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Abstract—Band selection has become a significant issue for
the efficiency of hyperspectral image (HSI) processing. Although
many unsupervised band selection (UBS) approaches have been
developed in the last decades, a flexible and robust method
is still lacking. The lack of proper understanding of the HSI
data structure has resulted to the inconsistency in the outcome
of UBS. Besides, most of UBS methods are either relying on
complicated measurements or rather noise sensitive, which hinder
the efficiency of the determined band subset. In this paper,
an adaptive distance based band hierarchy (ADBH) clustering
framework is proposed for unsupervised band selection in HSI,
which can help to avoid the noisy bands whilst reflecting the
hierarchical data structure of HSI. With a tree hierarchy-based
framework, we can acquire any number of band subset. By
introducing a novel adaptive distance into the hierarchy, the
similarity between bands and band groups can be computed
straightforward whilst reducing the effect of noisy bands. Ex-
periments on four datasets acquired from two HSI systems have
fully validated the superiority of the proposed framework.

Index Terms—Hyperspectral band selection, unsupervised
learning, hierarchy clustering, adaptive distance.

I. INTRODUCTION

HYPERSPECTRAL images (HSI) contains spectral infor-
mation in hundreds of contiguous bands. With the aid

of a large number of spectral bands, hyperspectral image has
been widely used in a range of applications [1]–[3], especially
in the remote sensing area, such as precision agriculture
[4]–[7], target detection [8], image enhancement [9], [10],
object detection [11] and land cover analysis [12], [13], etc.
Although numerous bands enable material identification and
object detection, the processing of HSI suffers from the “curse
of dimensionality” [14]. Besides, there are redundant bands
in the HSI, which may lower the efficiency of data analysis.
Moreover, due to the high dimensionality of the HSI, the
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computational burden is huge. To tackle these problems, it
is crucial to reduce the dimensionality of the HSI data whilst
preserving the useful spectral information.

Basically, there are two kinds of dimensionality reduction
methods for HSI: feature extraction and feature selection. With
the feature space transform, feature extraction can project the
original data into a lower dimensional space, using approaches
such as the principal component analysis (PCA) [15], [16],
independent component analysis (ICA) [17], wavelet trans-
form [18], the manifold learning [19], and the maximum
noise fraction (MNF) [20], etc. The resulted data can be
assumed to contain most of the spectral and spatial information
from the original HSI data. Although the feature extraction
methods successfully reduce the dimensionality of HSI whilst
keeping the discriminative ability, the feature transform itself
relies on the whole set of original data and often has poor
correspondence to the process of optical acquisition of the
data. In contrast, the feature selection method, which is also
called band selection, can select an optimised subset from the
HSI data, based on their dominant contributions to certain
tasks. Since the band selection methods can maintain the
physical acquisition characteristic of raw data and solve the
high dimensionality problem simultaneously, an efficient band
selection method is often preferred.

Generally, based on the availability of the class label in-
formation, existing band selection methods can be divided
into two groups: i.e. supervised [21]–[23] and unsupervised
ones [24]–[27], [29], [30], [32]–[36]. Supervised methods
can construct a criterion with the label information of pixels
aiming to improve the class separability. In [21], the desired
band subset is chosen based on the class-based spectral
signatures. By extracting two most distinctive bands whose
dissimilarity is the largest among all bands, other bands can
be chosen iteratively by minimizing the estimated abundance
covariance from each pixel along with the class information.
Cao et al. [22] proposed another wrapper-based supervised
band selection method, where the chosen band subset is
determined based on minimizing the defined local smoothness
with the aid of the classification map from a Markov random
field (MRF) classifier. To improve the reliability of the local
smoothness generated from the classification map, the wrapper
method is utilized to initialize the designed method. In [23],
Patra et al. developed a rough-set-based supervised band
selection method. The rough-set theory is applied to compute
the relevance and significance of each band by using the
class information as a prior knowledge, and bands with higher
relevance and significance are chosen to form the band subset.
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Although the band subset acquired by the supervised meth-
ods can achieve better classification performance, the selected
bands are often affected by the chosen training samples where
different training samples may lead different result of selected
band subsets. Furthermore, these approaches can become less
effective in practical applications if sufficient training samples
with label information are not approachable. Even though
some supervised band selection methods only choose few
training samples, the classification performance with less band
and less training samples are not reliable as a criterion for band
selection. Therefore, we will focus on the unsupervised band
selection (UBS) methods in this paper.

Based on certain searching strategies, UBS methods aim to
select the most representative bands among the HSI data. Re-
cently, many searching strategies have been developed for HSI
band selection, which can be separated into two main groups:
the ranking-based and the clustering-based methods. Various
statistical metrics have been utilized to evaluate each band in
the ranking-based methods, including mutual information [37],
[38], variance [39] and local density [29], etc. After the band
ranking, the desired band subset is determined by selecting
bands with higher ranking values among all bands. Since the
ranking process is only implemented once, the computational
cost can be rather low. For the clustering-based methods [26],
[27], [30], [31], spectrally continuous bands are grouped into
desired clusters. Bands in each cluster are contiguous and with
similar spectral information, where the most significant band
in each cluster based on discriminative ability [27] or some
ranking strategies [30] are selected to form the desired band
subset. Due to the clustering procedure, this process can be
lengthy whilst the selected bands are generally uncorrelated.

Although the aforementioned two groups of UBS methods
have achieved certain success for band selection in HSI, both
of them still suffer different drawbacks. For ranking-based
approaches, the correlation between selected bands is usually
quite high, where the data redundancy can be further reduced.
On the contrary, the clustering-based methods usually select
one band from each band cluster, thus the data redundancy is
low. However, most of the clustering-based methods are very
sensitive to the noisy bands because a noisy band can easily
form a cluster due to low similarity to other bands thus affect
the selection result. Meanwhile, the results of band selection
depend on the clustering process, especially on the number of
clusters. For example, a certain band can be selected when the
number of clusters is three but it can then be deselected when
the number of band clusters becomes five, where such incon-
sistency may lead to low robustness of UBS. Furthermore, the
similarity metric between different bands plays a key role in
clustering methods, including the efficacy and computational
complexity. Some clustering-based methods may have a good
performance, but their computational cost can be high due to
the complicated metrics.

