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Exponential Consensus of Coupled Inertial Agents
With the Fully Heterogeneous and Fully

Variable Setting of the Control Gains
Wei Li , Senior Member, IEEE, and Jiandong Zhu , Senior Member, IEEE

Abstract—In this article, we consider the exponential consensus
of coupled inertial (double-integrator) agents, particularly with
the general setting of the damping and stiffness control gains.
Each agent has one damping gain and one stiffness gain. Here,
the damping and stiffness control gains of all agents can be both
fully heterogeneous (FH) and fully variable (FV), which are called
the FH-FV gains for convenience of reference. Specifically, the
FH gains are defined as follows: 1) the damping gains of all
agents are heterogeneous; 2) the stiffness gains of all agents are
heterogeneous; and 3) the set of the damping gains and the set of
the stiffness gains are distinct without dependence. Otherwise, the
control gains are said partially heterogeneous (PH). The FV or
partially variable (PV) aspect of control gains is defined similarly.
The FH-FV gains setting is novel and generalizes the specially PH
settings of constant gains in previous papers. We also consider
the general FH-PV gains and the PH-PV gains. Then, we provide
the series of conditions that ensure exponential convergence to
consensus, for the agents with the FH-FV gains, the general FH-
PV gains, and the PH-PV gains, respectively. The series of the
conditions for each type of control gains has particular meaning
for characterizing heterogeneity of the gains, especially, when the
digraph of the agents is far-from-balanced.

Index Terms—Consensus, constrained Rayleigh quotient, coop-
erative control, heterogeneous control gains, inertial agents,
rendezvous, variable control gains.

I. INTRODUCTION

COOPERATIVE control of multiagent systems has
attracted increasing interest in recent years, for example,

consensus [1]–[14], [25], [26], [33], [34], [38]; flocking [11],
[12], [17]–[19]; formation [30]; consensus filters [15]; dis-
tributed tracking [37], [39]; and the transient control of
consensus [40], to mention a few.

For inertial (i.e., double-integrator) agents, since the state
of a single agent includes both velocity and position, gener-
ally, there exist the damping and stiffness gains for the agent’s
velocity and position states, respectively. The damping and
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stiffness gains are generally distinct [11], [12], with the equal
setting of the damping/stiffness gains being the special case.

One type of heterogeneous settings of control gains (i.e.,
different gains for different agents) is considered in [25] for
a network of inertial agents. A set of heterogeneous gains for
steering agents is considered in [27]. There are other types
of heterogeneous settings in the literature, for example, the
heterogeneous inertias of agents; the heterogeneous setting of
the velocity coupling and position coupling of agents [11]–
[13]; the dynamic consensus of heterogeneous networked
systems [16]; and the output consensus of heterogeneous linear
or nonlinear systems [20]–[22].

Considering heterogeneous settings of control gains is
meaningful [25], for either theoretical merits or applications.
The physical meaning for heterogeneous gains arises for many
reasons. For example, even theoretically homogeneous gains
will possibly become heterogeneous in applications, as such
gains in applications may have different values that are con-
trolled or set by physical actuators. For another example, if a
few agents have physical restrictions on their maximum values
of the control gains, then the gains setting would become het-
erogeneous. Moreover, a heterogeneous setting of control gains
is flexible to design control systems with more decentralized
features [25].

In this article, we consider the exponential consensus of
coupled double-integrator agents, particularly with a hetero-
geneous setting of the damping and stiffness gains while we
will go further in this article to consider the fully heteroge-
neous (FH) setting of the gains described as follows, which is
novel.

As each inertial agent has distinctly a damping gain and
a stiffness gain, then the FH setting of the control gains (for
abbreviation, the FH gains setting) is defined as follows: 1) the
damping gains of all agents are heterogeneous; 2) the stiffness
gains of all agents are heterogeneous; and 3) the set of the
damping gains and the set of the stiffness gains are distinct
without dependence.

As a comparison, a partially heterogeneous (PH) setting of
the damping and stiffness gains (for abbreviation, the PH gains
setting) includes one of the following cases: 1) only the damp-
ing gains of all agents are heterogeneous; 2) only the stiffness
gains of all agents are heterogeneous; and 3) although the
set of the damping gains and the set of the stiffness gains
are, respectively, heterogeneous, the two sets have certain
correlations.
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For the correlations of the PH gains, a general case is that
the ratios of the damping gains to the respective stiffness
gains of the agents are generally heterogeneous proportional
coefficients; as a special case, the ratios of the damping gains
to the respective stiffness gains are a common proportional
coefficient; a further special case is that, for each agent, its
damping gain is just identical to its stiffness gain, as in many
previous papers, for example, [25].

Similar to heterogeneous classification of the control gains,
the variable aspect of the control gains can also be clarified
as the fully variable (FV) control gains and partially variable
(PV) control gains. The FV setting of the damping and stiff-
ness gains is defined as follows: 1) the damping gains of all
agents are all variables; 2) the stiffness gains of all agents
are all variables; and 3) the ratios of the stiffness gains to
the respective damping gains are also variables (instead of the
constant coefficients). Otherwise, the control gains are said to
be PV.

In this article, we consider the agents with only position
coupling while with the FH and FV control gains, for abbre-
viation, the FH-FV gains. The main contributions of this article
are as follows.

First, we propose the general FH-FV setting of the con-
trol gains for double-integrator agents, in which the setting is
novel and generalizes the existing gains setting in this field.
We also consider the general setting of the FH and PV gains,
for abbreviation, the FH-PV gains, in which the ratios are
generally heterogeneous proportional coefficients, and which
setting is still novel in this field. The PH and PV gains, that
is, the PH-PV gains, are further special cases of the FH-FV
gains.

Then, we provide the series of conditions that ensure expo-
nential convergence to consensus, for the agents with the
FH-FV gains, the general FH-PV gains, and the PH-PV gains,
respectively. The conditions are provided in the vector or
matrix form for conciseness. Moreover, the series of the condi-
tions for each type of the gains setting has particular meaning
for characterizing the heterogeneity of the gains, especially,
when the digraph of the agents is far-from-balanced.

The remainder of this article is arranged as follows.
Section II describes the problems. Section III is the prepara-
tions. Section IV provides consensus conditions for the FH-PV
gains with generally heterogeneous proportional coefficients.
Section V provides consensus conditions for the FH-PV gains
with eigen-heterogeneous proportional coefficients. Section VI
provides consensus conditions for the general FH-FV gains.
Section VII provides consensus conditions for the PH-PV
gains and comparisons with previous results. Section VIII is
the conclusion. Table I lists the main abbreviations in this
article.

