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Abstract—Since automatic algorithm configuration methods
have been very effective, recently there is increasing research
interest in utilizing them for automatic solver construction, result-
ing in several notable approaches. For these approaches, a basic
assumption is that the given training set could sufficiently rep-
resent the target use cases such that the constructed solvers can
generalize well. However, such an assumption does not always
hold in practice since in some cases, we might only have scarce
and biased training data. This article studies effective construc-
tion approaches for the parallel algorithm portfolios that are less
affected in these cases. Unlike previous approaches, the proposed
approach simultaneously considers instance generation and port-
folio construction in an adversarial process, in which the aim of
the former is to generate instances that are challenging for the
current portfolio, while the aim of the latter is to find a new
component solver for the portfolio to better solve the newly gen-
erated instances. Applied to two widely studied problem domains,
that is, the Boolean satisfiability problems (SAT) and the travel-
ing salesman problems (TSPs), the proposed approach identified
parallel portfolios with much better generalization than the ones
generated by the existing approaches when the training data
were scarce and biased. Moreover, it was further demonstrated
that the generated portfolios could even rival the state-of-the-art
manually designed parallel solvers.

Index Terms—Automatic portfolio construction (APC), genera-
tive adversarial approach, parallel algorithm portfolio, parameter
tuning.

I. INTRODUCTION

MANY high-performance algorithms for solving com-
putationally hard problems, ranging from the exact
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methods such as mixed-integer programming solvers to heuris-
tic methods, such as local search and metaheuristics, involve
a large number of free parameters that need to be carefully
tuned to achieve their best performance [1]–[4]. In many
cases, finding performance-optimizing parameter settings is
performed manually in an ad-hoc way. However, the man-
ually tuning approach has two main disadvantages [5]–[8]:
1) it requires considerable human effort and 2) it is often lim-
ited to the exploration of few parameter settings, thus leading
to a performance that is far from the optimal. As a result,
there have been a lot of attempts on automated parameter tun-
ing (see [6] for a comprehensive review), which is usually
referred to as automatic algorithm configuration (AAC) [9].
Here, a configuration of a parameterized algorithm refers to a
complete setting of the parameters of the algorithm such that
the algorithm’s behavior on a given problem instance is com-
pletely specified (up to randomization of the algorithm itself).
In the last few years, with several high-performance algorithm
configurators (i.e., AAC methods), such as ParamILS [6],
GGA [10], irace [8], and SMAC [11] being proposed, AAC
has become very effective.

As a consequence, recently there is increasing research
interest in utilizing these methods to automatically construct
effective solvers for a given application. The key idea is
to parameterize many aspects of the algorithms and thus
come up with a large space of algorithms as the config-
uration space, from which effective algorithm configurators
are used to identify the high-performance algorithms. Unlike
manual solver-designing paradigm which usually relies on
considerable effort by human experts, the automatic solver
construction approaches involve much less human effort and
instead usually need to consume large budgets of computa-
tional time for configuration. This is acceptable (and even
appealing) since the available computing power has been
rapidly becoming much cheaper than before.1 Indeed, such
approaches have been demonstrated to be both practical and
effective in cases of constructing sequential solvers [12], [13];
sequential portfolios [14]–[16] (i.e., algorithm portfolios with
selectors/scheduling); and parallel portfolios [17], [18].

Generally all these approaches require that a training set
(i.e., a set of problem instances of the problem domain of
interest) is available for constructing the solvers, particularly
to evaluate the solvers in the construction process. Moreover,

1According to https://en.wikipedia.org/wiki/FLOPS#Hardware_costs, the
unit cost of computing power falls by an order of magnitude roughly every
four years nowadays.
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for these approaches, an indispensable assumption is that the
training set is a good representative of the target use cases [19],
such that the “trained” solvers can generalize well to the
instances out of the training set. In practice, given a specific
application, it could usually be expected that some data, that
is, the instances that have been encountered for this application
before, are available as the training data. However, it is noted
in at least two cases, such a training set might not be suf-
ficiently representative, which could have a major impact on
the applicability of the constructed solvers. First, only a lim-
ited number of instances are accumulated and thus can hardly
cover the entire possible target cases. Second, the accumu-
lated instances are outdated and could not reflect the properties
of the current cases well. Actually, the above two cases are
not rare and have been discussed in different areas in the
literature. For example, it has been reported that in combinato-
rial optimization, some commonly used benchmark instances
are not necessarily challenging [20], narrowly defined [21],
and distinct from real-world instances [22]; in research areas
closely related to real-world applications, such as logistics,
there are also concerns that the instances proposed decades
ago already could not represent the real-world cases of today
due to the constant growth of big cities [23], [24].

Intuitively, to handle this issue, generating some additional
instances appears to be an alternative. However, it is also non-
trivial to generate good training data in practice. Recall that
the ultimate goal for having a representative training set is to
achieve good generalization of the constructed solvers. Thus,
the term “representative training set” depends on the specific
solvers considered, while the latter is to be constructed based
on the former. In other words, it is very difficult to obtain a
concrete definition of representativeness in advance, which is
crucial for evaluating a given training set and thereby gener-
ating a representative one. This difficulty could be alleviated
by allowing some redundancy in the training set, since in the
extreme case, one could obtain perfect generalization if all pos-
sible target instances are included in the training set. However,
this could lead to an overwhelming cost when obtaining the
training set as well as for constructing the solvers.

This article studies effective construction approaches for
parallel portfolios that are less affected by nonrepresentative
training data. The term “parallel portfolio” [25], [26] refers
to a portfolio/set of solvers that is run independently in par-
allel when solving a problem instance (see Section III-A).
As a form of solvers, parallel portfolios have several impor-
tant advantages. First, exploiting parallelism has become very
important in designing efficient solvers for computationally
hard problems, considering the great development and the
wide application of parallel computing architectures [27] (e.g.,
multicore CPUs) over the last decade. Parallel portfolios
employ parallel solution strategies and, thus, could easily make
effective use of modern hardware. Second, utilizing several
different solvers (as in parallel portfolios) is a simple yet
effective strategy for solving computationally hard problems.
Such an idea has also been realized in the form of sequential
portfolios [28], [29], which try to select the best solvers for
solving a problem instance, and adaptive solvers, such as adap-
tive parameter control [30]–[33]; reactive search [34], [35];
and hyper-heuristics [36]–[38], which seek to dynamically

determine the best solver setting while solving a problem
instance. In principle, all these methods need to involve some
mechanisms (e.g., selection or scheduling) to appropriately
allocate computational resources to different solvers, while the
parallel portfolios do not necessarily require any extra resource
allocation since each solver is simply assigned with the same
amount of resources. Third, a parallel portfolio could be eas-
ily converted to a sequential portfolio by using the algorithm
selection methods [39] to build selectors on the solvers in the
portfolio, which means the portfolios generated by construc-
tion approaches (e.g., the approach proposed in this article)
could be further used for constructing sequential portfolios.