To tackle the aforementioned drawbacks, we propose a band
hierarchy clustering UBS framework with adaptive distance
(ADBH). The contributions can be summarized as follows:

1) A flexible tree hierarchy-based framework for HSI band
selection is proposed. With the tree structure, the band
subset with desired number of bands can be easily

chosen whilst minimising the data redundancy between
selected bands. Moreover, the chosen bands with dif-
ferent numbers of clusters are more consistent when
derived from the proposed tree hierarchy.

2) Targeting the noise sensitivity issue of clustering-based
UBS methods, we design a novel distance measurement
combined with the cluster density and the Euclidean
distance. With the defined distance, the proposed ADBH
framework is more robust to the noisy bands whilst the
computational cost is acceptable.

3) We have applied our ADBH on four commonly used
HSI datasets, the performance of our method has demon-
strated the superiority comparing with the current state-
of-the-art (SOTA) UBS methods.

The rest of this paper is organized as follows. Section II
introduces related UBS methods. The proposed methodology
is presented in Section III. In Section IV, experimental results
and discussions are given on four HSI datasets. Finally, some
concluding remarks are drawn in Section V.

II. RELATED WORK

In the last two decades, a number of approaches have been
proposed for unsupervised band selection (UBS) in HSI. In
this section, some typical USB approaches from the aforemen-
tioned two groups, i.e. the ranking-based and the clustering-
based methods, will be reviewed, and relevant analysis to
motivate the proposed work is also given.

As mentioned in the last section, the goal of the ranking-
based UBS methods is to find the most significant bands
among the HSI data. To fulfil this purpose, an effective crite-
rion for estimating the importance of each band is essential.
With the aid of the designed criterion, most representative
bands can be determined. In [24], a PCA-based band selection
criterion was proposed. By applying the maximum-variance
PCA (MVPCA), the band prioritization can be estimated
according to the eigenanalysis. A defined load factor of each
band can be obtained from the consolidation of eigenvalue
and eigenvector. For each band, a variance-based band power
ratio is utilized to represent its discriminative ability, which
is accessed by using the variance of each band to divide
that of all bands. By finding the bands with higher ratio, a
band subset is determined. Although the chosen bands are
more representative and more discriminative, the correlation
between those bands are ignored in the MVPCA. The robust-
ness of selected bands is not guaranteed as they are with higher
variance. Chang and Wang [25] have presented a constraint
band correlation strategy (CBS), which is derived from the
idea of constrained energy minimization. By defining a finite
impulse filter between each band and the whole dataset, the
correlation can be represented by a minimized vector. After
discarding bands with high correlation, the remaining bands
are selected, which can be more robust to the noisy band.

Different from the ranking-based methods, clustering-based
methods can naturally reduce the correlation between chosen
bands. In these approaches, the HSI bands are sequentially
grouped into different clusters by a defined criterion. After-
wards, typical bands from each cluster are selected to form
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the desired band subset. Since the band subset comprises
bands from different clusters, the high correlation between
bands can be avoided. In [26], a hierarchical clustering
(WaLuDi/WaLuMi) is applied to divide bands of whole dataset
into segments. Two measurement, mutual information and K-
L divergence, have been utilized to measure the distances
between bands. In terms of the Ward’s linkage theory [40],
partitions with minimum variance can be achieved, and the
band which is most identical to the rest is selected in each
cluster. By considering the contextual information of the HSI
dataset, Yuan et al. have proposed a novel clustering method,
i.e., dual-clustering-based band selection by context analysis
(DCCA), for UBS [27]. Along with the input raw HSI data,
the DCCA has designed a new pairwise hyperspectral angle
descriptor to exploit the contextual information of each pixel
in HSI. With the dual clustering framework, the contextual
feature of the HSI and the raw HSI are grouped simultaneously
and the mutual effect of these two features determine the
clustering result. Similar to other clustering-based methods,
the most representative band from each cluster is selected
based on a groupwise strategy.

Nowadays, it has become a trend to combine the ranking-
based and the clustering-based methods. For the ranking-based
methods, most representative bands can be easily found. Mean-
while, the clustering-based methods can restrict the correlation
within the obtained subset of bands. Therefore, the merits
from these two methods can enhance the performance of UBS.
Inspired by the fast-peak-based clustering (FDPC) [28], Jia et
al. have proposed the enhanced FDPC (E-FDPC) [29] where
the characteristic of each band can be determined by its local
density and its distance to the nearest high density band. The
significance of each band can be determined by considering
these two factors jointly. Based on the assumption that the
band with a higher local density and maximum nearest neigh-
bour distance is the cluster centre, top ranked bands are chosen
to form the band subset, which is still similar to most ranking-
based methods. Different from the E-FDPC which combines
the clustering-based methods into the ranking-based methods,
Wang et al. has further developed an optimal clustering frame-
work (OCF) for HSI band selection [30]. With two defined
objective functions, the normalized cut and top-rank cut have
been used to partitioned the whole dataset into several clusters
by an optimal way. Three ranking strategies, including E-
FDPC, MVPCA, and Information Entropy, are utilized to find
the most important band from each cluster. The performance
of OCF has validated the successfully cooperation between
ranking-based and clustering-based UBS methods. In [31], the
adaptive subspace partition strategy (ASPS) has been proposed
for UBS in HSI. By applying a coarse to fine strategy, the
bands are grouped into different subcubes. By estimating the
noise information for each band, the band with the minimum
noise is considered as the most representative one for that
subcube and added to the subset of selected bands. The
experimental reults have further emphasized the importance
of removing the noisy band from the selected band subset.