Notations: Denote σmax(·) as the maximal singular value
of a matrix. Denote λmax(·) as the maximal eigenvalue of a
matrix if its eigenvalues are all real. 〈·, ·〉 denotes the inner
product of two vectors in the Euclidean space. | · | means an
absolute value of a scalar parameter. ‖·‖ denotes the Euclidean
norm of a vector, ‖x‖ = √

xTx. Vector x > 0 (x ≥ 0) means
that all entries of vector x are positive (nonnegative). C � 0
(C � 0) means that matrix C is positive definite (semidefinite),

TABLE I
MAIN ABBREVIATIONS IN THIS ARTICLE

C � D (C � D) means C − D � 0 (C − D � 0). I is the
identity matrix, and 0 denotes a zero vector or matrix, with
the dimensions determined in the subscript or in the context.
Denote 1 := [1, 1, . . . , 1]T ∈ R

n. Notation diag(v) for a vector
parameter v = [v1, v2, . . . , vn]n means diag(v1, v2, . . . , vn).

II. PROBLEMS DESCRIPTION

This section describes the coupled agents with heteroge-
neous and variable control gains, the motivations, and the
definitions of different types of control gains, and then the
main concern of this article.

A. Agents With Heterogeneous and Variable Control Gains

Consider n agents in the N-dimensional Euclidean space,
N ≥ 1. Denote xi(t) ∈ R

N (abbreviated as xi) as the position
of agent i. Consider the dynamics of the agents with implicit
inertias while heterogeneous and variable control gains, that is

ẍi = ui, i = 1, 2, . . . , n

where ui is the control input of agent i

ui = −bi(t)ẋi −
∑

j∈Ni

ki(t)wij(xi − xj), i = 1, 2, . . . , n (1)

where Ni is the neighbor set of agent i, wij > 0 if j ∈ Ni,
otherwise, wij = 0; wii = 0 for all i; and

1) bi(t), i = 1, 2, . . . , n, are the damping gains;
2) ki(t), i = 1, 2, . . . , n, are the stiffness gains.

Here, the damping gains and the stiffness gains are allowed
to be both heterogeneous and variables, the motivations are
provided in Section II-B. The gains variables are general and
can be even noncontinuous (i.e., no derivatives are required),
for example, consider an FH-FV example for n = 3 as follows.

Example 1: An example of the FH-FV setting of the
damping gains and the stiffness gains, for n = 3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1(t) = 1 + e−t

b2(t) = 1 + e−2t

b3(t) = 1 + ecos(t)

k1(t) = (1 + e−t)(2 + sin(t))
k2(t) = (1 + 2e−2t)(1 + | cos(t)|)
k3(t) =

{
(1 + ecos(t)), t ∈ [0, 1]
(1 + 2e−2t)(1 + | cos(t)|), t > 1.

The agents achieve asymptotic consensus (rendezvous), if

xi → xj, ẋi → 0 ∀i, j = 1, 2, . . . , n

where → means “asymptotically converges to.”
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B. Motivations on Heterogeneous and Variable Control
Gains

1) Motivations on Variable Control Gains: There are many
motivations on variable control gains, not only theoretically
but also practically. For example, consider the dynamics of
the agents with explicitly variable inertias as

mi(t)ẍi = ũi, i = 1, 2, . . . , n

where mi(t) > 0 is the inertia of agent i that can be a variable
(e.g., due to the fuel consumption), ũi is the control input

ui = −b̃i(t)ẋi −
∑

j∈Ni

k̃i(t)wij(xi − xj), i = 1, 2, . . . , n

where b̃i(t) > 0 is the damping gain, and k̃i(t) > 0 is the
stiffness gain. This system is equivalent to the case that the
agents have constant inertias while the control gains ũi are
the scaled variables; that is, the inertias can be viewed as
being incorporated into the scaled gains as bi(t) := b̃i(t)/mi(t),
ki(t) := k̃i(t)/mi(t). For conciseness, the dynamics of agents
can be then described without explicit inertias while with vari-
able control gains. Furthermore, the variance or inaccuracy (if
with known bounds) of the agents’ inertias can be also treated.

2) Motivations on Heterogeneous Control Gains:
Considering heterogeneous settings of control gains is also
meaningful for either theoretical merits or applications. For
example, we have the following.

1) Even theoretically homogeneous gains will possibly
become heterogeneous in applications, as such gains
may have different values that are set by physical
inaccurate actuators.

2) Also, if a few or all agents have the physical restric-
tions on their, respectively, maximum values of the
control gains, then the gains setting would become
heterogeneous.

3) A heterogeneous setting of control gains is flexible to
design control systems with more decentralized features.

C. Definitions on Heterogeneous and Variable Control Gains

Consider the set of the damping gains and the set of the
stiffness gains. Then, we have the following definitions.

Definition 1: The FH setting of the damping and stiffness
gains is defined as follows.

1) The damping gains bi(t), i = 1, 2, . . . , n, are
heterogeneous.

2) The stiffness gains ki(t), i = 1, 2, . . . , n, are
heterogeneous.

3) The ratios of the stiffness gains to the corresponding
damping gains, that is, ki(t)/bi(t), i = 1, 2, . . . , n, are
heterogeneous.

Otherwise, the gains are said PH.
Similar as heterogeneous classification of gains, the variable

aspect of control gains can also be clarified as FV control gains
and PV control gains.

Definition 2: The FV setting of the damping and stiffness
gains is defined as follows.

1) The damping gains bi(t), i = 1, 2, . . . , n, are variables.
2) The stiffness gains ki(t), i = 1, 2, . . . , n, are variables.

3) The ratios of the stiffness gains to the corresponding
damping gains, that is, ki(t)/bi(t), i = 1, 2, . . . , n, are
also variables (instead of the constant coefficients).

Otherwise, the gains are said PV.

D. Agents With Different Types of the Control Gains

Consider the matrix formation, the diagonal matrices
of the damping and stiffness control gains are defined,
respectively, as

B(t) := diag(b1(t), b2(t), . . . , bn(t))

K(t) := diag(k1(t), k2(t), . . . , kn(t)).

In this article, we consider the different types of the damping
and stiffness control gains.

1) The FH-FV Gains: The damping and stiffness control
gains in (1) allow such type of control gains.

2) The FH-PV Gains, With Generally Heterogeneous
Proportional Coefficients Between the Set of the
Damping Gains and the Set of the Stiffness Gains: In
this case, the control gains are FH while not FV, as here

ki(t) = cibi(t), i = 1, 2, . . . , n

where ci, i = 1, 2, . . . , n, are constant coefficients while
allowed to be generally heterogeneous, the control input
becomes

ui = −bi(t)

⎛

⎝ẋi + ci

∑

j∈Ni

wij(xi − xj)

⎞

⎠, i = 1, . . . , n.

