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Learning self-triggered controllers with Gaussian
processes

Kazumune Hashimoto, Yuichi Yoshimura, Toshimitsu Ushio

Abstract—This paper investigates the design of self-triggered
controllers for networked control systems (NCSs), where the
dynamics of the plant is unknown apriori. To deal with the
unknown transition dynamics, we employ the Gaussian process
(GP) regression in order to learn the dynamics of the plant.
To design the self-triggered controller, we formulate an optimal
control problem, such that the optimal control and communi-
cation policies can be jointly designed based on the GP model
of the plant. Moreover, we provide an overall implementation
algorithm that jointly learns the dynamics of the plant and the
self-triggered controller based on a reinforcement learning frame-
work. Finally, a numerical simulation illustrates the effectiveness
of the proposed approach.

Index Terms—Event-triggered/self-triggered control, Optimal
control, Gaussian process regression.

I. INTRODUCTION

In networked control systems (NCSs), sensors, actua-
tors, and controllers reside in multiple areas linked by
wired/wireless communication network. Due to the progress
in communication technology and many practical advantages
such as a low-cost maintenance and flexibility for mod-
ifications, NCSs have been developed in a wide variety
of applications, including manufacturing plants, autonomous
robots/vehicles, traffic networks, to name a few [1]. In recent
years, event-triggered and self-triggered control have attracted
much attention and are known to be useful strategies for the
NCSs [2]. This is due to the fact that, it leads to the potential
saving of resources that are present in NCSs, such as a limited
battery capacity or a limited communication bandwidth, by
transmitting sensor measurements over the communication
network only when it is needed. So far, various event/self-
triggered controllers have been proposed in the literature, see,
e.g., [3] for survey papers. Early works consider designing
event/self-triggered control based on input-to-state stability
(ISS) or L2-gain performance [4]–[6]. More recently, event-
triggered control has been formulated as the hybrid dynamical
systems [7], [8]. In addition, some approaches to combine
event/self-triggered control and optimal control have been also
provided in recent years [9]–[20].

In the aforecited event-triggered and self-triggered control
framework, it is generally assumed that the transition dynam-
ics, which represents the underlying model of the plant, is
known apriori. This implies that, when the event/self-triggered
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controllers are applied to the real world (actual) control sys-
tems, the resulting performance is heavily dependent on how
the system model is accurate with respect to the true dynamics.
However, it may be the case in practice when an accurate
model of the plant is hard to obtain based on the first principles
from physics, due to the fact that the dynamics is complex and
highly nonlinear. Examples include mechanical systems [21],
autonomous vehicles [22], power consumption of multi-story
buildings [23], periodic errors in astrophotography systems
[24], to name a few.

Motivated by the above, in this paper we investigate the
design of a novel self-triggered controller for NCSs, where the
dynamics of the plant is assumed to be unknown apriori. To
this end, we make use of the Gaussian process (GP) regression
[25] in order to learn the dynamics of the plant. The use of GP
offers many benefits, such as the ability to incorporate prior
knowledge about the model (e.g., smoothness, periodicity)
by selecting suitable kernel functions, as well as the ability
to provide uncertainty of the model for prediction values.
To design the self-triggered controller, we first formulate
an infinite horizon optimal control problem, such that both
the cost for the control performance and the communication
are taken into account. Then, we derive the corresponding
Bellman equation and provide an approach to solving the
optimal control problem, such that both the optimal control
and communication policies are designed based on the plant
learned by the GP regression. In particular, we employ a
value iteration algorithm, which derives the optimal policies by
iteratively improving the estimate of the optimal cost function.
Moreover, when solving the value iteration algorithm, we
employ the so-called moment matching technique in order
to approximate the multiple-ahead predictive distribution of
states by the Gaussian distribution. As we will see later, this
approximation together with the approximations of the optimal
cost function based on the radial basis functions will allow us
to derive the optimal policies in a tractable way. Finally, we
provide an overall implementation algorithm that jointly learns
the dynamics of the plant as well as the optimal control and
the communication policies based on a reinforcement learning
framework. As we will see later, this algorithm combines
the exploration/exploitation phase that aims at collecting the
training data to learn the dynamics of the plant in an ε-greedy
fashion, and the learning phase that aims at updating the
optimal control and communication policies based on the value
iteration algorithm.

In summary, the main contributions of this paper is provided
as follows:

1) We formulate an infinite horizon optimal control prob-
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lem, such that both the control and communication
policies can be designed based on the GP model of the
plant.

2) We derive the Bellman equation corresponding to the
optimal control problem and employ the value iteration
algorithm to solve it. When solving this algorithm, we
employ some approximation techniques, such as the
moment matching, so that the (approximate) optimal
policies can be derived.

3) We provide an overall reinforcement learning algorithm
that jointly learns the GP model of the plant as well as
the optimal control and communication policies.

(Related works): Our approach is related to several tech-
niques that have been provided in the literature. Using the GP
in control community has been attracted much attention in
recent years [21]–[24], [26]–[29]. In particular, our approach
is related to the ones based on optimal control framework,
see, e.g., [22]–[24], [27]–[31]. For example, in [22], the
authors have utilized the GP model to learn the dynamics
of the plant, and they have formulated a chance-constrained
model predictive control (MPC), in which the optimal control
problem is solved for each time step based on the knowledge
about the dynamics learned by the GP. In contrast to these
previous methods, we provide an approach that jointly learns
the dynamics of the plant and the self-triggered controller,
aiming at reducing the number of communication time steps
for NCSs. As previously mentioned and will be clearer in
later sections, this is achieved by formulating a value iteration
algorithm, such that the optimal pair of the control input and
the inter-communication time steps can be determined for each
state based on the GP dynamics of the plant.