In this article, we propose a novel approach called the
generative adversarial solver trainer (GAST) for the auto-
matic construction of parallel portfolios. Unlike the existing
construction approaches, GAST would generate additional
training instances and construct a parallel portfolio with the
dynamically changing training set. More specifically, GAST
puts instance generation and portfolio construction in an adver-
sarial game. The instance generation aims to generate the hard
problem instances that could not be solved well by the cur-
rent portfolio, while the portfolio construction aims to find a
new component solver for the portfolio to better solve these
challenging instances. Competition in this game drives the
portfolio to satisfactorily solve more problem instances, lead-
ing to a better generalization performance. To the best of our
knowledge, this is the first work that simultaneously considers
solver construction and instance generation. In the experi-
ments, in comparison with the previous approaches, GAST
consistently built parallel portfolios with much better gen-
eralization across different experimental scenarios, and the
portfolios could even achieve the performance level of parallel
solvers designed by human experts.

The remainder of this article is organized as follows.
Section II reviews previous related work. In Section III, first
the problem of parallel portfolio construction is described, and
then the general framework of GAST is presented. After that,
in Section IV, GAST is further instantiated for TSP and SAT.
In Section V, the advantages of GAST will be demonstrated
through comparison against other portfolio construction meth-
ods in data-scarce and data-biased scenarios. In this section,
the portfolios generated by GAST would also be compared
against the state-of-the-art manually designed parallel solvers.
Finally, the conclusion and future work will be drawn in
Section VI.

II. RELATED WORK

A. Automatic Solver Construction

Investigations on automatic solver construction were initi-
ated by the attempts on AAC [9]. A number of algorithm
configuraotrs (i.e., AAC methods), ParamILS [6], GGA [10],
irace [8], and SMAC [11], have been developed in the past
decade. All these methods can be viewed as sharing a common
iterative search framework, that is, candidate configurations
are generated and tested iteratively. The biggest difference
between them lies in the ways of generating candidate con-
figurations. ParamILS and GGA utilize direct search methods,
that is, an iterated local search algorithm and a gender-based
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genetic algorithm, respectively, to search the configuration
spaces, while SMAC and irace both rely on built meta mod-
els to guide the sampling of the configuration spaces. With
the effective algorithm configurators, there were later attempts
to automatically constructing sequential solvers. One promi-
nent example is SATenstein [12], in which ParamILS was
used to construct an effective solver for SAT based on a
highly parameterized solver framework. Another example is
AutoMOEAs [13], in which high-performance multiobjective
evolutionary algorithms (MOEAs) for the multiobjective per-
mutation flow-shop problems were built by irace with a
configuration space defined on a highly parameterized MOEA
framework.

By considering more complicated structures of solvers,
research evolved into the realm of automatic portfolio con-
struction (APC), that is, the targeted object is no longer a
single solver, but is a portfolio of solvers that are chosen from
a configuration space. Such a setting essentially means the
search space considered by APC is generally much larger than
that considered in the case of constructing sequential solvers,
providing more degree of freedom on the resultant solvers
and hopefully leading to better performance. According to the
ways of using the resultant portfolios to solve a new problem
instance, APC was further developed along several directions.
Cedalion [16] is a notable approach for constructing portfolios
with scheduling for the planning problem, which runs its com-
ponent planners sequentially with preallocated time budgets.
For portfolios with selectors which select a single best solver
from its component solvers to solve a given problem instance,
there are two representative approaches dubbed Hydra [14]
and ISAC [15]. Hydra constructs a portfolio iteratively by find-
ing a configuration in each iteration that maximizes marginal
contribution to the current portfolio, while ISAC clusters the
training instances based on features and independently runs
an algorithm configurator on each cluster. The basic ideas of
Hydra and ISAC were later adapted to be used in construct-
ing parallel portfolios, thus resulting in two new approaches
PARHYDRA and CLUSTERING [17]. Another key approach
for constructing parallel portfolios is PCIT [18], which also
adopts an instance grouping strategy such as CLUSTERING
but will adjust the grouping by transferring instances between
subsets in the construction process. Note that how to evalu-
ate candidate portfolios in the construction process depends
on the ways of using the resultant portfolios; therefore the
latter should be taken into account in the design of an APC
approach.

As mentioned before, currently all investigations on auto-
matic solver construction require that a training set is given,
and it is assumed that the training set is a (representative) part
of the target use cases. Hence, it is nonsurprising that most
of the above approaches were justified on well-investigated
computationally hard problems, such as the planning prob-
lems [16]; SAT [12], [14], [15], [17], [18]; and TSP [18], since
for these problems, there are quite a few benchmark suites. For
these approaches, the training set and the test set for empir-
ical studies were usually obtained by randomly and evenly
splitting an existing benchmark set into two disjoint sets, such
that the training instances can represent the test instances well.

However, as aforementioned such a setting could not be always
appropriate since in some cases, we might only have scarce
and biased training instances.

B. Problem Instance Generation

The lack of instances, though less discussed in the con-
text of automatic solver construction, has attracted much
attention from the perspective of empirical evaluation of
solvers. In this area, the main goal is to automatically gen-
erate problem instances with diverse characteristics, such as
hardness and problem features. Various instance generation
methods have been proposed to problem domains, such as
TSP [40]–[45]; SAT [40], [46]; job-shop scheduling prob-
lems [47]; constraint satisfaction problems (CSPs) [40], [48];
graph-coloring problems [21]; and bin-packing problems [49].
The generated instances are usually further used for com-
prehensive analysis of the strengths and weaknesses of
the existing solvers [40]–[43], [45], [48], [49]; algorithm
performance prediction [41], [42], [45]; and algorithm
enhancement [44], [47].

