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Abstract—Sensor activity scheduling is critical for prolong-
ing the lifetime of wireless sensor networks (WSNs). However,
most existing methods assume sensors to have one fixed sens-
ing range. Prevalence of sensors with adjustable sensing ranges
posts two new challenges to the topic: 1) expanded search space,
due to the rise in the number of possible activation modes and
2) more complex energy allocation, as the sensors differ in the
energy consumption rate when using different sensing ranges.
These two challenges make it hard to directly solve the lifetime
maximization problem of WSNs with range-adjustable sensors
(LM-RASs). This article proposes a neighborhood-based estima-
tion of distribution algorithm (NEDA) to address it in a recursive
manner. In NEDA, each individual represents a coverage scheme
in which the sensors are selectively activated to monitor all the
targets. A linear programming (LP) model is built to assign acti-
vation time to the schemes in the population so that their sum,
the network lifetime, can be maximized conditioned on the cur-
rent population. Using the activation time derived from LP as
individual fitness, the NEDA is driven to seek coverage schemes
promising for prolonging the network lifetime. The network life-
time is thus optimized by repeating the steps of the coverage
scheme evolution and LP model solving. To encourage the search
for diverse coverage schemes, a neighborhood sampling strategy
is introduced. Besides, a heuristic repair strategy is designed to
fine-tune the existing schemes for further improving the search
efficiency. Experimental results on WSNs of different scales show
that NEDA outperforms state-of-the-art approaches. It is also
expected that NEDA can serve as a potential framework for
solving other flexible LP problems that share the same structure
with LM-RAS.
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I. INTRODUCTION

W IRELESS sensor networks (WSNs) have been
deployed for automation of various tasks, such as

environmental monitoring, intrusion detection, and intelligent
farming [1]–[3]. The lifetime of a WSN is the total amount
of time that the WSN can stay functional and fulfill certain
objectives [4]–[6]. Many functions of WSNs rely on full cov-
erage of specified objects, which can be an area [7]–[9]; a
barrier [10], [11]; or a set of targets [12]–[14]. In many sce-
narios, batteries of sensors have limited energy and recharging
the batteries is impractical. Therefore, how to utilize sensor
energy efficiently for guaranteeing full coverage becomes the
key to prolong the lifetime of WSNs.

The sensor activity scheduling is an effective way to prolong
the lifetime of WSNs. In order to provide high-quality ser-
vice, sensors are usually densely deployed. Activating a subset
of sensors is already sufficient for achieving full coverage of
specified objects (called a coverage scheme), and the other
sensors can switch to the sleep mode for saving energy.
Therefore, the network lifetime can be prolonged by finding
a set of disjoint coverage schemes that use different sen-
sors and activating them in sequence. Following this idea,
a wealth of sensor activity scheduling approaches has been
proposed. Liao and Ting [15] proposed a memetic algorithm
based on a genetic algorithm and a local search operator.
Wan et al. [16] proposed a scheduling algorithm for the
roadside sensor network, where the road should be moni-
tored by multiple sensors simultaneously. Zhang et al. [17]
proposed a Kuhn–Munkres parallel genetic algorithm that
used a divide-and-conquer strategy for the large-scale WSNs.
Chen et al. [18] proposed a hybrid memetic framework that
considered the dynamic coverage maintenance.

All the above approaches are subject to the assump-
tion that sensors have a fixed sensing range. However, in
recent years, the usage of sensors with adjustable sensing
ranges has become more prevalent [19], [20]. This posts
new challenges to the sensor activity scheduling task. With
adjustable sensing ranges, the sensor activation mode is no
longer binary (sleep/activated) but multilevel. The search space
for finding coverage schemes thus becomes larger. In addi-
tion, sensors activated at different sensing ranges consume
different amounts of energy for the same length of time.
Thus, sensors activated in one coverage scheme may have
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different remaining energy left after activation. The sensors
with abundant remaining energy can continue to monitor tar-
gets, which should be considered in the formation of other
coverage schemes for the sake of efficient energy utilization.
However, the fact that one sensor can be used in multiple
coverage schemes makes energy allocation more complex.
To deal with these new challenges, a few new scheduling
approaches have been proposed. Chang et al. [21] proposed
a sensing radius adaptation approach based on a weighted
Voronoi diagram for area coverage. Zhang et al. [22] proposed
a multiobjective algorithm for barrier coverage to minimize the
total power consumption, the number of active sensors, and
the maximum sensing range of sensors. Since area and barrier
coverage can both be converted into the special cases of tar-
get coverage, we focus on solving the lifetime maximization
problem of WSNs with range-adjustable sensors (LM-RASs)
in a target-coverage scenario. In this regard, Rossi et al. [23]
proposed a column generation approach assisted by a genetic
algorithm. However, it suffers from poor efficiency due to
the time-consuming steps in generating new columns, par-
ticularly when facing large-scale WSNs. Cerulli et al. [24]
proposed a heuristic approach based on a greedy algorithm
and a local search procedure, but it is easy to get trapped into
local optima. Despite these pioneering efforts, an effective and
efficient algorithm for LM-RAS is still lacking.