With regard to the event/self-triggered control, some model-
free/model-based approaches with unknown transition dynam-
ics have been proposed in recent years, e.g., [32]–[42]. For ex-
ample, in [36]–[41], an actor-critic based Q-learning algorithm
was proposed to learn the intermittent feedback controller
under the event-triggered policy, and closed-loop stability was
rigorously shown. Our approach differs from those previous
works, in the sense that; (i) we provide a model-based solution
to the problem of learning self-triggered controllers based on
the GP regression; (ii) while previous works aim at learning
a controller based on a prescribed structure of the event-
triggered condition (i.e., the event is triggered when the
error between the actual state and the latest triggered state
exceeds a certain threshold), our approach aims at learning
both control and communication policies from scratch; (iii)
while previous works deal with either linear or nonlinear input-
affine systems, our approach is applicable to general nonlinear
systems. Moreover, in [32], a deep reinforcement learning was
proposed to learn the event-triggered controller, and, similarly
to our approach, the communication policy was designed from
scratch. One of the potential advantages over this previous
work may be that, since our approach is a model-based
approach that explicitly incorporates the knowledge about the
dynamics, it may require much fewer number of iterative
tasks to learn the desired policies. Such data-efficiency (see,
e.g., [30]) is indeed illustrated in the simulation example in

Section VII, where we show that the desired policies can be
learned within 10 episodes, while model-free approaches may
typically require hundreds or thousands of iterative tasks to
learn them.

Notation. Throughout the paper, we make use of the
following notations. Let N, N≥0, N>0, Na:b be the set of
integers, non-negative integers, positive integers, and the set
of integers in the interval [a, b], respectively. Let R, R≥0,
R>0 be the set of reals, non-negative reals and positive reals,
respectively. For a square matrix Q, we use Q � 0 to
denote that Q is positive definite. Let diag(a1, a2, . . . , aN )
be the diagonal matrix whose (diagonal) elements are given
by a1, . . . , aN ∈ R. Moreover, let Blkdiag(A1, A2, . . . , AN )
be the block diagonal matrix that consists of a set of matrices
A1, . . . , AN .

II. PRELIMINARIES OF GAUSSIAN PROCESS REGRESSION

In this section, we provide some basic concepts and useful
properties of the Gaussian process (GP) regression. Consider
a nonlinear function h : Rn → R expressed as

y = h(x) + ε, (1)

where x ∈ Rn is the input, y ∈ R is the output, and ε ∼
N (0, σ2

ε) is the Gaussian distributed white noise. In the GP
regression, we assume that the function h follows the GP. That
is, for every set of a finite (or possibly infinite) number of
inputs xi ∈ Rn, i = 1, . . . , N , the joint probability of the
corresponding set of outputs y = [y1, y2, . . . , yN ]T follows the
multivariate Gaussian distribution, i.e., y ∼ N (0,K), where
K ∈ RN×N is the covariance matrix and is characterized by
Kij = k(xi,xj), where Kij is the (i, j)-component of K and
k : Rn × Rn → R≥0 is the positive definite kernel function.

In this paper, we assume that the kernel function k is given
by the squared exponential covariance function:

k(xi,xj) = α2 exp

(
−1

2
(xi − xj)

TΛ−1(xi − xj)

)
, (2)

where Λ = diag
(
λ21, . . . , λ

2
N

)
and {α, λ1, . . . λN} are the

hyper-parameters. For a given set of input-output training data
D = {xn, yn}Nn=1, the predictive distribution of the output
for a new test input x follows the Gaussian distribution, i.e.,
p(y|x,D) = N (µ(x), σ(x)). Here the mean and the variance
are given by

µ(x) = kT∗ (x)(K + σ2
εI)−1y, (3)

σ(x) = k(x,x)− kT∗ (x)(K + σ2
εI)−1k∗(x), (4)

where y = [y1, y2, . . . , yN ]T and

k∗(x) = [k(x,x1), . . . , k(x,xN )]
T
. (5)

Suitable selections of the hyper-parameters {α, λ1, . . . λN} are
given by evidence maximization, see, e.g., [25]. For simplicity
of presentation, we write h ∼ GP if the function h follows
the GP.

III. PROBLEM STATEMENT

In this section, we describe the dynamics of the plant,
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Fig. 1. Networked Control System considered in this paper.

overview of the self-triggered controller, and define the cost
function to be minimized.

A. Dynamics

We consider a networked control system (NCS) illustrated
in Fig. 1. As shown in the figure, the controller and the learning
agent are connected to the plant over the communication
network. Roughly speaking, the learning agent is responsible
for learning the dynamics of the plant as well as the optimal
control and communication policies. On the other hand, the
controller is responsible for transmitting the control inputs to
operate the plant based on the control and communication
policies derived by the learning agent. This implementation
will be formally given later in this paper. Throughout the
paper, we assume that the communication network is ideal;
it induces neither packet dropouts nor any network delays.

The dynamics of the plant is given by the following non-
linear systems:

xk+1 = f(xk,uk), uk ∈ U, (6)

for all k ∈ N≥0, where xk ∈ Rnx is the state, uk ∈ Rnu

is the control input, U ⊂ Rnu is the set of control inputs,
and f : Rnx × Rnu → Rnx is the transition dynamics that is
assumed to be unknown apriori. While the transition dynamics
is unknown, it is assumed here that the equilibrium point is
known; without loss of generality, we assume that the origin
has the equilibrium point, i.e., 0 = f(0,0). The control goal
is to stabilize the system towards the origin.