(2)

For convenience, consider the matrix formation of the
control gains, define C := diag(c1, c2, . . . , cn), then

B(t)K−1(t) = C−1. (3)

In (3), the heterogeneity of the entries of matrix C char-
acterizes the relative heterogeneity between the set of
the damping gains and the set of the stiffness gains.

3) The FH-PV Gains, With the Eigen-Heterogeneous
Proportional Coefficients Between the Set of the
Damping Gains and the Set of the Stiffness Gains: In
this case, for the proportion, C = ncoE, that is

B(t)K−1(t) = 1

nco
E−1

or equivalently

ξ1b1(t)

k1(t)
= ξ2b2(t)

k2(t)
= · · · = ξnbn(t)

kn(t)
= 1

nco
(4)

where co is a constant coefficient, matrix E and
ξ1, ξ2, . . . , ξn will be defined in Section III-B that
are determined by the coupling of the agents (if
ξ1, ξ2, . . . , ξn are not FH for a certain coupling of the
agents, then the control gains are called PH-PV gains).

4) The PH-PV Gains With a Common Proportional
Coefficient: In this case, the control input becomes

ui = −bi(t)

⎛

⎝ẋi + co

∑

j∈Ni

wij(xi − xj)

⎞

⎠ (5)
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where the ratios of the heterogeneous damping gains to
the respective stiffness gains are a common and constant
proportional coefficient co, which is a special case of (2).
For the comparison purpose, denote

co := c1 + c2 + · · · + cn

n
> 0 (6)

as the average value of the heterogeneous coefficients
ci, i = 1, 2, . . . , n, in (2). Then, the vector form of the
control gains is

B(t)K−1(t) = 1

co
I. (7)

Remark 1: In literature, for each agent, its damping gain is
usually set to be identical to its stiffness gain, that is, ci = 1,
i = 1, 2, . . . , n, for example, as in [25] and many other papers,
which is a special case of (5).

Remark 2: In this article, no derivatives of the variable
gains are required, for example, refer to Example 1 in
Section II-A, whereas in [25], for those variable gains, their
derivatives are assumed to exist and also constrained to be
some continuous functions of the agents’ states; also, no
analytical bounds of those variable gains are provided for
consensus.

E. Main Concerns on Heterogeneity of the Gains

Denote x := [xT
1 , xT

2 , . . . , xT
n ]T ∈ R

Nn, the vector form of
system (1) is
(

ẍ
ẋ

)
=
(−B(t) −K(t)L

I 0

)
⊗ IN

(
ẋ
x

)
:= A(t) ⊗ IN

(
ẋ
x

)
.

If the control gains B and K are constant, then the eigenvalues
judgment is trivial. However, if the control gains are generally
variables, then the eigenvalues judgment (for the necessary
and sufficient conditions) fails [24, Ch. 4.6, p. 157].

Then, the main concern in this article is that: what are ana-
lytical conditions on such heterogeneous and variable control
gains for exponential consensus?

III. PREPARATIONS

This section is the preparations and preliminaries for deriva-
tion of the main results in the following sections in this
article.

A. Definitions and Preparations

Consider two matrices A1 and A2 ∈ R
m×m. Without loss of

generality, assume that σmax(A1) �= 0 and σmax(A2) �= 0 in
this article.

Definition 3: Define the positive semidefinite matrix func-
tion ϕ : (Rm×m)2 × R

+ → R
m×m as

ϕ(A1, A2, c) := 1

c
(cA1 + A2)

T(cA1 + A2) � 0

where c > 0 is a constant parameter. Define the positive
semidefinite matrix function ϕo : (Rm×m)2 → R

m×m as

ϕo(A1, A2) := ϕ(A1, A2, c̃) � 0

where the positive scalar c̃ > 0 is the optimal value that
minimizes λmax(ϕ(A1, A2, c)), that is

λmax(ϕ(A1, A2, c̃)) := min∀c>0
λmax(ϕ(A1, A2, c)).

Definition 4: Define the positive semidefinite matrix func-
tion ϕ1 : (Rm×m)2 → R

m×m

ϕ1(A1, A2) :=

(
σmax(A2)

σmax(A1)
A1 + A2

)T(
σmax(A2)

σmax(A1)
A1 + A2

)

σmax(A2)

σmax(A1)

.

From definition, we have

ϕ1(A1, A2) � 0

ϕ1(A1, A2) = ϕ1(A2, A1).

Define the non-negative function ν : (Rm×m)2 → R as

ν(A1, A2) := min∀c>0

σ 2
max(cA1 + A2)

c
≥ 0.

Define the nonnegative function ν1 : (Rm×m)2 → R as

ν1(A1, A2) :=
σ 2

max

(
σmax(A2)

σmax(A1)
A1 + A2

)

σmax(A2)

σmax(A1)

≥ 0.

From the definition, ν(A1, A2) has an upper bound

ν(A1, A2) ≤ ν1(A1, A2).

Proposition 1: From the definitions

λmax(ϕ1(A1, A2)) = ν1(A1, A2). (8)

That is

ν1(A1, A2)I � ϕ1(A1, A2). (9)

Proposition 2: The following inequality holds:

ν1(A1, A2) ≤ 4σmax(A1)σmax(A2).

If one matrix has all non-negative eigenvalues, while another
matrix has all nonpositive eigenvalues, then the following
inequality holds with obvious conservativeness:

ν1(A1, A2) < 4σmax(A1)σmax(A2). (10)

Proof: Refer to the Appendix.
Remark 3: In this article, we only use (10) to derive a con-

servative condition for the comparison purpose with recent
results (refer to Appendix C).

B. Eigenproperties of the EB Laplacian Matrix

Define W = [wij] ≥ 0 as the coupling matrix for the dynam-
ics equations of the agents. Define the corresponding Laplacian
matrix of the coupling matrix as

L = diag(W1) − W .

Define weighted digraph G of L as G = (V, E,A), where
V = {1, 2, . . . , n}, E ⊆ V × V is the edge set, matrix A =
WT (not W) is the weighted adjacency matrix of G, that is,
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eij = (i, j) ∈ E iff wji > 0, which represents the directed
information flow from agent i to agent j in digraph G [11].

Assumption 1: Assume that digraph G is strongly connected,
that is, L is irreducible (L is irreducible iff G is strongly
connected [1]).

Lemma 1: With Assumption 1, Laplacian L has only one
zero eigenvalue. There exists a positive [1, Lemma 1] vector

ξ := [ξ1, ξ2, . . . , ξn] ∈ R
1×n, ξ > 0

as a left eigenvector of Laplacian L corresponding to its only
zero eigenvalue.

