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Abstract—Recently, increasing works have proposed to drive
evolutionary algorithms using machine learning models. Usually,
the performance of such model based evolutionary algorithms is
highly dependent on the training qualities of the adopted models.
Since it usually requires a certain amount of data (i.e., the can-
didate solutions generated by the algorithms) for model training,
the performance deteriorates rapidly with the increase of the
problem scales, due to the curse of dimensionality. To address
this issue, we propose a multiobjective evolutionary algorithm
driven by the generative adversarial networks (GANs). At each
generation of the proposed algorithm, the parent solutions are
first classified into real and fake samples to train the GANs; then
the offspring solutions are sampled by the trained GANs. Thanks
to the powerful generative ability of the GANs, our proposed
algorithm is capable of generating promising offspring solutions
in high-dimensional decision space with limited training data.
The proposed algorithm is tested on 10 benchmark problems
with up to 200 decision variables. Experimental results on these
test problems demonstrate the effectiveness of the proposed
algorithm.

Index Terms—Multiobjective optimization, evolutionary algo-
rithm, machine learning, deep learning, generative adversarial
networks

I. INTRODUCTION

Multiobjective optimization problems (MOPs) refer to the

optimization problems with multiple conflicting objectives [1],

e.g., structure learning for deep neural networks [2], energy

efficiency in building design [3], and cognitive space commu-

nication [4]. The mathematical formulation of the MOPs is

presented as follows [5]:

Minimize F (x) =(f1(x), f2(x), . . . , fM (x)) (1)

subject to x ∈ X,
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where X is the search space of decision variables, M is the

number of objectives, and x=(x1, . . . , xD) is the decision

vector with D denoting the number of decision variables [6].

Different from the single-objective optimization problems

with single global optima, there exist multiple optima that

trade off between different conflicting objectives in an

MOP [7]. In multiobjective optimization, the Pareto domi-

nance relationship is usually adopted to distinguish the qual-

ities of two different solutions [8]. A solution xA is said to

Pareto dominate anther solution xB (xA ≺ xB) iff
{

∀i ∈ 1, 2, . . . ,M, fi(xA) ≤ fi(xB),
∃j ∈ 1, 2, . . . ,M, fj(xA) < fj(xB).

(2)

The collection of all the Pareto optimal solutions in the

decision space is called the Pareto optimal set (PS), and the

projection of the PS in the objective space is called the Pareto

optimal front (PF). The goal of multiobjective optimization is

to obtain a set of solutions for approximating the PF in terms

of both convergence and diversity, where each solution should

be close to the PF and the entire set should be evenly spread

over the PF.

To solve MOPs, a variety of multiobjective evolutionary al-

gorithms (MOEAs) have been proposed, which can be roughly

classified into three categories [9]: the dominance-based al-

gorithms (e.g., the elitist non-dominated sorting genetic al-

gorithm (NSGA-II) [10] and the improved strength Pareto

EA (SPEA2) [11]); the decomposition-based MOEAs (e.g.,

the MOEA/D [12] and MOEA/D using differential evolution

(MOEA/D-DE) [13]); and the performance indicator-based

algorithms (e.g., the S-metric selection based MOEA (SMS-

EMOA) [14] and the indicator based EA (IBEA) [15]). There

are also some MOEAs not falling into the three categories,

such as the third generation differential evolution algorithm

(GDE3) [16], the memetic Pareto achieved evolution strategy

(M-PAES) [17], and the two-archive based MOEA (Two-Arc)

[18], etc.

In spite of the various technical details adopted in differ-

ent MOEAs, most of them share a common framework as

displayed in Fig. 1. Each generation in the main loop of the

MOEAs consists of three operations: offspring reproduction,

fitness assignment, and environmental selection [19]. To be

specific, the algorithms start from the population initialization;

then the offspring reproduction operation will generate off-

spring solutions; afterwards, the generated offspring solutions

are evaluated using the real objective functions; finally, the

environmental selection will select some high-quality can-

didate solutions to survive as the population of the next

http://arxiv.org/abs/1910.04966v2
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Fig. 1. The general framework of MOEAs.