This article proposes a novel neighborhood-based esti-
mation of distribution algorithm (NEDA) to address the
LM-RAS problem. Instead of solving LM-RAS directly, the
NEDA divides LM-RAS into two subproblems: 1) finding
a set of coverage schemes and 2) determining the activation
time of each coverage scheme so that sensors’ energy is best
allocated to maximize the network lifetime. Clearly, solutions
to the first subproblem compose the premise for the second
one. In fact, supposing that all the possible coverage schemes
in a WSN have been found, the second subproblem can be
modeled as a linear programming (LP) problem, where the
activation time of each scheme can be optimally assigned so
that their sum, the network lifetime, is maximized. However,
due to the large search space of LM-RAS, it is difficult or
even impossible to enumerate all the coverage schemes. The
essential idea behind NEDA is to address LM-RAS by solving
the two subproblems recursively. In NEDA, each individual in
the population represents a coverage scheme. An LP model
is built to assign activation time to each coverage scheme in
such a way that the network lifetime is maximized conditioned
on the current population. The activation time is used as the
individual’s fitness, which drives NEDA to generate coverage
schemes that are promising for prolonging the network life-
time. The new schemes, which form a new population, are
again fed into the LP model for activation time allocation that
may further prolong the network lifetime. As such, by repeat-
ing the steps of the coverage scheme evolution and LP model
solving, NEDA can gradually approach the globally optimal
network lifetime.

Maintaining high-population diversity is the key for
NEDA to achieve good performance. This is because using
similar coverage schemes that have many common sensors
can induce imbalanced energy consumption across the WSN,

resulting in a short lifetime. Therefore, to provide a set of
diverse coverage schemes for efficiently utilizing each sensor,
a neighborhood sampling strategy (NSS) is developed, which
generates new coverage schemes based on the probabilistic
models derived from neighborhoods. Moreover, a heuristic
repair strategy (HRS) is also introduced, which uses the
remaining energy of sensors as heuristic information to fine-
tune the coverage schemes and thus enhances the search
efficiency. Experiments are performed on WSN instances of
different scales. The experimental results are compared with
state-of-the-art approaches for validating the effectiveness and
efficiency of the proposed NEDA.

In real world, many problems share the same structure with
the LM-RAS problem: they all contain two interdependent
subproblems and the first one is the premise for optimally
solving the second one in an LP manner. We name them as
flexible LP (fLP) problems (refer to Section II-B for details). It
is also expected that NEDA can serve as a potential framework
for solving the other fLP problems.

The remainder of this article is organized as follows.
Section II presents the formulation of the LM-RAS problem
and its generalization as fLP problems. Section III intro-
duces the proposed NEDA approach and its novelties in detail.
Section IV presents the experimental study. Finally, Section V
draws a conclusion to this article.

II. PROBLEM FORMULATION AND GENERALIZATION

A. Lifetime Maximization Problem of WSNs With
Range-Adjustable Sensors

The optimization objective of the LM-RAS problem is to
maximize the lifetime of WSN while satisfying two con-
straints: one is to guarantee that all targets are monitored
simultaneously and consecutively; and the other is that the
sensor activation time is limited by the battery energy.

1) Sensor Features: We define the set of sensors in WSN as
S = {s1, s2, s3, . . . , s|S|}. All the sensors are of the same type.
Each sensor’s battery has an initial energy bini and cannot be
recharged. As mentioned above, the sensing range of a sensor
is adjustable. The set of selectable sensing ranges is a finite set
of discrete values, defined as R = {r0,r1, r2, r3, . . . , rK}, in
which the elements, without loss of generality, satisfy ri < ri+1
(i = 0, 1, . . . ,K − 1). r0 indicates inactivation (i.e., r0 = 0).
A tuple (sj, ri) represents the sensor sj is activated at the sens-
ing range ri. The energy consumption rate corresponding to
each sensing range, defined as E = {e0,e1, e2, e3, . . . , eK},
is computed according to the quadratic model [23], as

ei = eK × (ri/rK)2 (1)

where eK , the energy consumption rate of the largest sensing
range, is given in advance.

2) Coverage Scheme: A coverage scheme is a subset of
sensors with selected sensing ranges that can achieve full cov-
erage over all the targets. For example, in Fig. 1, there are
three sensors s1, s2, and s3 and three targets t1, t2, and t3.
{(s1, r2), (s2, r1), (s3, r2)} is a coverage scheme. However,
this coverage scheme is not considered energy efficient due to
coverage redundancy. An improved version would be to reduce



CHEN et al.: MAXIMIZING LIFETIME OF RANGE-ADJUSTABLE WSNs 5435

Fig. 1. WSN instance.

the sensing range of s1 from r2 to r1 for energy saving. In the
sense of energy efficiency, we define the nondominated cov-
erage scheme (ndCS) as a coverage scheme whose sensing
range reduction or inactivation of any involved sensors will
cause the coverage scheme to be infeasible, that is, losing full
target coverage. In the example of Fig. 1, {(s1, r1), (s2, r1),
(s3, r1)} is an ndCS. It is obvious that using ndCSs is always
more energy efficient than using simply coverage schemes.

3) LP Model for Maximizing Network Lifetime: Given
a WSN with fixed sensors and targets, we could maximize
its lifetime if we can identify a specific set of ndCSs and acti-
vate them one by one in a way that utilizes energy of each
sensor to the best. Considering the instance in Fig. 1, assume
that each sensor can be activated for 2 h with the sensing
range set at r1, but for only 1 h at r2. If we activate the
ndCS {(s1, r1), (s2, r1), (s3, r1)} till all the sensors run out of
energy, the network lifetime is 2 h. However, there are also
three other ndCSs: 1) {(s1, r2)}; 2) {(s2, r2)}; and 3) {(s3,
r2)}. If we activate these three ndCSs in turn, the network
lifetime is prolonged to 3 h.