Without loss of generality, assume that

〈ξT , 1〉 = ξ1 + ξ2 + · · · + ξn = 1

thus, with Lemma 1, ξ is unique.
Definition 5: Define matrix

E := diag(ξ1, ξ2, . . . , ξn) � 0.

Then, EL is an eigen-balanced (EB) Laplacian matrix
associated with L, since EL1 = (EL)T1 [1].

C. Constrained Rayleigh Quotient

The following reviews the constrained Rayleigh quotient
and its greatest lower bound (i.e., the infimum) [1] for self-
containment in this article.

Denote the eigenvalues of the Laplacian EL + LTE as

0 = μ1 < μ2 ≤ μ3 ≤ · · · ≤ μn

where μ2 > 0 (due to Assumption 1). Denote ω1 ∈ R
n as the

right eigenvector (with ‖ω1‖ = 1) of EL+LTE corresponding
to μ1, then

ω1 = (
1/

√
n
)
1.

Lemma 2 (Constrained Rayleigh Quotient): For any vector
ζ ∈ R

n, satisfying 〈ζ, 1〉 �= 0, variable x is constrained to
be orthogonal to vector ζ (which is called the orthogonality-
constraint vector, or for abbreviation, the OC-vector), then [1]

min
∀x∈Rn, x �=0, 〈x,ζ 〉=0

∀ζ∈Rn, 〈ζ,1〉�=0

xT
(
EL + LTE

)
x

xTx
≥ μ2

〈ζ, ω1〉−2‖ζ‖2
:= μζ .

Lemma 3: For vector ζ ∈ R
n. ∀ζ > 0, then [1, Lemma 2]

1 ≤ 〈ζ, ω1〉−1‖ζ‖ <
√

n

where the equal sign holds iff ζ parallels 1.
Corollary 1: For any positive OC-vector, that is, ∀ζ > 0,

one has

min∀x∈Rn, x �=0, 〈x,ζ 〉=0

xT
(
EL + LTE

)
x

xTx
>

μ2

n
.

Lemma 4: In Lemma 2, let ζ = ξT , then the greatest lower
bound of the constrained Rayleigh quotient is

μξ := μ2

n‖ξ‖2
. (11)

Then, from [1, Corollary 2]
⎧
⎨

⎩

μ2
n < μξ ≤ μ2

μξ → μ2
n ⇔ ‖ξ‖ → 1

μξ = μ2 ⇔ ξ = (1/n)1T .

D. Preliminaries on the Matrix Functions

Definition 6: Digraph G is called weakly symmetric, if
EL = LTE. Digraph G is balanced, if ξ = (1/n)1T . Otherwise,
it is said unbalanced.

Proposition 3: If G is weakly symmetric, then the matrix
function

ϕo
(
EL,−LT E

) = 0.

If G is balanced, then ∀	 = 0, 1, 2, . . ., we have the matrix
function

ϕo

(
EL,−LT E	

)
= ϕo

(
1

n
L,− 1

n	
LT
)

= 1

n1+	
ϕo
(
L,−LT).

Proof: Refer to the Appendix.
Proposition 4: If G is weakly symmetric, then the matrix

function

ϕ1
(
EL,−LT E

) = 0.

If G is balanced, then ∀	 = 0, 1, 2, . . ., we have the matrix
function

ϕ1

(
EL,−LT E	

)
= ϕ1

(
1

n
L,− 1

n	
LT
)

= 1

n1+	
ϕ1
(
L,−LT).

Proof: Refer to the Appendix.
From definition, if G is weakly symmetric, then

ν1
(
EL,−LT E

) = 0.

IV. EXPONENTIAL CONSENSUS CONDITIONS FOR THE

FH-PV GAINS WITH THE RATIOS AS GENERALLY

HETEROGENEOUS PROPORTIONAL COEFFICIENTS

A. Main Results

Theorem 1: Consider system (2), that is, the FH-PV
gains with the ratios as generally heterogeneous propor-
tional coefficients (3). Then, the agents achieve consensus
exponentially, if

E	C−1B(t) � E	L + LTE	

2
+ 1

2μC
ϕo

(
EL,−LT E	

)
(12)

for any one value of 	 with 	 ∈ {0, 1, 2, . . .}, in which

μC := μ2
〈
C−1ξT , ω1

〉−2∥∥C−1ξT
∥∥2

. (13)

Proof: Refer to the Appendix.
Remark 4: The gains C−1B(t) are called the heterogeneous

combinatorial gains

C−1B(t) = 
(t) := B2(t)K−1(t)

the ith diagonal entry of 
(t) is b2
i (t)/ki(t), which generalizes

the homogeneous combinatorial gains.
Remark 5: Condition (12), as many other conditions in this

article, is provided in the vector form for conciseness.
Remark 6: Note that E	C−1B(t) is a diagonal matrix, and

the right-hand side of condition (12) is a constant matrix. Thus,
it is not difficult to derive the condition for each gain in the
scalar form, which condition is omitted for the limited space.

Remark 7: Although the conditions in this article are the
centralized conditions instead of decentralized conditions, as
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they use the eigenvalues and eigenvectors of the digraph. It is
known, however, that the eigenvalues and eigenvectors can be
derived by distributed estimations, for example, [42] and [41].

Remark 8: The flexible choice of condition (12) with any
one 	 ∈ {0, 1, 2, . . .} has particular meaning for characterizing
heterogeneity of the gains, especially, when digraph G is non-
balanced or even far-from-balanced. Condition (12) provides
the lower bounds of the control gains and is easy to design.

Corollary 2: Consider system (2), that is, the FH-PV
gains with the ratios as generally heterogeneous proportional
coefficients (3).

1) Digraph G is balanced. Then, condition (12), with any
one value of 	 ∈ {0, 1, 2, . . .}, reduces to be the
same as

C−1B(t) � L + LT

2
+ 1

2nμC
ϕo
(
L,−LT).

2) Digraph G is weakly symmetric. Then, the agents
achieve consensus exponentially, if

EC−1B(t) � EL.

3) Digraph G is symmetric. Then, the agents achieve
consensus exponentially, if

C−1B(t) � L.

Proof: The first result holds from Proposition 3. The second
result holds since ϕo(EL,−LT E	) = 0 with 	 = 1 in (12).

The function ϕo(EL,−LT E	) for the optimal value c̃ can be
solved numerically, but it is not easy to derive the analytical
value in general. Here, we can also use value ϕ1(EL,−LT E	)

replacing ϕo(EL,−LT E	), and provide conservative but more
calculable analytical conditions.