Recently, in addition to the ranking-based and clustering-
based methods, optimization based UBS methods have at-
tracted increasing attention as the iterative process seems more

controllable to obtain the number of selected bands. The vol-
ume gradient band selection method (VGBS) is introduced by
deriving the ‘volume’ information from the covariance matrix
of all bands [32]. Instead of calculating any measurements
between a single band and all other bands, VGBS removes
the most redundant band by the assumption that it usually
has the maximum gradient in the dataset. Different from the
VGBS algorithm, the multitask sparsity pursuit (MTSP) [33]
attempts to find an optimal solution by iteratively updating
the chosen band subset. In MTSP, a constructed data de-
scriptor based on the compressive sensing theory is firstly
utilized to reduce the original HSI data, and a band subset
with the desired number of bands can be obtained randomly.
Afterwards, a multitask sparse representation based criterion
is utilized to examine the potential band groups. By updating
the preliminary band subset using the immune clonal strategy,
the optimized result can be obtained. Under the consideration
of structure information from both band informativeness and
independence, Zhu et al. developed a greedy-search based
UBS approach by tackling a graph-based clustering problem
with dominant set extraction (DSEBS) [34]. The DSEBS takes
the advantage of the first-order statistic of local spatial-spectral
consistencies and structure correlation for quantifying band
information and independence. After that, the band selection
task is transformed to a dense subgraph discovery problem,
where the dominant set extraction can provide an optimal
solution. In DSEBS, the interdependencies between bands
determine the reliability of each band and its contribution
to the final result. By choosing the optimal band subset
iteratively, the optimization-based UBS methods have compa-
rable achievement. However, two major drawbacks restrict the
performance of this kind of methods. Foremost, the iterative
process usually focuses more on each individual bands, which
fails to filter the contributions from noisy bands. Secondly,
there is a trade-off between the computational complexity
and performance in the iterative process, hence some valuable
information may be compromised for reducing the complexity.

III. METHODOLOGY

In this section, our proposed ADBH framework for UBS
will be presented in detail. First, we describe our tree
hierarchy-based clustering strategy. Followed by the adaptive
distance measurement within the ADBH framework, which
is based on the fusion of the Euclidean distance and cluster
density. Afterwards, the band evaluation and selection method
is introduced. Finally, the advantages of our method are anal-
ysed. Fig. 1 illustrates the flowchart of our proposed ADBH
framework. In the proposed framework, the raw HSI dataset
is taken as input for both band clustering and band-based
ranking. At first, each spectral band is considered as a cluster
to form the initial similarity matrix, from which a tree-based
band hierarchy can be constructed. Cluster-based adaptive
distance (AD) is then calculated, and mutual neighbouring
clusters are merged sequentially according to the determined
AD. Afterwards, the similarity matrix will be updated, which
actually becomes smaller due to the merged band clusters.
The process above forms our proposed ADBH, where the
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Fig. 1: The flowchart of the proposed ADBH framework

process continues until the number of band clusters reaches
the desired number of selected bands. Relevant bands within
the resulted band clusters will be ranked by the band-based
ranking strategy (E-FDPC) before band selection. The band
with the highest ranked value within each cluster is selected
as the most representative band for that cluster, and all the
selected bands are then grouped to form a dimension-reduced
hypercube for following-on processing and analysis.

A. Band hierarchy

The clustering-based UBS methods aim to group similar
bands into different clusters and select one most significant
band from each cluster, which can reduce the data redundancy
between selected bands. Due to the lack of ground truth, the
number of band clusters and the exact indexes of bands for
each cluster are actually unknown. As a result, the results of
band clustering and the derived band subset become arbitrary,
where the consistency of the results can hardly be maintained.
To tackle this particular challenge, in this work, we propose
a band hierarchy algorithm. Our method can construct a band
hierarchy in a bottom-up manner and generate any number
of band clusters (between one and the original amount of
bands). As such, a better understanding of the HSI bands
can be derived. Moreover, the clustering results can keep
consistency despite of various number of bands are chosen.
For instance, with desired k bands, our tree hierarchy can
produce k clusters by an iterative way. When a band group
with k − 1 groups is requested, the result will be adjusted
in a flexible way by merging two clusters. Similarity, the
result can be easily adjusted to k + 1 groups by cancelling
the last merging operation. For iteration-based methods, the
computational burden is a common challenge. For efficiency,
complicated metrics or complex strategies are avoided in our
ADBH framework as explained below.

Let us denote a HSI image as Y ∈ RM×N×L, where the
spatial size of this cube is M ×N and L is the total number

of bands. The lth band can be represented as one vector
Yl ∈ R1×M∗N and the spectral signature of one pixel at the
spatial location (m,n) can be denoted as Ymn ∈ RL. For
reducing the computational cost, the spectral value of each
pixel is normalized to the scale of [0, 1]. Let G = (V,E)
denote the HSI data in an undirectional graph, where the
node set V = [1, 2, ..., l, ..., L] represents the spectral bands
in the HSI dataset. Considering the whole dataset as a forest,
each band can be considered as a tree, i.e. each band is an
individual cluster initially. E is the utilized similarity metrics
to measure the connection of different clusters (bands). Due to
the contiguous nature of the spectral bands in HSI, each band
is assumed to be more closely linked to its neighbouring bands
in the spectral domain. To this end, E = [e1, ..., el, ..., eZ ]
represents the linkage between different clusters, where el
represents the ’edge’ between the lth cluster and the (l + 1)th
cluster with 1 ≤ Z ≤ (L−1). Besides, for the first cluster and
the last cluster, they only have one edge to connect with their
neighbours according to our assumptions above. As a result,
it is not necessary to estimate the similarity matrix between
bands after each iteration instead of computing similarities
between neighbouring band clusters. After that, we can start
our tree hierarchy clustering in a bottom-up manner detailed
as follows.

First of all, we define a ‘mutual nearest neighbouring’
according to the similarity between each cluster, which is very
similar to the mutual nearest neighbours defined in [41]. By
examining all connecting edges of each cluster, two clusters
can become ‘nearest neighbour’ when they both have lighter
edge with each other. For example, if el < el−1, the lth cluster
is more close to the (l + 1)th cluster, but the lth cluster and the
(l + 1)th cluster can be ‘nearest neighbours’ only if el < el+1

is also met. This criterion can identify similar clusters pairs
and can be utilized in the following-on merging procedure.