generation. In conventional MOEAs, since the reproduction

operations are usually based on stochastic mechanisms (e.g.,

crossover or mutation), the algorithms are unable to explicitly

learn from the environments (i.e., the fitness landscapes). For

instance, conventional EAs use the mating selection strategy to

select some promising parent solutions based on their fitness

values, and then randomly crossover two of them to generate

offspring solutions. For conventional crossover operators such

as SBX [20], the offspring solutions will distribute around

the vertices of a hyper-rectangle in parallel with the axes of

decision variables, and its longest diagonal is the line segment

of the two chosen parent solutions. If the PS of an MOP is

not parallel with any axis of decision variable, especially when

the PS has a 45◦ angle to all of the axes (e.g., IMF1 to IMF3

problems in [21]), there is only a little chance that the offspring

solutions will fall around the PS, resulting in the inefficiency of

conventional crossover in offspring generation. An example of

the SBX based offspring generation in a 2-D decision space is

given in Fig. 2, where the generated offspring solutions s1, s2
are far from their parents p1,p2 and the PS.

PS

Fig. 2. An example of the genetic operator (SBX [20]) based offspring
generation in a 2-D decision space, where p1,p2 denote the parent solutions,
and s1, s2 denote the offspring solutions.

To address the above issue, a number of recent works have

been dedicated to designing EAs with learning ability, known

as the model based evolutionary algorithms (MBEAs) [22],

[23]. The basic idea of MBEAs is to replace the heuristic

operations or the objective functions with computationally

efficient machine learning models, where the candidate so-

lutions sampled from the population are used as training data.

Generally, the models are used for the following three main

purposes when adopted in MOEAs.

First, the models are used to approximate the real ob-

jective functions of the MOP during the fitness assignment

process. MBEAs of this type are also known as the surrogate-

assisted EAs [24], which use computationally cheap machine

learning models to approximate the computationally expensive

objective functions [25]. They aim to solve computationally

expensive MOPs using a few real objective function evalua-

tions as possible [26], [27]. A number of surrogate-assisted

MOEAs were proposed in the past decades, e.g., the S-metric

selection-based EA (SMS-EGO) [28], the Pareto rank learning

based MOEA [29], and the MOEA/D with Gaussian process

(GP) [30] (MOEA/D-EGO) [31].

Second, the models are used to predict the dominance rela-

tionship [32] or the ranking of candidate solutions [33], [34]

during the reproduction or environmental selection process.

For example, in the classification based pre-selection MOEA

(CPS-MOEA) [35], a k-nearest neighbor (KNN) [36] model

is adopted to classify the candidate solutions into positive

and negative classes. Then the positive candidate solutions are

selected to survival [37]. Similarly, the classification based

surrogate-assisted EA (CSEA) used a feedforward neural

network [38] to predict the dominance classes of the candidate

solutions in evolutionary multiobjective optimization [39].

Third, the models are used to generate promising can-

didate solutions during the offspring reproduction process.

The MBEAs of this type mainly include the multiobjective

estimation of distribution algorithms (MEDAs) [40] as well

as the inverse modeling based algorithms [41]. The MEDAs

estimate the distribution of promising candidate solutions by

training and sampling models in the decision space [42].

Instead of generating offspring solutions via crossover or

mutation from the parent solutions, the MEDAs explore the

decision space of potential solutions by building and sam-

pling explicit probabilistic models of the promising candidate

solutions [43], [44]. Typical algorithms include the Bayesian

multiobjective optimization algorithm (BMOA) [45], the naive

mixture-based multiobjective iterated density estimation EA

(MIDEA) [46], the multiobjective Bayesian optimization al-

gorithm (mBOA) [47], and the regularity model based MEDA

(RM-MEDA) [48], etc. For example, in the covariance matrix

adaptation based MOEA/D (MOEA/D-CMA) [49], the covari-

ance matrix adaptation model [50] is adopted for offspring

reproduction. As for the inverse modeling based algorithms,

they sample points in the objective space and then build inverse

models to map them back to the decision space, e.g., the

Pareto front estimation method [41], the Pareto-adaptive ǫ-
dominance-based algorithm (paλ-MyDE) [51], the reference

indicator-based MOEA (RIB-EMOA) [52], and the MOEA

using GP based inverse modeling (IM-MOEA) [21].

Despite that existing MBEAs have shown promising perfor-
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mance on a number of MOPs, their performance deteriorates

rapidly as the number of decision variables increases. There

are mainly two difficulties when applying existing MBEAs to

multiobjective optimization. First, the requirement of training

data for building and updating the machine learning models

increases exponentially as the number of decision variables

becomes larger, i.e., the MBEAs severely suffer from the curse

of dimensionality [53], [54]. Second, since there are multiple

objectives involved in MOPs, it is computationally expensive

to employ multiple models for sampling different objectives.