Theorem 2: Consider system (2), that is, the FH-PV
gains with the ratios as generally heterogeneous propor-
tional coefficients (3). Then, the agents achieve consensus
exponentially, if

E	C−1B(t) � E	L + LTE	

2
+ 1

2μC
ϕ1

(
EL,−LT E	

)
(14)

for any one value of 	 with 	 ∈ {0, 1, 2, . . .}. Furthermore,
if digraph G is balanced, condition (14), with any 	 ∈
{0, 1, 2, . . .}, reduces to be the same as

C−1B(t) � L + LT

2
+ 1

2nμC
ϕ1
(
L,−LT).

Proof: The result can be derived from Theorem 1 and the
definition of ϕ1.

B. Easily Calculable Corollaries and Interpretations

The following is a more calculable corollary as the supple-
mentary result of Section IV-A, as well as an interpretation
for Remark 8.

Proposition 5: Consider system (2), that is, the FH-PV
gains with the ratios as generally heterogeneous propor-
tional coefficients (3). Then, the agents achieve consensus
exponentially, if

E	C−1B(t) � E	L + LTE	

2
+ 1

2μC
ν1

(
EL,−LT E	

)
(15)

for any one value of 	 with 	 ∈ {0, 1, 2, . . .}. For example, for
	 = 0, 1, 2, condition (15) becomes, respectively, as

C−1B(t) � L + LT

2
+ ν1

(
EL,−LT

)

2μC
I

EC−1B(t) � EL + LTE

2
+ ν1

(
EL,−LT E

)

2μC
I

E2C−1B(t) � E2L + LTE2

2
+ ν1

(
EL,−LT E2

)

2μC
I.

The more conservative but explicit solutions (in the scalar
form), corresponding to the above results (in the vector form),
respectively, are that

bi(t) > ci

(
λmax(L+LT )

2
+ ν1

(
EL,−LT

)

2μC

)
,

i = 1, 2, . . . , n;
bi(t) >

ci

ξi

(
μn

2
+ ν1

(
EL,−LT E

)

2μC

)
, i = 1, 2, . . . , n;

bi(t) >
ci

ξ2
i

(
λmax(E2L+LT E2)

2
+ ν1

(
EL,−LT E2

)

2μC

)
,

i = 1, 2, . . . , n. (16)

For interpretation of Remark 8 with, for example, (16), we
have the following.

If digraph G is unbalanced, then ξ �= (1/n)1T , the hetero-
geneity of the gains mainly comes from two aspects.

1) The heterogeneity of ci, i = 1, 2, . . . , n.
2) The heterogeneity of ξi, i = 1, 2, . . . , n, especially,

digraph G is far-from-balanced. For example, if one ξi

among others is bigger, then the corresponding bi(t)
[refer to (16)] can be relatively smaller; while if one ξi

is very small, then the corresponding bi(t) is expected
to be much bigger.

V. EXPONENTIAL CONSENSUS CONDITIONS FOR

THE FH-PV GAINS WITH THE RATIOS

AS THE EIGEN-HETEROGENEOUS

PROPORTIONAL COEFFICIENTS

For a given coupling, that is, a given Laplacian L, the value
of μξ in (11) is determined, which has the maximum value
only if digraph G of L is balanced (i.e., the entries of ξ

are homogeneous), refer to Lemma 4. That is, one has no
flexibility to adjust it.

As a comparison, for μC defined in (13), C is a parametrized
and thus adjustable matrix. We have μC = μ2 if C1 is parallel
to E1, and μC < μ2, otherwise. That is

max∀C�0
μC = μ2

the maximum value of μC achieves, if C−1ξT‖1 (i.e., if the
entries of C−1ξT are homogeneous). The physical meaning for
the maximum value of μC is that, the particular parametrized
matrix C can be selected just to cancel the heterogeneity of ζ

for μζ , as ζ = C−1ξT satisfies here (Lemma 2). This leads to
the eigen-heterogeneous proportional coefficients for the PH
gains as follows.
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In the following, we provide the eigen-heterogeneous pro-
portional coefficients between the heterogeneous damping
gains and the corresponding heterogeneous stiffness gains,
which gains with such correlation have the least magnitudes
that are provable to ensure the exponential consensus of the
agents. Such coefficients (i.e., which ensure μC = μ2) just
coincide with the positive left eigenvector ξ of Laplacian L
corresponding to the zero eigenvalue.

Corollary 3: Consider system (2) and the FH-PV gains
with the ratios as the eigen-heterogeneous proportional
coefficients (4). Then, the agents achieve consensus exponen-
tially, if

1

nco
E	−1B(t) � E	L + LTE	

2
+ 1

2μ2
ϕo

(
EL,−LT E	

)
(17)

for any one value of 	 with 	 ∈ {0, 1, 2, . . .}.
Proof: From Theorem 1, let C = ncoE, then μC = μ2. The

result holds.
This result has the particular meaning for a large n of agents

with nonweakly symmetric or nonsymmetric digraph G, which
digraph means that ϕo(EL,−LT E) is positive definite.

The corresponding corollaries from Corollary 2 and
Theorem 2 can also be derived similarly and are omitted here
for the limited space.

VI. EXPONENTIAL CONSENSUS CONDITIONS

FOR THE FH-FV GAINS

The section provides two main theorems of exponential
consensus for the FH-FV gains.

Theorem 3: Consider system (1) with the FH-FV gains. The
agents achieve consensus exponentially, if there exist positive
constant scalars c, r > 0 such that the control gains satisfy

B(t) − r

2

(
EL + LTE

)− 1

2rμ2
ϕ(rEL, A2, c) � 0 (18)

where A2 := B(t) − r−1E−1K(t) − rLTE.
Proof: Refer to the Appendix.
Corollary 4: Consider system (1) with the FH-FV gains,

and digraph G is weakly symmetric. Then, the agents achieve
consensus exponentially:

1) if

B(t) − r

2
(EL + LTE) − 1

2rμ2

(
B(t) − r−1E−1K(t)

)2 � 0

2) or more conservatively but more concisely, if
{

B(t) � rEL
K(t) = rEB(t).

Proof: For the first item, let c = 1, condition (18) becomes
this condition. The second item can be derived from the first
item.

Theorem 4: Consider system (1) with the FH-FV gains. The
agents achieve consensus exponentially, if there exist positive
constant scalars c, r > 0 such that the gains satisfy

EB(t) − r

2

(
EL + LTE

)− 1

2rμξ

ϕ(A1, rEL, c) � 0

where A1 := EB(t) − r−1EK(t) − rLTE.
Proof: Refer to the Appendix.