Since f is unknown apriori, we consider that each com-
ponent of the unknown function, i.e., fi, i ∈ N1:nx (f =
[f1, f2, . . . , fnx

]
T) is modeled by the GP regression. That is,

fi is learned from the input-output training data Di = {X,yi},
where

X =

[[
x∗0
u∗0

]
,

[
x∗1
u∗1

]
, . . . ,

[
x∗N−1
u∗N−1

]]
, (7)

yi = [x∗i,1, x
∗
i,2, . . . , x

∗
i,N ]T. (8)

In (7) and (8), N ∈ N>0 denotes the number of training data
points, [x∗n

T,u∗n
T], n ∈ N1:N are the training inputs following

the dynamics (6) (i.e., x∗n+1 = f(x∗n,u
∗
n), n ∈ N0:N−1), and

x∗i,n, i ∈ N1:nx
is the i-th element of x∗n as the set of training

outputs. We denote by ki(·, ·), Ki and {αi, λi,1, . . . , λi,N} the
kernel function, covariance matrix and the hyper-parameters
for the GP model of fi, respectively. Moreover, we denote
by µi(x,u), σi(x,u) the mean and the covariance for the
GP model of fi with an arbitrary test input x̃ = [xT,uT]T,

respectively, i.e.,

µi(x,u) = kT∗,i(x̃)(Ki + σ2
εI)−1yi, (9)

σi(x,u) = ki(x̃, x̃)− kT∗,i(x̃)(Ki + σ2
εI)−1k∗,i(x̃), (10)

where k∗,i(x) = [ki(x,x1), . . . , ki(x,xN )]
T. That is, letting

f̂i be the GP model of fi, we have

f̂i(x,u) ∼ N (µi(x,u), σi(x,u)) . (11)

Then, the overall GP model for f = [f1, f2, . . . , fnx
]
T is given

by

f̂(x,u) ∼ N (µ(x,u),Σ(x,u)) , (12)

where f̂ = [f̂1, f̂2, . . . , f̂nx
]T and

µ(x,u) = [µ1(x,u), . . . , µnx
(x,u)]

T
, (13)

Σ(x,u) = diag (σ1(x,u), . . . , σnx
(x,u)) . (14)

B. Overview of the self-triggered controller

Let us now define the control and communication policies.
First, let ki, i = 0, 1, 2, . . . with k0 = 0 and ki+1 > ki,
∀i ∈ N≥0 be the communication time steps when the plant
transmits the state xki to the controller. In addition, let mi ∈
N>0, i ∈ N≥0 be the corresponding inter-communication time
steps, i.e., mi = ki+1 − ki, ∀i ∈ N≥0. In this paper, we
implement a self-triggered controller [2], aiming at reducing
the number of communication time steps between the plant and
the controller. That is, we aim at designing the (deterministic)
policies π = {πinp, πcom}, where
• πinp : Rnx → Rnu is the control policy, which is

a mapping from the state to the corresponding control
input;

• πcom : Rnx → N1:M is the communication policy, which
is the mapping from the state to the corresponding inter-
communication time steps.

Here, M ∈ N>0 denotes the maximum inter-communication
time step, which means that inter-communication time step
does not exceed M . This parameter is a user-defined parameter
and is chosen apriori in order to formulate the optimal control
problem. The basic procedure of the self-triggered controller
is summarized as follows: for each ki, i ∈ N≥0,
[Step 1] the plant measures the state xki and transmits xki to

the controller;
[Step 2] the controller computes the control input and the

inter-communication time steps as uki = πinp(xki)
and mi = πcom(xki);

[Step 3] the controller transmits {uki ,mi} to the plant, and
the plant applies uki constantly until the next com-
munication time, i.e., uk = uki , ∀k ∈ Nki,ki+1−1,
where ki+1 = ki +mi;

C. Cost function to be minimized

In this paper, we consider the following infinite-horizon cost
function to be minimized:

Jπ(xki) =

∞∑
`=i+1

Eπxk`

[
C1(xk`) + γC2(m`)

]
, (15)
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where Eπx[·] denotes the expectation with respect to x, C1 :
Rnx → R≥0 represents the stage cost for the state, C2 :
N1:M → R≥0 represents the communication cost that aims
to penalize the inter-communication time steps, and γ > 0 is
the weight associated to the communication cost. We assume
that the cost for the state is characterized by polynomials or
exponential functions. For example, exponential type of the
cost function is given by

C1(xk`) = 1− exp

{
−1

2
xT
k`
Qxk`

}
, (16)

where Q � 0 is a given positive definite matrix. Moreover,
polynomial cost functions include quadratic type:

C1(xk`) = xT
k`
Qxk` . (17)

As will be clearer in later sections, the above characteriza-
tions will allow us to provide analytical computations of the
integrals with respect to the Gaussian probability distribution.

The communication cost is characterized as follows:

C2(m`) = M −m`. (18)

Recall that M is the maximum inter-communication time
steps, i.e., m` ≤ M,∀` ∈ N. Hence, the total cost func-
tion defined in (15) aims at taking the cost of the control
performance and the communication into account, and the
parameter γ regulates the trade-off between them. As will be
formalized in later sections, we design the optimal control and
communication policies π = {πinp, πcom}, such that (15) is
minimized. Note that, since the function f is unknown apriori
and is learned by the GP regression, we will make use of the
GP model f̂ (see (12)) in order to derive the optimal solution;
for details, see Section V.