Following the above idea, the LM-RAS problem can be
divided into two interdependent subproblems: 1) identify
a proper set of ndCSs and 2) determine the activation time of
each identified ndCS. Let CSS = {ndCS1, ndCS2, . . . , ndCSM}
denote the set of ndCSs, and εi be the activation time of the
ith ndCS in CSS, that is, ndCSi (i = 1, 2, . . . , M). The second
subproblem can be formulated by an LP model for maximizing
the network lifetime, as

max NL =
M∑

i=1

εi (2)

s.t.

{ ∑M

i=1
endCSi,j × εi ≤ bini ∀j ∈ {1, 2, 3, . . . , |S|} (3)

εi ≥ 0 ∀i ∈ {1, 2, 3, . . . , M}. (4)

In this formulation, (2) describes the optimization objective,
where the network lifetime NL is calculated as the sum of
activation time of ndCSs in CSS because the ndCSs will be
activated sequentially. Equation (3) reflects the constraint of
battery energy for each sensor, where ndCSi,j represents the
index of the selected sensing range for the sensor sj in ndCSi.
Note that a sensor may be activated in multiple ndCSs, and the
energy it consumes during the activation of each ndCS must
be taken into account. Equation (4) is a boundary constraint

by definition, which requires the activation time of each ndCS
to be non-negative.

Given that the first subproblem is solved, that is, CSS is
determined, the second subproblem (i.e., the LP model) can
be addressed by a variety of matured techniques in polynomial
time [25], [26]. Therefore, the key to solve the entire problem
lies in the first subproblem. A naïve solution is to enumer-
ate all ndCSs in the considered WSN. However, considering
the numerous combinations of different sensors and different
sensing ranges, ndCS enumeration is too time consuming to
be practical. Moreover, a large CSS may lead to poor effi-
ciency in solving the LP model. Therefore, we propose the
NEDA to find a proper ndCS set, which will be introduced in
Section III.

B. Flexible Linear Programming Problems: Generalization
of LM-RAS

The LM-RAS problem can be generalized as a kind of
problems that share the same structure. That is, they can be
formulated as

max f (β|α) =
∑

αi∈α

βi s.t. g(β|α) ≤ 0 (5)

where the decision variable vector β and the pattern set α have
the same number of elements (denoted as NE). Each decision
variable β i in β is related to the pattern αi in α (i = 1, 2,
. . . , NE). g(β |α) is a group of linear functions that represents
problem constraints. For example, in the LM-RAS problem, α

is the set of ndCSs and β is the vector composed of their acti-
vation time. A salient feature of such problems is that once α

is determined, the problems are reduced to classical LP prob-
lems, and the exact optimal solution conditioned on α can be
deterministically obtained by LP techniques. We identify this
kind of problems as fLP problems, where the term “flexible”
reflects uncertainty in the size and content of the pattern sets,
that is, α in (5).

As mentioned above, the key to solve an fLP problem lies
in the formation of a proper pattern set. To approximate the
global optimal solution efficiently, it is expected that the set
includes all the patterns used in the global optimal solution, but
excludes unrelated patterns (i.e., those that are not used in the
global optimal solution) as many as possible. Missing one or
more patterns used in the global optimal solution will deviate
the search procedure from the global optimum while includ-
ing too many unrelated patterns will slow down the search
procedure.

This article proposes the NEDA to address the pattern set
formation in the LM-RAS problem. It can also be extended
to other fLP problems for pattern set formation. Thus, it
arises the main contribution of this article: the identification
of fLP problems and a potential NEDA-based framework for
solving them.

III. NEDA

EDA is a kind of evolutionary computation tech-
niques [27]–[30]. It evolves the population by sampling the
probabilistic model(s) constructed by promising individuals.
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Algorithm 1 Basic Framework of EDA
1: Generate an initial population;
2: Evaluate the fitness of each individual in the population;
3: Select a set of promising individuals from the population;
4: Construct the probabilistic model based on the selected individuals;
5: Sample new individuals according to the probabilistic model;
6: Select individuals from those in the current population and those sam-

pled by the probabilistic model to form a new population for the next
generation;

7: Terminate if the termination criterion is met, otherwise jump back to
Step 2;

Fig. 2. Example of encoded individual.

The basic framework of EDA is shown in Algorithm 1. As can
be seen, after generating and evaluating the initial population
(steps 1 and 2), a set of promising individuals (usually those
with good fitness) is selected to construct a probabilistic
model (steps 3 and 4), according to which new individuals
are sampled (step 5). Then, the new population is formed by
selecting from the union of the individuals in the current pop-
ulation and the new individuals sampled by the probabilistic
model (step 6). By repeating the steps of model construction
and sampling until the termination criterion is met (step 7),
EDA can drive the population toward the optimum of the
problem. EDAs have been successfully applied to a number
of real-world optimization problems [31]–[33]. In this arti-
cle, following the basic framework of EDA, the proposed
NEDA utilizes a problem-dependent encoding scheme and
incorporates the following three novel strategies to solve the
LM-RAS problem: 1) an LP-based fitness evaluation (LPFE)
strategy; 2) an NSS; and 3) an HRS.

