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Abstract—Image classification is a popular task in machine
learning and computer vision, but it is very challenging due
to high variations crossing images. Using ensemble methods for
solving image classification can achieve higher classification per-
formance than using a single classification algorithm. However,
to obtain a good ensemble, the component (base) classifiers in
an ensemble should be accurate and diverse. To solve image
classification effectively, feature extraction is necessary to trans-
form raw pixels into high-level informative features. However, this
process often requires domain knowledge. This paper proposes
an evolutionary approach based on genetic programming to
automatically and simultaneously learn informative features and
evolve effective ensembles for image classification. The new
approach takes raw images as inputs and returns predictions of
class labels based on the evolved classifiers. To achieve this, a new
individual representation, a new function set and a new terminal
set are developed to allow the new approach to effectively find
the best solution. More importantly, the solutions of the new
approach can extract informative features from raw images and
can automatically address the diversity issue of the ensembles. In
addition, the new approach can automatically select and optimise
the parameters for the classification algorithms in the ensemble.
The performance of the new approach is examined on 13 different
image classification data sets of varying difficulty and compared
with a large number of effective methods. The results show
that the new approach achieves better classification accuracy on
most data sets than the competitive methods. Further analysis
demonstrates that the new approach can evolve solutions with
high accuracy and diversity.

Index Terms—Genetic Programming; Representation; Feature
Learning; Ensemble Learning; Image Classification

I. INTRODUCTION

IMAGE classification is a popular task in machine learning
and computer vision in recent years [1]. The task of image

classification is to automatically assign each image Xi in
{Xi}Ni=1 with a class label Cj from {Cj}Mj=1 based on the
content in Xi (N is the number of images and M is the
number of classes). The human vision system can easily obtain
or capture information from an image to decide which group
the image is, while a computer can only see matrix or numbers
from the image, which indicates that image classification is
difficult. Despite the success achieved by many techniques
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[2], image classification remains a challenging task due to the
high variations of images, such as in illumination, background,
rotation, deformation, and occultation.

Ensemble methods have been widely used for solving clas-
sification problems [3, 4]. An ensemble consists of multiple
base learners (classifiers) to solve a classification problem [5].
In an ensemble, each classifier is trained using the training
data and a commonly used classification algorithm such as
decision tree (DT) and support vector machines (SVMs) [3, 6].
Then a combination method such as voting and averaging is
used to combine the outputs of classifiers to make a good
prediction. An ensemble often achieves a better generalisation
performance than a single classifier on unseen data [6]. The
performance of an ensemble can be defined as E = E − A,
where E denotes the average of the generalisation errors of
the classifiers and A denotes the average ensemble ambiguity
(diversity) [5, 7]. As indicated by this equation, to obtain a
good ensemble, the classifiers should be accurate and diverse.
In the ensemble building process, the diversity of classifiers is
often considered as a key factor affecting the performance of
ensembles [8]. The diversity indicates that the errors achieved
by the classifiers in the ensemble are uncorrelated, which is
not straightforward to measure. Many techniques have been
developed to build a set of diverse classifiers, such as bagging
and boosting, which use different data sets to train each
classifier in the ensemble [5, 9]. Other effort can be seen in
[10, 11]. However, the problem of diversity is still an open
issue in ensemble learning [8].

Using ensemble methods to solve image classification, a
key process is to extract a set of informative features from
the images as the raw pixel values are often not effective.
Then the extracted features are fed into a set of classification
algorithms to train the classifiers of an ensemble [12]. Feature
extraction transforms low-level raw pixel values of images
into high-level informative features, which are discriminative
for classification. However, due to high image variations and
the high dimensionality of the image data, it is difficult
to obtain discriminative and invariant features from images.
Although many methods such as local binary patterns (LBP)
[13], histogram of orientated gradients (HOG) [14] and scale-
invariant feature transform (SIFT) [15] have been proposed,
they are limited to particular image domains and need domain
knowledge when applying them to new domains. Feature
learning techniques can address these issues by automatically
learning effective features from raw images with the goal
of achieving a high classification performance. Typical work
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can be seen in [16, 17]. However, since image classification
involves a large range of domains, i.e., face images, texture
images, scene images, and other object images, to learn
informative features for dealing with different types of image
classification tasks is still challenging.

As an evolutionary computation (EC) technique, genetic
programming (GP) aims to automatically find solutions in
the form of programs for solving particular problems [18].
GP has been used to construct ensembles for classification
since each GP program can be a classifier for binary or multi-
class classification [19], such as using bagging or boosting
methods [9]. Other GP-based ensemble methods can be seen
in [20, 21, 22]. However, most methods cannot be directly
used for tackling with image classification tasks due to the
necessity and difficulty of feature extraction.

On the other hand, many GP-based methods have been
proposed to automatically learn features for image classifi-
cation, such as in [16, 17, 23, 24]. The learnt features are
often through multiple levels of transformation, i.e., linear and
nonlinear, in a tree-based representation. Typically, one high-
level feature is constructed/learnt by GP from a raw image and
can be easily used for binary image classification, such as in
[23, 24]. However, most image classification tasks are multi-
class and one feature is not effective for solving them. GP has
been applied to learn multiple features for image classification
and shown a promise [16, 17]. But most methods are limited to
particular image domains, such as texture classification [17].
In addition, these methods only employ a single classifier for
classification. Therefore, their classification performance could
be further improved by using ensemble classifiers.

With a flexible tree-based representation, it is possible
to integrate the processes of the feature learning and the
ensemble learning into a single GP tree to automatically
evolve effective solutions for image classification from raw
images. Our previous work [25] developed an automated
ensemble framework using GP (EGP) for image classification
and achieved promising results on different types of image
classification tasks. The EGP method can learn features using
filtering and pooling operators and use these features to build
classifiers of an ensemble. The main advantage of EGP is
the significant reduction of domain knowledge requirement
in the whole process, where the selections of image-related
operators, classification algorithms and combination meth-
ods are automatically conducted and optimised during the
evolutionary learning process. However, EGP learns features
through filtering and pooling, which may not be effective
for complex image classification such as scene classification.
Furthermore, EGP cannot automatically tune parameters for
the classification algorithms, which is not flexible and efficient
for different image classification tasks.

The overall goal of this paper is to develop a new effective
GP-based approach by addressing the limitations of EGP to
automatically learn effective features and evolve ensembles
for image classification. The proposed approach is called im-
proved EGP (IEGP). To achieve this goal, a new representation
with an input layer, a filtering & pooling layer, a feature
extraction layer, a concatenation layer, a classification layer,
a combination layer, and an output layer will be developed

in IEGP. Each functional layer, i.e., except for the input and
output layers, will have a number of functions to allow IEGP
to automatically evolve combinations of them to form the solu-
tions. Each solution will produce the combined predictions of
class labels for the input images. The proposed approach will
be evaluated on 13 data sets of varying difficulty, including
large data sets with noisy. The performance of IEGP will be
compared with a large number of benchmark methods. A deep
analysis will be conducted on IEGP to show its effectiveness.

The characteristics of the new IEGP approach can be
summarised in the following five aspects.

1) A new multi-layer individual representation is developed
in IEGP to allow it to automatically and simultaneously
learn features and evolve ensembles for image classi-
fication. The new representation has seven layers with
different functionalities, which make it different from
the current multi-layer representations of GP, such as in
[16, 23]. The new representation allows IEGP to produce
solutions of ensembles from raw images without human
intervention and domain expertise.

2) IEGP can learn high-level features through multiple
transformations, i.e., filtering, pooling, complex feature
extraction functions, and concatenation. The learnt fea-
tures are invariant to certain variations such as rotation,
which can improve the classification performance.

3) IEGP is able to automatically select and optimise the pa-
rameters for the classification algorithms in the evolved
ensemble. The important parameters, such as the number
of trees in random forest (RF) and the regularisation
parameter in logistic regression (LR), are designed as
terminals of IEGP with a predefined range to allow them
to be optimised during the evolutionary learning process.
This leads to the evolved ensembles containing effective
and efficient classifiers for producing promising results.

4) IEGP can automatically address the diversity issue when
building the ensembles, where the strategies belong
to input feature manipulation and learning parameter
manipulation [6].

5) The evolved solutions of IEGP can be easily visualised
as trees, which provide high interpretability on the target
problems, i.e., what types of features are learnt, what
classification algorithms are used to build the ensemble,
and why they produce good results.