Remark 1 (On the case of γ = 0). Note that, even for
the case γ = 0, communication reduction can be potentially
achieved by minimizing (15). This is due to the fact that
the total cost in (15) is defined by summing the stage costs
only at the communication time steps, i.e., the cost will be
accumulated only when the communication is given. Hence,
reducing the number of communication leads to the reduction
of the total cost, and, therefore, minimizing (15) leads to
the communication reduction even for the case γ = 0. This
interpretation will be also illustrated in the simulation example,
where the communication reduction will be indeed achieved
for the case γ = 0 in contrast to the time-triggered strategy;
for details, see Section VII. �

IV. APPROXIMATING MULTIPLE-AHEAD PREDICTIONS
UNDER CONSTANT CONTROL INPUTS

In this section, we describe a way of how to approximate
multiple-ahead predictions of states under constant control
inputs, provided that the GP model of the plant is obtained.
Suppose that, for given GP model f̂ in (12) and a pair
(xk,u) ∈ Rnx × U , we aim at computing the predictive
distribution of the states with the constant control input u, i.e.,
p(xk+1|xk,u), p(xk+2|xk,u), . . ., where xk+m, m ∈ N>0

represent the state from xk by applying u constantly for m

time steps. In this paper, we employ a moment matching tech-
nique [30] in order to approximate the predictive distributions
by the Gaussian distribution. Since the functions fi, i ∈ N1:nx

are modeled by the GP, the predictive distribution of the
state for k + 1 is given by p(xk+1|xk,u) = N (µk+1,Σk+1),
where µk+1 = µ(xk,u), Σk+1 = Σ(xk,u) with

µ(xk,u) = [µ1(xk,u), . . . , µnx
(xk,u)]

T (19)
Σ(xk,u) = diag (σ1(xk,u), . . . , σnx

(xk,u)) . (20)

Here, µi(·), σi(·) (i ∈ N1:nx
) are given by (9) and (10),

respectively. Now, suppose that we would like to compute
the distribution of the predictive state for general k + m,
m = 2, 3, . . .. To this end, suppose that the predictive distri-
bution of xk+`, ` ∈ N1:m−1 is approximated by the Gaussian,
i.e., p(xk+`|xk,u) ≈ N (µk+`,Σk+`). Then, the predictive
distribution for k + `+ 1 can be derived as follows:

p(xk+`+1|xk,u)

=

∫
p(x̃k+`|xk,u)p(xk+`+1|x̃k+`,xk,u)dx̃k+`,

=

∫
p(x̃k+`|xk,u)p(xk+`+1|x̃k+`)dx̃k+`, (21)

where we let x̃k+` = [xT
k+`,u

T
k+`]

T and uk+` denotes the con-
trol input applied at k+`. Since the analytical computation of
the integral in (21) cannot be given, we compute the mean and
the covariance of the right hand side of (21) and approximate
p(xk+`+1|xk,u) by the Gaussian distribution. The integral in
(21) involves the joint distribution p(x̃k+`|xk,u), which is
further computed as

p(x̃k+`|xk,u) = p(xk+`,uk+`|xk,u)

= p(xk+`|xk,u)p(uk+`|u,xk+`)

Since u is applied constantly, it follows that uk+` = u, i.e.,
p(uk+`|u,xk+`) = p(uk+`|u) = Dirac(uk+` − u), where
Dirac(·) denotes the Dirac delta function. Hence, (21) leads
to

p(xk+`+1|xk,u)

=

∫
p(xk+`|xk,u)p(uk+`|u)p(xk+`+1|x̃k+`)dx̃k+`

=

∫
p(xk+`|xk,u)p(xk+`+1|xk+`,u)dxk+`, (22)

where p(xk+`|xk,u) ≈ N (µk+`,Σk+`). Moreover, using
the GP model in (12), we have p(xk+`+1|xk+`,u) ≈
p(f̂(xk+`,u)|xk+`,u) = N (µ(xk+`,u),Σ(xk+`,u)), where

µ(xk+`,u) = [µ1(xk+`,u), . . . , µnx
(xk+`,u)]

T
,

Σ(xk+`,u) = diag (σ1(xk+`,u), . . . , σnx
(xk+`,u)) .

In the above, µi(·) and σi(·) (i ∈ N1:nx
) are computed

according to (9) and (10), respectively. Based on the above,
let us compute the mean and the covariance of the right hand
side of (22). From (22), the mean of p(xk+`+1|xk,u) is given
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by

µk+`+1 = Exk+`

[
Exk+`+1

[xk+`+1|xk+`,u]
]

=

∫
p(xk+`|xk,u)µ(xk+`,u)dxk+`

=

∫
N (µk+`,Σk+`)µ(xk+`,u)dxk+`. (23)

The integral in (23) can be computed analytically and is
given by µi,k+`+1 = βT

i ηi, where µi,k+`+1 denotes the
i-th component of µk+`+1, βi = (Ki + σ2

εI)−1yi and
ηi = [ηi,1, ηi,2, . . . , ηi,N ] with

ηi,n = α2
i

∣∣∣(Λi)
−1Σ̃k+` + I

∣∣∣−1/2
× exp

(
−1

2
(µ̃k+` − x̃∗n)T(Λi + Σ̃k+`)

−1(µ̃k+` − x̃∗n)

)
,

for all i ∈ N1:nx , n ∈ N1:N . In the above, we let
µ̃k+` = [µT

k+`,u
T]T, x̃∗n = [x∗n

T,u∗n
T]T (recall that x∗n,

u∗n are the n-th training input defined in (7)), and Σ̃k+` =
Blkdiag (Σk+`,0nu×nu

) with 0nu×nu
being the nu × nu

zero matrix. The covariance matrix Σk+`+1 can be obtained
by considering diagonal elements σi,k+`+1 and off-diagonal
elements σij,k+`+1, i 6= j (see, e.g., [30]). The diagonal
elements are given by

σi,k+`+1 = Exk+`

[
Varxk+`+1

[xi,k+`+1|xk+`,u]
]

+ Varxk+`

[
Exk+`+1

[xi,k+`+1|xk+`,u]
]