A. Encoding Scheme

Each individual in the population of NEDA, denoted by Xi

(i = 1, 2, . . . , N with N as the population size), is a sequence
that represents an ndCS. Each element Xi,j in Xi denotes the
index of the sensing range at which the sensor sj is activated
(j = 1, 2, . . . , |S|). The number of dimensions is thus the
number of sensors, that is, |S|. As mentioned in Section II-
A, r0 represents inactivation. Therefore, sj is not activated if
Xi,j equals zero. An example of the above encoding scheme is
shown in Fig. 2. As can be seen, s2 and s5 are not activated;
s4, s8, and s10 are activated at r1; s1 and s7 are activated at
r2; and s3, s6, and s9 are activated at r3.

In this article, we assume that the selectable sensing ranges
of each sensor are a finite set of discrete values, defined as
R = {r0, r1, r2, r3, . . . , rK}. However, not all the sensing
ranges are energy-efficient choices for each sensor. In some
cases, activation at a larger sensing range, which consumes the
sensor more energy, cannot bring more gain in target cover-
age. Therefore, a preprocessing procedure is performed before
population initialization to find out the energy-efficient sens-
ing ranges for each sensor according to the target distribution.
If a sensing range allows the sensor to monitor more targets

Fig. 3. Example of determining energy-efficient sensing ranges.

than its next smaller sensing range, it is considered an energy-
efficient sensing range, otherwise, it is an energy-inefficient
sensing range. Take sensor s1 in Fig. 3 as an example. r3 is
an energy-efficient sensing range for s1 because it allows s1 to
monitor two more targets (t2 and t3) compared to r2. However,
r2 is an energy-inefficient sensing range for s1 because it can-
not allow s1 to monitor more targets compared to r1. Note
that after conducting the preprocessing procedure, the energy-
efficient sensing ranges of different sensors may be different.
The individuals can only choose each sensor’s energy-efficient
sensing ranges in the corresponding dimension. By doing so,
the search space of the problem can be reduced while all
ndCSs are still preserved.

B. LP-Based Fitness Evaluation

NEDA defines the fitness of an individual as the activa-
tion time of its corresponding ndCS, which is derived from
the solution of the LP model formulated in (2)–(4) with the
current population fed as the ndCS set in (3). Longer acti-
vation time of an ndCS indicates a greater contribution to
the network lifetime, and thus is a suitable fitness metric to
guide the generation of promising ndCSs. Consider the exam-
ple in Fig. 1. Assume that the population has four individuals:
1) X1 = {(s1, r1), (s2, r1), (s3, r1)}; 2) X2 = {(s1, r2)};
3) X3 = {(s2, r2)}; and 4) X4 = {(s3, r2)}. Solving the LP
model we obtain ε1 = 0, ε2 = 1, ε3 = 1, and ε4 = 1, which
represents that {(s1, r1), (s2, r1), (s3, r1)} is not activated while
the other three are activated for 1 h, respectively. Therefore,
the fitness values of the four individuals are f (X1) = 0 and
f (X2) = f (X3) = f (X4) = 1.

Note that in NEDA, all the individuals act as the input to
the LP model and after solving the LP model, the fitness of
each individual is obtained. That is, the LPFE only needs to
be carried out once to obtain all the individuals’ fitness, which
is distinct from the traditional EDAs.

C. Neighborhood Sampling Strategy

A promising ndCS set to prolong the network lifetime
should make use of each sensor as fully as possible. Moreover,
the overlap of the activated sensors across different ndCSs
should be minimized to achieve relatively balanced energy
utilization among the sensors. Herein, the word “overlap”
indicates that one sensor can participate in multiple ndCSs
simultaneously, using either the same or different sensing
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Fig. 4. Example of sampling a new individual by NSS.

Algorithm 2 NSS
1: SP = Ø
2: While |SP| < (N – |SI|)
3: Randomly select an individual Xi ∈ SI;
4: Find the n − 1 individuals nearest to Xi in SI, incorporate

them with Xi to construct Xi’s neighborhood;
5: Construct a univariate probabilistic model based on Xi’s

neighborhood;
6: Sample one new individual from the above probabilistic

model, repair it by HRS if it is not an ndCS;
7: If the new individual is not the same as the individuals in

SI and SP, add it to SP, otherwise discard it;
8: End While

ranges. To achieve these two goals, the key is to enhance the
population diversity of NEDA. The NSS is thus proposed.

Typically, EDAs select a proportion of the population to
construct a probabilistic model from which new individuals are
sampled. In NEDA, we select the individuals whose fitness is
larger than zero, that is, those ndCSs that are used (activated)
in the solution of the LP model. The set of selected individuals
is denoted as

SI = {Xi ∈ P |f(Xi) > 0} (6)

where P represents the population. Note that EDAs usu-
ally require a parameter to determine how many individuals
are selected to construct the probabilistic model, while the
proposed NEDA does not require such a parameter and
determines adaptively based on the solution of the LP model.

NSS introduces the idea of neighborhood into the process
of constructing the probabilistic models to enhance the pop-
ulation diversity. The procedure of NSS in one generation is
shown in Algorithm 2. Let SP denote the set to store the new
individuals sampled by NSS. At the beginning of the NSS pro-
cedure, SP is initialized as an empty set (step 1). Then, the
new individuals are generated as follows. First, an individual
is randomly selected from SI (step 3). Second, the neighbor-
hood of the selected individual is formed, including itself as
well as the other (n-1) individuals nearest to it according to the
Manhattan distance in the search space (step 4). In NEDA, n is
set to 5. A univariate probabilistic model is constructed based
on the distribution of activation modes of each sensor across
the individuals in the neighborhood (step 5). Finally, a new
individual is sampled from this probabilistic model (step 6).