C. Generative Adversarial Networks

The general idea of GAST is similar to generative adversar-
ial networks (GANs) [50]. GANs also maintain an adversarial
game in which a discriminator is trained to distinguish real
samples from fake samples synthesized by a generator, and
the generator is trained to deceive the discriminator by pro-
ducing ever more realistic samples. However, there are some
main differences between GAST and GANs. First, the over-
all goals of them are different. GANs focus on the generative
models that could capture the distribution of complicated real-
world data. For GAST, the main goal is to build powerful
parallel portfolios (analogous to the discriminative models in
GANs); while the instance generation module as well as the
generated instances are more like byproducts. Second, the
domains to which GAST and GANs are applicable are differ-
ent. Currently GANs (and the more general idea of adversarial
learning) are mostly successfully applied to vision-related
domains, such as image generation [51], [52]; image dehaz-
ing [53]; style transfer [54], [55]; image classification [56]; and
clustering [57], [58]. In comparison, GAST is proposed for
problem-solving domains, such as planning and optimization.
Third, the main technical issues in the two areas are different.
The ones faced by GANs are the difficulties in modeling com-
plex and large-scale real-world datasets (e.g., mode collapse
problem) as well as optimizing the large-scale deep neural
networks used in GANs. It has been observed that appropriate
hyperparameters are crucial for GANs to work well, and there
have been a lot of efforts [59]–[61] dedicated to overcom-
ing these difficulties. For GAST, the main difficulties lie in
two aspects: 1) how to generate useful instances for portfolio
construction and 2) how to appropriately integrate the instance
generation into the portfolio construction process, such that the
portfolio’s generalization performance would be kept getting
improved.
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III. GENERATIVE ADVERSARIAL SOLVER TRAINING

A. Parallel Portfolios

A parallel portfolio with k component solvers is denoted as
a k-tuple c1:k = (c1, . . . , ck), in which ci represents the ith
component solver of c1:k. When solving a problem instance,
all component solvers of c1:k, that is, c1, . . . , ck, are run inde-
pendently in parallel until some termination condition is met.
Here, the termination condition may vary according to the
problem domains considered and the performance metrics of
interest. When a decision problem (e.g., SAT) is considered,
all component solvers will be terminated once any of them
outputs an answer to the instance, that is, SATISFIABLE or
UNSATISFIABLE. In this case, the runtime needed by c1:k to
solve the instance is the runtime needed by the best component
solver for solving this instance. Moreover, usually a cut-off
time, that is, maximum runtime, will be introduced in this
case to prevent the solution process from being prohibitively
long in which no component solver could solve the problem
instance. On the other hand, if an optimization problem (e.g.,
TSP) is considered, the termination conditions are different
according to the performance metrics of interest. If the metric
considered is the runtime needed to find a good enough solu-
tion of accepted quality level (e.g., within a predefined gap
to the optimum), the termination condition is that any of the
component solvers finds such a solution. As in the case of the
decision problem, a cut-off time could be introduced in this
case to prevent the solution process from being prohibitively
long. If the metric considered is the quality of the best solu-
tion found within a time budget, each component solver will
be terminated when the time budget is exhausted and the best
solution among the ones found by the component solvers will
be returned as the output of c1:k.

Overall, the performance of c1:k on an instance s, denoted as
P(c1:k, s), is the best performance achieved among c1, . . . , ck

on s

P(c1:k, s) = min
j∈{1,...,k}m

(
cj, s

)
(1)

where m(cj, s) is the performance of cj on s according to
a performance metric m (e.g., runtime or solution quality).
Without loss of generality, we assume a smaller value is better
for m. Note that in practice, when an optimization problem is
considered, the runtime metric might not be measurable. The
reason is that usually, we do not know whether the found solu-
tions by the component solvers are of acceptable quality levels
(thus terminating all component solvers), since the optimal
solutions of the problem instances are unknown. However,
this does not affect the above definition. The performance of
c1:k on an instance set I is an aggregated value of the perfor-
mances of c1:k on all instances in I. Specifically, the following
weighted average function, which is widely used in the litera-
ture, is used for calculating the performance of c1:k on I, that
is, P(c1:k, I):

P(c1:k, I) = 1

|I|
∑

s∈I

ws · P(c1:k, s) (2)

where |I| refers to the number of the instances in I and
the weight w is introduced to handle different scales of the

(a) (b)

Fig. 1. Configuration space C induced by a set of parameterized solvers
B in cases of |B| = 1, that is, B = {Solver1} in (a) |B| > 1, that is,
B = {Solver1, Solver2, . . .} in (b), respectively. Each rounded rectangle in
this figure represents the parameter space of the corresponding base solver.

performances on different instances (usually used when m is
related to the solution quality).

B. Problem of Parallel Portfolio Construction

When constructing a portfolio c1:k with AAC, each com-
ponent solver of c1:k is an individual configuration selected
from a configuration space C, that is, c1, . . . , ck ∈ C. C is
induced by a set of parameterized solvers B, called the base
solvers. As illustrated in Fig. 1, if there is only one base
solver, the configuration space is exactly the solver’s parame-
ter space; otherwise, the configuration space takes each base
solver’s parameter space as a subspace, and would include an
additional top-level parameter to decide which subspace (base
solver) would be used. The full configuration space of c1:k is
Ck = ∏k

i=1{c|c ∈ C}, where the product of two configuration
spaces A and B is the Cartesian product of A and B, that is,
A× B = {(a, b)|a ∈ A and b ∈ B}. In other words, the size of
the full configuration space for c1:k is |C|k.

Given the above definitions, the parallel portfolio construc-
tion problem considered here can be stated as follows. Given a
possibly nonrepresentative training set I, a performance metric
m, a set of parameterized base solvers B, and the configuration
space C induced by B, select configurations c1, . . . , ck from
C to form a parallel portfolio c1:k, such that c1:k can general-
ize well, that is, achieve good P(c1:k, I∗) on the target set I∗,
which is impossible to enumerate in advance, for example, of
huge size or is changing over time.

C. Generative Adversarial Solver Trainer

Overall, there are two key design principles for GAST.
The first concerns generating useful training instances. The

nonrepresentative training set generally means that some tar-
get cases are not covered. It is thus necessary to generate
additional training instances. On the other hand, the instances
that are out of the training set but can already be solved well
by the solvers being constructed are actually of no use for
improving the generalization of the solvers. Hence, a desir-
able generated instance should be not present in the training
set and meanwhile hard for the solvers being constructed.