= Exk+`

[
Varxk+`+1

[xi,k+`+1|xk+`,u]
]

+ Exk+`

[
E2
xk+`+1

[xi,k+`+1|xk+`,u]
]
− µ2

i,k+`+1

= βT
i Liβi + α2

i − Tr
(
(Ki + σ2

εI)−1Li
)

+ σ2
ε − µ2

i,k+`+1, (24)

where Varx[·] is the variance with respect to x, Li is the
N ×N matrix, whose (p, q)-component (denoted as Li,pq) is
given by

Li,pq = |Ri|−1/2 ki(x̃∗p, µ̃k+`)ki(x̃∗q , µ̃k+`)

× exp
(

2Λ−2i (x̃∗pq)
T

(Σ̃
−1
k+` + 2Λ−1i )−1x̃∗pq

)
,

where x̃∗pq = 1
2 (x̃∗p + x̃∗q)− µ̃k+`, Ri = 2Λ−1i Σ̃k+` + I . The

off-diagonal elements are given by

σij,k+`+1 = βT
i Lijβj − µi,k+`+1µj,k+m+1, (25)

where Lij is the N × N matrix, whose (p, q)-component
(denoted as Lij,pq) is given by

Lij,pq = |Rij |−1/2 ki(x̃∗p, µ̃k+`)kj(x̃∗q , µ̃k+`)

× exp

(
−1

2

(
x̃∗pq,ij

)T (
Λ−1i + Λ−1j + Σ̃

−1
k+`

)−1
x̃∗pq,ij

)
,

where Rij = (Λ−1i + Λ−1j )Σ̃k+` + I and

x̃∗pq,ij = Λ−1i (x̃∗p − µ̃k+`) + Λ−1j (x̃∗q − µ̃k+`). (26)

Based on the above, we can approximate p(xk+`+1|xk,u) by

the Gaussian distribution as

p(xk+`+1|xk,u) ≈ N (µk+`+1,Σk+`+1). (27)

Hence, by recursively applying the above procedure for all
` = 1, . . . ,m− 1, we can approximate p(xk+m|xk,u) by the
Gaussian distribution.

V. APPROXIMATE VALUE ITERATION

In this section, we provide an approach to deriving the
optimal self-triggered controller that minimizes (15), provided
the GP model of the plant (12) is obtained. Let J∗(xki) =
minπ J

π(xki). From (15), the corresponding optimal Bellman
equation is given by

J∗(xki)

= min
uki

,mi

{
Exki+1

[
C(xki+1 ,mi+1) + J∗(xki+1)

]}
, (28)

where C(x,m) = C1(x) + γC2(m). Since the state space
Rnx and the input space U for the dynamics in (6) are both
infinite, deriving an explicit solution to (28) is in general
intractable. Thus, we derive an approximated solution to (28)
by employing a finite number of representative points in
the state space and the input space, which are denoted as
xR,1,xR,2, . . . ,xR,NX

∈ Rnx and uR,1,uR,2, . . . ,uR,NU
∈

U , respectively, with NX and NU being the number of repre-
sentative points. These representative points may be selected
as the grid points in a given bounded region of Rnx as
well as Rnu , so that they include the origin (as we aim
at stabilizing the state towards the origin). For simplicity
of presentation, we let XR = {xR,0,xR,1, . . . ,xR,NX

},
UR = {uR,1,uR,2, . . . ,uR,NU

}. The optimal cost function
(denoted as Ĵ∗) and the optimal control policy (denoted as
π̂∗inp) are then approximated by the exponential Radial Basis
Functions (RBFs):

Ĵ∗(x) =

NX∑
n=1

wJ,n exp

(
− 1

2σ2
J

‖x− xR,n‖2
)
, (29)

π̂∗inp(x) =

NX∑
n=1

wu,n exp

(
− 1

2σ2
u

‖x− xR,n‖2
)
, (30)

where {wJ,n}NX
n=1, {wu,n}NX

n=1 are the weights and σJ , σu
are the width of the RBFs for Ĵ∗ and π̂∗inp, respectively,
which are the hyper-parameters to be designed and will be
updated during the algorithm. Moreover, the optimal commu-
nication policy is approximated by π̂∗com(x) = Jπ̂′com(x)K,
where JaK denotes the closest positive integer to a (i.e.,
JaK = arg minj{|a− j| : j ∈ N>0} ) and

π̂′com(x) =

NX∑
n=1

wc,n exp

(
− 1

2σ2
c

‖x− xR,n‖2
)
. (31)

Here, {wc,n}NX
n=1 and σc are the hyper-parameters to be

updated.
The iterative procedure to solve (28) follows the so-called

value iteration [43], which is summarized in Algorithm 1. As
shown in the algorithm, for each x ∈ XR, we compute
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Algorithm 1 Approximate value iteration to derive the self-
triggered controller.

1: Initialize the hyper-parameters to represent π̂∗com, π̂∗inp and Ĵ∗;
2: for Iteration = 1 : Nite do
3: for all x ∈XR do
4: D∗(x)←∞;
5: for all (u,m) ∈ UR × N1:M do
6: Compute D(x,u,m) as follows:

D(x,u,m)

←− Exm

[
C1(xm) + γC2(m

′) + Ĵ∗(xm)
]
;

7: if D(x,u,m) < D∗(x) then
8: D∗(x)← D(x,u,m);
9: u∗(x)← u;

10: m∗(x)← m;
11: end if
12: end for
13: end for
14: Update the hyper-parameters to represent π̂′com, π̂∗inp and Ĵ∗

by using the new training data:

{xR,n, D
∗(xR,n)}NX

n=1 , {xR,n,u
∗(xR,n)}NX

n=1 ,

{xR,n,m
∗(xR,n)}NX

n=1 ; (32)