The generative adversarial networks (GANs) are generative

models that have been successfully applied in many areas,

e.g., image generation [55], unsupervised representation learn-

ing [56], and image super-resolution [57]. They are capable

of learning the regression distribution over the given/target

data in an adversarial manner. Meanwhile, the candidate

solutions can be seen as samples by the distribution of the

PS in evolutionary multiobjective optimization. Under mild

conditions, a PS is an (M−1)-dimensional manifold, given

that M is the number of the objectives [21]. Hence, there

are two main motivations of using GANs for reproduction in

evolutionary multiobjective optimization. First, it is intuitive

to sample candidate solutions using GANs for the estima-

tion of the distribution of the solution set in multiobjective

optimization. Second, it is a natural character of GANs that

the samples can be divided into fake and real ones, which

is somehow consistent with the nature that the candidate

solutions can be divided in multiobjective optimization (i.e.,

dominated and non-dominated solutions). Furthermore, it is

naturally suitable to drive evolutionary multiobjective opti-

mization using GANs due to the following reasons. First, the

pairwise generator and discriminator in GANs are capable

of distinguishing and sampling promising candidate solutions,

which is particularly useful in multiobjective optimization in

terms of the Pareto dominance relationship. Second, thanks

to the adversarial learning mechanism, the GANs are able

to learn high-dimensional distributions efficiently with limited

training data. By taking such advantages of GANs, we propose

a GAN-based MOEA, termed GMOEA. To the best of our

knowledge, it is the first time that the GANs are used for

driving evolutionary multiobjective optimization. The main

new contributions of this work can be summarized as follows:

1) In contrast to conventional MBEAs which are merely

dependent on given data (i.e., the candidate solutions),

the GANs are able to reuse the data generated by

themselves. To take such an advantage, in GMOEA, we

propose a classification strategy to classify the candidate

solutions into real and fake data points which are reused

as training data. This is particularly meaningful for data

augmentation in high-dimensional decision space.

2) We sample a multivariate normal Gaussian distribution

as the input of GANs in the proposed GMOEA. Specifi-

cally, the distribution is learned from the promising can-

didate solutions which approximate the non-dominated

front obtained at each generation.

The rest of this paper is organized as follows. In Section

II, we briefly review the background of the GANs and other

related works. The details of the proposed GMOEA are pre-

sented in Section III. Experimental settings and comparisons of

GMOEA with the state-of-the-art MOEAs on the benchmark

problems are presented in Section IV. Finally, conclusions are

drawn in Section V.

II. BACKGROUND

A. Generative Adversarial Networks

The generative adversarial networks have achieved consid-

erable success as a framework of generative models [55]. In

general, the GANs produce a model distribution Px̂ (i.e., the

distribution of the fake/generated data) that mimics a target

distribution Px (i.e., the distribution of the real/given data).

A pair of GANs consist of a generator and a discriminator,

where the generator maps Gaussian noise z (z ∈ Pz) to a

model distribution G(z) and the discriminator outputs proba-

bility D(x) with x ∈ Px

∧

x /∈ Px̂. Generally speaking, the

discriminator seeks to maximize probability D(x) (x ∈ Px)

and minimize probability D(G(z)), while the generator aims

to generate more realistic samples to maximize probability

D(G(z)), trying to cheat the discriminator. To be more spe-

cific, those two networks are trained in an adversarial manner

using the min-max value function V :

min
G

max
D

V (D,G) = (3)

Ex∈Px
[logD(x)] + Ez∈Pz

[log(1−D(G(z)))].

Algorithm 1 Training of the GANs

Input:

Px (given data), Pz (Gaussian noise), m (batch size).

1: for total number of training iterations do

2: X′ ← Px

3: for i← 1 : |Px|/m do

4: /***** Update the discriminator ****/

5: T← Randomly sample m data points from X′

6: X′ ← X′\T
7: Z← Sample m noise data points from Pz

8: Update the discriminator according to (4) by using

T and Z

9: /****** Update the generator ******/

10: Z← Sample m noise data points from Pz

11: Update the generator according to (5) by using Z

12: end

13: end

Algorithm 1 presents the detailed procedures of the training

process. First, m samples are sampled from a Gaussian dis-

tribution and the given data (target distribution), respectively.