Fig. 4 exemplifies the above process of generating a new
individual. Assume that the WSN has five sensors with
two sensing range options. The left grid in Fig. 4 is a neighbor-
hood that contains five individuals. The middle grid contains
five subgrids, each of which shows the selection probabilities
of the activation modes for one sensor. For example, three indi-
viduals in the neighborhood select r2 for sensor s1 while the
other two select r0 and r1, respectively. Therefore, as shown

in the first subgrid, the probabilities for s1 to be inactivated,
be activated at r1, and be activated at r2 are p(0) = 0.2,
p(1) = 0.2, and p(2) = 0.6, respectively. With the probabili-
ties of the three activation modes calculated in the same way
for the other four sensors (as tabulated in the other four sub-
grids), a probabilistic model is built. A new individual can
then be generated by choosing an activation mode for each
sensor based on the above probabilistic model. To be more
exact, for each sensor sj, a random number oj is first derived
from the uniform distribution in (0, 1). Then, oj is compared
with the cumulative probability of each activation mode, and
the first mode whose cumulative probability goes beyond oj

is chosen for the sensor. Still take Fig. 4 as an example. For
sensor s1, the cumulative probabilities of r0, r1, and r2 are 0.2,
0.4, and 1, respectively. Given that o1 = 0.7, sensor s1 will be
activated at r2 since o1 ∈ (0.4, 1]. With the activation mode
for the other sensors selected in the same way, a new indi-
vidual 21 201 is generated (as shown in the right grid). Such
a method is better than pure random sampling as it reduces
the blindness of the search process. Meanwhile, it is also bet-
ter than maximum-likelihood sampling (i.e., greedily choosing
the activation mode with the highest probability for each sen-
sor) as it enables the generation of more diverse individuals
and thus alleviates the risk of premature convergence caused
by the loss of population diversity.

The new individual may not always be an ndCS, if it
is not, repair it by HRS (refer to Section III-D for HRS).
In addition, to prevent the duplicated individuals that may
lead to premature convergence, the new individual is com-
pared with the individuals in SI and the other new individuals
(i.e., the individuals in SP). If no duplication is detected,
add the new individual to SP (step 7). The above procedure
(steps 3–7) iterates until (N − |SI|) new individuals are gen-
erated (step 2). NEDA then forms the population of the next
generation by bringing these new individuals together with the
original individuals in SI.

D. Heuristic Repair Strategy

In the proposed NEDA, each individual represents an ndCS,
that is, a nondominated coverage scheme. However, the indi-
viduals sampled from the univariate probabilistic models are
not always ndCSs. Therefore, we propose the HRS to trans-
form an individual into an ndCS using the remaining energy
of sensors as the heuristic information. The remaining energy
of each sensor sj, denoted by REj, is computed by applying
the solution of the LP model in (2)–(4), that is

REj = bini −
N∑

i=1

eXi,j × εi j ∈ {1, 2, 3, . . . , |S|}. (7)

As shown in Algorithm 3, HRS conducts two operations:
1) refinement and 2) reduction. The refinement operation tunes
the coverage scheme to make it feasible. That is, it activates
some sensors or increases the sensing ranges of some acti-
vated sensors to achieve the coverage over all the targets.
The refinement operation deals with each target in a ran-
dom order (step 3). Then, it adopts a tournament selection
strategy to choose a sensor for the unmonitored target. More
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Algorithm 3 HRS
1: Xi is the individual to be transformed into an ndCS by HRS;
2: //refinement operation
3: For Each target tk in a random order
4: If tk is not monitored
5: Randomly select two sensors from TSk , denoted by sa, sb;
6: sel = a if REa > REb, otherwise sel = b;
7: Xi,sel = min_r where rmin_r is the minimum sensing range for

ssel to monitor tk;
8: Update the coverage information;
9: End If

10: End For
11: //reduction operation
12: For Each sensor sj in the ascending order of RE;
13: Iteratively do Xi,j = Xi,j−1 if Xi,j>0 and the WSN can still

maintain
full target coverage after that;

14: End For

specifically, the set of sensors that can monitor a target tk is
defined as TSk. If tk is not monitored (step 4), two sensors are
randomly picked from TSk and the one with higher remaining
energy are selected to monitor tk (steps 5 and 6). The sens-
ing range of the selected sensor is set at the minimum that
can monitor tk (step 7). After that, the coverage information
is updated immediately (step 8) because the selected sensor
may also monitor some other unmonitored targets. The tour-
nament selection strategy in the above refinement operation is
intended for striking a balance between randomness and greed-
iness. If the sensors are selected completely at random, it may
improve the diversity in sensor usage but also increase the risk
of selecting undesired sensors with low remaining energy. In
contrast, selecting the sensors solely based on their remaining
energy can avoid the energy risk, but results in a less diverse
ndCS set.

After performing the refinement operation, the reduction
operation is carried out to make the coverage scheme nondom-
inated. For each activated sensor in the scheme, HRS checks
whether it can reduce its sensing range or be inactivated while
the WSN can still maintain full target coverage. If so, the sens-
ing range of the sensor will be shrunk to the lowest possible
level. Note that the checking order can affect the performance
of the reduction operation, because several sensors may mon-
itor the same target. Herein, we check the activated sensors
in ascending order of their remaining energy. The sensor with
less remaining energy thus has a higher chance to get its sens-
ing range reduced, which eases the energy consumption of
that sensor and possibly brings longer network lifetime. The
reduction operation corresponds to steps 12–14 in Algorithm 3.