15: end for

D(x,u,m) for all u ∈ UR and m ∈ N1:M , which are
specifically defined as

D(x,u,m) = Exm

[
C1(xm) + γC2(m′) + Ĵ∗(xm)

]
=

∫
p(xm|x,u)C1(xm)dxm (33)

+ γ

∫
p(xm|x,u)C2(m′)dxm (34)

+

∫
p(xm|x,u)Ĵ∗(xm)dxm (35)

where xm is the state that is reached from x by applying u
constantly for m time steps, m′ is the inter-communication
time steps determined for the state xm, i.e., m′ = π̂∗com(xm).
As shown in (33)–(35), it is required to compute the dis-
tribution p(xm|x,u), as well as the three expected values
(integrals) with respect to this distribution. In what follows,
we provide a detailed way of computing these three terms.

(Computation of p(xm|x,u)): The term p(xm|x,u) is the
predictive distribution of the state from x by applying u
constantly for m time steps, which can be indeed approx-
imated by the moment matching technique as discussed in
Section IV. That is, we can approximate the distribution as
p(xm|x,u) ≈ N (µm,Σm), where µm and Σm denote the
mean and the covariance of p(xm|x,u) that are computed by
following the technique described in Section IV.

(Computation of (33)): Using the Gaussian approximation
of p(xm|x,u), the first term (33) is given by∫

p(xm|x,u)C1(xm)dxm

≈
∫
N (µm,Σm)C1(xm)dxm. (36)

Since we assume that C1 is characterized by polynomials or
exponential, we can analytically compute the integral in (36).
For example, if C1 is given by (16), the integral in (36) further
leads to∫

N (µm,Σm)C1(xm)dxm

= 1−
∫
N (µm,Σm) exp

{
−1

2
xT
mQxm

}
dxm

= 1− δ(µm,Σm)

where δ(·) is given by δ(µm,Σm) = |I + ΣmQ|−
1
2

exp
(
− 1

2µmQ(I + ΣmQ)−1µm
)
.

(Computation of (34)): The second term (34) can be com-
puted as∫

p(xm|x,u)C2(m′)dxm

=

∫
p(xm|x,u)(M − π̂∗com(xm))dxm

= M −
∫
p(xm|x,u)π̂∗com(xm)dxm. (37)

which requires to compute
∫
p(xm|x,u)π̂∗com(xm)dxm. Us-

ing (31), we approximate this term as follows:∫
p(xm|x,u)π̂∗com(xm)dxm

≈
∫
p(xm|x,u)π̂′com(xm)dxm

=

NX∑
n=1

wc,nδc,n(µm,Σm) (38)

where δc,s(·) is given by δc,s(µm,Σm) = |I + σ−2c Σm|−
1
2

exp
(
− 1

2σ2
c
(µm − xR,n)T(I + Σmσ

−2
c )−1(µm − xR,n)

)
.

(Computation of (35)): The third integral (35) can be
approximated in a similar manner to the computation of (34).
From (29) and using p(xm|x,u) ≈ N (µm,Σm), we have∫

p(xm|x,u)Ĵ∗(xm)dxm =

NX∑
n=1

wJ,nδJ,n(µm,Σm), (39)

where δJ,n(·) is given by δJ,n(µm,Σm) = |I + σ−2J Σm|
exp

(
− 1

2σ2
J

(µm − xR,n)T(I + Σmσ
−2
J )−1(µm − xR,n)

)
.

As shown in the algorithm (line 3–line 10), for each x ∈XR

we pick the smallest value among D(x,u,m), u ∈ UR,
m ∈ N1:M , as well as the corresponding pair of the control
input and inter-communication time steps, which we denote
by D∗(x), u∗(x), and m∗(x), respectively. Consequently, we
obtain {D∗(xR,n),u∗(xR,n),m∗(xR,n)}NX

n=1, and these are
used as the new training data to update the hyper-parameters of
Ĵ∗, π̂∗inp, π̂′com in (29), (30), (31). For example, Ĵ∗ is updated
by using the training data {xR,n, D∗(xR,n)}NX

n=1, where xR,n,
n ∈ N1:NX

are the training inputs and D∗(xR,n), n ∈ N1:NX

are the training outputs.

Remark 2 (On the selection of M ). As M is selected larger,
we may achieve a more communication reduction, since the
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Initialize the policies:

The controller executes the self-triggered controller 
according to                or explore the state space to
learn the dynamics. 

Exploration/Exploitation phase

The learner updates the GP model     and update

the policies                  by Algorithm 1.

Learning phase

NO

YES

Finish

Fig. 2. Flowchart of the overall algorithm (Algorithm 2). As shown in the
figure, the algorithm mainly consists of the exploration/exploitation phase that
aims at executing the self-triggered controller or collecting the training data to
learn the dynamics of the plant, and the learning phase that aims at updating
the GP model f̂ as well as the optimal control and communication policies
based on the value iteration algorithm (Algorithm 1).

controller may increase the possibility to select larger inter-
communication time steps. However, the execution time to
derive the optimal policies may increase as M is selected
larger, due to the fact that the number of evaluations to
compute D(x,u,m) (line 6 in Algorithm 1) increases. Hence,
the parameter M may be carefully chosen by considering
the tradeoff between the communication reduction for the
NCS and the computation load to derive the optimal policies
according to Algorithm 1. �

VI. IMPLEMENTATION

In this section, we provide an overall implementation al-
gorithm that jointly learns the dynamics of the plant and
the self-triggered controller based on a reinforcement learning
framework.