After the ‘mutual nearest neighbouring’ search, we can start
to merge the current clusters. To reflect and be consistent
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(a) (b) (c) (d)

Fig. 2: The Clustering results with different desired number of clusters on the Pavia University dataset. In each figure, the
horizontal axis represents the Band Index, and the vertical represents the mean spectral value. Different color represents different
clusters (a) 7 clusters, (b) 5 clusters, (c) 2 clusters, (d) 1 cluster.

with the data structure of the HSI dataset, the merging is
executed in a sequential way. With all the obtained pairs
of clusters, the implementation starts from the pair with the
smallest edge. Different from some clustering methods which
merge the data sample points gradually [42] (i.e. one merging
operation in one iteration), each iteration of our algorithms will
not be completed until all the mutual neighbouring clusters
are merged, i.e. merging all such band pairs simultaneously.
For each new cluster, it is depicted by the mean spectral
information of its comprised bands and the previous bands
are removed while the spectral information is kept for after
iterations. This is shown below:

Ŷl = mean(Ymerged) (1)

the representation of the new lth cluster is the mean of all
bands it contained. With new clusters, the defined E will also
be updated before next iteration. The number of contained
bands in each new cluster is also stored. For the circum-
stance that no nearest neighbour pairs exist, our framework
will merge clusters gradually with only one merging in one
iteration. In this situation, two clusters with the smallest edge
will be merged. The whole clustering procedure will continue
iteratively until the desired number of clusters has reached.
As the purpose of the clustering step is to group similar
bands together, the objective function can be transformed to
minimize the cost function during clustering:

min

T∑
t=1

et (2)

where the t = [1, ..., T ] is the evolution time and the et is the
sum of merged e during the tth iteration.

In our clustering part, the bottom-up manner considers each
band as an initial cluster, where the analogous bands can be
determined via our ’mutual nearest neighbouring’ approach.
In each iteration, all the neighbouring pairs of bands can be
merged simultaneously, and a stepping method is employed to
combine clusters in case of such neighbouring pair of bands
remaining in certain iteration. This iterative process will only
stop after the requested number of clusters have been reached.
An example of our clustering process is shown in Fig. 2.

B. Adaptive distance
Although the tree hierarchy method can help to understand

the data structure of bands within HSI, noisy bands are still
a serious problem in all hierarchy-based clustering methods.
As the bands are clustered in a bottom-up manner, potential
outlier of bands can be easily identified as a primary cluster in
a similar way as other bands. The outlier is prone to forming
a cluster even after numerous iterations because it is less
correlated or similar to its neighbouring bands in the band
hierarchy. Since the final result consists of bands selected from
each cluster, it is inevitably that noisy bands may be added into
the selected band subset. Besides, the distance measurement
for inspecting the similarity between bands is another crucial
issue in our hierarchy. As the distance measurement needs to
be updated in each iteration, a complicated one may result
in huge computational burden. Thus, an efficient yet robust
distance is introduced in our band hierarchy as detailed below.

To estimate the differences between two variables, the
Euclidean distance is regarded as one fundamental metric. In
most of the clustering work, the Euclidean distance is widely
used to assess the differences [43], [44]. In [28] and [29],
distances of different bands in HSI are measured using the
Euclidean distance to form a distance matrix S ∈ RL×L as:

Sij = ||Yi − Yj ||2 =

M,N∑
m,n=1

(Ymni − Ymnj)2 (3)

where the entry Sij represents the difference between the ith
band the jth band. According to the matrix S, a scaled distance
can be obtained as [28], [29]:

Dij =
√
Sij ∗ L−1 (4)

In our proposed ADBH framework, we apply the aforemen-
tioned distance by setting el = Dl,l+1. However, the obtained
result shows that the Euclidean distance is unstable for noisy
datasets, for instance, the highly polluted KSC dataset. By
only applying the Euclidean distance, it is likely to have the
noisy bands as separate clusters because these noisy bands are
usually sufficiently dissimilar to other neighbouring bands. To
tackle this issue, we propose a novel adaptive distance (AD)
for measuring the distance of bands by considering the number
of bands within the associated cluster.

Basically, there are two motivations for designing the AD.
The first is to restrict or even avoid a-single-band cluster
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(a) (b)

Fig. 3: The Clustering results (defined cluster number equals
to 5) by Euclidean distance (a) and our AD (b) on the noisy
KSC dataset. In each subfigure, the horizontal axis represents
the band index and the vertical axis the mean spectral value.
Different color represents different clusters.

formed by noisy bands as it will interfere the results of
band selection. The second is to improve the computational
efficiency especially during the iterative process of band
clustering. Inspired by the above two motivations, we have
designed a novel metric to estimate the distance between two
adjacent clusters instead of adopting the Euclidean distance.
As a regular cluster usually has more than one band, the
number of contained bands is considered as a crucial metric
to present the density of each cluster. To effectively represent
the characteristic of each cluster, we have also estimated the
Euclidean norm of each cluster. The Euclidean norm of one
cluster Ŷl in (1) corresponds to the average magnitude of this
cluster, which can be assumed as a simple data characteristic
of Ŷl. Considering the representation of each cluster as a
vector, we have found out that the product of its magnitude
and contained bands can reflect its strength. In this way, the
cluster density can be determined by both the number of
contained bands and the data characteristics in each cluster.
Accordingly, we define a novel measurement for estimating
the cluster density Il:

Il = norm(Ŷl) ∗ bl (5)

where bl is the number of contained bands in the lth cluster,
which has an initial value of bl = 1. For a cluster with a
single band, Il is the Euclidean norm of that band. Otherwise,
Il is roughly the accumulated Euclidean norm of all the bands
within the cluster. With more bands contained in a cluster in
our proposed band hierarchy, the cluster density increases in
nearly a linear way.

For two neighbouring clusters (the cluster can be a single
band before the iterative process) l and l + 1, their densities
are denoted as Il and Il+1 according to (5). The defined AD
δl,l+1 is given by combining the Euclidean distance and cluster
density as:

δl,l+1 = Dl,l+1 ∗ Il ∗ Il+1 (6)

From this proposed distance, a cluster with a lower density
will have shorter distance with its adjacent clusters comparing
to other clusters with larger densities. As shown in Fig. 3, the
first band of the KSC dataset has a distinct spectrum against
its neighboring bands, thus it can be easily regarded as an

outlier in the dataset. In the Fig. 3 (a), this band is considered
as a single-band cluster when the Euclidean distance is used
to measure the distance between band clusters. Accordingly,
this band will be selected because it is the only representative
band within the cluster. However, in our proposed AD scheme,
this band will be suppressed and grouped into other clusters.
During the AD based clustering process, the density of a single
band cluster will be relatively small due to the fact that it
contains only one band. By applying el = δl,l+1 into the band
hierarchy, el will become quite small thus for the cluster with
less bands can easily find its mutual nearest neighbour. As
a result, noisy bands will be simply merged in our proposed
ADBH hierarchy, which also meets the energy minimization
principle according to (2). Compared to the commonly used
Euclidean distance, our proposed ADBH combines the Eu-
clidean distance with the cluster density, in which the cluster
density is estimated by multiplying the Euclidean norm of
the mean band and the number of bands contained in the
associated cluster. In this way, the computational complexity of
the proposed AD is further reduced for efficiency. In addition,
for a cluster with noisy band being merged, the representative
band can be selected by avoiding these noisy bands with the
E-FDPC band ranking scheme, which is further detailed in the
next subsection.