One note is that those randomly generated individuals in
the initial population may also not ndCSs, but the remain-
ing energy of sensors is not available since the LP model
has not been solved. In this case, we simply use a random
repair strategy. That is, randomly select sensors to monitor
the unmonitored targets and follow a random order to check
if each sensor can reduce its sensing range or be inactivated.

E. Overall Procedure of NEDA

The overall procedure of NEDA is shown in Algorithm 4.
First, the population of N individuals is randomly generated.

Algorithm 4 NEDA
1: Randomly initialize the population P of N individuals;
2: Solve the LP model in (2)∼(4) with P as input;
3: Evaluate the individuals’ fitness through LPFE;
4: Obtain SI according to (6);
5: Sample N–|SI| new individuals according to NSS, denoted by SP;
6: P = SI

⋃
SP ;

7: Terminate if the termination criterion is met, otherwise jump back to
Step 2;

Each individual, if not an ndCS, is repaired by the ran-
dom repair strategy. The next step is solving the LP model
in (2)–(4) with the population as input. After that, the individ-
uals are evaluated through LPFE and SI is obtained according
to (6). (N–|SI|) new individuals are then sampled by NSS and
repaired by HRS if necessary. The new individuals and those
in the SI form the population of the next generation. Note that
by keeping all the individuals in SI for the next generation,
NEDA is able to preserve the best solution found so far.

The population size N in NEDA is adaptively set to
2 × |S| according to the number of sensors in WSNs. Based
on the theory of LP, if an LP model has c constraints
(excluding the non-negativity constraints), the number of vari-
ables in a feasible basis will be no larger than c [34], [35].
The LP model in (2)–(4) has |S| constraints apart from
the non-negativity constraints. Therefore, at most |S| ndCSs
are used (activated) in the solution of the LP model. Our
NEDA has a population of 2 × |S| individuals, which can pro-
vide sufficient new ndCSs to avoid premature convergence. In
extreme conditions that |SI| = |S|, NEDA can still generate
|S| new ndCSs.

IV. EXPERIMENTAL STUDY

A. Experimental Settings

Two groups of instances are used to test the performance
of the proposed NEDA. The first group contains 15 types of
small-scale instances, where the number of sensors |S| varies
in the set of {200, 300, 400} and the number of targets
|T| varies in the set of {10, 20, 30, 40, 50}. The second group
contains one type of large-scale instances, where |S| = 1000
and |T| = 100. For each type of instances, ten different
instances are generated with sensors and targets randomly scat-
tered in a 100 × 100 area. We name the instances as |S|_|T|_l,
where l is the index of the instance in the type specified by
|S| and |T|. Each sensor has ten selectable sensing ranges,
increasing from 2 to 20 with a step of 2. The initial bat-
tery energy of sensor is 1 and the energy consumption rate
of the largest sensing range is also 1. That is, the sensor can
be activated for 1 h at the sensing range of 20. The energy
consumption rates of the other sensing ranges are computed
according to (1).

We compare NEDA with three approaches, CGGA [23],
AR-Iterative [24], and Greedy. Herein, CGGA and AR-
Iterative are two state-of-the-art approaches proposed
in [23] and [24], respectively. Greedy is a simple heuristic
algorithm that acts as the baseline. It has two principles:
1) the target whose distance from its nearest available sensor
is larger has higher priority to be handled and 2) the available
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Algorithm 5 Greedy Algorithm
1: AS = S; NL = 0;
2: While the sensors in AS can achieve full target coverage
3: Sort the targets in descending order of the distance from their nearest

available sensor;
4: For each target tk in the order obtained by Step 3
5: If tk is not monitored
6: Activate tk’s nearest sensor in AS at the minimum sensing range

that can monitor tk;
7: Update the coverage information;
8: End If
9: End For

10: Calculate the maximum activation time of the current coverage
scheme, denoted by CL;

11: NL = NL + CL;
12: Update AS and the remaining energy of sensors;
13: End While
14: Output NL;

sensor nearest to the target is selected to monitor it. Herein,
available sensors are those that have remaining energy. The
detailed procedure of Greedy is shown in Algorithm 5.
AS represents the set of available sensors. In steps 3–9,
a coverage scheme is constructed according to the above
two principles. In step 7, the selected sensor may also be
able to monitor the other target(s) apart from tk, so that the
coverage information is updated immediately. Since the target
that has larger distance from its nearest available sensor is
handled at first, the coverage scheme obtained is guaranteed
to be an ndCS. After obtaining an ndCS, its activation time
is set at the maximum according to the remaining energy
of the sensors (step 10). Then, the network lifetime NL is
updated (step 11). In addition, AS and the remaining energy
of sensors are also updated (step 12). The algorithm follows
an iterative procedure and terminates until the sensors in AS
are unable to achieve full target coverage.

NEDA and the compared algorithms are all iterative
approaches, but it may not be fair to use the same number
of iterations due to the difference in their iterative mecha-
nisms. Instead, we force the algorithms to terminate within
the same execution time on identical platforms. The maxi-
mum execution time is set to 1 and 20 h for small-scale and
large-scale instances, respectively. All the experiments are con-
ducted on PCs with Ubuntu 16.04 system, Intel i7-7700 CPU
and 8-GB RAM. Among the tested algorithms, NEDA and
CGGA involve stochastic factors, so that these two algorithms
are run for ten independent times on each instance and the
average results are presented. Unless otherwise stated, the dif-
ferences between the experimental results are validated by
Wilcoxon rank-sum test at the significance level of 0.05.