VII. EXPONENTIAL CONSENSUS CONDITIONS FOR THE

PH-PV GAINS WITH THE RATIOS AS A COMMON

PROPORTIONAL COEFFICIENT AND COMPARISONS

WITH PREVIOUS RESULTS

This section provides the exponential consensus conditions
for the PH-PV gains with the ratios as a common propor-
tional coefficient, and then compares them with previous
results.

A. PH-PV Gains With a Common Proportional Coefficient

Corollary 5: Consider system (5), that is, the PH-PV gains
with the ratios as a common proportional coefficient. The
agents achieve consensus exponentially, if

1

co
E	B(t) � E	L + LTE	

2
+ 1

2μξ

ϕo

(
EL,−LT E	

)
(19)

for any one nonnegative integer 	 ∈ {0, 1, 2, . . .}.
Proof: From Theorem 1, let C = coI, then μC = μξ . The

result holds.
The corresponding corollary from Theorem 2 can also be

derived and is omitted here for the limited space.
Proposition 6: Consider system (5), that is, the PH-PV

gains with the ratios as a common proportional coefficient.
The agents achieve consensus exponentially, if

1

co
E	B(t) � E	L + LTE	

2
+ 1

2μξ

ϕo

(
E − ξTξ,−LTLTE	

)

for any one value of 	 with 	 ∈ {0, 1, 2, . . .}. For example, the
condition for 	 = 0 is

1

co
B(t) � L + LT

2
+ 1

2μξ

ϕo
(
E − ξTξ,−LT LT). (20)

Proof: Refer to the Appendix.

B. Eigen-Heterogeneous Coefficients versus a Common
Coefficient

For the left side terms of (17) and (19), we have

1T
(

1

nco
E	−1B(t)

)
1 = 1T

(
1

co
E	B(t)

)
1

that is, the physical meaning is that the overall cost of gains
B(t) is the same for each case.

However, please note the difference between μξ of condi-
tion (19) and μ2 of condition (17), which relation is shown
in Lemma 4. That is, the common proportional coefficient (7)
(and as a result, the gains setting in [25], refer to Remark 1)
is not a good proportional correlation for a general weighted
digraph G, especially, when G is far-from-balanced, which will
induce μξ → μ2/n (Lemma 4) and thus will make (19) more
conservative, especially, for a large n.

C. Comparisons With Previous Results

The heterogeneous combinatorial gains 
(t) generalize the
homogeneous combinatorial gain [11], [12] (the combinatorial
gain is defined as the ratio of the square of the damping gain
to the stiffness gain).
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This article provides the general FH-FV gains for consen-
sus, the gains setting and its derivations are general than, for
example, [11], [12], and [25].

The following compares our results with [25, Ths. 3.1, 3.2,
and 3.3], which use the special PH gains.

1) Comparison on the Settings of Heterogeneous Gains: In
this article, we consider the FH control gains, and show
that the damping gains and the stiffness gains play the
distinct roles. As a comparison, Mei et al. [25] con-
sidered only a special case of the PH control gains, in
which for each agent, its damping gain is just identical
to its stiffness gain, that is, bi ≡ ki.

2) Comparison With [25, Theor. 3.1]: First, our
result (Section IV) is for the variable FH gains,
while [25, Theor. 3.1] is for the constant PH gains.
Also, our result has less conservative bounds of the
gains, for the details, refer to Appendix D.

3) Comparison With [25, Theor. 3.3]:
a) These results prove asymptotic (not exponen-

tial convergence) consensus with growing variable
gains, which values (that are available only via
numerical simulations, not analytically) can be less
conservative than our result in Section VI. While
our result provides analytically lower bounds of
variables gains for the exponential convergence of
consensus.

b) Moreover, [25, Theor. 3.3] is for the specially
growing variable gains, while our result is for gen-
eral variable gains without the requirements of the
derivatives.

VIII. CONCLUSION

In this article, we investigate the double-integrator agents
with position coupling and the FH-FV gains, and provide
exponential consensus conditions for the FH-FV gains, the
general FH-PV gains, and the PH-PV gains, respectively,
which demonstrate the relations of the control gains with
respect to the eigenproperties of the agents’ digraph. The
results are possibly insightful to derive still less conservative
lower bounds for such control gains to ensure the exponential
consensus of the agents.

There are many interesting consensus problems for cou-
pled double-integrator agents with the general setting of the
FH-FV gains, which will be considered in the future. For
example, what are the results if some of the heterogeneous
damping or stiffness gains are allowed to be zero or even
negative (negative values represent for anti-consensus effects
between agents, for example, as the interactions of the agents
with signed digraphs in [28] and [29])? (The FH setting can
allow some nonpositive gains; whereas the PH setting [25] is
impossible to allow nonpositive gains.) What is the result of a
general digraph without strong connectivity? What is the result
of a designated convergence rate on the exponential consensus
of the agents? The possible extension of the proposed method
to the cases of some general heterogeneous affine nonlinear
multiagent systems (e.g., as the systems in [31], [32], [35],
and [36]) will also be considered in the future.

APPENDIX A
PREPARATIONS FOR PROOFS

For nonzero vectors a and b ∈ R
N , the Cauchy–Schwarz

inequality

|〈a, b〉| ≤ 〈a, a〉1/2〈b, b〉1/2

with the equality holds if a and b are linearly dependent [23].
The maximal singular value σmax(A) of matrix A is defined

as the square root of the maximal eigenvalue of ATA, that is,
σmax(A) := √

λmax(ATA).
From definition, if A is symmetric, then σmax(A) =

|λmax(A)|.
From definition, for a general matrix A

σmax

(
A2
)

=
√

λmax
(
ATATAA

) =
√

λmax
(
ATAATA

)

= λmax
(
ATA

) = σ 2
max(A).

‖Ax‖ =
√

(Ax)T(Ax) =
√

xTATAx ≤ σmax(A)‖x‖.
Lemma A1: For two matrices A1 and A2 and a scalar c, then

σmax(A1 + A2) ≤ σmax(A1) + σmax(A2)

σmax(A1A2) ≤ σmax(A1)σmax(A2)

σmax(cA1) = cσmax(A1).

Define the weighted centroid of xi ∈ R
N as

x̄c :=
n∑

i=1

ξixi ∈ R
N .

Define x̄ := 1 ⊗ x̄c = (1ξ ⊗ IN)x ∈ R
Nn, and

e := x − x̄ = (INn − 1ξ ⊗ IN)x = (I − 1ξ) ⊗ INx. (21)

Lemma A2: Denote e = [eT
1 , eT

2 , . . . , eT
n ]T and ei = xi − x̄c.

Then

n∑

i=1

ξiei = 0 ∈ R
N . (22)

That is, (ξ ⊗ 1N)e = (ξ ⊗ 1N)((I − 1ξ) ⊗ IN)x = 0 ∈ R
N .