The second principle concerns the complementarity [14],
[15], [17], [18], [62] among the component solvers, which
is crucial for the effectiveness of any parallel portfolio.
According to (1), the performance of a parallel portfolio on
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Algorithm 1 GAST
Input: base solvers B with configuration space C; number of
component solvers k; instance set I; performance metric m;
algorithm configurator AC; independent configurator runs n; time
budgets tC, tV , tI for configuration, validation and instance
generation respectively
Output: parallel portfolio c1:k

1: for i← 1 : k do
2: /*————configuration phase———————*/
3: for j← 1 : n do
4: obtain a portfolio cj

1:i by running AC on configuration space
{c1:i−1} × {c|c ∈ C} using m for time tC

5: end for
6: validate c1

1:i, ..., cn
1:i on I using m for time tV

7: let c1:i ← arg min
cj

1:i|j∈{1,...,n} P(cj
1:i, I) be the portfolio with

the best validation performance
8: /*————instance-generation phase————–*/
9: if i = k then break //skip instance generation

10: according to the validation results, assign the quality score of
each s ∈ I as ws · P(c1:i, s)

11: Ī← I
12: while time spent in this phase not exceeds tI do
13: Inew ← ∅

14: for each s ∈ I do
15: refset← randomly sample from I \ {s}
16: snew ← variation(s, refset)
17: Inew ← Inew ∪ {snew}
18: end for
19: test c1:i with each s ∈ Inew and assign the quality score of

s as ws · P(c1:i, s)
20: I← I ∪ Inew
21: remove |Inew| instances from I with binary tournament

selection
22: end while
23: I← I ∪ Ī
24: end for
25: return c1:k

an instance depends on the best-performing component solver
on the instance. Since it is unlikely that a unique component
solver performs the best in all instances, it is more desirable
that different component solvers are good at solving differ-
ent problem instances. In other words, GAST should promote
different component solvers to handle different instances.

The pseudocode of GAST is given in Algorithm 1. Overall,
GAST has an iterative structure and each iteration of GAST
consists of two subsequent phases: 1) a configuration phase
(lines 3–7) and 2) an instance-generation phase (lines 9–23).
The configuration phase is similar to PARHYDRA [17] in
which the component solvers of c1:k are configured itera-
tively. More specifically, in the ith iteration, GAST uses an
algorithm configurator (AC in Algorithm 1) with a time bud-
get tC to configure ci to add to the current portfolio c1:i−1,
that is, (c1, . . . , ci−1), such that the performance of the result-
ing portfolio c1:i, that is, (c1, . . . , ci), on instance set I, is
optimized (line 4). During the configuration process of ci

(line 4), GAST would run the entire portfolio on the con-
sidered instances while only ci is available to be configured,
leaving (c1, . . . , ci−1) fixed. In other words, in each iteration,
GAST aims to find a configuration that maximizes marginal
performance contribution across the configurations identified

in the previous iterations. Since generic algorithm configura-
tors are usually randomized methods, to ensure the reliability
of the outputs of the algorithm configurator AC, following the
established best practices [6], [11], GAST always performs n
independent runs of AC when configuring ci (line 3) and thus
obtains n different portfolios produced by these runs, that is,
c1

1:i, . . . , cn
1:i. These portfolios are then tested on I with a time

budget tV (line 6) and the one achieving the best validation
performance will be retained (line 7).

The instance-generation phase begins once the configuration
phase finishes. Note in the last iteration (i.e., the kth iteration)
of GAST, instance generation is skipped (line 9) because there
is no need to generate more instances since c1:k has been com-
pletely constructed. In the instance-generation phase, GAST
first creates a backup of the training set I (line 11) that will
be restored to the training set at the end of this phase (line 23),
and then enters an iterative process in which GAST repeatedly
generates new instances based on the current training set I
(lines 12–18), tests these new instances with current portfo-
lio c1:i (line 19) and uses them to update the instance set I
(lines 20 and 21), until the time spent for generating instances
reaches budget tI (line 12).

More specifically, to generate a new instance snew, GAST
uses an existing instance s in I as a base instance, and ran-
domly selects a set of instances from I excluding s as the
reference instances (refset in line 15). snew is then generated by
modifying s with random perturbation and insertion of struc-
tures/components extracted from the reference instances (by
the variation procedure in line 16). Taking each instance in I
as the base instance (line 14), GAST eventually generates a set
of new instances Inew. The instances generated in this way are
expected to differ significantly from the existing instances in I,
but at the same time, would preserve some characteristics of
the existing ones. This is desirable because generating too sim-
ilar instances to the existing ones is not useful for exploring
the instance space, which is crucial for improving the gen-
eralization of the portfolio being constructed, and generating
instances completely unrelated to existing ones could result in
instances of no interests, for example, instances with no prac-
tical significance. Moreover, since each existing instance in I
is used as the base instance to generate new ones, the diversity
in Inew is expected to be enhanced. The precise definition of
the modification procedure depends on the specific problem
domain considered; thus it is encapsulated as the variation
procedure in Algorithm 1 (line 16). A lot of existing instance
variation mechanisms, which are applicable for a wide range of
problem domains (see Section II), could be used to instantiate
variation when applying GAST to the corresponding domains
(see Section IV for the instantiations for TSP and SAT).

Another two important aspects in the instance-generation
phase are the instance evaluation and the instance selection. As
aforementioned, only instances that cannot be solved well by
the current portfolio c1:i is valuable for improving the general-
ization of the portfolio; thus in the instance-generation phase,
each instance is assigned with a quality score equal to the
performance of the current portfolio on it [i.e., ws ·P(c1:i, s)]—
the worse the performance, the higher the score (note ws

is just the normalization factor to handle different scales
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of the performances). For the initial instances in I when
entering instance-generation phase, their quality scores could
be directly obtained from the validation results which were
cached in the configuration phase (line 10). As for those newly
generated instances, GAST will test them with c1:i (line 19)
and obtain their quality scores.2 After that, all newly generated
instances, that is, instances in Inew, are included in the train-
ing set I (line 20), and then binary tournament selection [63],
which repeatedly randomly selects two instances from I and
removes the one with the lower quality score, is used to remove
|Inew| instances from I to keep its size unchanged.

In general, GAST alternates between generating new training
instances that are hard for the current portfolio and configuring
a new component solver to solve these instances while leaving
the existing component solvers clamped. In this sense, GAST
always promotes the component solver being configured in
the current iteration to handle the newly generated instances
which are different from the ones considered in the previous
iterations, such that the complementarity among the component
solvers of the constructed portfolio would be enhanced.