Algorithm 1 ADBH

1: Input: Raw HSI data Y , desired number of bands K.
2: Initialize: Assume each band as a cluster.
3: BEGIN
4: while Number of clusters > K do
5: Update the AD among clusters by (5) and (6);
6: if Mutual neighbouring clusters exist then
7: Merging mutual neighbouring clusters pairs sequen-

tially according to their edge;
8: Update new cluster;
9: if Current Number of clusters = K then

10: Return clustering result C;
11: Break;
12: end if
13: else
14: Merging two clusters with lightest edge;
15: Update new cluster;
16: if Current Number of clusters = K then
17: Return clustering result C;
18: Break;
19: end if
20: end if
21: end while
22: Choose band subset X among clustering result C by (7).
23: Output: Band subset X .
24: END
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C. Band evaluation and selection

In our proposed ADBH, the whole dataset can be grouped
into several clusters of bands with similar characteristic. To
select the most representative band from each band cluster,
the ranking or priority of each band needs to be determined.
Recently, many metrics [29], [37]–[39] have been utilized for
this purpose. Among those criteria, E-FDPC is employed as it
provides an efficient solution for determining bands with high
discriminative ability. Due to the fact that a band which has
large local density can be more easily chosen than others, E-
FDPC is robust to the noisy bands. Although the E-FDPC is
still substantially a ranking-based method, the combination of
E-FDPC and the clustering process has proved to be effective
[30]. Therefore, we have applied the E-FDPC algorithm after
band clustering work, where the most vital band within each
band cluster can be chosen to form the desired band subset.
This ranking-based strategy is described as follows:

Denote the clustering result as C = [c1, ..., ck, ..., cK ],
where ck is the kth cluster and k = [1, ...,K] is the cluster
index with the desired number of bands equalling to K. As
the band with the highest value in each cluster is the most
vital one, the desired band Xk from the kth cluster can be
determined as:

Xk = argmax
ψ

ψkv (7)

where ψ is the rank values set for all bands and ψkv is the
rank value of the vth band in the kth cluster. The band with
the highest rank value in the kth cluster is chosen as a band
for the desired band subset X . Obviously, the band selection
result can be decided with the aid of our proposed ADBH.

D. Merits of ADBH

With the designed adaptive distance, our ADBH helps to
complete the UBS task in a bottom-up tree hierarchy. As the
merging process starts from the smallest edge, the sequence
can be recorded and the band clustering process can be
visualized easily. In Fig. 2, partial of the clustering process
from our ADBH of the Pavia University dataset is shown.
We have chosen results from certain numbers of clusters to
verify the consistency. This advantage may help to further
understand the HSI dataset, where any desired number of
bands can be easily determined. Secondly, the designed ADBH
framework can be regarded as a parameter-free method, which
means no other input parameters are needed except only the
desired number of bands along with the raw data. Besides, the
clustering result will not be affected by varying the requested
number of clusters, where the consistency can always be kept.
Finally, the clustering results can be improved with our defined
similarity metric, i.e. the AD, which is verified on the KSC
dataset in Fig. 3. It can be seen that the single band cluster is
removed after appling the AD into the tree hierarchy, which
has successfully suppressed the noisy band being chosen as
part of the selected band subset. The proposed UBS framework
is summarized in Algorithm 1, and some further experimental
results are discussed in the next section to demonstrate the
efficacy of the proposed ADBH method for UBS in HSI.

IV. EXPERIMENTAL RESULTS

Due to the lack of ground truth, the efficacy of band
selection is often indirectly evaluated by using the classifi-
cation accuracy with the selected bands. In our experiments,
the proposed ADBH framework is benchmarked with several
SOTA algorithms based on the classification results from four
popular HSI datasets. Relevant details are presented as follows.

A. Datasets

To evaluate the performance of our proposed ADBH frame-
work, four HSI datasets from two imaging systems have been
used. The first one is the Indian pines dataset, which was
collected by the Airborne Visible Infrared Imaging Spectrom-
eter (AVIRIS) sensor over the agricultural experimental field
located at North-Western, Indian, USA in 1992. The original
dataset has 224 spectral bands ranging from 0.4 to 2.5 µm with
16 manually labelled class, and its spatial size is 145 × 145
pixels with 10249 labelled pixels. After the removal of 24
water absorption bands, the rest 200 bands are utilized for
band selection and data classification. The second dataset
is the Pavia University (PaviaU), which was captured by
the Reflective Optics System Imaging Spectrometer (ROSIS)
system over the campaign of the university of Pavia, Italy in
2002. The PaviaU dataset has a spatial size of 610×610 pixels
and 103 spectral reflectance bands with the spectral range
from 0.43 to 0.86 µm. A cropped image of 610× 340 pixels
are employed after discarding pixels with no information. In
the PaviaU dataset, 42776 pixels from 9 semantic classes are
labelled. The third dataset is the Salinas scene (Salinas), which
was also captured by the AVIRIS in Salinas Valley, California,
USA in 1998. Same as the Indian pines dataset, the Salinas
dataset collects spectral information within 0.4-2.5 µm in 224
bands. Its ground truth data also has 54129 labelled pixels
from 16 classes and its image spatial size is 512× 217 pixels.
Similar to the Indian pines dataset, the Salinas dataset in our
experiments also has 20 water absorption bands removed with
the rest 204 bands for analysis. The last dataset is the Kennedy
Space Center (KSC) dataset, which was obtained using the
same AVIRIS sensor in Florida, USA, 1996. By removing the
water absorption and low SNR bands, only 176 bands are used
with 13 labelled classes, and the spatial size of this dataset is
512× 614 pixels and 19035 pixels are manually labelled.