Second, the discriminator is updated using the gradient de-

scending method according to:

▽ θd
1

m

m
∑

i=1

[logD(xi) + log (1−D(G(zi)))]. (4)

Sequentially, the generator is updated using the gradient de-

scending method according to:

▽ θg
1

m

m
∑

i=1

[log (1−D(G(zi))) , (5)
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where zi is a vector randomly sampled from a Gaussian

distribution. The above procedures are repeated for a number

of iterations [58].

B. Improved Strength Pareto Based Selection

The improved strength Pareto based EA (SPEA2) [11] is

improved from its original version (SPEA) [59] by incorpo-

rating a tailored fitness assignment strategy, a density esti-

mation technique, and an enhanced truncation method. In the

tailored fitness assignment strategy, the dominance relationship

between the pairwise candidate solutions is first detected, and

then a strength value is assigned to each candidate solution.

This value indicates the number of candidate solutions it

dominates:

Str(xi) = |{j|j ∈ P ∧ xi ≺ xj}|, (6)

where P is the population and xi,xj are the candidate

solutions in it. Besides, the raw fitness can be obtained as:

Raw(xi) =

N
∑

j∈P∧xj≺xi

Str(xj). (7)

Moreover, the additional density information, termed Den, is

used to discriminate the candidate solutions having identical

raw fitness values. The density of a candidate solution is

defined as:

Den(xi) =
1

σk
i + 2

, (8)

where k is the square root of the population size, and σk
i

denotes the kth nearest Euclidean distance from xi to the

candidate solutions in the population. Finally, the fitness can

be calculated as

Fit(xi) = Raw(xi) +Den(xi). (9)

The environmental selection of SPEA2 aims to select N
solutions from population P . It first selects all the candidate

solutions with Fit<1 into set A. If the size of A is smaller

than N , N solutions with the best Fit are selected from

P ; otherwise, a truncation procedure is invoked to iteratively

remove candidate solutions from A until its size equals to

N , where the candidate solution with the minimum Euclidean

distance to the solutions in A is removed each time.

Since the density information is well used, the environmen-

tal selection in SPEA2 maintains a set of diverse candidate

solutions. In this work, we adopt it for solution classification

and environmental selection in our proposed GMOEA, where

the details will be presented in Section III.B.

III. THE PROPOSED ALGORITHM

The main scheme of the proposed GMOEA is presented in

Algorithm 2. First, a population P of size N and a pair of

GANs are randomly initialized, respectively. Then the candi-

date solutions in P are classified into two different datasets

with equal size (labeled as fake and real) and used to train the

GANs. Next, a set Q of N offspring solutions is generated

by the proposed hybrid reproduction strategy. Afterwards,

N candidate solutions are selected from the combination of

P and Q by environmental selection. Finally, the solution

classification, model training, offspring reproduction, and envi-

ronmental selection are repeated until the termination criterion

is satisfied. We will not enter the details of the environmental

selection as it is similar to the solution classification, except

that the environmental selection takes N solutions from the

combination of P and Q as input (instead of selecting half of

the solutions from P only) and only outputs the real solutions.

Algorithm 2 General Framework of GMOEA

Input:

N (population size), m (batch size)

1: P ← Initialize a population of size N
2: GAN ← Initialize the GANs

3: while termination criterion not fulfilled do

4: X ← Solution Classification /*Half of the solutions in

P are classified as fake samples*/

5: net← Model Training /*Use X to train the model*/

6: Q ← Offspring Reproduction /*Generate N offspring

solutions by the proposed reproduction method*/

7: P ← Environmental Selection /*Select N solutions

from the combination of P and Q*/

8: end

9: Return: P

A. Solution Classification

Solution classification is used to divide the population into

two different datasets (real and fake) for training the GANs.

The real solutions are those better-converged and evenly

distributed candidate solutions; by contrast, the fake ones are

those of relatively poor qualities. We use the environmental

selection strategy as introduced in Section II-B to select half

of the candidate solutions in the current population as real

samples and the rest as fake ones.

Algorithm 3 Solution Classification

Input: N ′ (number of fake samples), P (population).