II. BACKGROUND AND RELATED WORK

A. GP and Strongly Typed GP

GP is an EC technique and is able to evolve computer
programs for solving problems [18]. Similar to genetic al-
gorithms (GAs), GP has an evolutionary learning process to
search for the best individual/solution. Different from GAs,
each individual in GP is commonly represented by a tree,
having the functions as internal nodes and terminals as leaf
nodes. This representation needs a tree generation method,
i.e., full, grow, and ramped half-and-half, to build the initial
population, and the subtree crossover and subtree mutation for
crossover and mutation, respectively.
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Classical tree-based GP is effective for dealing with one
data type, such as the commonly used functions, +,−,×,
and protected % operate on floating-point numbers. The final
output of a standard GP tree is a number as well. However,
for some tasks, multiple data types are often involved, which
requires a GP method having the ability to deal with multiple
data types. Strongly typed GP (STGP) [26] has been proposed
for this purpose. STGP defines an input type and an output
type to each function and defines an output type to each
terminal. When building a GP tree using the functions and
terminals, each node of the tree must obey the type constraint
that the types of arguments of a node must equal to the defined
ones. To satisfy the type constraint and to integrate functions
and terminals into trees, a program structure is often needed.
On image data, STGP is more popular than GP since it can
deal with multiple data types such as arrays.

B. Representation of GP on Image Data

Liu et al. [27] developed a GP-based method to auto-
matically learning spatio-temporal representations from 3D
sequences for action recognition. This method has a new tree
representation with an input tier, a filtering tier, a max-pooling
tier, and an output tier to learn informative features from 3D
sequences. In [17], a novel GP method was proposed for
texture description, where a new root node was developed to
transform the outputs of the children nodes into binary codes.
Then the binary codes are transformed into decimal numbers
and the histogram of the decimal numbers were used as
features. The features extracted in this way have achieved bet-
ter classification performance than the other texture features.
Bianco et al. [28] developed a GP-based method for simultane-
ous video change detection algorithm selection, combination
and processing. This method uses change detection algorithms
as functions in the trees. However, these representations are
task-specific and cannot be directly used for other tasks.

Multi-tier or multi-layer representation of GP has been
found in the literature for classifying images from raw pixels.
A general image classification process often contains the pro-
cesses of feature extraction, feature selection and classification.
These processes can be integrated into a GP tree using a multi-
tier or multi-layer representation to evolve solutions to address
them simultaneously. Typically, each functional layer has a
number of functions available for GP to search for them to
build the trees. Atkins et al. [23] developed a multi-tier GP
(named as 3TGP in [24]) for binary image classification. The
3TGP method has an image filtering tier, an aggregation tier
and a classification tier, which performs image filtering, region
detection, feature extraction, feature construction, and classi-
fication in a single tree. Bi et al. [29] proposed a multi-layer
GP method to achieve region detection, feature extraction,
feature construction layer, and classification simultaneously.
However, these representations are only effective for solving
binary image classification tasks because the output of each
GP tree is a floating-point number, which is naturally suitable
for binary classification. Therefore, very few work on GP
with a multi-layer representation has been proposed for multi-
class image classification. Shao et al. [16] developed a multi-
objective GP method with a multi-layer representation to

learn features that are transformed by multiple filtering and
pooling functions. This method has shown promising results
on four different image classification tasks, including difficult
scene classification. Existing work shows that using GP to
effectively solve image classification, the representation is
essential. A good representations of GP can achieve promising
performance, such as in [16, 17]. However, most existing
representations are only effective for particular tasks. When
a new task, i.e., ensemble learning, is integrated in GP, it is
necessary to develop a new representation.

C. Image Feature Extraction and Learning

Many effective feature extraction methods have been de-
veloped to extract informative features from images. Among
the existing methods, the most popular ones include LBP
[13], SIFT [15] and HOG [14]. LBP [13] is a simple but
effective method for texture feature extraction. The standard
LBP method labels each pixel in an image using a decimal
number calculated by quantizing the relationship between the
pixel and its neighbours. The histogram of the LBP labels is
often extracted as features for dealing with particular tasks
such as texture categorising [13, 17]. To deal with certain
variations, LBP variants have been developed, e.g., uniform
LBP (uLBP), completed LBP (CLBP) and local derivative
pattern (LDP) [1]. The SIFT method [15] is a local feature
description method by detecting keypoints from an image and
then extracting features from the detected keypoints. To reduce
the computational cost, a dense SIFT method [30] has been
developed to extract histogram features of gradient magnitude
and direction for the whole image instead of each detected key-
point. The HOG method [14] can extract histogram features of
gradient orientation in a different way compared with SIFT.
It extracts locally normalised histogram features of gradient
orientation in a dense overlapping grid. The features extracted
by HOG are known as shape and appearance features.

Compared with feature extraction methods, feature learning
methods can automatically and dynamically learn more infor-
mative and meaningful features for solving particular tasks.
Convolutional neural networks (CNNs) are typical examples
following in this category, where image features are learnt via
multiple layers of non-linear transformation. Li and Gong [31]
proposed a self-paced CNN (SPCN) by assigning weights to
the training samples during the learning process in order to
enhance the learning robustness of CNNs. Several variants of
CNNs have been developed, such as scattering convolution
networks (ScatNet) [32] and principal component analysis
network (PCANet) [33], where the convolution filters are
generated using different ways. In [34], a feedforward con-
volutional conceptor neural network (FCCNN) was developed
for image classification. The contractive auto-encoder (CAE)
was employed by Rifai et al. [35] for digits recognition.

EC-based methods have been used in this process to obtain
effective features for solving particular tasks. Fu et al. [36]
developed a GP-based method to evolve solutions that can
detect edge features from the image. Albukhanajer et al. [37]
applied an evolutionary multiobjective algorithm to optimise
the functionals in the trace transform to extract robust and
invariant image features for object classification. Wei and Tang
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[38] developed a GA-based method to learn conceptual shape
representation for object recognition. The contour of the shape
is preprocessed and the important information is extracted and
encoded in the genes, which allows GA to search for the
optimal ones. Mistry et al. [1] proposed a micro-GA embedded
particle swarm optimisation (PSO) to optimise the extracted
horizontal and vertical neighborhood pixel comparison LBP
(hvnLBP) features for facial expression classification.

D. Ensemble Methods for Classification

Ensemble methods have been widely applied to classifica-
tion tasks in machine learning. Nag and Pal [39] proposed
a multiobjective GP algorithm to simultaneous feature se-
lection and ensemble evolving. In this algorithm, the multi-
class classification problem is decomposed to multiple binary
classification tasks and an ensemble of GP programs is created
for each task. A detailed review on ensemble methods for
the class imbalance problem can be found in [3], where the
main methods include cost-sensitive boosting, booting-based,
bagging-based, and hybrid methods. Yu et al. [4] developed
a new feature selection-based semi-supervised framework for
classification. In the ensemble, each classifier is trained on a
subspace selected by a feature selection method.

To employ an ensemble method for image classification of-
ten needs a different design since before the general classifier
training process the feature extraction process is needed to
extract meaningful features from raw images. Dittimi and Suen
[12] used CNNs to extract image features and used principal
component analysis (PCA) to reduce the dimension of the
features. Then different base learners such as RF, DT and
SVMs are selected and trained on the features. Finally, these
classifiers are combined to obtain the predictions.

EC-based ensemble methods have seldom been proposed
to solve image classification. Majid et al. [40] proposed a
GP-based method to find optimal combinations (ensembles)
of SVM classifiers for gender classification from frontal face
images. This method achieved better results than using single
SVM classifier with different kernel functions. Other GP or
EC-based methods can be found to solve classification but
not image classification, such as [20, 39]. To the best of
our knowledge, [25] firstly introduced a GP-based automated
ensemble learning framework for image classification. This
method can automatically and simultaneously learn features
and build ensembles from images, which is different from
the methods in [39] requiring manually extracted image fea-
tures. However, the method in [25] has shown an inferior
performance on large image classification data sets, which
may due to the learnt features are not effective. In addition,
the method cannot automatically select parameters for the
classification algorithms, which is not flexible and efficient
for different image classification tasks. Therefore, this paper
significantly improves the EGP method in [25] by developing
a new individual representation, a new function set and a new
terminal set to automatically learn meaningful features and
select suitable parameters for classification algorithms to build
ensembles for image classification.