D. Discussion

Intuitively, if we consider an instance “covered” by a
portfolio c1:k as it can be solved well by c1:k; then the tar-
get of the construction problem considered here is to find
c1:k = (c1, . . . , ck) from the configuration space C with a
maximum coverage on the target instance space I∗. Generally,
the problem is NP-hard and can be approximated within
1− (1/e)+o(1) ≈ 0.632. The approximation ratio is achieved
by the generic greedy method [64]. More specifically, this is
an iterative method which starts from an empty portfolio and
at each iteration selects a configuration from C that covers the
largest number of uncovered instances in I∗ to add to the port-
folio. The iterative framework of GAST (the outermost loop in
Algorithm 1) is exactly the same as the greedy method except
that GAST involves an additional instance-generation phase in
each iteration. Recall that in the problem considered here, we
are only given a training set I that is nonrepresentative of I∗,
and I∗ is impossible to enumerate in advance, for example,
of huge size or is changing over time. This means during the
portfolio construction it is unclear which instances in I∗ are
not covered by the current portfolio. Thus, it is necessary to
first identify those uncovered instances in I∗ for enlarging the
portfolio’s coverage on I∗, which is exactly what the adver-
sarial instance generation does. In comparison, the existing
approaches do not involve such mechanisms; thus they could
only optimize the portfolio’s coverage on the training set I.
For the instances that are in I∗ but not in I, the portfolio’s
performance is not optimized and could be arbitrarily bad.

E. Time Complexity and Computational Costs

The most time-consuming parts of GAST are the runs of the
component solvers on the problem instances, and the incurred

2When testing the generated instances with c1:i, if the component solvers
in c1:i are randomized solvers, which is actually very common, c1:i will be
run on each instance for several times with different random seeds, and the
mean value of the test results will be used.

TABLE I
COMPUTATIONAL COSTS FOR EXISTING PARALLEL PORTFOLIO

CONSTRUCTION APPROACHES. tC, tV , AND tI ARE TIME BUDGETS FOR

CONFIGURATION, VALIDATION, AND INSTANCE GENERATION,
RESPECTIVELY. k IS THE PORTFOLIO SIZE. n IS THE NUMBER OF

INDEPENDENT RUNS OF THE USED ALGORITHM CONFIGURATOR.
NOTE THAT FOR DIFFERENT APPROACHES tC, tV COULD

BE SET TO DIFFERENT VALUES

computational costs account for the vast majority of the total
costs of GAST. Therefore, we analyze the time complexity of
GAST in terms of the total number of the runs of the solvers.
In Algorithm 1, the solvers are invoked in three places, that
is, configuration (line 4), validation (line 9), and instance gen-
eration (line 19). Recall that in the ith iteration of GAST,
there are i component solvers in the portfolio and they are
always executed in parallel. Let NC, NV , and NI denote the
number of the runs of each component solver in configuration
(line 4), validation (line 9), and instance generation (line 19),
respectively. The total number of runs of solvers in the ith
iteration of GAST is i · [n · (NC + NV) + NI], where n is the
number of independent configurator runs (line 3). Considering
the instance-generation phase is skipped in the last iteration of
GAST, the time complexity of GAST in terms of the number of
the runs of the solvers is O(

∑k
i=1 i·n·(NC+NV)+∑k−1

i=1 i·NI) =
O(k2n(NC + NV)+ k2NI). Similarly, we could obtain that the
time complexity of the existing parallel portfolio construc-
tion approaches, that is, PARHYDRA, GLOBAL, and PCIT,
are O(k2n(NC +NV), O(kn(NC +NV)), and O(kn(NC +NV)),
respectively. For detailed information of how these results are
derived, we refer the reader to the original articles [17] for
PARHYDRA and GLOBAL and [18] for PCIT. Note that for
a specific portfolio construction approach, the values of NC,
NV , and NI depend on the predefined time budgets tC, tV ,
and tI , respectively, and for different approaches, tC, tV , and
tI could be set differently.

Given the time budgets tC, tV , and tI , the total CPU time
consumed by GAST is

∑k
i=1 i ·n · (tC+ tV)+∑k−1

i=1 i · tI . The n
independent runs of AC (line 4) and the validation processes
(line 6) can be performed in parallel if n machines (with each
of k cores) are available, in which case GAST will require
k · (tC + tV) + (k − 1) · tI wall clock time to complete. For
completeness, in Table I, we also list the needed CPU time for
PARHYDRA, GLOBAL, and PCIT, which will be referenced
in the experiments (see Section V-A4).

IV. INSTANTIATIONS OF GAST FOR TSP AND SAT

In this section, the variation procedure in GAST is
instantiated for TSP and SAT, respectively, resulting in two
approaches GAST-TSP and GAST-SAT.

A. GAST-TSP

Specifically, the symmetric TSP, that is, the distance
between two cities is the same in each opposite direction,



790 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 52, NO. 2, FEBRUARY 2022

with distances in a 2-D Euclidean space is considered here.
Each instance of such TSP is represented by a list of (x, y)
coordinates with each coordinate as a city. We extended
the variation strategy used in [40] which requires the base
instances and the reference instances have the same size (i.e.,
number of the cities) to allow the use of instances of differ-
ent sizes. Specifically, given a base instance s, and a reference
instance s∗ (meaning GAST-TSP requires only one reference
instance in refset; see lines 15 and 16 in Algorithm 1), the
variation procedure in GAST-TSP applies a variable-length
crossover and a uniform mutation to s and s∗ to generate a new
instance. Let |s| and |s∗| be the length of the coordinate list
of s and s∗, respectively. The crossover first randomly selects
min{|s|, |s∗|}−1 split points in both lists, and then constructs a
new coordinate list (i.e., the new instance snew) in a sequential
manner by choosing each segment from either of the two lists
with equal probability. The new list is then subject to the muta-
tion operator that replaces each coordinate in the list, with a
probability 1/|snew|(1/2), with a coordinate uniform randomly
chosen within the ranges bounded by the minimum and the
maximum values of the coordinates in the lists of s and s∗.

B. GAST-SAT

The variation procedure in GAST-SAT utilizes the spig
technique proposed by [46], which iteratively removes partic-
ular components (bounded together through a core variable)
from the base instance s and then inserts such structures
extracted from the reference instances into s. The generated
instance will only be accepted by spig if all of its features
are within σ standard deviations of the mean value across all
instances (including s and the reference instances). The value
of σ is set to a quite small value, that is, 3, by [46] for gen-
erating similar enough instances to the existing ones, which
obviously is not our goal here. We thus set σ as a random
variable whose value is randomly sampled from [3, 300] for
each acceptance check to introduce more randomness in the
generated instances. To prevent the runtime of spig from being
too long, the size of the reference instance set, that is, |refset|,
is set to �|I|(1/2)�, where |I| is the size of the training set.