1: Fit← Calculate the fitness values of candidate solutions

in P according to (9)

2: A← arg
xi∈P Fit(xi) < 1

3: if |A| ≤ N ′ then

4: A← Select N ′ candidate solutions with the minimal

Fit
5: else

6: while A > N ′ do

7: Delete arg min
xj∈A

min dis(xj , A\xj) in A

8: end

9: end

10: A← real

11: P\A← fake

12: Return: X← {A
⋃

(P\A), {real}N
′×1

⋃

{fake}N
′×1}/*X

is a tuple, where the first element denotes the decision

vector and the second one denotes the label*/

The pseudo codes of the solution classification are presented

in Algorithm 3. Generally, the purpose of solution classifica-

tion is to select a set of high-quality candidate solutions in



IEEE TRANSACTIONS ON CYBERNETICS, VOL. , NO. , MONTH YEAR 5

terms of convergence and diversity. The first term is intuitive,

which aims to enhance the selection pressure for pushing the

population towards the PF. The second term aims to satisfy

the identity independent distribution assumption for better

generalization of the GANs [60].

B. Model Training

The structures of the generator and discriminator adopted

in this work are feedforward neural networks [61] with two

hidden layers and one hidden layer (the number of neurons

in each layer is D), respectively. Here we adopt this simple

structure for the following two reasons. First, if a more pow-

erful model is adopted, the amount of training data should be

increased, resulting in the rapid increase in the computational

cost in terms of both CPU time and the number of function

evaluations. For the MOPs we try to solve in this work,

the current model is good enough. Second, in the area of

evolutionary optimization, similar simple networks have also

been validated in other recent works, e.g. [39], [62]. We

surmise that it is due to the fact that the problem scales

in evolutionary optimization are much smaller than those in

other applications such as image processing, such that a simple

network will work properly. The general scheme of the GANs

is given in Fig. 3, where the distributions of the real and

fake datasets are denoted as Pr and Pf , respectively. The

activation functions of the output layers in these two networks

are sigmoid functions to ensure that the output values vary

in [0, 1]. Here, we propose a novel training method to take

advantage of the labeled samples.

Generator (G)

…
…

… …

… …

…
…

 ~!(", #)
Predicted 

Labels

Discriminator (D)
$~%$

$&~%$&

r~%' f~%*

real samples fake samples

Generated

samples

Multivariate 

Gaussian noise

Fig. 3. The general scheme of model training in the proposed GMOEA.

First, the mean vector and covariance matrix of the real

samples are calculated by:

µ =

∑⌊N/2⌋
i=1 ri

⌊N/2⌋
,

Σ =

∑⌊N/2⌋
i=1 (ri − µ)(ri − µ)T

⌊N/2⌋ − 1
,

(10)

where ri is the ith member of the real dataset and N is

the population size. Then the GANs are trained for several

iterations. At each iteration, the discriminator is updated using

three different types of training data, i.e., the real samples, the

fake samples, and the samples generated by the generator. The

loss function for training the discriminator is given as follows:

max
D

V (D) = Er∈Pr
[log(D(r))]+

Ef∈Pf
[log(1−D(f))] + Ez∈Pz

[log(1−D(G(z)))],
(11)

where D(r), D(f), and D(G(z)) denote the outputs of the

discriminator with the real sample, the fake sample, and the

sample generated by the generator being the inputs, respec-

tively. Specifically, both the real and fake samples in Algo-

rithm 4 are fully used. In each training iteration, we randomly

divide all the data points in X (including both real and fake

ones, i.e., X=Pr

⋃

Pf ) into several batches of size m. The

input of the generator is vector z sampled from a multivariate

normal distribution. Finally, the generator is updated according

to (5) using the samples generated by itself. Note that we have

greedily used the imbalanced training set, aiming to enhance

the convergence of GMOEA by pushing the target distribution

away from the fake distribution. In other words, we prefer a

model with higher accuracy in distinguishing the fake samples,

such that there is a clear margin between the target distribution

and the fake one.

Algorithm 4 Model Training

Input: X (given data), m (batch size).