The overall algorithm is shown in Fig. 2 as a flowchart and
the details are shown in Algorithm 2. Since we assume that
the learning agent has no knowledge about the dynamics of
the plant, we set the communication policy as π̂∗com(x) ← 1,
∀x ∈ Rnx (i.e., communication is given at every time step),
so that the learning agent can efficiently collect the training
data and learn the dynamics of the plant at the initial phase
(line 1 in Algorithm 2). As shown in Fig. 2 and Algorithm 2,
the algorithm mainly consists of the following two steps;
exploration/exploitation phase (line 11–line 28 in Algorithm 2),
and learning phase (line 30, line 31 in Algorithm 2). During
the exploration/exploitation phase, the controller implements
the self-triggered controller in an ε-greedy fashion, as well
as updates the training data. In the algorithm, Uniform(0, 1)
(line 12) generates a random real number from the interval
[0, 1] according to the uniform distribution. That is, with
the probability ε, a random control input with the one step

Algorithm 2 Overall reinforcement learning algorithm.
Input: xinit (initial state), Nepi (number of episodes), ε ∈ [0, 1)

(threshold for the greedy policy);
Output: π̂∗inp, π̂∗com (approximated optimal control and communica-

tion policies);
1: Initialize the hyper-parameters to represent π̂∗inp, and set
π̂∗com(x)← 1, ∀x ∈ Rnx ;

2: X← {}, ∀i ∈ N1:nx ;
3: yi ← {}, ∀i ∈ N1:nx ;
4: Di ← {X,yi}, ∀i ∈ N1:nx (initialize the training data);
5: for nepi = 1 : Nepi do
6: `← 0;
7: k` ← 0;
8: xk` = xinit;
9: The plant transmits xk` to the controller;

10: [Exploration/Exploitation phase]
11: for ` = 0 : Nmax − 1 do
12: Sample r ∼ Uniform[0, 1];
13: if r < ε then
14: m` ← 1;
15: Select uk` randomly from U ;
16: else
17: uk` ← π̂∗inp(xk`);
18: m` ← π̂∗com(xk`);
19: end if
20: end for
21: k`+1 ← k` +m`;
22: The controller transmits {uk` ,m`} to the plant;
23: The plant applies uk` constantly for m` time steps and

transmit xk`+1 to the controller;
24: if m` = 1 then
25: X← {X ∪ [xT

k`
,uT

k`
]T};

26: yi ← {yi ∪ xk`+1,i}, ∀i ∈ N1:nx ;
27: Di ← {Di ∪ {X,yi}};
28: end if
29: [Learning phase]
30: The learning agent learns the GP model of the plant by using

the new training data D = {Di}nx
i=1;

31: The learning agent executes Algorithm 1 to update the (ap-
proximated) optimal policies π̂∗inp, π̂∗com;

32: end for

inter-communication time step is sampled, and, otherwise,
the computed optimal control and communication policies are
chosen to be executed. Here, the one step inter-communication
time step is chosen (with the probability ε) so that the learning
agent is able to utilize the consecutive states (i.e., xk` , xk`+1

with k`+1 = k` + 1) to update the GP model of f . In the
learning phase, the learning agent utilizes the new training
data D to update the GP model of the plant, and compute the
(approximated) optimal control and communication policies
according to Algorithm 1.

Finally, some remarks on the proposed algorithm are in
order as follows:

Remark 3 (On achieving closed-loop stability). Proving
closed-loop stability by the proposed approach (Algorithm 2)
is indeed challenging due to the following reasons. First, since
we include the cost of communication in (15), if γ (i.e.,
the weight for the communication cost) is selected too large,
the penalty of the communication is too emphasized and the
convergence to the origin may not be guaranteed. Indeed,
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this issue will be pointed out in the simulation result, where
it is shown that, as γ is selected larger, the state does not
converge to origin (for details, see Section VII). The closed-
loop stability may be achieved as γ → 0. However, since we
employ the GP model of the plant when solving the optimal
control problem, we first need to show that the GP model of
the plant is accurate enough with respect to the true (actual)
dynamics. Since there is no theoretical result on the error
bound between the GP model f̂ and the true one f , how much
training data should be collected to obtain the accurate model
may be in general unknown. Hence, even though there exists
a self-triggered controller that stabilizes the actual system to
the origin, such stabilization is not guaranteed according to
the policies derived according to Algorithm 2. �

Remark 4. The lack of providing theoretical proof on closed-
loop stability may be the drawback of our approach with
respect to some previous works of event-triggered control with
unknown transition dynamics (see, e.g., [36]–[41]). Neverthe-
less, our approach is advantageous over these previous works,
in the sense that our approach is applicable to general nonlin-
ear systems, while previous works focus on only input-affine
or linear systems. For example, the prescribed event-triggered
condition may be difficult to characterize for general nonlinear
systems based on the procedure presented in [38], due to the
fact that the Hamilton-Jacobi-Bellman (HJB) equation under
the event-triggered strategy is no longer characterized by (13)
in [38]. In this paper, the self-triggered controller for general
nonlinear systems can be designed by learning the dynamics
based on the GP regression and deriving both the control
and communication policies from scratch by implementing
Algorithm 1. �

VII. SIMULATION RESULTS

In this section, we illustrate the effectiveness of the proposed
approach through a simulation example. The simulation was
conducted on Matlab 2016a under Windows 10, Intel(R)
Core(TM) i7 4.20 GHz, 32 GB RAM. As a simulation exam-
ple, we consider a control problem of an inverted pendulum,
whose dynamics is governed by

x1,k+1 = x1,k + ∆x2,k (40)
x2,k+1 = x2,k + ∆(sinx1,k − x2,k + uk), (41)

where x1,k and x2,k with xk = [x1,k;x2,k] are the states that
represent the angular position and the velocity of the mass,
uk ∈ R is the control input, and ∆ = 0.2 denotes the sampling
time interval. Letting f(xk, uk) = [f1(xk, uk), f2(xk, uk)]T

with f1(xk, uk) = x1,k + ∆x2,k and f2(xk, uk) = x2,k +
∆(sinx1,k − x2,k + uk), we obtain the discrete-time system
as xk+1 = f(xk, uk), k ∈ N. Note that the function f(·, ·) is
assumed to be unknown apriori and is thus learned by the GP
regression. It is assumed that U = [−1.5, 1.5] and the initial
state is given by xinit = [x1,0;x2,0] = [1.0; 0.2]. The maxi-
mum inter-communication time step is M = 10, and the repre-
sentative points for the state space to solve (28) is selected by
the uniform grid points in the set X = [−1.5, 1.5]×[−1.5, 1.5]
with the interval 0.3, i.e., XR = [X]0.3. The representative
points for the input space is given by UR = [U ]0.3. We use

the exponential type for the stage cost in (16) with Q = I2,
and we set γ = 0 for the cost function in (15).

Fig. 3(a) illustrates the trajectories of the states by applying
the self-triggered controller obtained by Algorithm 2 with
Episode = 1 (red dotted) and 10 (blue solid). The figures
illustrate that, while the state diverges at the initial learning
phase, it is indeed stabilized towards the origin as the num-
ber of episode increases. The computed inter-communication
time steps corresponding to the simulation result in Fig. 3(a)
(Episode = 10) are illustrated in Fig. 3(b), which shows that
the communication is given aperiodically according to the
derived self-triggered controller. Fig. 3(c) illustrates the state
trajectories by applying Algorithm 2 after Episode = 10 with
different selections of M (M = 1, 10). Note that, M = 1
corresponds to the case when communication is given at every
time step, i.e., the time-triggered controller is implemented.
The figure shows that the convergence of states for the case
M = 1 seems to be faster than for the case M = 10, which
is due to the fact that control inputs are updated at every time
step when the time-triggered controller is implemented. On
the other hand, the total number of communication instants
required for the time interval k ∈ [0, 100) is 100 for the case
M = 1 (as it is the time-triggered implementation), while it
is 27 for the case M = 10. This implies that employing the
self-triggered controller achieves a significant communication
reduction in contrast to the time-triggered strategy. Hence,
the result shows that there exists a tradeoff between the
communication reduction for the NCS and the convergence
speed of states towards the origin, and such tradeoff may be
regulated by tuning the parameter M .

To indicate the robustness of the derived self-triggered
controller, we also illustrate in Fig. 4 several trajectories from
different initial states around xinit. The figure illustrates that
the states are indeed stabilized to the origin regardless of the
deviation of the initial states, showing the robustness of the
self-triggered controller.

Finally, to analyze the effect of γ, we illustrate in Fig. 5(a)
and Fig. 5(b) the resulting state trajectories under different
selections of γ (γ = 0.01, 0.02, 0.03), and the correspond-
ing inter-communication time steps, respectively. Here, Algo-
rithm 2 has been implemented for each γ with 10 episodes
(Nepi = 10). From Fig. 5(b), it is shown that larger inter-
communication time steps are more likely to be selected as γ
is selected larger. This is due to the fact that, by selecting larger
γ, it will penalize more for the communication cost. Note that,
for the case γ = 0.03, the resulting state trajectory converges
farther from the origin than for the other cases (while it
achieves larger inter-communication time steps), which may
be due to the fact that achieving large inter-communication
time steps is too emphasized. Hence, similarly to the above,
there exists a tradeoff between the communication reduction
for the NCS and the convergence of states towards the origin,
and such tradeoff may be regulated by tuning the parameter
γ.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we investigate the self-triggered controller for
NCSs with the unknown transition dynamics. To this end,
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we use the GP to learn the dynamics of the plant. We first
formulate an optimal control problem, such that both the cost
for the control performance and the communication cost can
be taken into account. Then, we illustrate that the optimal
control problem can be solved via a value iteration algorithm,
in which the optimal pair of the control input and the inter-
communication time steps can be determined based on the
GP model of the plant. Then, we provide overall reinforcement
learning algorithm that jointly learns the dynamics of the plant
as well as the self-triggered controller implemented by the
learning agent. Finally, a numerical simulation is given to
illustrate the effectiveness of the proposed approach.

Future work involves analyzing some theoretical issues
(e.g., stability of the closed loop system, convergence property
of the value iteration algorithm, etc.) for the GP dynamics of
the plant. Moreover, providing some experiments to test the
applicability of our approach should be investigated for our
future work of research.
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(a) State trajectories by implementing Algorithm 2 with M = 10.

(b) Corresponding inter-communication time steps (Episode = 10).

(c) State trajectories by implementing Algorithm 2 with M = 1, 10.

Fig. 3. Simulation results by applying Algorithm 2. Fig. 3(a) illustrates the
state trajectories by applying Algorithm 2 with M = 10 after Episode = 1
(red dotted) and 10 (blue solid). Fig. 3(b) illustrates the corresponding inter-
communication time steps for the case Episode = 10. Moreover, Fig. 3(c)
illustrates the state trajectories by applying Algorithm 2 after Episode = 10
with different selections of M (M = 1, 10). Note that, M = 1 corresponds
to the case when communication is given at every time step (i.e., the time-
triggered controller is implemented).
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Fig. 4. State trajectories from random initial states by applying the derived
self-triggered controller.

(a) State trajectories with γ = 0, 0.01, 0.03.

(b) Inter-communication time steps with γ = 0, 0.01, 0.03.

Fig. 5. Simulation results with different selections of γ.
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