III. THE NEW APPROACH

The general process of traditional ensemble methods for
image classification is shown in Fig. 1. The overall process
includes feature extraction, base learners/classifiers selection,
training and combination [12]. To improve the connection
of each process, IEGP is proposed in this paper to auto-
matically and simultaneously learn informative features and
evolve effective ensembles for image classification. As shown
in Fig. 1, the inputs of an IEGP solution are images and the
outputs are class labels. All the processes such as feature
extraction and base learner selection are within a single
IEGP solution/program. To achieve this, a novel individual
representation, a new function set and a new terminal set
are developed in IEGP. This section will describe these three
important components of IEGP. Then it outlines the overall
algorithm of IEGP for image classification.

Raw Images Feature Extraction Base Classifiers Class labels

Raw Images An IEGP solution Class labels

Traditional Ensemble Methods for Image Classification 

The New Approach for Image Classification 

Fig. 1. The outlines of the traditional ensemble methods [12] and the new
approach (IEGP) for image classification.

A. Novel Individual Representation

GP has a tree-based representation, which is known for
variable lengths of evolved solutions. The individual rep-
resentation of IEGP is based on STGP [26], where each
function has input and output types, and each terminal has
an output type. To define the type constraints, a new program
structure is developed, as shown in Fig. 2. The new program
structure has the input, filtering & pooling, feature extraction,
concatenation, classification, combination, and output layers.
Each layer except for input and output has different functions
for different purposes. The input layer represents the input of
the IEGP system, such as the terminals. The filtering & pooling
layer has filtering and pooling functions, which operate on im-
ages. The feature extraction layer extracts informative features
from the images using existing feature extraction methods.
The concatenation layer concatenates features produced by its
children nodes into a feature vector. The filtering & pooling,
feature extraction and concatenation layers belong to the
process of feature learning, where informative features are
learnt from raw images. The learnt features can be directly fed
into any classification algorithm for classification. Therefore, a
classification layer is connected with the concatenation layer.
The classification layer has several classification functions that
can be used to train the classifiers using the learnt features.
The combination layer has several combination functions
to combine the outputs of the classification functions. The
classification and combination layers belong to the process
of ensemble learning, where the classification functions are
selected and trained, and the outputs of the classifiers are
combined. Finally, the output layer performs the plurality
voting on the outputs produced by the combination layer to
obtain the combined predictions of the class labels.
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Fig. 2. The new program structure of IEGP and an example solution/program that can be evolved by IEGP. The example program is Comb3(
SVM(FeaCon2(uLBP (X train), SIFT (LoG1(Med(X train)))), Y train, 1), RF (FeaCon2(HOG(SobelX(X train)), SIFT (LBP−F (
Mean(X train)))), Y train, 200, 50)), LR(FeaCon3(HOG(X train), SIFT (MaxP (HOG(X train), 2, 2)), uLBP (X train)), Y train, 1)

Compared with the program structure of EGP in [25], the
new program structure of IEGP has one more layer, i.e.,
the feature extraction layer. The features learnt by EGP are
from the filtering and pooling operations, which may not be
robust to variations such as scale and rotation. To improve
the effectiveness of the learnt features, a feature extraction
layer is inserted between the filtering & pooling layer and the
concatenation layer. The feature extraction layer utilises three
well-developed methods, i.e., LBP, SIFT, and HOG, to extract
invariant and informative features from images, which will be
introduced in Section III-B.

An example solution of IEGP is shown in Fig. 2 to further
demonstrate the new representation. Fig. 2 shows that different
layers have different functions, which will be introduced in
the following subsections. In the feature learning layers, i.e.,
the filtering & pooling layer and the feature extraction layer,
the image-related operators, such as LoG1, HOG and SIFT ,
are employed. The classification layer has functions such as
SVM , RF and LR, which have new additional leaf nodes
compared with that in EGP. These leaf nodes are important
parameters of the classification functions. In the combination
layer, new combination functions, e.g., Comb3, are used to
combine the predicted class labels in a flexible way. Therefore,
the output of the example program in Fig. 2 is the combined
output of the SVM , RF and LR classifiers.

1) Diversity of Ensembles: There are four commonly used
strategies to enhance the diversity of an ensemble [6], (1)
data sample manipulation, (2) input feature manipulation, (3)
learning parameter manipulation, and (4) output representation
manipulation. The ensembles evolved by IEGP can automati-
cally address the diversity issue, where the strategies are the in-
put feature manipulation and learning parameter manipulation.
The new program structure allows that in an evolved program
different classification functions have different tree branches,
as the example program shown in Fig. 2. The different tree
branches with functions can produce various features to form
the inputs of the classification functions, which is the input fea-
ture manipulation strategy. The parameters of the classification
functions are developed as terminals of IEGP, which allows
IEGP to automatically fine-tune the parameters during the
evolutionary learning process. This is the learning parameter
manipulation. In addition, the new program structure allows
IEGP to evolve ensembles of the same or different classifiers,

which is more flexible than the other ensemble methods with
fixed classifiers, such as in [6].

2) Flexibility of Representation: The new program structure
enables IEGP to evolve programs with various tree sizes
(nodes) and depths. In the new representation, the input layer
and the output layer have a fixed tree depth of one. The
feature extraction layer transforms images into features, which
is irreversible data transformation, so that the depth of this
layer is one. Similarly, the depth of the classification layer
is one, where the inputs are transformed into class labels.
The remaining layers, i.e., the filtering & pooling layer,
the concatenation layer, and the combination layer, have a
flexible tree depth, which indicates that the tree depth can
be automatically adjusted according to the problems. This
maintains the flexibility of the evolved solutions by IEGP.
Another point is that the filtering & pooling layer may not
be necessary for a particular task. Therefore, the filtering &
pooling layer is developed as a flexible layer, which indicates
that it may be or not be in the evolved IEGP programs. As
shown in the example program in Fig. 2, the inputs X train
can be directly fed into the feature extraction functions uLBP
and HOG without any filtering & pooling operations.

B. New Function Set

The new function set has a number of different functions
for different purposes. The functions for each layer are sum-
marised in Table I. The introduction of these functions is from
the bottom layer to the top layer.

TABLE I
NEW FUNCTION SET OF IEGP

Layer Function
Filtering & Pooling Gau, GauD, Gabor, Lap, LoG1, LoG2, Sobel,

SobelX , SobelY , LBP−F , HOG−F , Med,
Mean, Min, Max, Sqrt, W−Add, W−Sub,
ReLU , MaxP

Feature Extraction SIFT , HOG, uLBP
Concatenation FeaCon2, FeaCon3, FeaCon4
Classification LR, SVM , RF , ERF
Combination Comb3, Comb5, Comb7

1) Filtering & Pooling Functions: The filtering & pooling
functions operate on arrays. They take a number of images as
inputs and conduct corresponding operation on each image.
The filtering functions keep the size of the output images
consistent with the input size. The pooling function reduces
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the size of images by subsampling maximum values from
a small window of the image. In IEGP, the filtering and
pooling functions are the same as that in EGP [25]. Gau
is the Gaussian filter generated by a 2D Gaussian func-
tion Gau(x, y) = 1

2πσ2 exp[−x
2+y2

2σ2 ], where the standard
deviation σ is a terminal of IEGP. GauD represents the
derivative of the Gaussian function with the standard deviation
σ in the orders (o1, o2) along the X axis and the Y axis,
respectively. The three parameters are the terminals of IEGP.
The kernel of the Gabor function is generated according
to Gabor(x, y) = Gau(x, y) ∗ sin[( 2π(cosθx+sinθy)λ + ψ)].
The frequency f ( 1λ ) and the orientation θ are developed
as terminals of IEGP. Lap is the Laplacian filter, which is
commonly used to detect the flat area. In the case that the
results produced by Laplacian are noisy, the Laplacian of
Gaussian filter is used to convolve the image produced by
Laplacian using the Gaussian filter. LoG1 and LoG2 are the
Laplacian of Gaussian filters, where the σ for the Gaussian
function is 1 and 2, respectively. SobelX , SobelY and Sobel
conduct edge detection on the images. HOG−F and LBP−F
produce the HOG and LBP images with informative features.
Med, Mean, Min, and Max convolve images by returning
the median, mean, minimum, and maximum values of each
3× 3 sliding window, respectively. Sqrt returns the sqrt root
of each pixel value and is protected by returning 1 if the
pixel value is negative. W−Add and W−Sub take two images
and two weights as inputs and calculate the weighted sum or
subtraction of the images. In the case that the input images
have different sizes, the two functions overlap the two images
at the left top point and cut them to have the same sizes for sum
or subtraction. ReLU returns 0 if the pixel value is negative,
otherwise it returns the pixel value.