For the scalars a1, a2 > 0 and x > 0, then

min∀x>0

(a1x + a2)
2

x
= 4a1a2, at x = a2/a1. (23)

For verification, one can verify the derivative about x as

d
(
(a1x + a2)

2/x
)

dx
= 2a1(a1x + a2)x − (a1x + a2)

2

x2
.

Let the derivative be zero, then x = a2/a1.

A. Proofs of Propositions 2–4

Proof of Proposition 3: From definition, we have

ϕo

(
1

n
L,− 1

n	
LT
)

= 1

c̃

(
c̃

1

n
L − 1

n	
LT
)T(

c̃
1

n
L − 1

n	
LT
)

.
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Then, this optimal value c̃ is also the optimal value for

1

c̃n	

(
c̃n	−1L − LT

)T(
c̃n	−1L − LT

)

= 1

n

1

c̃n	−1

(
c̃n	−1L − LT

)T(
c̃n	−1L − LT

)

= 1

n
ϕo
(
L,−LT).

That is
1

n1+	
ϕo
(
L,−LT) = ϕo

(
1

n
L,− 1

n	
LT
)

.

Then, the result holds.
Proof of Proposition 4: If G is balanced, ξ = (1/n)1T , then

ϕ1

(
EL,−LT E	

)

= ϕ1

(
1

n
L,− 1

n	
LT
)

=

⎛

⎝
σmax

(
1
n	 LT

)

σmax

(
1
n L
) 1

n L − 1
n	 LT

⎞

⎠
T⎛

⎝
σmax

(
1
n	 LT

)

σmax

(
1
n L
) 1

n L − 1
n	 LT

⎞

⎠

σmax

(
1
n	 LT

)

σmax

(
1
n L
)

= 1

n1+	
ϕ1
(
L,−LT).

Then the result holds.
Proof of Proposition 2: Note that

min∀c>0

σ 2
max(cA1 + A2)

c

≤ min∀c>0

(cσmax(A1) + σmax(A2))
2

c

=

(
σmax(A2)

σmax(A1)
σmax(A1) + σmax(A2)

)2

σmax(A2)

σmax(A1)

= 4σmax(A1)σmax(A2)

where the first inequality holds form Lemma A1, the first equal
sign holds from (23) with c = σmax(A2)/σmax(A1). For (10),
note that

σmax

(
σmax(A2)

σmax(A1)
A1 + A2

)
≤ σmax(A2)

σmax(A1)
σmax(A1) + σmax(A2).

If one matrix has all nonnegative eigenvalues, another
has all nonpositive eigenvalues, the inequality has much
conservativeness

σmax

(
σmax(A2)

σmax(A1)
A1 + A2

)
<

σmax(A2)

σmax(A1)
σmax(A1) + σmax(A2).

Then, (10) holds.

APPENDIX B
PROOFS

In the following, without loss of generality, assume N = 1.
The results with N ≥ 2 can be derived using the Kronecker
product. For conciseness, t in all variables is omitted.

A. Proofs for Results in Sections IV–VI

Proof of Theorem 1: For ẍ = −B(ẋ + CLx), where B is
variable. Denote q := CLx, v := ẋ + CLx = ẋ + q. Then

q̇ = CLẋ = CL(v − q)

v̇ = ẍ + q̇ = −Bv + CL(v − q).

Then, the system can be expressed equivalently as
(

q̇
v̇

)
=
(−CL CL

−CL −B + CL

)(
q
v

)
:= Ã

(
q
v

)
.

Define the quadratic function

V := (
qT , vT)P

(
qT , vT)T

where matrix P is constant and positive definite, as

P :=
(

cEC−1 0
0 E	C−1

)

in which, c > 0 is a constant parameter. Then

PÃ =
(

cEC−1 0
0 E	C−1

)(−CL CL
−CL −B + CL

)

=
(−cEL cEL

−E	L −E	C−1B + E	L

)
.

Note that
〈
ξC−1, q

〉
=
〈
ξC−1, CLx

〉
= 0

then, from Lemma 2

qT(EL + LTE)q ≥ μ2
〈
ξC−1, ω1

〉−2∥∥ξC−1
∥∥2

‖q‖2

:= μC‖q‖2.

Then

V̇ ≤ −(qT , vT)Q1
(
qT , vT)T

where

Q1 =
(

cμCI −cEL + LTE	

−cLT E + E	L 2E	C−1B − E	L − LTE	

)
.

Then, Q1 is positive definite, if

2E	C−1B − E	L − LTE	

− 1

cμC

(
cLTE − E	L

)(
cEL − LTE	

)

= 2E	C−1B − E	L − LTE	 − 1

μC
ϕ
(

EL,−LT E	, c
)

� 0.

Then, the result holds.
Remark 9: In the following, if we consider another set of

the vector variables: ẽ := CLe, v := ẋ + CLx = ẋ + ẽ. Then

˙̃e = CL(I − 1ξ)(v − ẽ) = CLv − CLẽ

and v̇ = (CL − B)v − CLẽ, that is
(

v̇
˙̃e
)

=
(

CL − B −CL
CL −CL

)(
v
ẽ

)
.

Consider the quadratic function

V := (vT , ẽT)

(
E	C−1 0

0 cEC−1

)(
v
ẽ

)
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in which, E and C are constants, c > 0 is a constant parameter
(

E	C−1 0
0 cEC−1

)(
CL − B −CL

CL −CL

)

=
(

E	L − E	C−1B −E	L
cEL −cEL

)
.

Then, we will obtain Theorem 1, and the details are omitted
here.

Remark 10: Define v := ẋ + CLx, define e as (21). Then

ė = (I − 1ξ)ẋ = (I − 1ξ)(v − CLe)

= (I − 1ξ)v − (I − 1ξ)CLe

v̇ = ẍ + CLẋ = −Bv + CL(v − CLe)

= (CL − B)v − CLCLe.

Define the quadratic function V = (eT , vT)P(eT , vT)T , where
matrix P is constant and positive definite, as

P :=
(

cE 0
0 E	C−1

)

then consider the derivative of V . Note that(
cE 0
0 E	C−1

)(−(I − 1ξ)CL I − 1ξ

−CLCL CL − B

)

= −
(

c(E − ξTξ)CL −c
(
E − ξTξ

)

E	LCL E	C−1B − E	L

)
(24)

then it is difficult to derive a consensus result, since (E−ξTξ)

has zero eigenvalue.
Proof of Proposition 6: From (24), if (7) holds, that is, if

C = coI, then

V̇ = −(eT , vT)Q
(
eT , vT)T

where

Q =
(

cco
(
EL + LTE

)
coLTLTE	 − c

(
E − ξTξ

)

coE	LL − c
(
E − ξTξ

)
2E	B/co − E	L − LTE	

)
.