B. Experimental settings

To evaluate the performance of our ADBH framework in
HSI classification, we have compared our framework with
SOTA algorithms, including OCF (TRC-OC-FDPC) [30],
VGBS [32], DSEBS [34], WaLuDi [26], WaLuMi [26], E-
FDPC [29] and ASPS [31]. It is worth noting that our
algorithm is parameter-free, only the HSI data and the desired
number of bands are needed as input. Similarly, OCF does
not have any determined parameters and experiments are
implemented on code provided by authors. For other methods
including VGBS, DSEBS, WaLuDi, WaLuMi, E-FDPC, and
ASPS, experiments are tested on original codes with default
parameters. For better investigating the effect of our proposed
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(a) (b)

Fig. 4: OA curves on the Indian pines dataset with different UBS methods by using KNN (a) and SVM (b).

TABLE I: Classification results from different approaches for the Indian pines dataset.

Classifier OCF VGBS DSEBS WaLuDi WaLuMi E-FDPC ASPS EDBH ADBH Raw data

OA by KNN(%) 68.07±0.01 60.96± 0.01 70.16±0.01 64.35±0.01 52.81±0.00 61.08±0.01 62.35±0.01 65.15±0.01 68.06±0.01 67.65±0.01
AA by KNN(%) 58.27±0.02 48.39±0.00 56.05±0.01 51.22±0.00 40.42±0.00 46.68±0.01 49.57±0.01 52.86±0.01 58.43±0.01 54.22±0.01
Kappa by KNN 0.63±0.01 0.55±0.01 0.66±0.01 0.59±0.01 0.45±0.00 0.55±0.01 0.57±0.01 0.60±0.01 0.63±0.01 0.63±0.01
OA by SVM(%) 77.79±0.01 68.30±0.01 75.78±0.01 74.99±0.01 70.65±0.01 71.52±0.01 73.44±0.01 75.3±0.01 78.52±0.01 80.33±0.01
AA by SVM(%) 76.82±0.01 64.53±0.02 74.96±0.01 75.58±0.01 67.35±0.01 70.57±0.02 73.50±0.01 73.30±0.01 77.75±0.01 72.09±0.01
Kappa by SVM 0.75±0.01 0.64±0.01 0.72±0.00 0.72±0.01 0.67±0.01 0.67±0.01 0.70±0.01 0.72±0.01 0.76±0.01 0.78±0.01

TABLE II: Classification results from different approaches for the PaviaU dataset.

Classifier OCF VGBS DSEBS WaLuDi WaLuMi E-FDPC ASPS EDBH ADBH Raw data

OA by KNN(%) 85.64±0.01 82.64± 0.01 84.58±0.01 86.43±0.01 85.77±0.01 84.73±0.01 86.41±0.01 81.38±0.00 85.57±0.01 85.73±0.01
AA by KNN(%) 82.55±0.00 77.08±0.00 81.32±0.00 82.31±0.00 83.11±0.00 81.24±0.00 83.47±0.01 75.61±0.00 81.76±0.00 82.02±0.01
Kappa by KNN 0.80±0.00 0.76±0.00 0.79±0.01 0.81±0.00 0.42±0.00 0.79±0.00 0.82±0.00 0.75±0.01 0.80±0.00 0.81±0.01
OA by SVM(%) 90.88±0.00 90.75±0.00 89.39±0.00 91.08±0.00 91.40±0.00 90.07±0.00 83.87±0.01 83.77±0.00 91.63±0.00 91.64±0.01
AA by SVM(%) 88.74±0.00 88.25±0.00 87.23±0.00 88.96±0.00 88.82±0.00 85.04±0.0 72.30±0.00 73.31±0.000 89.30±0.00 88.12±0.01
Kappa by SVM 0.88±0.00 0.88±0.00 0.86±0.00 0.88±0.00 0.88±0.00 0.84±0.00 0.78±0.01 0.78±0.00 0.89±0.00 0.89±0.00

TABLE III: Classification results from different approaches for the Salinas dataset.

Classifier OCF VGBS DSEBS WaLuDi WaLuMi E-FDPC ASPS EDBH ADBH Raw data

OA by KNN(%) 88.82±0.00 82.74± 0.00 88.99±0.00 85.98±0.01 87.85±0.00 87.58±0.00 86.99±0.00 87.03±0.00 88.16±0.00 87.70±0.01
AA by KNN(%) 93.58±0.00 85.6±0.00 93.73±0.00 92.53±0.00 92.23±0.00 92.52±0.01 92.06±0.00 91.94±0.00 93.21±0.00 93.27±0.01
Kappa by KNN 0.88±0.00 0.81±0.01 0.88±0.01 0.86±0.01 0.84±0.00 0.86±0.01 0.86±0.01 0.86±0.00 0.87±0.01 0.86±0.01
OA by SVM(%) 92.28±0.00 92.04±0.00 92.28±0.00 91.03±0.00 92.31±0.00 92.45±0.00 91.90±0.00 92.40±0.01 92.72±0.00 92.87±0.00
AA by SVM(%) 95.67±0.00 95.28±0.00 95.93±0.00 95.68±0.00 95.18±0.00 95.91±0.00 95.63±0.00 95.79±0.00 96.04±0.00 96.42±0.00
Kappa by SVM 0.91±0.00 0.91±0.00 0.91±0.00 0.91±0.00 0.90±0.00 0.91±0.00 0.91±0.00 0.92±0.00 0.92±0.00 0.92±0.01

AD, we have compared the method employing the Euclidean
distance instead of our proposed AD, which is represented as
euclidean distance-based band hierarchy (EDBH). To better
verify the effectiveness of the proposed ADBH framework,
the classification results using all bands (shown as ’Raw data’
in corresponding tables and figures) are also included.

For the classification part, two popular classifiers, K-
Nearest Neighbourhood (KNN) [45] and Support Vector Ma-
chine (SVM) [46], are employed to validate the classification
accuracy of chosen band subsets on classification of the
aforementioned four HSI datasets. In our experiments, the

parameters in SVM and KNN are optimized through 10-
fold cross-validation. In all four HSI datasets, 10% of the
samples from each class are randomly selected as the training
samples for both classifiers, whilst the rest of samples are
used for testing. The experimental results are shown in the
next subsection. All experiments are repeated 10 times, where
the average metrics are reported for comparison. For hardware
and software settings, all experiments are implemented on the
MATLAB 2018b with a 16GB Intel i5-8400 CPU.
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(a) (b)

Fig. 5: OA curves on the PaviaU dataset with different UBS methods by using KNN (a) and SVM (b).