V. EXPERIMENTS

We conducted experiments on SAT and TSP. Following the
common scheme, in the experiments, we used GAST to build
parallel portfolios based on a training set, and then compared
them against the ones constructed by the existing approaches,
on an unseen test set.

A. Experimental Setup

1) Portfolio Size and Performance Metric: We set the num-
ber of component solvers k to 4, since 4-core machines are
widely available now. The optimization goal considered here is
the runtime needed by a solver to solve the problem instances
(for SAT) or to find the optimums of the problem instances (for
TSP). In particular, we set m to Penalized Average Runtime-10
(PAR-10) [6], which is the average runtime over all the test
runs, where those unsuccessful runs (unable to solve the given
instance within the cut-off time) are counted as ten times the

cut-off time. Note for PAR-10, the weight w in (1) is set to 1.
The optimal solutions for TSP instances were obtained using
Concorde [67], an exact TSP solver.

2) Instance Sets: Since we focus on the scenarios where
the available training instances are nonrepresentative, it is very
important to decide an appropriate way to choose the instances.
We used two different ways to obtain the instances, thus
dividing our experiments into two parts. In the first part, we
obtained instances through instance generators and evaluated
GAST-TSP in this part because for TSP there exist genera-
tors that could generate instances with diverse characteristics.
Specifically, we used the portgen and the portcgen generators
from the eighth DIMACS implementation challenge [68] to
generate 150 “uniform” instances (in which the cities are ran-
domly distributed) and 150 “clustering” instances (in which
the cities are distributed around different central points) to
form a set of 300 instances, denoted as TSPwhole. The problem
sizes of all these generated instances are within [400, 600].

The instance-generation way has two potential issues. First,
the generated instances might be far away from the real-
world cases, thus making the evaluation on them not of
practical significance. Second, since GAST also involves
instance generation (see Algorithm 1), there is a possibil-
ity that the underlying generation model in GAST is similar
to the instance generators used here. To avoid these issues,
in the second part, we only obtained the instances from the
industrial benchmark suites and evaluated GAST-SAT in this
part. Specifically, we obtained two industrial benchmarks, IBM
hardware verification (HV) benchmark and bounded model
checking (BMC) benchmark, from the algorithm configuration
library (AClib) [7], and randomly selected 150 instances from
each of the two sets to form a set of 300 instances, denoted
as SATwhole.

3) Experimental Scenarios: For brevity, we only describe
how we split TSPwhole here. For SATwhole, the same proce-
dure was conducted. We split TSPwhole into training sets and
test sets in two different ways, for simulating two different
cases. The first case “SMALL” means the available training
set contains only a small number of instances. In this case, we
randomly selected 1/6 instances (50 in total) from TSPwhole
as training instances and used the left instances (250 in total)
as test instances. The second case “BIAS” means the train-
ing instances are biased to narrowly defined cases. In this
case, from TSPwhole, we randomly selected 1/3 instances from
one of the two types of the instances (50 in total; recall that
there are 150 uniform instances and 150 clustering instances
in TSPwhole) as training instances, and used the left instances
(250 in total) as test instances.

Since the above split procedure is randomized and the
choices of training/test instances would obviously affect the
performances of portfolio construction approaches, to ensure
the reliability of our experiments, we repeated the above
split procedure four times for each of SMALL and BIAS
cases, which eventually gave us eight different experimen-
tal scenarios, with each of a unique pair of training set
and test set, for each of the TSP and SAT domains. For
convenience, we use TSP-SMALL/BIAS-1/2/3/4 and SAT-
SMALL/BIAS-1/2/3/4 to denote these scenarios. Moreover,
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TABLE II
SUMMARY OF THE INSTANCE SETS, THE CUT-OFF TIME, AND THE BASE SOLVER IN EACH SCENARIO

TABLE III
DETAILED TIME BUDGET IN TERMS OF HOURS OF CPU TIME FOR EACH

APPROACH IN EACH SCENARIO. “TSP” REPRESENTS EIGHT SCENARIOS

TSP-SMALL/BIAS-1/2/3/4 AND “SAT” REPRESENTS EIGHT

SCENARIOS SAT-SMALL/BIAS-1/2/3/4. IN THE EXPERIMENTS, THE

NUMBER OF INDEPENDENT RUNS OF ALGORITHM CONFIGURATOR n FOR

ALL APPROACHES WERE SET TO 10. tC, tV , AND tI ARE TIME BUDGETS

FOR CONFIGURATION, VALIDATION, AND INSTANCE GENERATION,
RESPECTIVELY. SEE TABLE I FOR HOW TO ESTIMATE THE

NEEDED CPU TIME FOR EACH APPROACH

we use TSP-SMALL to denote a set of four scenarios {TSP-
SMALL-1/2/3/4}, and the same rule applies to TSP-BIAS,
SAT-SMALL, and SAT-BIAS.

Table II summarizes the instance sets, the cut-off time, and
the base solvers used in different scenarios. The base solver
used in TSP-SMALL/BIAS was LKH version 2.0.7 [65] (with
23 parameters), one of the state-of-the-art inexact solver for
TSP. The base solver used in SAT-SMALL/BIAS was lingeling-
ala [66] (with 118 parameters), the gold medal-winning solver
in the application track of the 2011 SAT Competition.

4) Competitors and Time Budgets: We compared GAST
against the state-of-the-art automatic construction approaches
for parallel portfolios: GLOBAL, PARHYDRA [17], and
PCIT [18]. For all considered approaches here, SMAC ver-
sion 2.10.07 [11] was used as the algorithm configurator.
Since the performance of SMAC could be often improved
when used with the instance features, we gave SMAC
access to the 126 SAT features and the 114 TSP fea-
tures used in [18]. The detailed setting of the time budget
for each approach is given in Table III. Overall, in the
experiments, GAST would consume around 10% more CPU
time than other approaches for the construction of parallel
portfolios.

All the experiments were conducted on a cluster of three
Intel Xeon machines with 128-GB RAM and 24 cores each
(2.20 GHz, 30-MB Cache), running Centos 7.5. The entire
experiments took almost 2.5 months to complete.