B. Experimental Results

1) Small-Scale Instances: Table I tabulates the average life-
time obtained on the ten instances of each small-scale instance
type. The best results on each instance type are denoted in
bold. The numbers of the format (a/b/c) show that compar-
ing NEDA with the corresponding algorithm, NEDA performs
significantly better on a instances, shows no significant dif-
ference on b instances, and performs significantly worse on c

TABLE I
EXPERIMENTAL RESULTS OF LIFETIME ON SMALL-SCALE INSTANCES

instances. “Total” sums up a, b, and c across all the 15 instance
types for each compared algorithm.

Compared with AR-Iterative and Greedy, NEDA performs
better on all instance types. In detail, NEDA performs
significantly better than AR-Iterative on 118 out of the
150 small-scale instances, and better than Greedy on
120 instances. Moreover, AR-Iterative and Greedy do not
show a significant advantage over NEDA on any instance.
Comparing NEDA with CGGA, we can see that their average
results are the same on all small-scale instances. That is, given
a maximum execution time of 1 h, NEDA and CGGA achieve
the same result on each instance of the 15 small-scale instance
types. The reason for getting the same results is probably that
NEDA and CGGA both have the ability to sufficiently explore
the search space of small-scale instances and both find the
global optimal solution.

To make a more detailed comparison between NEDA
and CGGA, the “Time to Best” metric is employed and
the experimental results are shown in Table II. The Time
to Best metric represents the execution time consumed by
the algorithm to reach its best solution. The same as in
Table I, the average results on the ten instances of each
instance type are presented. The unit of execution time is
second. In the last row of the table, the Wilcoxon rank-
sum tests show that NEDA performs significantly better than
CGGA on all 150 instances. The last column shows the
reduced time of NEDA to reach the best solution compared
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TABLE II
COMPARISON OF “TIME TO BEST” BETWEEN NEDA AND CGGA ON

SMALL-SCALE INSTANCES (THE UNIT OF EXECUTION TIME IS SECOND)

with CGGA. We can observe that NEDA has comprehen-
sively better efficiency on all 15 instance types. Particularly
on 400_30, NEDA is 15 min faster than CGGA to reach the
best solution. These results indicate that although CGGA can
achieve competitive results, it suffers from poor time
efficiency.

2) Large-Scale Instances: The average lifetime obtained
by the four algorithms on the ten large-scale instances are
shown in Table III, with the best results denoted in bold.
The values in the parentheses show the improvement rate of
NEDA compared with the other algorithms. The last row sum-
marizes the number of instances on which NEDA performs
significantly better, shows no significant difference, or per-
forms significantly worse compared with the corresponding
algorithm.

From the table, the proposed NEDA achieves the best
results on eight out of the ten large-scale instances. Only
on 1000_100_2 and 1000_100_7 is the performance of
NEDA worse than AR-Iterative, with the differences of
−3.811% and −2.227%, respectively. However, NEDA per-
forms significantly better than AR-Iterative on seven instances,
particularly on 1000_100_9 and 1000_100_10, where NEDA’s
improvement rates against AR-Iterative are 5.092% and
7.883%, respectively. CGGA suffers from poor search abil-
ity on large-scale WSNs. We can see that NEDA performs
better than CGGA on all the instances, with an improvement
rate beyond 15% on seven out of the ten instances. In partic-
ular, the improvement rate of NEDA on 1000_100_8 reaches

TABLE III
EXPERIMENTAL RESULTS OF LIFETIME ON LARGE-SCALE INSTANCES

29.270%. Compared with Greedy, NEDA has comprehensive
advantage on all instances.

Overall, NEDA has better performance than the other three
tested algorithms on both small-scale and large-scale instances.
There are mainly two reasons for this. First, NEDA benefits
from the LP model in (2)–(4), which can obtain the optimal
activation time of each ndCS to efficiently utilize sensor energy
and maximize the network lifetime. Second, with LPFE, NSS,
and HRS, NEDA can efficiently generate a high-quality set of
ndCSs to prolong the network lifetime.

C. Effectiveness of LPFE

In NEDA, the LPFE evaluates the fitness of individuals
based on the LP model in (2)–(4). To investigate the effec-
tiveness of LPFE, a greedy fitness evaluation (GFE) is used
for comparison. GFE defines the fitness of each individual as
the maximum activation time of its corresponding ndCS. Note
that in NEDA, those individuals whose fitness is larger than
zero are selected to construct the SI for NSS. However, every
individual’s fitness is larger than zero by the GFE. In this case,
|S| fittest individuals (random break in case of tie) are selected
to construct the SI.