(a) (b)

Fig. 6: OA curves on the Salinas dataset with different UBS methods by using KNN (a) and SVM (b).

C. Comparison experiments

In principle, the HSI classification results can be quantita-
tively evaluated by three common metrics from the confusion
matrix, including the overall accuracy (OA), the average
accuracy (AA) and the Kappa coefficient. The OA is the
percentage of corrected classified pixels in total, and the AA
reflects the mean classification accuracy over all classes. The
Kappa coefficient is estimated for evaluating the reliability of
the classification result. In this section, the compared results
will be illustrated in two forms. Firstly, for all four HSI
datasets, the OA curves are generated according to OAs against
different chosen numbers of bands varying from 3 to 30. Also,
we have compared the OA, AA and Kappa coefficient of
different algorithms with certain determined numbers of bands.
For the OA curves in most datasets, the performance of most
approaches keep stable after the number of chosen band is
around 10 to 15. Even when more bands are chosen, there is no

significant improvement for most of them. Therefore, detailed
comparison with 14 selected bands on the four datasets, in
terms of OA, AA and Kappa, is given in Tables I-IV. The best
performance except the result with raw data are labelled bold.

Fig. 4 and Table I show the classification results for the
Indian pines dataset. As seen in Fig. 4, our ADBH has the
highest OA on the SVM classifier with 3 to 30 selected bands,
which has also produced about the highest OA on the KNN
classifier. Although the OA of ADBH on KNN is the second
best when the number of chosen bands is no more than 20,
it outperforms DSEBS after more bands are chosen. Despite
of the best OA generated on the KNN classifier, DSEBS
has quite poor performance on SVM, which shows a certain
degree of lack of robustness or stability. The ASPS has a
poor performance on both KNN and SVM classifiers. Table I
actually shows as an example the classification results of all
relevant methods with 14 selected bands. As can be seen, the
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(a) (b)

Fig. 7: OA curves on the KSC dataset with different UBS methods by using KNN (a) and SVM (b).

TABLE IV: Classification results from different approaches for the KSC dataset.

Classifier OCF VGBS DSEBS WaLuDi WaLuMi E-FDPC ASPS EDBH ADBH Raw data

OA by KNN(%) 82.49±0.01 50.56±0.02 81.28±0.01 82.07±0.01 77.31±0.01 81.68±0.01 82.26±0.01 82.18±0.01 82.84±0.01 85.86±0.01
AA by KNN(%) 74.59±0.01 37.08±0.03 71.30±0.01 67.32±0.01 73.08±0.01 73.45±0.01 74.33±0.01 74.88±0.01 73.85±0.01 79.15±0.01
Kappa by KNN 0.80±0.01 0.44±0.03 0.79±0.01 0.75±0.01 0.80±0.01 0.80±0.01 0.80±0.01 0.80±0.01 0.81±0.01 0.84±0.00
OA by SVM(%) 89.45±0.01 54.58±0.03 86.21±0.01 88.09±0.01 81.25±0.01 88.86±0.01 88.19±0.01 87.45±0.00 89.3±0.01 90.04±0.00
AA by SVM(%) 80.47±0.01 44.25±0.04 79.10±0.01 74.67±0.01 80.00±0.01 79.57±0.01 82.37±0.01 81.88±0.01 80.87±0.01 85.58±0.00
Kappa by SVM 0.88±0.01 0.48±0.01 0.85±0.01 0.79±0.01 0.87±0.01 0.87±0.01 0.86±0.01 0.86±0.00 0.88±0.01 0.89±0.01

proposed method has produced the best results in terms of OA,
AA and Kappa on the SVM classifier, and the second best on
the KNN classifier just after DSEBS. In addition, our ADBH
framework can outperform the raw data without band selection
when there are more than 10 selected bands on the KNN
classifier or more than 30 on SVM, which further validates
the superiority of the proposed approach.

Fig. 5 and Table II summarize the classification results of
all methods on the PaviaU dataset. In Fig. 5 (a), with the
KNN classifier, ASPS, WaLuDi and WaLuMi produce the
best results with the number selected bands increasing from
5 to 30, and the proposed ADBH seems not ideal. However,
the classification results from KNN only achieves about 87%,
which is far less than those from SVM at nearly 92%. For
the SVM classifier, the results from ADBH is among the
best when 15 or more bands are selected, and other best
ones include WaLuMi, WaLuDi and OCF. Surprisingly, ASPS
and EDBH produce the worse results on SVM. Although
WaLuMi, WaLuDi and OCF seem to produce the best results
in this group of experiments, as shown in Fig. 4 and Table
1, they appear to among the worst with the Indian pines
dataset on KNN and/or SVM classifiers under a certain range
of selected bands. From Table II, we can find that WaLuDi,
ASPS and WaLuMi have produced the best results with the
KNN classifier with 14 selected bands. However, the results
from ADBH is the best on the SVM classifier and outperform
all these three approaches.

For the Salinas dataset, the related comparison is shown in

(a) (b)

Fig. 8: The Clustering results (defined cluster number equals
to 30).(a) ADBH, (b) OCF.

Fig. 6 and Table III. In Fig.6, ADBH algorithm achieves the
most stable result on both classifiers, which is more robust
than other methods. For the comparison between our ADBH
method and the full dataset, it can be seen that the ADBH has
an obvious advantage with the KNN classifier after 5 more
bands are chosen. After more than 15 bands are chosen, the
ADBH also achieves a better result than the raw dataset. The
VGBS method does not perform well with the KNN classifier
and the WaLuDi method has not achieved a good performance
with the SVM classifier. Although the OCF method has the
best performance with the KNN classifier when the number of
chosen bands are around 10, its performance is not as robust
as ours from any number of chosen bands. According to the
Table III, the DSEBS is slightly better than ADBH on KNN
while ADBH has the best performance on the SVM.
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For the KSC dataset, ADBH has the best performance
against all others with the KNN classifier. Although the E-
FDPC method performs best with the SVM classifier when
the number of selected bands is quite small, ADBH has better
result after more bands are chosen. In general, our method has
the best performance on both classifiers from Fig. 7, whilst the
VGBS method performs quite poor. In Table IV, our ADBH
algorithm has a satisfactory result when 14 bands are chosen
with the KNN classifier. Although the OA of our ADBH
method is not the best with the SVM, it achieves the second
best with a small gap behind the first.

