A→C 

0.00

20.00

40.00

60.00

80.00

100.00

1 2 3 4 5 6 7 8 9 10

CDDA A→W GA-DA A→W 

DGA-DA A→W 

0.00

20.00

40.00

60.00

80.00

100.00

1 2 3 4 5 6 7 8 9 10

CDDA A→D GA-DA A→D 

DGA-DA A→D 

0.00

20.00

40.00

60.00

80.00

100.00

1 2 3 4 5 6 7 8 9 10

CDDA W→C GA-DA W→C 

DGA-DA W→C 

0.00

20.00

40.00

60.00

80.00

100.00

1 2 3 4 5 6 7 8 9 10

CDDA W→A GA-DA W→A 

DGA-DA W→A 

0.00

20.00

40.00

60.00

80.00

100.00

1 2 3 4 5 6 7 8 9 10

CDDA W→D GA-DA W→D 

DGA-DA W→D 

0.00

20.00

40.00

60.00

80.00

100.00

1 2 3 4 5 6 7 8 9 10

CDDA D→C GA-DA D→C 

DGA-DA D→C 

0.00

20.00

40.00

60.00

80.00

100.00

1 2 3 4 5 6 7 8 9 10

CDDA D→A GA-DA D→A 

DGA-DA D→A 

0.00

20.00

40.00

60.00

80.00

100.00

1 2 3 4 5 6 7 8 9 10

CDDA D→W GA-DA D→W 

DGA-DA D→W 

(a)Iterations C→A (b)Iterations C→W (c)Iterations C→D (d)Iterations A→C (e)Iterations A→W (f)Iterations A→D 

(g)Iterations W→C (h)Iterations W→A (i)Iterations W→D (j)Iterations D→C (k)Iterations D→A (l)Iterations D→W 

A
cc

u
ra

cy
(%

) 
A

cc
u

ra
cy

(%
) 

Fig. 10: Convergence analysis using 12 cross-domain image classification tasks on Office+Caltech256 datasets with DeCAF6
Features. (accuracy w.r.t #iterations)

While the proposed DGA-DA displays state of the art performance over 36 DA tasks through six datasets (USPS, MINIST,
COIL20, PIE, Amazon, Caltech), an important question is how fast the proposed method converges (sect.IV-E2) as well as its
sensitivity w.r.t. its hyper-parameters (Sect.IV-E1).
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Fig. 11: Comparisons of baseline domain adaptation methods and the proposed CDDA, GA-DA and DGA-DA method on the
synthetic data
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Fig. 12: Accuracy(%) and Visualization results of the MNIST→USPS DA task. Fig.12(a), Fig.12(b) and Fig.12(c) are
visualization results of MNIST, USPS, MNIST&USPS datasets in their Original data space, respectively. After domain
adaptation, Fig.12(d), Fig.12(e), Fig.12(f) and Fig.12(g) visualize the MNIST&USPS datasets in JDA, CDDA, GA-DA and
DGA-DA subspaces, respectively. Fig.12(h), Fig.12(i), Fig.12(j) and Fig.12(k) show the visualization results of the target domain
USPS in JDA, CDDA, GA-DA and DGA-DA subspaces, respectively. The ten digit classes are represented by different colors.

1) Parameter sensitivity: Three hyper-parameters, namely k, λ and α, are introduced in the proposed methods. k is the
dimension of the extracted feature subspace which determines the structure of low-dimension embedding. In Fig.8, we plot the
classification accuracies of the proposed DA method w.r.t different values of k on the COIL and USPS+MINIST datasets. As
shown in Fig.8, the subspace dimensionality k varies with k ∈ {20, 40, 60, 80, 100, 120, 140, 160, 180, 200}, yet the proposed
3 DA variants, namely, CDDA, GA-DA and DGA-DA, remain stable w.r.t. a wide range of with k ∈ {40 ≤ k ≤ 200}. In our
experiments, we set k = 100 to balance efficiency and accuracy.
λ as introduced in Eq.(17) and Eq.(18) aims to regularize the projection matrix A to avoid over-fitting the chosen shared

feature subspace with respect to both source and target data. α= 1
1+µ as defined in Eq.(22) is a trade-off parameter which

balances LSC and GSC. We study the sensitivity of the proposed GA-DA and DGA-DA methods with a wide range of
parameter values, i.e., α = (0.0001, 0.001, 0.01, 0.1, 0.5, 0.9, 0.99) and λ = (0.0001, 0.001, 0.01, 0.1, 1, 10, 100). We plot in
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Fig.9 the results on D → W and COIL1 → COIL2 datasets on both methods with k held fixed at 100. As can be seen from
Fig.9, the proposed GA-DA and DGA-DA display their stability as the resultant classification accuracies remain roughly the
same despite a wide range of λ and α values.

2) Convergence analysis: In Fig.10, we further perform convergence analysis of the proposed CDDA, GA-DA and DGA-
DA methods using the DeCAF6 features on the Office+Caltech datasets. The question here is how fast a DA method achieves
its best performance w.r.t. the number of iterations T . Fig.10 reports 12 cross domain adaptation experiments ( C → A, C →
W ... D → A , D → W ) with the number of iterations T = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10).