Tables IV and V show the experimental results of these
two fitness evaluation strategies on small-scale and large-scale
instances, respectively. The better results are bolded. The num-
bers of the format (a/b/c) show that compared with GFE,
LPFE performs significantly better on a instances, shows no
significant difference on b instances, and performs signifi-
cantly worse on c instances. In Table V, the values in the
parentheses show the improvement rate of LPFE compared
with GFE. From Table IV, we can see that LPFE performs
comprehensively better than GFE on all instance types. In
total, LPFE performs better on 123 out of the 150 small-
scale instances. The advantage of LPFE is very obvious on
large-scale instances, as shown in Table V. The reason for
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TABLE IV
EXPERIMENTAL RESULTS OF LIFETIME OBTAINED

BY LPFE AND GFE ON SMALL-SCALE INSTANCES

TABLE V
EXPERIMENTAL RESULTS OF LIFETIME OBTAINED BY

LPFE AND GFE ON LARGE-SCALE INSTANCES

LPFE’s effectiveness is as follows. The LP model can obtain
the optimal activation time of each ndCS to maximize the
network lifetime. Using the optimal activation time as the
fitness can show each ndCS’s contribution to the network life-
time, which helps guide the generation of more promising
ndCSs. However, GFE’s greedy principle makes it easy to find
a local optimum.

D. Effectiveness of NSS

In this section, we investigate the performance of
NEDA with different settings of the neighborhood size n in
NSS, including n = 5, 10, 20, and |SI|. Note that with the
setting of n = |SI|, NEDA actually omits the use of NSS and
directly use SI to construct the univariate probabilistic model
from which all new individuals are sampled. Thus, we term
this setting as “no NSS.” The experimental results show that
the lifetime obtained by these four settings are not significantly
different on all small-scale instances. Due to the page limit,
we only present the convergence curves of NEDA under these
four settings on some typical instances, as shown in Fig. 5.

(a)

(c) (d)

(b)

Fig. 5. Convergence curves of different neighborhood size settings on small-
scale instances (a) 300_30_4, (b) 400_30_8, (c) 400_40_7, and (d) 400_50_7.

TABLE VI
EXPERIMENTAL RESULTS OF LIFETIME OBTAINED BY DIFFERENT

NEIGHBORHOOD SIZE SETTINGS ON LARGE-SCALE INSTANCES

From these figures, we can see that although the differences in
the obtained lifetime are not statistically significant, NSS does
help accelerate the convergence. The reason is that NSS helps
generate diverse ndCSs to efficiently utilize the energy of each
sensor. As the neighborhood size increases, the acceleration
effect is gradually compromised, implying that a larger neigh-
borhood size may weaken the effectiveness of NSS in diversity
improvement and thus reduce the efficiency for finding an
ndCS set with longer lifetime.

The experimental results on large-scale instances are shown
in Table VI, with the best results on each instance bolded. The
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(a)

(c) (d)

(b)

Fig. 6. Convergence curves of HRS and RRS on small-scale instances
(a) 300_20_1, (b) 300_30_4, (c) 400_30_9, and (d) 400_40_10.

(a)

(c) (d)

(b)

Fig. 7. Convergence curves of HRS and RRS on large-scale instances
(a) 1000_100_2, (b) 1000_100_5, (c) 1000_100_8, and (d) 1000_100_10.

values in the parentheses show the improvement rate of the
adopted setting, that is, n = 5, compared with the other tested
settings. The comparison results on all ten tested instances are
counted and presented in the bottom of each compared set-
ting’s column. We can see that apart from 1000_100_6 where
the four settings have closed performance, the NSS with n = 5
can greatly improve the obtained results.

In conclusion, NSS can improve the search efficiency by
sampling new individuals based on neighborhood. The rea-
son is that the LM-RAS problem requires a set of diverse

ndCSs to efficiently utilize sensors’ energy and NSS helps con-
duct the distributed search to enhance the population diversity.
Moreover, on both small-scale and large-scale instances, the
adopted setting of n, that is, n = 5, performs the best among
all tested settings.

E. Effectiveness of HRS

To validate the effectiveness of HRS, we compare the
performance of HRS with the random repair strategy (denoted
by RRS). Compared with HRS, RRS does not use the remain-
ing energy of the sensors as the heuristic information, but
randomly selects the sensors to monitor unmonitored targets
and checks if each activated sensor can reduce its sensing
range or be inactivated in a random order. The convergence
curves on some small-scale instances are plotted in Fig. 6.
We can see that HRS accelerates the convergence. The con-
vergence curves on some large-scale instances are plotted in
Fig. 7. We can see that HRS can not only accelerate the con-
vergence but also improve the obtained lifetime. The above
results confirm that the proposed HRS benefits from the usage
of heuristic information, that is, the remaining energy of sen-
sors, and helps improve the search efficiency of NEDA to
prolong the network lifetime.

V. CONCLUSION

In this article, a novel NEDA is proposed to deal with the
LM-RAS problem. Each individual in NEDA represents an
ndCS. Based on the ndCS set represented by the population,
an LP model is built to find the optimal activation time of
each ndCS for maximizing the network lifetime. To generate
more promising ndCSs for prolonging the network lifetime,
three novel strategies, i.e., LPFE, NSS, HRS, are incorpo-
rated into NEDA. Individual fitness is evaluated by LPFE that
shows an individual’s contribution to the network lifetime. The
NSS uses neighborhoods to construct the probabilistic models
for sampling new individuals, which helps generate diverse
ndCSs. The HRS uses the remaining energy of the sensors as
heuristic information to fine-tune the coverage schemes by the
refinement and reduction operations. Experimental results on
WSN instances of different scales showed that the proposed
NEDA outperforms the state-of-the-art approaches in terms of
solution quality and efficiency. The LM-RAS problem is fur-
ther generalized as a kind of problem that shares the same
structure, namely, fLP problems. The NEDA is supposed to
be an effective framework for solving fLP problems, which
will be further examined in future work.
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