2) Feature Extraction Functions: Three commonly used
feature extraction methods, uLBP [13], HOG [14] and SIFT
[15], are developed as functions for IEGP. These functions
transform the input image into a set of effective features, which
are invariant to certain variations. The uLBP function extracts
59 histogram features of the LBP image. In uLBP , the radium
is set to 1.5 and the number of neighbours is set to 8 [13].
The HOG function extracts the mean value of each 4 × 4
grid from the HOG image to form the feature vector. The
parameters for the HOG method are the same as that in [14].
The SIFT function produces 128 features for each image by
taking the image as a keypoint [30]. It is noticeable that the
three functions produce various numbers of features.

3) Concatenation Functions: The concatenation functions
in IEGP are different from that in the EGP method [25]. The
FeaCon2, FeaCon3 and FeaCon4 functions convert two,
three and four vectors as a vector by concatenating them,
respectively. The concatenation functions can take the feature
extraction functions or the concatenation functions as their
children nodes, which indicates that a combination of features
is produced by each concatenation function.

4) Classification Functions: Any commonly used clas-
sification algorithm can be developed as functions in the
classification layer for IEGP. To narrow the search space,
the previous EGP method [25] employs six classification
algorithms, LR, k-nearest neighbour (KNN ), SVM , RF , ex-

tremely randomised trees (ERF ), and AdaBoost, according
to [41]. However, since KNN is an instance-based method
and is computationally expensive when the training data is
large, the KNN function is not employed in IEGP. The
AdaBoost method achieves an inferior performance on image
classification [25] so that it is removed from the function set.
Therefore, only four classification functions are employed in
IEGP. They are LR, SVM , RF , and ERF , including linear
classification methods and tree-based classification methods.
Note that RF and ERF are ensemble methods and the IEGP
approach can build ensembles of ensembles.

The previous EGP method fixes the parameters for the
classification functions, which is not effective and efficient for
solving different tasks. Therefore, the key parameters for LR,
SVM , RF , and ERF are developed as terminals of IEGP to
allow their values to be automatically generated or optimised
during the evolutionary process. These key parameters and
their ranges are introduced in Section III-C.

5) Combination Functions: The previous EGP method [25]
conducts voting multiple times, which is computationally
expensive. To address this, three new functions are developed
in IEGP to combine the classifiers in an effective way. The
functions are Comb3, Comb5 and Comb7, which take 3,
5 and 7 class labels as inputs and concatenate these labels
to form the output, respectively. These functions can be root
nodes or internal nodes of a GP tree, which represents different
ways of combining the classifiers, as shown in Fig. 3. In the
left example (Ensemble 1) of Fig. 3, the Comb3 function is
used as the root node. The inputs for Comb3 are 1 from
SVM , 1 from RF , and 0 from LR. The Comb3 function
combines these inputs and returns 110. In the right example
(Ensemble 2) of Fig. 3, Comb3 is an internal node and
Comb5 is the root node. The outputs of Comb3 are 012
and the outputs of Comb5 are 31001221 from the nodes of
SVM, RF, Comb3, ERF , and LR. After obtaining the
outputs from the root node, the plurality voting is conducted
to produce the predicted class label for an instance/image. As
shown in the Fig. 3, the final output (class label) of Ensemble
1 is 1 (from 110) and the final output (class label) of Ensemble
2 is 1 (from 3101221).

SVM RF

Comb3

LR

11 0

110

SVM RF

Comb5

SVM RF LR

Comb3

1 0 123

1 20

3101221

1

Ensemble 1 Ensemble 2

Voting
1

Voting

ERF LR

2 1

Fig. 3. Example ensembles with the new Comb3 and Comb5 functions as
root nodes and internal nodes.

C. New Terminal Set

The terminal set represents the inputs of the IEGP system.
Table II lists the terminals and their ranges of IEGP. The
X train = {Xi}Ni=1 represents N input training images and
the Y train = {Yi}Ni=1 represents the class labels of the N
images. In X train, Xi represents an image of size M × L,
where the pixel values in the image are in the range of [0, 1].
In Y train, Yi is an integer representing the class label. The
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σ, o1, o2, θ, n1, n2, k1, and k2 terminals are the parameters for
particular functions in the filtering & pooling layer and their
values are in the commonly used ranges, respectively [25].

TABLE II
TERMINAL SET

Terminal Type Description
X train Array N training images with a size of M × L
Y train Array The class labels of N training images
σ Integer The standard deviation of the Gaussian filter in the

Gau and GauD functions. Its range is {1, 2, 3}
o1, o2 Integer The orders of the Gaussian derivatives. They are in

range {0, 1, 2}
θ Float The orientation of the Gabor function. It is in the

range of [0, 7π/8] with a step of π/8 [42]
f Float The frequency of the Gabor function. It equals to

(π/2)/(
√
2
v
), where v is an integer in the range of

[0, 4] [42]
n1, n2 Float The parameters for the W-Add and W-Sub functions.

They are randomly generated from the range of [0, 1)
k1, k2 Integer The kernel size for MaxP . They are in range {2, 4}
C Integer The penalty term/parameter in LR and SVM is

10C , where C is in the range of [−2, 5] according
to [43]

NT Integer The number of trees in RF and ERF . It is in the
range of [50, 500] with a step of 10

MD Integer The maximum tree depth of the decision tree in RF
and ERF . It is in the range of [10, 100] with a step
of 10

The important parameters for the classification functions
are designed as terminals of IEGP. The parameters are C,
NT and MD. The C terminal is an integer and is related
to the penalty term/parameter for the classification functions
LR and SVM . The range for C is set to [−2, 5] [43],
resulting the penalty term/parameter (10C) in the range of
{10−2, 10−1, . . . , 104, 105}. The number of decision trees
and the maximum tree depth are two important parameters for
RF and ERF according to [6]. Therefore, they are developed
as terminals, NT and MD. The values for NT is in the range
of [50, 500] with a step of 10 and the values for MD is in
the range of [10, 100] with a step of 10. The maximum values
for NT and MD are set according to that in [6]. To reduce
the computational cost, a smaller NT and MD are desired to
be found for RF and ERF . In addition, a step of 10 is used
to avoid a large search space of IEGP.

D. Overall Algorithm

With the new program structure, the new function set and
the new terminal set, IEGP can automatically learn features
and ensembles for image classification. The overall algorithm
of IEGP is described in Algorithm 1. The flowchart of the
overall algorithm (include the training and test processes) is
shown in Fig. 4.

The IEGP approach starts with randomly initialising the
population P0 using the ramped half-and-half method. Each
individual in P0 is evaluated by a fitness function. During the
evolutionary learning process (at generation g), the elitism,
subtree crossover and subtree mutation operators are used to
create a new population Pg . The new Pg is then evaluated.
When g equals to the maximum number of generations, the
evolutionary learning process stops and the best individual
(ensemble) is returned as the output.

Algorithm 1: Framework of IEGP
Input : X train: N training images; Y train: the class labels

of N training images.
Output : Best Individual: the best program tree.

1 P0 ← Initialise a population based on the new representation, the
new function set and the new terminal set;

2 g ← 0;
3 Cache Table← ∅;
4 for each individual p in P0 do
5 fp ← Evaluate p using the fitness function
6 end
7 Cache Table← P0;
8 while g < G do
9 I ← Best individuals of Pg using elitism operator;

10 S ← Selected individuals from Pg by tournamanet selection;
11 Og+1 ← Offspring generated from S using subtree crossover

and subtree mutation;
12 for each individual o in Og+1 do
13 if o in Cache Table then
14 fo ← the fitness value of o in Cache Table;
15 else
16 fo ← Evaluate o using the fitness function;
17 end
18 end
19 Pg+1 ← Og+1 ∪ I;
20 Update Best Individual and Cache Table;
21 g ← g + 1;
22 end
23 Return Best Individual.

Data set

Initial population Terminate?
Generate new 

solutions/individuals
 using GP operators 

Evaluation
No

Yes

Training set

Test set

Best individual Accuracy of the test set

Training

Test

Fig. 4. The flowchart of the overall IEGP algorithm. It includes the flowchart
of the training and test processes.