Note that (22) always holds for e, from Lemma 2

eT(EL + LTE)e ≥ μξ‖e‖2.

Then, V̇ ≤ −(eT , vT)Q1(eT , vT)T , where Q1 is

Q1 =
(

ccoμξ I coLTLTE	 − c
(
E − ξTξ

)

coE	LL − c
(
E − ξTξ

)
2E	B/co − E	L − LTE	

)
.

Then Q1 � 0 if

2

co
E	B − E	L − LTE	 − 1

ccoμξ

(
c(E − ξTξ) − coE	LL

)

×
(

c
(
E − ξTξ

)− coLTLTE	
)

= 2

co
E	B − E	L − LTE	 − 1

μξ

ϕ

(
E − ξTξ,−LTLTE	,

c

co

)

� 0.

Then, the result holds.

B. Proofs for Results in Section VII

Proof of Theorem 3: For ẍ = −(Bẋ + KLx), define q :=
rELx, where r > 0 is a constant coefficient, v := ẋ + q. Then

ẍ = −B(v − q) − r−1E−1Kq = −Bv + (B − r−1E−1K)q.

Then, q̇ = rEL(v − q), and

v̇ = −Bv +
(

B − r−1E−1K
)

q + rEL(v − q)

= (rEL − B)v +
(

B − r−1E−1K − rEL
)

q.

That is
(

q̇
v̇

)
=
( −rEL rEL

B − r−1E−1K − rEL rEL − B

)(
q
v

)
.

Define the quadratic function

V := (
qT , vT)P

(
qT , vT)T

where matrix P is constant and positive definite, as

P :=
(

cI 0
0 I

)
,

in which, c > 0 is a constant parameter. Then
(

cI 0
0 I

)( −rEL rEL
B − r−1E−1K − rEL rEL − B

)

=
( −crEL crEL

B − r−1E−1K − rEL rEL − B

)
.

Then, V̇ = −(qT , vT)Q(qT , vT)T , where

Q =
(

cr
(
EL + LTE

) −A2 − crEL
−AT

2 − crLTE 2B − r
(
EL + LTE

)
)

where A2 = B − r−1E−1K − rLTE.
Note that 〈1, ELx〉 = 0, then, from Lemma 2

qT(EL + LTE)q > μ2‖q‖2.

Then

Q1 =
(

crμ2I −crEL − A2

−crLTE − AT
2 2B − r

(
EL + LTE

)
)

.

If Q1 � 0, that is, if

2B − r
(
EL + LTE

)− 1

crμ2

(
crLTE + AT

2

)
(crEL + A2)

= 2B − r
(
EL + LTE

)− 1

rμ2
ϕ(rEL, A2, c) � 0

then, Q � 0, the result holds.
Proof of Theorem 4: Define q := rLx, v := ẋ + q. Then

ẍ = −(Bẋ + KLx) = −B(v − q) − r−1Kq.

Then, q̇ = rL(v − q)

v̇ = (rL − B)v +
(

B − r−1K − rL
)

q.

Then
(

q̇
v̇

)
=
( −rL rL

B − r−1K − rL rL − B

)(
q
v

)
.

Define the quadratic function

V := (
qT , vT)P

(
qT , vT)T .

where matrix P is constant and positive definite, as

P :=
(

E	 0
0 cE

)
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in which, c > 0 is a constant parameter. Then
(

E	 0
0 cE

)( −rL rL
B − r−1K − rL rL − B

)

=
( −rE	L rE	L

cE
(
B − r−1K − rL

)
crEL − cEB

)
.

Then, V̇ = −(qT , vT)Q(qT , vT)T , where

Q =
(

r
(
E	L + LTE	

) −cA1 − rE	L
−cAT

1 − rLTE	 2cEB − cr
(
EL + LTE

)
)

where A1 = (EB − r−1EK − rLTE).
Note that 〈ξT , Lx〉 = 0, then, from Lemma 2

qT(EL + LTE
)
q > μξ‖q‖2.

Then, for 	 = 1

Q1 =
(

rμξ −cA1 − rEL
−cAT

1 − rLTE 2cEB − cr
(
EL + LTE

)
)

.

If Q1 � 0, that is, if

2EB − r
(
EL + LTE

)− 1

crμξ

(cA1 + rEL)T(cA1 + rEL) � 0

then, Q � 0, the result holds.
Remark 11: The following variables are infeasible for FH

gains. Define q := Lx, v := ẋ. Then, v̇ = −Bv − Kq and
q̇ = Lv. Then

(
v̇
q̇

)
=
(−B −K

L 0

)(
v
q

)
.

Define the quadratic function

V := (
vT , qT)P

(
vT , qT)T .

where matrix P is constant and positive definite, as

P :=
(

I I
I DI

)
,

in which, D � I is a constant symmetric matrix. Then, consider
the derivative of V , note that

(
I I
I DI

)(−B −K
L 0

)
=
( −B + L −K

−B + DL −K

)
.

Then, V̇ = −(vT , qT)Q(vT , qT)T , where

Q =
(

2B − L − LT B + K − LTD
B + K − DL 2K

)
.

Then, Q � 0 means

2B − L − LT − 1

2

(
B + K − LTD

)
K−1(B + K − DL) � 0

which, however, cannot be positive definite; since
(
B + K − LTD

)
K−1(B + K − DL)

=
(
(B + K)K−1 − LTDK−1

)
(B + K − DL)

= K−1(B + K)2 − (B + K)K−1DL − LTDK−1(B + K)

+ LTDK−1DL

and 2B − (1/2)K−1(B + K)2 is negative semidefinite.

APPENDIX C
COMPARISON WITH PREVIOUS RESULTS

For comparison, we first derive a conservative condition
than (20), then show that this conservative condition is still
much less conservative than [25, Theor. 3.1]. Using (9) and
(10), the condition conservative than (20) is

B(t) � L + LT

2
+ 2σmax

(
E − ξTξ

)
σmax

(
L2
)

μξ

I

(here, co = 1 for comparison), a still more conservative
condition is

bi(t) >

(
σmax(L) + 2σmax

(
E − ξTξ

)
σmax

(
L2
)

μξ

)
. (25)

Note that σmax(E − ξTξ) < 1.
Here, (25) is still less conservative than [25, Theor. 3.1] in

two aspects.
1) For the lower bounds, our results use μξ (Lemmas 2

and 4) instead of using the conservative term μ2/n.
2) For the order of σmax(L): condition (25) has order

σ 2
max(L), while [25, Theor. 3.1] has the highest order

σ 4
max(L).
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