1: µ← mean(Pr) /*Mean vector of Pr with Pr ∈ X*/

2: Σ← cov(Pr) /*Covariance matrix of Pr*/

3: for total number of training iterations do

4: X′ ← X

5: for i← 1 : |X|/m do

6: T← Randomly sample m data points from X′

7: X′ ← X′\T
8: Z← Sample m data points from multivariate normal

distribution N (µ,Σ)
9: Update the discriminator according to (11) by using

T and Z

10: Z← Sample m data points from multivariate normal

distribution N (µ,Σ)
11: Update the generator according to (5) by using Z

12: end

13: end

The detailed procedure of the model training in GMOEA

is given in Algorithm 4. Here, we use the multivariate normal

Gaussian distribution [63], which is specified by its mean

vector and covariance matrix, to generate training data. The

mean vector represents the location where samples are most

likely to be generated, and the covariance indicates the level

to which two variables are correlated. This modification is

inspired by the generative method in variational auto-encoder

(VAE) [64], which aims to generate data that approximates

the given distribution. More importantly, this modification will

potentially reduce the amount of data required for training the

generator, since the distributions of Pz and G(z) are similar.

C. Offspring Reproduction

In this work, we adopt a hybrid reproduction strategy for

offspring generation in GMOEA, which aims at balancing the

exploitation and exploration of the proposed algorithm. The

general idea of the proposed reproduction strategy is simple

and efficient. At each generation, N offspring solutions will be

generated either by the GAN model or the genetic operators

(i.e., crossover and mutation) with equal probability. Since
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there is a risk of mode collapse in training a GAN model [65],

the trained model may generate some poor solutions. To

remedy this issue, we propose to mix the candidate solutions

generated by both the GAN model and genetic operators as

training data.

To generate a candidate solution using the GANs, we first

calculate the mean vector µ and covariance matrix Σ of the

real samples according to (10). Then, a D-dimensional vector

x is sampled with each element being independently sampled

from a continuous uniform distribution U(0, 1). Afterwards,

a D-dimensional vector y satisfying the multivariate normal

distribution is generated according to the following probability

density function:

y =
exp

(

− 1
2 (x− µ)TΣ−1(x− µ)

)

√

(2π)D|Σ|
, (12)

where D denotes the dimensionality of the decision space. Fi-

nally, the output of the generator, G(y), is restricted according

to the lower and upper boundaries (i.e., l and u) of the decision

space as follows:

x′ = G(y)(u − l) + l,

where x′ is the candidate solution generated by the GANs.

IV. EXPERIMENTAL STUDY

To empirically examine the performance of the proposed

GMOEA, we mainly conduct three different experiments to ex-

amine the properties of our proposed GMOEA. Among these

experiments, six representative MOEAs are compared, namely,

NSGA-II [10], MOEA/D-DE [13], MOEA/D-CMA [49], IM-

MOEA[21], GDE3 [16], and SPEA2 [11]. NSGA-II and

SPEA2 are selected as they both adopt crossover and mutation

operators for offspring generation. MOEA/D-DE and GDE3

are selected as they both adopt the differential evolution

operator. MOEA/D-CMA is chosen as it is a representative

MBEA, which uses the covariance matrix adaptation evolution

strategy for multiobjective optimization. Besides, IM-MOEA

is selected as it is an MBEA using the inverse models to

generate offspring solutions for multiobjective optimization.

The three experiments are summarized as follows:

• The effectiveness of our proposed training method is

examined according to the qualities of the offspring

solutions generated by the GANs which are trained by

different methods.

• The general performance of our proposed GMOEA is

compared with the six algorithms on ten IMF problems

with up to 200 decision variables.

• The effectiveness of our proposed GAN operator and

the hybrid strategy is examined in comparison with the

genetic operators on seven IMF problems.

In the remainder of this section, we first present a brief

introduction to the experimental settings of all the compared

algorithms. Then the test problems and performance indicators

are described. Afterwards, each algorithm is run for 20 times

on each test problem independently. Then the Wilcoxon rank

sum test [66] is used to compare the results obtained by the

proposed GMOEA and the compared algorithms at a signifi-

cance level of 0.05. Symbols ‘+’, ‘−’, and ‘≈’ indicate the

compared algorithm is significantly better than, significantly

worse than, and statistically tied by GMOEA, respectively.

A. Experimental settings

For fair comparisons, we adopt the recommended parame-

ter settings for the compared algorithms that have achieved

the best performance as reported in the literature. The six

compared algorithms are implemented in PlatEMO using

Matlab [67], and our proposed GMOEA is implemented in

Pytorch using Python 3.6. All the algorithms are run on a PC

with Intel Core i9 3.3 GHz processor, 32 GB of RAM, and

1070Ti GPU.