B. Results and Analysis

In each experimental scenario, we tested each obtained port-
folio by running it on the test set for 50 times (for TSP) and

for 5 times (for SAT). The mean ± stddev of the test per-
formances (PAR-10 score over the test instances) across these
runs, and the total number of timeouts (#TOs), are presented in
the PAR-10† columns and the #TOs columns, respectively, in
Table IV. The validation performances of the portfolios con-
structed by PARHYDRA, GLOBAL, and PCIT (except for
GAST since it keeps changing the training set) on the training
sets are also reported in the PAR-10� columns in Table IV.
To determine whether the differences between the test per-
formances (i.e., the PAR-10† columns) were significant, we
performed a Wilcoxon signed-rank test (with significance level
p = 0.05) to them in each scenario, and a PAR-10 score is
indicated in boldface if it was not significantly different from
the best test PAR-10 score of the scenario.

Overall, GAST is the best-performing approach in Table IV
and in most cases, it constructed significantly and substantially
better portfolios than the other approaches. Since PARHYDRA
could be seen as a variant of GAST without the instance
generation mechanism (see Section III-C), the superior perfor-
mances of GAST over PARHYDRA indicate the effectiveness
of the instance generation for improving the portfolio’s gener-
alization. Moreover, recall that we used generated instances for
TSP and industrial instances for SAT, the consistently strong
performances of GAST on both domains indicate that gen-
erating new instances through recombination of the existing
instances and random perturbation (as in GAST) is a robust
and effective way for training data augmentation. Another
important observation from Table IV is that for the existing
approaches, the gaps between the validation performances and
the test performances are usually very large; this is conceiv-
able since in the experiments, the training set is expected to
be nonrepresentative, which in turn indicates the necessity of
instance generation in this case.

C. Comparison Against PARHYDRA When k Is
Larger Than 4

Both GAST and PARHYDRA are iterative approaches,
adding one component solver to the portfolio per iteration.
To investigate how they would perform when the number
of iterations (i.e., portfolio size) gets larger, we run GAST
and PARHYDRA for eight iterations (k = 8) in four scenar-
ios TSP/SAT-SMALL/BIAS-1. Let GASTi and PARHYDRAi

denote the resultant portfolios at the end of the ith iteration
of GAST and PARHYDRA, respectively. In each scenario,
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TABLE IV
RESULTS OF VALIDATION AND TESTING IN THE 16 EXPERIMENTAL SCENARIOS. VALIDATION PERFORMANCES IN TERMS OF PAR-10 SCORES OVER

THE TRAINING SET ARE PRESENTED IN THE PAR-10� COLUMNS. TEST PERFORMANCES IN TERMS OF MEAN ± STDDEV OF THE PAR-10 SCORES

ACROSS THE 50 RUNS (FOR TSP) AND THE 5 RUNS (FOR SAT) OVER THE TEST SET ARE PRESENTED IN THE PAR-10† COLUMNS. THE TOTAL

NUMBER OF TIMEOUTS (#TOS) IN TESTING IS PRESENTED IN THE #TOS COLUMNS. THE NAME OF THE CONSTRUCTION APPROACH IS USED TO

DENOTE THE PORTFOLIOS CONSTRUCTED BY IT. THE TEST PAR-10 SCORE OF A PORTFOLIO IS SHOWN IN BOLDFACE IF IT WAS NOT SIGNIFICANTLY

DIFFERENT FROM THE BEST TEST PERFORMANCE IN THE SCENARIO (ACCORDING TO A WILCOXON SIGNED-RANK TEST WITH p = 0.05)

Fig. 2. Test performance (in terms of average PAR-10 scores) progress
when k = 8 for GAST and PARHYDRA in four scenarios (TSP/SAT-
SMALL/BIAS-1) along the number of iterations. GASTi and PARHYDRAi
are the resultant portfolios at the end of the ith iteration of GAST and
PARHYDRA, respectively. P[portfolio, scenario] is the average test result
in terms of PAR-10 scores on the test set in the scenario.

we tested the corresponding GASTi and PARHYDRAi with
i = 1, . . . , 8 on the test instances, and let P[portfolio, sce-
nario] be the average test result in terms of PAR-10 scores.
For example, P[GAST2, TSP-SMALL-1] is the average PAR-
10 score of the test result of GAST2, that is, the resultant
portfolio at the end of the second iteration of GAST in
TSP-SMALL-1, on the test instances of TSP-SMALL-1. The
results are plotted along with the number of iterations in
Fig. 2. There are three observations from Fig. 2. First, for
both GAST and PARHYDRA, the test performance improves

monotonically from one iteration to the next. This is rea-
sonable because adding a component solver to an existing
portfolio would result in a new portfolio that is theoretically
not worse (mostly better) than the original portfolio. Second,
for both GAST and PARHYDRA, as the number of itera-
tions increases, the benefits of adding new component solvers
gradually decrease. Especially, when the number of itera-
tions becomes larger than 5, the performance improvement
is very small. This is conceivable because the performance
of the portfolio becomes better and better as the number of
iterations increases, which in turn makes it more difficult to
further improve the performance of the portfolio. Third, GAST
could usually achieve larger performance improvements than
PARHYDRA. For example, in SAT-BIAS-1, in the earlier iter-
ations, GAST achieved remarkable performance improvements
in comparison with PARHYDRA. This clearly shows the
performance of PARHYDRA is limited by the nonrepresen-
tative training data while GAST could break such limitations
with the instance generation mechanisms.

D. Comparison Against PARHYDRA With Augmented
Training Sets

Since GAST generates instances for configuring the port-
folios while the existing approaches do not involve any
instance generation, in this sense, GAST actually uses much
more instances than the other approaches for construction. A
natural question is that, if given enough generated instances,
how will the existing approaches perform when compared
against GAST? If the former could reach (or even exceed)
the performance level of GAST, it could be concluded that
it is unnecessary to realize instance generation and portfolio
construction simultaneously in an adversarial framework (as
in GAST); instead, directly generating enough instances and
then using the existing portfolio construction approaches to
build portfolios on them is already good enough for handling
data-scarce/biased scenarios.
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TABLE V
TEST PERFORMANCES IN TERMS OF MEAN ± STDDEV OF THE PAR-10
SCORES ACROSS THE FIVE RUNS OVER THE TEST SET IN THE 8 SAT