As shown in Fig.10, CDDA, GA-DA and DGA-DA converge within 3∼5 iterations during optimization.

F. Analysis and Verification

To further gain insight of the proposed CDDA, GA-DA and DGA-DA w.r.t. its domain adaptation skills, we also evaluate
the proposed methods using a synthetic dataset in comparison with several state of the art DA methods. Fig.11 visualizes the
original data distributions with 4 classes and the resultant shared feature subspaces as computed by TCA, JDA, TJM, SCA,
CDDA, GA-DA and DGA-DA, respectively. In this experiment, we focus our attention on the ability of the DA methods
to: : (a) narrow the discrepancies of data distributions between source and target; (b) increase data discriminativeness; and
(c) align data geometric structures between source and target. As such, the original synthetic data depicts slight distribution
discrepancies between source and target for the first two class data, wide distribution mismatch for the third and fourth class
data. Fourth class data further depict a moon like geometric structure.

As can be seen in Fig.11, baseline methods, e.g., TCA, SCA, TJM have difficulties to align data distributions with wide
discrepancies, e.g., third class data. JDA narrow data distribution discrepancies but lacks class data discriminativeness. The
proposed variant CDDA ameliorates JDA and makes class data well separated thanks to the introduced repulsive force term but
falls short to preserve data geometric structure (see the fourth moon like class data. The variant GA-DA align data distributions
and preserves the underlying data geometric structures thanks to label smoothness consistency (LSC) and geometric structure
consistency (GSC) but lacks data discriminativeness. In contrast, thanks to the joint consideration of data discriminativeness
and geometric structure awareness, the proposed DGA-DA not only align data distributions compactly but also separate class
data very distinctively. Furthermore, it also preserves the underlying data geometric structures.

The above findings can be further verified using real data through the MNIST→USPS DA task where the proposed DA
methods achieves remarkable results (See Fig.6). Fig.12 visualizes class explicit data distributions in their original subspace and
the resultant shared feature subspace using JDA and the three variants of the proposed DA method, namely CDDA, GA-DA
, DGA-DA, with the same experimental setting.
• Data distributions and geometric structures. Fig.12(a,b,c) visualize the MNIST, USPS, MNIST&USPS datasets in their

Original data space, respectively. As shown in these figures, the MNIST and USPS datasets depict different data
distributions and various data structures. In particular, yellow dots represent digit 2. They show a long and narrow
shape in MNIST (Fig.12(a)) while a circle like shape in USPS (Fig.12(b)). They further display large data discrepancies
across domain (Fig.12(c)) as for all the other classes.

• Contribution of the repulsive force term. Visualization results in Fig.12(h,i,j,k) show that, in comparison with their
respective baseline DA methods, i.e., JDA (Fig.12(h)) and GA-DA (Fig.12(j)), the proposed two DA variants, i.e.,
CDDA(Fig.12(i)) and DGA-DA(Fig.12(k)) which integrate in their model the repulsive force term as introduced in
Sect.III-B3, achieve data discriminativeness in compacting intra-class instances and separating inter-class data, respectively.
As a result, as shown in Fig.6, DGA-DA outperforms GA-DA by 6.94 ↑ points, and CDDA outperforms JDA by 8.94 ↑
points,respectively, thereby illustrating the importance of increasing data discriminativeness in DA.

• Contribution of Geometric Structure Awareness. Visualization results in Fig.12(d,e) show that the JDA and CDDA’s
subspaces fail to preserve the geometric structures of the underlying data manifold. For instance, the long and narrow
shape of the orange dots in the source MNIST domain and the corresponding circle blob orange cloud in the target
USPS domain (Fig.12(c)) are not preserved anymore in the JDA (Fig.12(d)) and CDDA (Fig.12(e)) subspaces. In contrast,
thanks to the geometry awareness constraints, i.e., label smoothness consistency (LSC) and geometric structure consistency
(GSC), as introduced in Sect.III-B4, the two variants of the proposed DA methods, i.e., DA-GA (Fig.12(f)) and DGA-DA
(Fig.12(g)), succeed to preserve the geometric structures of the underlying data, and thereby inherent data similarities and
consistencies of label inference. As a result, DGA-DA outperforms CDDA by 6.11 ↑ points, and GA-DA outperforms
JDA by 8.11 ↑ points. They thus suggest the importance of Geometric Structure Awareness in DA.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel Discriminative and Geometry Aware Unsupervised DA method based on feature
adaptation. Comprehensive experiments on 36 cross-domain image classification tasks through six popular DA datasets highlight
the interest of enhancing the data discriminative properties within the model and label propagation in respect of the geometric
structure of the underlying data manifold, and verify the effectiveness of the proposed method compared with twenty-two
baseline DA methods of the literature. Using both synthetic and real data and three variants of the proposed DA method, we
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have further provided in-depth analysis and insights into the proposed DGA-DA, in quantifying and visualizing the contribution
of the data discriminativeness and data geometry awareness.

Our future work will concentrate on embedding the proposed method in deep networks and study other vision tasks, e.g.,
object detection, within the setting of transfer learning. Our future work will concentrate on embedding the proposed method
in deep networks and study other vision tasks, e.g., object detection, within the setting of transfer learning.
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