During the evolutionary learning process, a subtree caching
method is used to reduce the evaluation time since GP is
known of computationally expensive on image data [44]. A
Cache Tabel is used to store individuals and their fitness
values. At generation 0, the Cache Table stores the P0 with
fitness values. At generation g, the Cache Table stores the
best individuals of the past generations and all the individuals
in generation g−1 [44]. To evaluate individual o at g (g > 1),
a search is conducted in Cache Table to check whether o is
evaluated before. If o is in the Cache Table, the fitness value
is directly assigned to o, otherwise, o is evaluated using the
fitness function. Generally, any individuals can be stored in
Cache Table but a tradeoff between the searching time and
the evaluation time for an individual should be considered.
Therefore, in IEGP, the size of Cache Table is set to 5×Np
(Np is the population size), which is the same as that in [25].

1) Training Process and Fitness Function: In the training
process of IEGP, the training data X train and Y train are
fed into the IEGP system. Since the classification functions
in each IEGP tree/individual have a training process. We
employ stratified k-fold cross-validation on the training set
(X train and Y train) to build and evaluate the classifier in
the training process of IEGP. For each classification function
in the evolved IEGP tree, each time k−1 folds are used to
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train the classifier and the remaining one fold is used to test
the classifier. The predicted class labels for the one fold are
recorded. This process repeats k times to obtain the predicted
class label for each instance in X train. The value of k is
set to 3 according to [6]. The predicted class labels from
different nodes (classification functions) are then combined by
the combination functions and voted by the plurality voting to
form the output Y predict.

The fitness function for IEGP is the classification accuracy,
which is the percentage of the number of correctly classified
images out of the total number of images in the training set.
In IEGP, the classification accuracy is calculated according to
Y predict and Y train.

2) Test Process: The test process is to evaluate the best
IEGP tree on an unseen data set. In this process, the clas-
sification algorithms in the best IEGP tree are trained using
the transformed X train and Y train without k-fold cross-
validation (X train were transformed into features by certain
nodes in the IEGP tree). Then the IEGP tree, which is an
ensemble of trained classifiers, is applied to the unseen data
X test to obtain the class labels. Based on the class labels,
the accuracy of the test set is calculated and reported.

IV. EXPERIMENT DESIGN

A number of experiments have been conducted to show
the effectiveness of the new approach. The detailed design
of experiments is described in this section.

A. Data Sets

To show the performance of the proposed approach, 13
well-known benchmark data sets of varying difficulty are
employed in the experiments. Nine data sets are the same as
that employed in [25]. Besides the nine data sets, four new data
sets with a large size of training and test data are employed
to conduct experiments. Therefore, in the experiments, 13
data sets are used, which are FEI 1 [45], FEI 2 [45], JAFFE
[46], ORL [47], KTH (KTH-TIPS2) [48], FS (13 natural
scene categories) [49], MB (mnist-basic) [50], MRD (mnist-
rot) [50], MBR (mnist-back-rand) [50], MBI (mnist-back-
image) [50], Rectangle [50], RI (rectangle-image) [50], and
Convex (convex sets) [50]. These data sets include a broad
variety of image classification tasks, i.e., facial expression
classification: FEI 1, FEI 2 and JAFFE; face recognition:
ORL; texture classification: KTH; scene classification: FS;
and object classification: MB, MRD, MBR, MBI, Rectangle,
RI, and Convex. In the object classification tasks, different
image variations are included, such as the random background
in MBR and RI, rotations in MRD, and additional image
background in MBI. The variety of image classification tasks
and the image variations are two main considerations of
selecting these benchmark data sets, which can be employed to
comprehensively investigate the performance of the proposed
approach on different types of image classification tasks.

Table III lists the detailed information of the 13 data sets.
To simplify, all the data sets are numbered. The images of the
data sets 1-6 are resized or converted to gray-scale images in
order to reduce the computational cost. Figures 5 - 7 show

several example images of the 13 data sets. The data sets 1-6
are split using a proportion to form the training set and the
test set. The proportion is set according to the size of the data
set to obtain a balanced training set. The number of training
images per class of the data sets 1-6 is shown in the bracket
of Table III. In contrast, data sets 7-13 are public data sets
and have the separated training and test sets as listed in Table
III, which can be directly used in experiments 1.

TABLE III
BENCHMARK DATA SETS

No. Data Set Image Size Training Set
Size

Test Set
Size

#Class

1 FEI 1 60× 40 150 (75) 50 2
2 FEI 2 60× 40 150 (75) 50 2
3 JAFFE 55× 55 140 (20) 73 7
4 ORL 50× 55 240 (6) 160 40
5 KTH 50× 50 480 (48) 330 10
6 FS 55× 55 1300 (100) 2559 13
7 MB 28× 28 12000 50000 10
8 MRD 28× 28 12000 50000 10
9 MBR 28× 28 12000 50000 10
10 MBI 28× 28 12000 50000 10
11 Rectangle 28× 28 1200 50000 2
12 RI 28× 28 12000 50000 2
13 Convex 28× 28 8000 50000 2

         FEI_1                            FEI_2                                                                          ORL                                                        

                              JAFFE                                                                KTH                                                      FS

Fig. 5. Example images from the FEI 1, FEI 2, JAFFE, ORL, KTH, and FS
data sets.

 0         4  1         6  5         9  7         8

Fig. 6. Two example images from the MB, MRD, MBR, and MBI data sets,
respectively. The class label of each image is listed below the image.

Fig. 7. Eight example images from the Rectangle, RI, and Convex data sets,
respectively. Each row shows the images in one class.

B. Benchmark Methods

A large number of effective algorithms are used as bench-
mark methods for comparisons to show the effectiveness of
IEGP. Since the data sets 7-13 have public training and test
sets, the test accuracy reported in literature can be directly used
for comparisons without reimplementation of the methods. We
have collected these results from corresponding references on
data sets 7-13. Therefore, there are 19 comparison methods on
data sets 7-13, i.e., SVM+RBF [50], SVM+Poly [50], SAE-
3 [35], DAE-b-3 [35], CAE-2 [35], SPAE [51], RBM-3 [35],
ScatNet-2 [32, 33], RandNet-2 [33], PCANet-2 (softmax) [33],
LDANet-2 [33], NNet [50], SAA-3 [50], DBN-3 [50], FCCNN

1The training and test sets of data sets 7-13 can be download from http:
//www.iro.umontreal.ca/∼lisa/twiki/bin/view.cgi/Public/PublicDatasets

http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/PublicDatasets
http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/PublicDatasets
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[34], FCCNN (with BT) [34], SPCN [31], EGP [25], and
EvoCNN [52]. Note that most of these methods are neural
network-based methods and parameter tuning was conducted
in some methods to obtain a good classification performance.

For the data sets 1-6, we use 13 different benchmark
methods for comparisons. The 13 benchmark methods include
traditional image classification methods, where the aim is
to comprehensively investigate whether IEGP can learn in-
formative features and evolve effective ensembles for image
classification. These benchmark methods are six classification
algorithms using raw pixels, i.e., SVM, KNN, LR, RF, Ad-
aBoost, and ERF, four SVM methods using different features,
i.e., uLBP+SVM, LBP+SVM, HOG+SVM, and SIFT+SVM,
two CNNs, i.e., CNN-5 and CNN-8, and the previous EGP
method [25]. The SVM, KNN, LR, RF, AdaBoost, and ERF
methods take raw pixels as inputs and the classifiers are trained
for classification. The uLBP+SVM, LBP+SVM, HOG+SVM,
and SIFT+SVM methods use uLBP, LBP, HOG, and SIFT
features as inputs, respectively, and train classifiers using these
features. The two CNN methods have different architectures,
i.e., 5 layers (CNN-5) and 8 layers (CNN-8). More details of
these methods can be found in [25].

C. Parameter Settings

The parameter settings for IEGP are commonly used set-
tings from the GP community, which are also the same as
that for EGP [25, 53]. The population size is 100 and the
maximum number of generations is 50. The elitism rate is
0.01, the crossover rate is 0.8 and the mutation rate is 0.19.
The Tournament selection with a size of 7 is used to select
individuals for mutation and crossover during the evolutionary
learning process. The tree depth is between 2 and 8. In IEGP,
the type constraint has high priority than the depth constraint
so that the tree depth may over 8 in some cases. Note that
we use the same parameter settings for IEGP on different
data sets for generality, although tuning/optimising parameters
could improve its performance.