D. Extended discussions

In this subsection, extended analysis is carried out to
compare the performance of different UBS methods over
the four tested HSI datasets. Afterwards, the performance
on the PaviaU dataset will be highlighted since our ADBH
does not have the top robust performance on it. In addition,
the computational time of each method will be compared to
evaluate the efficiency of these UBS methods.

TABLE V: Number of parameters and computational time
(s) of different UBS methods with 30 selected bands.

Methods No.Parm. Indian pines Pavia U Salinas KSC

ADBH 0 0.35 2.69 2.23 5.91
OCF 0 0.7 0.65 1.13 1.66

VGBS 1 0.54 0.24 0.82 0.81
DSEBS 4 0.2 1.02 1.05 3.03
WaLuDi 4 41.95 99.7 198.51 408.68
WaLuMi 4 14.04 13.82 29.68 51.23
E-FDPC 1 0.97 6.85 3.11 27.97

From results of all compared methods, we can find that
some methods have unstable performance on different datasets
and different classifiers. For example, the WaLuMi method
achieves better performance on the PaviaU dataset but ranks
last on the Indian pines dataset. Moreover, the VGBS has the
worst performance on the KSC dataset, especially the lower
OA than those from other datasets. The ASPS has a robust
performance with the KNN classifier in the PaviaU dataset, but
its performance with the SVM is quite poor. From our point
of view, this phenomenon may be explained by three reasons.
Firstly, the four datasets are from two different HSI sensors,
AVIRIS and ROSIS. The AVIRIS sensor seems to be noisy and
usually heavily polluted, as seen in the KSC dataset. Therefore,
poor results from some methods may indicate their lack of
robustness in dealing with noisy datasets. Secondly, most of
the compared methods have parameters which are usually set
empirically. These fixed parameters may limit the stability of
the associated algorithms when different datasets or different
classifiers are applied. The inconsistency in performance is
prevalent for most unsupervised methods when relying on
different parameters. In addition, the UBS is an optimization
task as we discussed before. If the algorithm focuses too much
on local optimal solution, the instability will occur. However,
thanks to the combination of AD and BH, our method can
provide a parameter-free way for solving the inconsistency

problem and avoiding the effect of noisy bands. With the
decent results of our method on all four datasets, especially
the noisy KSC dataset, the robustness and stability of our
proposed ADBH framework have been fully validated. We
have noticed that the performance has been hugely improved
with the utilization of AD, the poor performance of EDBH
illustrates that the euclidean distance is not robust to the
noisy band in our designed hierarchy. Besides, the proposed
parameter-free framework can prevent from setting empirical
parameters, where we compare the number of parameters in
each method in Table V.

Although our method performs consistently well on four
datasets, we have not achieved the best result on the PaviaU
dataset, especially with the KNN classifier when more bands
are chosen. According to Fig. 5, we have noticed that the OCF
approach produces similar results to ours, especially after the
desired number of band is above 15. Since both ADBH and
OCF cluster bands into several groups and select the most
significant one from each group, we conclude that this kind of
strategy is sensitive to noisy bands when the desired number
of bands is large. In Fig. 8, we can see that these two methods
have clusters with only one band inside, where noisy bands
have potential to be chosen. In Fig. 5, the OA curves of most
approaches start to fall when 15 or more bands are chosen,
which also infers that the proper number of selected bands
might be around 15. More bands in the chosen subset may
have few or even negative effect on the classification accuracy.

The computational complexity is a crucial issue for the
efficiency of UBS algorithms. Hence, we compare this using
the computational time of every method on various datasets
on the same software/hardware platform. The Table V depicts
the processing time of different methods when 30 bands are
chosen on the four tested datasets. As seen in Table V, our
ADBH framework has a fair computational time among all
compared methods. Although the VGBS is the most efficient
one, its performance on the classification is not good. For
the WaLuMi and WaLuDi algorithms, their computational
burdens are the heaviest, which reflects the drawback of
the complicated distance measurement they used. Most of
the existing band selection approaches fail to maintain the
consistency of selected bands when the number of desired
bands varies. As such, we aim to provide a band hierarchy
to tackle this challenging problem. With the derived band
hierarchy, any desired number of bands can be selected without
re-running the whole process as most other approaches do,
including OCF. Considering the fact that there is no prior
information of the optimal number of bands for a given
HSI dataset, in practice the process of band selection needs
be repeated for quite a few times. As a result, the overall
computational costs will be linearly accumulated for most
other approaches. However, thanks to the ADBH, the overall
computational cost of our approach remains almost unchanged
as the additional costs in selecting different numbers of bands
is minor and can be neglected. To this end, the computational
cost of the proposed approach is actually far more efficient
than conventional approaches including OCF. In summary, the
proposed ADBH method seems to be a robust, effective and
efficient solution for UBS of HSI.
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V. CONCLUSION

During the last several years, various approaches have been
proposed for the UBS of HSI. In this paper, we propose a
band hierarchy clustering UBS framework for effective band
selection. A flexible tree hierarchy-based algorithm ADBH is
developed to explore the data structure within bands which
can acquire any desired number of band subsets. To overcome
the effect of noisy bands, we propose a novel adaptive dis-
tance AD, which is combined with our ADBH framework.
Moreover, our approach is parameter-free hence easy for im-
plementation. The satisfactory performance from experiments
on four publicly available datasets have fully demonstrated the
robustness and efficiency of our proposed ADBH method.

Although data classification is used to evaluate the efficacy
of the selected bands, band selection can actually benefit many
other applications of HSI, such as spectral unmixing, object
detection and data visualisation et al [47]–[49]. However, ap-
plications in these fields are seldom selected, due mainly to the
lack of available ground truth maps for quantitative evaluation.
Further verification of the band selection approaches in these
areas will be explored in the future.
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