SCENARIOS, THAT IS, SAT-SMALL-BIAS-1/2/3/4. THE NAME OF THE

CONSTRUCTION APPROACH IS USED TO DENOTE THE PORTFOLIOS

CONSTRUCTED BY IT. “PARHYDRA-A” REFERS TO PARHYDRA
CONFIGURING BASED ON AUGMENTED TRAINING SETS. A PAR-10

SCORE IS SHOWN IN BOLDFACE IF IT WAS NOT SIGNIFICANTLY

DIFFERENT FROM THE BEST TEST PERFORMANCE IN THE SCENARIO

(ACCORDING TO A WILCOXON SIGNED-RANK TEST WITH p = 0.05)

To answer this question, in each of the eight SAT scenarios,
that is, SAT-SMALL/BIAS-1/2/3/4, we used the same instance
generation procedure as in GAST (lines 13–18 in Algorithm 1)
to generate a large set of instances based on the training set.
The size of the generated set is five times the size of the
training set. Recall that the training set contains 50 instances,
we thus obtained an augmented training set of 300 instances
in each SAT scenario, and then PARHYDRA was used to
construct a parallel portfolio on these augmented training sets,
and then the obtained portfolio was tested on the test sets. As
before, each portfolio was tested by running it on the test set
for five times. The mean ± stddev of the test PAR-10 scores
across the five runs are presented in the “PARHYDRA-A”
column in Table V.

For the sake of comparison, the test performances of the
portfolios constructed by GAST and PARHYDRA (without
augmented training sets) in SAT-SMALL/BIAS-1/2/3/4, which
are originally presented in Table IV, are also presented in
Table V. It could be seen from Table V that even with
augmented training sets, PARHYDRA still could not reach
the performance levels of GAST. Note in SAT-SMALL-3
and SAT-BIAS-2/4, when using generated instances, the
performance of PARHYDRA would even deteriorate. The key
for training set augmentation is which kinds of generated
instances should be used. GAST generates instances in an
adversarial process where only the hard instances for the cur-
rent portfolio are selected because on them there is a high
opportunity for improvement. This could be seen as a guided
sampling in the instance space, which always seeks to find
areas not covered by the portfolio yet. On the other hand,
treating data augmentation and portfolio construction as two
sequential and independent phases, that is, generating enough
training instances and then using PARHYDRA to build port-
folios on them, lacks such guidance and might cause useless
(e.g., too easy or duplicate) instances in the training set, which
might be harmful for the portfolio construction (as in the cases
of SAT-SMALL-3 and SAT-BIAS-2/4). Overall, GAST is more
effective at data augmentation and thus performs better.

E. Comparison Against Hand-Designed Parallel Solvers

To further evaluate the portfolios constructed by GAST, we
compared them against the state-of-the-art manually designed

TABLE VI
TEST PERFORMANCES IN TERMS OF MEAN ± STDDEV OF THE PAR-10
SCORES ACROSS THE FIVE RUNS OVER SATWHOLE. “UZK” REFERS TO

PFOLIOUZK. “ALA” REFERS TO PLINGELING-ALA. “BBC” REFERS TO

PLINGELING-BBC. “GAST-B,” “GAST-W,” AND “GAST-M” REFER

TO THE BEST, THE WORST, AND THE MEDIAN PERFORMANCE ACHIEVED

AMONG THE EIGHT PORTFOLIOS CONSTRUCTED BY GAST IN

SAT-SMALL/BIAS-1/2/3/4. A PAR-10 SCORE IS SHOWN IN BOLDFACE

IF IT WAS NOT SIGNIFICANTLY DIFFERENT FROM THE BEST TEST

PERFORMANCE (ACCORDING TO A WILCOXON SIGNED-RANK TEST

WITH p = 0.05)

parallel solvers. Specifically, we considered the ones con-
structed for SAT. We tested each of the eight portfolios
constructed by GAST in SAT-SMALL/BIAS-1/2/3/4 on the
entire SAT instance set, that is, SATwhole, and reported the
best, the worst, and the median performance (in terms of PAR-
10) achieved among these portfolios in Table VI. For manually
designed solvers, we chose Plingeling-ala [66], which is the
official parallel version of lingeling-ala (the base solver in all
the SAT scenarios in our experiments), pfolioUZK [69], the
gold medal winning solver of the parallel track of the SAT’12
Challenge, and Plingeling-bbc [70], the gold medal-winning
solver of the parallel track of the SAT’16 Competition. Note
that all the manually designed solvers considered here have
implemented far more advanced parallel solving strategies
(e.g., clause sharing) than only independently running compo-
nent solvers in parallel. The default settings of these solvers
were used and all of them were tested on SATwhole. The test
performances are presented in Table VI. As before, we per-
formed a Wilcoxon signed-rank test (with significance level
p = 0.05) to the test performances, and a PAR-10 score is
indicated in boldface if it was not significantly different from
the best test performance.

As shown in Table VI, the portfolios constructed by GAST
always perform better than pfolioUZK and in most cases per-
form better than Plingeling-ala. It is impressive to see that
in the best case, the portfolio constructed by GAST (regard-
less of its simple parallel-solving strategy) could reach the
performance level of the more state-of-the-art Plingeling-bbc,
and moreover the performance difference between them is
statistically insignificant. Such results indicate that GAST
could identify powerful parallel portfolios, with little human
effort involved. It is expected that given more state-of-the-art
base solvers, for example, lingeling-bbc, GAST could deliver
parallel portfolios with even better performance.

VI. CONCLUSION AND DIRECTIONS

FOR FURTHER RESEARCH

This article proposed a novel approach, dubbed GAST,
for the automatic construction of parallel portfolios in envi-
ronments where the training sets are nonrepresentative. The
most novel feature of GAST is that, different from exist-
ing approaches, it considers instance generation and port-
folio construction simultaneously in an adversarial process.
Instantiations of GAST for TSP and SAT were also proposed.
The experimental results showed that GAST could iden-
tify parallel portfolios with much better generalization than
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the ones generated by the existing approaches when the
training data were scarce and biased. Moreover, it was fur-
ther demonstrated that the generated portfolios could reach
the performance level of the state-of-the-art parallel solvers
designed by human experts. Further directions for investiga-
tions might include the following:

1) Further improvements to GAST. The diversity preser-
vation scheme, such as speciation [71] or negatively
correlated search [72] can be introduced into GAST to
explicitly promote cooperation between different com-
ponent solvers.

2) Deeper understanding of the foundations of GAST.
For example, GAST actually maintains two adversary
sets competing against one another, which is a typical
scenario where the game theory can be applied.

3) Other more general issues in training instance augmenta-
tion, for example, a similarity measure between problem
instances and instance space characterization, are also
worthy of exploration.
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