The implementation of IEGP is in Python using the DEAP
(Distributed Evolutionary Algorithm in Python) [54] package.
The implementations of the classification algorithms in IEGP
and the benchmark methods are based on the scikit-learn
package [55] and the Keras package [56]. Note that the
other parameters (except for the optimised ones) of these
classification algorithms are the default settings in scikit-learn
for simplification. The parameters settings for the benchmark
methods on data sets 1-6 are described in [25]. The experiment
of IEGP on each data set runs independent 30 times and the
best tree of each run is tested on the test set.

V. RESULTS AND DISCUSSIONS

This section discusses and analyses the classification per-
formance of the proposed IEGP method and the benchmark
methods including the EGP method on the 13 data sets.

A. Classification Accuracy on Data Sets 1-6

The classification results, i.e., the maximum accu-
racy (Max), the average accuracy and standard deviation

(Mean±St.dev) of 30 runs by the IEGP method and the
benchmark methods on the six data sets are listed in Table
IV. The Wilcoxon rank-sum test with a 5% significance level
is used to compare the IEGP method with a benchmark method
to show the significance of the differences. The symbols “+”,
“–” and “=” in Table IV indicate that IEGP is significantly
better, significantly worse or similar than/to the benchmark
method. The final row of each table summaries the overall
results of the significance test. The best accuracy and mean
accuracy of each data set are highlighted in bold in Table IV.

Table IV shows that the proposed IEGP method performs
significantly better than or similarly to any of the benchmark
methods on FEI 1 and FEI 2, which are facial expression
classification tasks. IEGP finds the best accuracy of 100%
on these two data sets. Although RF achieves the best mean
accuracy on FEI 1 and EGP achieves the best mean accuracy
on FEI 2, there is no significant difference between IEGP and
EGP or RF in the performance on the two data sets, which
indicates that IEGP can achieve similar performance to the
best methods on the two binary classification data sets.

The classification results on the JAFFE and ORL data
sets in Table IV show that IEGP achieves significantly better
results than eight methods on JAFFE and than any of these
benchmark methods on ORL. JAFFE is a facial expression
classification task with seven different expressions, where
to learn informative features is difficult. IEGP can achieve
comparable performance than most benchmark methods on
JAFFE. On the ORL data set, IEGP is significantly better than
any of the benchmark methods. ORL is a face recognition task
of 40 classes and has a very small number of training images,
which is challenging for some methods needing a large number
of training instances such as CNN-5 and CNN-8. IEGP found
the best accuracy of 100% and the best mean accuracy of
98.29% on ORL, which shows the effectiveness of IEGP on
the data set with a small number of training instances.

The classification results on the KTH and FS data sets
in Table IV indicates that IEGP achieves significantly better
results than any of these benchmark methods, including the
EGP method. The KTH data set has texture images and the
FS data set has natural scene images. The SVM, KNN, LR,
RF, and AdaBoost methods achieve very low accuracy on these
two data sets, which indicates that using raw pixels to classify
these two data sets is not effective. However, simple feature
extraction cannot improve the accuracy as the uLBP+SVM,
LBP+SVM, HOG+SVM, and SIFT+SVM methods achieve
low accuracy as well. With automatically learning features and
evolving ensemble for classification, IEGP achieves the best
results on these two data sets, i.e., a maximum accuracy of
98.48% on KTH and a maximum accuracy of 92.45% on FS.
Importantly, IEGP improves the mean accuracy by 13.72% on
KTH and by 28.56% on FS. The results indicate that IEGP is
very effective for texture classification and scene classification.

Table V summaries the overall results of the significance
tests in the comparisons of different benchmark methods on
the six data sets. IEGP achieves significantly better results
than the six classification algorithms using raw pixels in
33 comparisons (in case A), which indicates that IEGP can
learn informative features for effective image classification.
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TABLE IV
CLASSIFICATION ACCURACY (%) OF IEGP AND 13 BASELINE METHODS ON DATA SETS 1-6

Method FEI 1 FEI 2 JAFFE ORL KTH FS
Max Mean±St.dev Max Mean±St.dev Max Mean±St.dev Max Mean±St.dev Max Mean±St.dev Max Mean±St.dev

SVM 90.00 90.00±0.00+ 88.00 88.00±0.00+ 93.94 91.06±0.73– 94.38 94.38±0.00+ 46.97 44.59±2.83+ 20.63 20.30±0.15+
KNN 32.00 32.00±0.00+ 8.00 8.00±0.00+ 71.21 71.21±0.00+ 94.38 94.38±0.00+ 34.24 34.24±0.00+ 24.35 24.35±0.00+
LR 92.00 92.00±0.00+ 88.00 88.00±0.00+ 89.39 89.39±0.00– 93.75 93.75±0.00+ 48.79 48.79±0.00+ 23.49 23.49±0.00+
RF 98.00 97.07±1.01= 90.00 89.20±1.13+ 75.76 72.48±1.99+ 93.12 92.33±0.63+ 60.00 57.81±0.83+ 37.36 36.53±0.49+
AdaBoost 80.00 78.67±1.32+ 80.00 76.00±3.44+ 53.03 47.93±2.68+ 59.38 52.27±4.00+ 37.88 33.44±1.37+ 17.47 13.04±1.47+
ERF 94.00 93.27±0.98+ 92.00 90.60±0.93+ 77.27 73.89±1.72+ 97.50 96.71±0.59+ 61.52 59.83±0.86+ 37.94 37.15±0.36+
uLBP+SVM 66.00 56.73±3.66+ 68.00 62.53±3.52+ 31.82 26.87±3.30+ 87.50 87.42±0.21+ 78.79 73.29±4.18+ 49.79 33.27±8.90+
LBP+SVM 68.00 64.60±1.83+ 74.00 69.80±0.00+ 33.33 28.84±2.05+ 88.12 87.52±0.20+ 83.64 82.71±0.51+ 53.50 50.45±1.80+
HOG+SVM 96.00 96.00±0.00= 82.00 82.00±0.00+ 81.82 80.30±0.40+ 91.25 91.25±0.00+ 57.27 55.96±0.64+ 12.11 7.91±2.47+
SIFT+SVM 56.00 56.00±0.00+ 62.00 62.00±0.00+ 33.33 33.33±0.00+ 93.75 93.75±0.00+ 65.76 65.76±0.00+ 60.92 60.92±0.00+
CNN-5 98.00 95.40±1.30+ 98.00 95.27±1.62+ 95.45 90.96±2.68– 96.88 95.29±1.06+ 85.76 82.56±1.87+ 50.14 48.03±1.16+
CNN-8 98.00 95.33±1.32+ 96.00 90.93±1.87+ 90.91 84.54±4.33= 95.00 93.04±1.09+ 76.36 71.63±3.18+ 49.16 46.79±1.01+
EGP 100.0 96.20±2.06= 100.0 98.07±1.70= 92.42 84.24±4.28= 99.38 97.44±1.26+ 87.88 77.53±5.17+ 67.17 61.07±2.91+
IEGP 100.0 96.67±2.55 100.0 96.20±3.66 92.42 82.17±5.42 100.0 98.29±0.97 98.48 96.43±1.26 92.54 89.63±1.47
Overall 10+, 3= 12+, 1= 8+, 2=, 3– 13+ 13+ 13+

TABLE V
SUMMARY OF SIGNIFICANCE TEST ON DATA SETS 1-6

A B C D
Significantly better (+) 33 23 10 3
Similar (=) 1 1 1 3
Significantly worse (–) 2 0 1 0

A: compare IEGP with SVM, KNN, LR, RF, AdaBoost, and ERF
B: compare IEGP with uLBP+SVM, LBP+SVM, HOG+SVM, and SIFT+SVM
C. compare IEGP with CNN-5 and CNN-8
D. compare IEGP with EGP

Compared with the four methods (in case B), which using
uLBP, LBP, SIFT, and HOG features as inputs for SVM, IEGP
achieves significantly better or similar results than/to any of
them. The results show that IEGP is more effective than the
four methods by learning informative features and evolving
an ensemble for classification. Compared with CNN-5 and
CNN-8 (in case C), IEGP only achieves significantly worse
results in one comparison, which shows that IEGP is more
effective than simple CNN methods. The main advantage of
IEGP over the CNN methods is the flexible length and depth
of the evolved solutions. IEGP does not need to pre-define the
model/solution structure (complexity) as it is able to find a
suitable model during the evolutionary learning process. IEGP
performs significantly better than or similarly to EGP (in case
D). Compared with EGP, the proposed IEGP method has a
new representation, a new function set and a new terminal set,
which allow it to learn more effective features and to find more
suitable classification algorithms with appropriate parameters
to form the ensemble for classification.

B. Classification Accuracy on Data Sets 7-13

The classification accuracy (%) of the data sets 7-13 are
listed in Table VI. On these data sets, 19 methods are
employed for comparisons, where the results are collected
from the corresponding references. Note that some of these
19 methods may not have results on some data sets such as
RI, Rectangle and Convex. In Table VI, each column shows
the results of all these methods on one data set. The results
obtained by IEGP are listed at the bottom of the table. Because
most of these benchmark methods have only reported the best
results on these data sets, we compare IEGP with them using
the best results. In Table VI, the symbol “+” denotes that IEGP
achieves better accuracy than the corresponding benchmark
method. The final two rows of Table VI summarise the ranking
results of IEGP among all these benchmark methods.

Table VI shows that IEGP achieves better classification
accuracy than any of the benchmark methods with reported
results on two data sets, i.e., Rectangle and Convex. On the
MB, MRD and RI data sets, the best accuracy of IEGP
ranks second among all the methods, which indicates that
only one method achieves better accuracy than IEGP on
any of the three data sets. On the remaining two data sets,
i.e., MBR and MBI, the best accuracy of IEGP ranks third
among all the methods, which indicates that only two methods
achieve better accuracy than IEGP on any of the two data
sets. Importantly, IEGP improves the accuracy by 2.45% on
Convex. IEGP achieves 100% accuracy on the Rectangle data
set, although it is only 0.01% higher than the best results of
the benchmark methods. Note that these benchmark methods
have been explored extensively on these data sets, therefore,
even 1% improvement in accuracy is very difficult to achieve.

On MB, the IEGP method achieves better (or the same)
results than any of the 18 benchmark methods except for
LDANet-2. IEGP achieves a maximum accuracy of 98.82%,
which is slightly less than the accuracy of 98.95% achieved
by LDANet-2. Although IEGP achieves worse results than
LDANet-2 on MB, it achieves better results on the other
six data sets. The three variants of MB, i.e., MRD, MBR,
and MBI, are more difficult than MB by adding variational
factors including rotation and background change. On MRD,
IEGP achieves better (or the same) results than any of the 18
benchmark methods except for EvoCNN. On MBR and MBI,
IEGP is better than any of the 18 benchmark methods except
for SPCN and EvoCNN, which are CNN-based methods.
SPCN is more effective than IEGP on these two data sets but
less effective on the other four data sets. Especially, IEGP
achieves 94.28% accuracy on MRD which is much higher
than the accuracy (90.19%) achieved by SPCN. EvoCNN is a
state-of-the-art CNN-based method by automatically evolving
the architectures of CNNs. Compared with EvoCNN, IEGP
achieves worse results on the difficult data sets, i.e., MBR
and MBI, but IEGP achieves better (same) results on the MB,
Rectangle and Convex data sets. This indicates that IEGP
as a pure GP method is effective and promising for image
classification. On the Rectangle data set, IEGP achieves 100%
accuracy. RI as a variant of Rectangle is more difficult. IEGP
achieves the best accuracy among all the methods on RI except
for EvoCNN. But the difference of the best results achieved
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TABLE VI
CLASSIFICATION ACCURACY (%) OF IEGP AND 19 EFFECTIVE METHODS ON DATA SETS 7-13

Method MB MRD MBR MBI Rectangle RI Convex
SVM+RBF [50] 96.97(+) 88.89(+) 85.42(+) 77.39(+) 97.85(+) 75.96(+) 80.87(+)
SVM+Poly [50] 96.31(+) 84.58(+) 83.38(+) 75.99(+) 97.85(+) 75.95(+) 80.18(+)
SAE-3 [35] 96.54(+) 89.70(+) 88.72(+) 77.00(+) 97.86(+) 75.95(+) –
DAE-b-3 [35] 97.16(+) 90.47(+) 89.70(+) 83.32(+) 98.01(+) 78.41(+) –
CAE-2 [35] 97.52(+) 90.34(+) 89.10(+) 84.50(+) 98.79(+) 78.46(+) –
SPAE [51] 96.68(+) 89.74(+) 90.99(+) 86.76(+) – – –
RBM-3 [35] 96.89(+) 89.70(+) 93.27(+) 83.69(+) 97.40(+) 77.50(+) –
ScatNet-2 [32, 33] 98.73(+) 92.52(+) 87.70(+) 81.60(+) 99.99(+) 91.98(+) 93.50(+)
RandNet-2 [33] 98.75(+) 91.53(+) 86.53(+) 88.35(+) 99.91(+) 83.00(+) 94.55(+)
PCANet-2 (softmax) [33] 98.60(+) 91.48(+) 93.15(+) 88.45(+) 99.51(+) 86.61(+) 95.81(+)
LDANet-2 [33] 98.95 92.48(+) 93.19(+) 87.58(+) 99.86(+) 83.80(+) 92.78(+)
NNet [50] 95.31(+) 81.89(+) 79.96(+) 72.59(+) 92.84(+) 66.80(+) 67.75(+)
SAA-3 [50] 96.54(+) 89.70(+) 88.72(+) 77.00(+) 97.59(+) 75.95(+) 81.59(+)
DBN-3 [50] 96.89(+) 89.70(+) 93.27(+) 83.69(+) 97.40(+) 77.50(+) 81.37(+)
FCCNN [34] 97.57(+) 91.09(+) 93.55(+) 86.77(+) – – –
FCCNN (with BT) [34] 97.32(+) 90.41(+) 93.03(+) 89.20(+) – – –
SPCN [31] 98.18(+) 90.19(+) 94.16 90.45 99.81(+) 89.40(+) –
EvoCNN (best) [52] 98.82 94.78 97.20 95.47 99.99(+) 94.97 95.18(+)
EGP (best) [25] 97.19(+) – – – 99.91(+) – 93.97(+)
IEGP (best) 98.82 94.28 93.59 89.41 100 94.88 98.26
IEGP (mean) 98.69 93.78 92.65 88.42 99.94 89.02 97.76
IEGP (std) 0.08 0.24 0.35 0.64 0.05 2.1 0.26
Rank 2/20 2/19 3/19 3/19 1/17 2/16 1/12

by EvoCNN and IEGP on RI is very small, i.e., 94.97%
(EvoCNN) vs. 94.88% (IEGP). On the Convex data set, IEGP
obtains the best accuracy of 98.26% among all the methods,
which is 3% higher than that achieved by EvoCNN.

MB (train and test) Rectangle (train and test ) Convex (train and test)

A
cc

u
ra

cy
 (

%
)

Fig. 8. Comparison of the distribution of the training and test results obtained
by EGP and IEGP on the MB, Rectangle and Convex data sets.

Compared with EGP, IEGP is more effective for classifying
large-scale data sets. On the three data sets, MB, Rectangle,
and Convex, IEGP achieves better results than EGP. Impor-
tantly, IEGP achieves a maximum accuracy of 98.26% on
Convex, which is 4% higher than that achieved by EGP. To
further compare EGP with IEGP, Fig. 8 show the distributions
of the training accuracy and test accuracy of EGP and IEGP on
the MB, Rectangle, and Convex data sets. From this figure,
it is clear that IEGP has much higher accuracy and median
accuracy than EGP on the three data sets. This indicates that
IEGP achieves better performance than EGP. In addition, the
results obtained by IEGP are more clustered than that by EGP,
which means that IEGP is more stable than EGP. The results
demonstrate that IEGP significantly improves the EGP method
by having a new representation and a new function set for
image classification.

VI. FURTHER ANALYSIS

This section analyses the evolved trees/solutions by IEGP to
further understand what features they extract and what classi-
fiers in the evolved ensembles are built for image classification.

A. Visualisation of Example Solutions
1) An Example Solution on MRD: Since IEGP achieves the

best results on the MRD data set, the best program/solution

is selected from MRD for analysis and visualisation. The best
solution is visualised in Fig. 9. This solution achieves 93.8%
accuracy on the training set of MRD and 94.28% accuracy on
the test set. Note that the example solution is used for testing
so that the X train node is replaced with the Images node
and the Y train node is removed for simplification. It is clear
from Fig. 9 that the example solution is an ensemble of three
ERF classifiers with different parameters. The left and right
classifiers have 450 decision trees with a maximum tree depth
of 60, while the middle classifier has 450 decision trees with
a maximum tree depth of 30. It is obvious that the example
solution is an ensemble of ensembles.
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FeaCon2

Class Labels

Sqrt

SIFT

FeaCon2
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ERF ERF
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Fig. 9. An example solution found by IEGP on the MRD data set. The
example program is Comb3(ERF (FeaCon2(SIFT (Sqrt(W−Add(
Images, 0.174, Images, 0.521))), uLBP (Gau(Images, 1))), 450, 60),
ERF (FeaCon2(SIFT (Sqrt(Images)), SIFT (Sqrt(Max(Gau(
MaxP (Gau(Images, 4), 2, 2), 4))))), 450, 30), ERF (FeaCon2(SIFT (
Sqrt(Images)), uLBP (Gau(Images, 1))), 450, 60))

As shown in this figure, it is obvious that the three classifiers
are trained using different features. The first branch uses
features that are the combination of 128 SIFT features and
59 uLBP features. Before extracting features using SIFT
and uLBP , each image is processed by the Sqrt function or
the Gau function (with standard deviation of 1). The second
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Fig. 10. An example solution found by IEGP on the MBR data set. The example program is Comb3(ERF (FeaCon3(SIFT (SobelX(Images)),
HOG(Images), SIFT (Images)), 480, 90), SV M(FeaCon2(FeaCon2(FeaCon2(HOG(Gau(Images, 2)), SIFT (Sobel(Images))), F eaCon3(
HOG(GauD(Gau(Images, 2), 1, 1, 0)), SIFT (Med(Max(Gau(Images, 1)))), SIFT (GauD(Images, 4, 2, 0)))), F eaCon3(HOG(Images),
SIFT (Med(Max(Gau(Mean(Images), 1)))), SIFT (GauD(Images, 1, 1, 0)))),−1), LR(FeaCon2(FeaCon2(HOG(Gau(Images, 1)),
SIFT (Sobel(Images))), F eaCon3(HOG(Images), SIFT (Med(Max(Gau(Images, 1)))), SIFT (GauD(Images, 4, 2, 1)))), 1))

branch uses 256 (128 × 2) SIFT features extracted from the
images after corresponding transformations, such as Sqrt,
Max, Gau, and MaxP . The third branch uses 128 SIFT
features and 59 uLBP features for classification. The Sqrt
function and the Gau function are employed to rescale and
smooth the images before feature extraction. The SIFT and
uLBP functions transform the processed images into features
and the features are fed into the classification functions. By
this analysis, it is clear that each branch extracts various
numbers and types of features from images after corresponding
filtering or pooling operations and uses these features to build
different classifiers. This indicates that the inputs for each
classifier in the example solution are different, which enhance
the diversity of the classifiers in the ensemble.

2) An Example Solution on MBR: An example solution
on the MBR data set is visualised in Fig. 10. This solution
achieves 93.38% accuracy on the training set and 93.21%
accuracy on the test set. Different from the solution in Fig.
9, where the classifiers in the ensemble are trained from the
same classification algorithm, this example solution is an en-
semble of three classifiers trained from different classification
algorithms. This shows that IEGP can evolve ensembles of the
same or different classifiers, which is very flexible for solving
different tasks.

In the ensemble in Fig. 10, the first classifier is ERF,
having 480 decision trees with a maximum tree depth of
90. The second classifier is SVM, where the value of the
penalty parameter is 10−1. The third classifier is LR, where
the value of the penalty parameter is 10. From Fig. 10, we
can see that the three classifiers are trained using features
extracted by different feature extraction functions in their
children branches. The features extracted from this data set
are the combinations of the SIFT features and the HOG
features. Meanwhile, different filtering functions are employed
to process the image before feature extraction. Accordingly,
different inputs for the three classifiers further enhance the
diversity of the constructed ensemble.

B. Further Analysis on Example Solutions
To further analyse the performance of the example ensem-

bles in Fig. 9 and Fig. 10, we calculate the accuracy of each
classifier in the example ensembles on the test set of MRD and
MBR, respectively. Table VII lists the results obtained by the
example ensembles (the second row) and the results obtained
by each classifier in the branches circled in Fig. 9 and Fig. 10
(the third to the fifth rows). In addition, we use the raw pixels
as inputs to train three classification algorithms that are used
to build the example ensembles in Fig. 9 and Fig. 10, and build
a new ensemble of the trained classifiers using the plurality
voting. The results obtained by this ensemble are listed in the
final two rows of Table VII.

TABLE VII
CLASSIFICATION ACCURACY ON THE TEST SETS OF MRD AND MBR

Method MRD MBR
Ensemble in Fig 9 or Fig. 10 94.28% 93.21%
Classifier in branch 1 in Fig 9 or Fig. 10 93.31% 88.37%
Classifier in branch 2 in Fig 9 or Fig. 10 93.53% 92.84%
Classifier in branch 3 in Fig 9 or Fig. 10 93.30% 91.29%
Ensemble of three ERFs using raw pixels 88.51%
Ensemble of ERF, SVM and LR using raw pixels 66.04%

The ensemble in Fig. 9 achieves 94.28% accuracy on
the test set of MRD and the ensemble in Fig. 10 achieves
93.21% accuracy on the test set of MBR, which are better
than any of the three single classifiers or the ensemble using
raw pixels, as listed in Table VII. Compared the example
ensembles with the single classifiers, we can find that the
combination of these three classifiers using the voting function
enhances the classification accuracy. The reason may be that
IEGP automatically selects classification functions to build an
ensemble during the evolutionary process, which results in
a good combination of classifiers. This indicates that IEGP
can find a good ensemble to achieve better generalisation
performance than a single classifier. Compared the example
ensembles in Fig. 9 and Fig. 10 with the new ensembles
listed in the final two rows of Table VII, it is obvious that
feature extraction is necessary and important for improving the
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classification performance. The ensembles of classifiers built
using raw pixels only achieve 88.51% on MRD and 66.04%
on MBR, which are much lower than that of the ensembles
found by IEGP. This indicates that the features learnt by IEGP
are more discriminative than raw pixels and can further boost
the performance of the ensembles. This shows that one of
the objectives that uses the proposed IEGP approach to learn
effective features has been successfully achieved.

To conclude, further analysis shows that the ensembles
found by IEGP have high diversity by using different features
to build classifiers to form ensembles. The analysis reveals
that IEGP can find ensembles of the classifiers trained from
the same or different classification algorithms. The analysis
also shows that IEGP can find good ensembles of classifiers
to achieve higher generalisation performance than a single
classifier. In addition, the features learnt by IEGP are more
discriminative features than raw pixels for classifying images.

VII. CONCLUSIONS

The goal of this paper was to develop a new GP-based
method to automatically learn effective features and evolve
ensembles for image classification. This goal has been suc-
cessfully achieved by developing the IEGP approach with
a new individual representation, a new function set, and a
new terminal set. With the new multi-layer representation,
the IEGP approach can learn informative features and evolve
ensembles of diverse classification algorithms. The parameters
of the classification algorithms in the evolved ensemble can be
automatically optimised/tuned during the evolutionary process.
The diversity issue of ensembles is automatically addressed by
IEGP using the tree-based flexible representation. In addition,
the evolved solutions of ensembles have a flexible length or
depth, which is suitable for dealing with different types of
image classification tasks.

The performance of IEGP has been examined on 13 image
classification data sets of varying difficulty, including facial
expression classification, face recognition, scene classification,
texture classification, and object classification. The compar-
isons show that IEGP is more effective than traditional meth-
ods using pre-extracted features or raw pixels. On the large-
scale data sets, i.e., data sets 7-13, IEGP achieves better results
than all the benchmark methods on two data sets, is ranked
the second on three data sets, and is ranked the third on the
remaining two data sets. Compared with the previous EGP
method, IEGP achieves significantly better or similar results on
small-scale data sets and better results on large-scale data sets.
The comparisons of EGP and IEGP in terms of the distribution
of the training and test results show that IEGP achieves better
and more stable results than EGP.

This study shows the potential of GP on learning features
and evolving ensembles for image classification. However,
there are many tasks in computer vision, such as video analysis
and remote sensing image classification. It is possible to
develop new GP-based methods to address these tasks.
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