1) Reproduction Operators. In this work, the simulated

binary crossover (SBX) [68] and the polynomial mutation

(PM) [20] are adopted for offspring generation in NSGA-

II and SPEA2. The distribution index of crossover is set to

nc=20 and the distribution index of mutation is set to nm=20,

as recommended in [68]. The crossover probability pc is set to

1.0 and the mutation probability pm is set to 1/D, where D is

the number of decision variables. In MOEA/D-DE, MOEA/D-

CMA, and GDE3, the differential evolution (DE) operator [69]

and PM are used for offspring generation. Meanwhile, the

control parameters are set to CR=1, F=0.5, pm=1/D, and

η=20 as recommended in [13].

2) Population Size. The population size is set to 100 for test

instances with two objectives and 105 for test instances with

three objectives.

(3) Specific Parameter Settings in Each Algorithm. In

MOEA/D-DE, the neighborhood size is set to 20, the probabil-

ity of choosing parents locally is set to 0.9, and the maximum

number of candidate solutions replaced by each offspring

solution is set to 2. In MOEA/D-CMA, the number of groups

is set to 5. As for IM-MOEA, the number of reference vectors

is set to 10 and the size of random groups is set to 3.

In our proposed GMOEA, the training parameter settings

of the GANs are fixed, where the batch size is set to 32,

the learning rates for our discriminator and generator are

0.0001 and 0.0004 respectively, the total number of iterations

is set to 200, and the Adam optimizer [70] with β1=0.5,

β2=0.999 is used to train our GAN. Note that the specified

model in GMOEA is suitable for the benchmark investigated

in this work, and its structure can be revised accordingly to

fit different problems.

(4) Termination Condition. The total number of FEs is

adopted as the termination condition for all the test instances.

The number of FEs is set to 5000 for test problems with

30 decision variables, 10000 for problems with 50 decision

variables, 15000 for problems with 100 decision variables, and

30000 for problems with 200 decision variables.

B. Test Problems and Performance Indicators

In this work, we adapt ten problems selected from [21],

termed IMF1 to IMF10. Among these test problems, the

number of objectives is three in IMF4, IMF8 and two in the

rest ones.



IEEE TRANSACTIONS ON CYBERNETICS, VOL. , NO. , MONTH YEAR 7

We adopt two different performance indicators to assess the

qualities of the obtained results. The first one is IGD [71],

which can assess both the convergence and distribution of the

obtained solution set. Suppose that P ∗ is a set of relatively

evenly distributed reference points [72] in the PF and Ω is the

set of the obtained non-dominated solutions. The IGD can be

mathematically defined as follows.

IGD(P ∗,Ω) =

∑

x∈P∗ dis(x,Ω)

|P ∗|
, (13)

where dis(x,Ω) is the minimum Euclidean distance between

x and points in Ω, and |P ∗| denotes the number of elements in

P ∗. The set of reference points required for calculating IGD

values are relatively evenly selected from the PF of each test

problem, and a set size closest to 10000 is used in this paper.

The second performance indicator is the hypervolume (HV)

indicator [73]. Generally, hypervolume is favored because it

captures in a single scalar both the closeness of the solutions to

the optimal set and the spread of the solutions across objective

space. Given a solution set Ω, the HV value of Ω is defined

as the area covered by Ω with respect to a set of predefined

reference points P ∗ in the objective space:

HV(Ω, P ∗) = λ(H(Ω, P ∗)), (14)

where

H(Ω, P ∗) = {z ∈ Z|∃x ∈ P, ∃r ∈ P ∗ : f(x) ≤ z ≤ r},

and λ is the Lebesgue measure with

λ(H(Ω, P ∗)) =

∫

P∗n

1H(Ω,P∗)(z)dz,

where 1H(Ω,P∗) is the characteristic function of H(Ω, P ∗).
Note that, a smaller value of IGD will indicate better

performance of the algorithm; in contrast, a greater value of

HV will indicate better performance of the algorithm.

C. Effectiveness of the Model Training Method

To verify the effectiveness of our proposed model training

method in GMOEA, we compare the offspring solutions gen-

erated by our modified GANs (where the data augmentation

via multivariate Gaussian model is adopted) and the original

GANs during the optimization of IMF4 and IMF7. We select

IMF4 since its PS is complicated, and this problem is difficult

for existing MOEAs to maintain diversity. IMF7 with 200

decision variables is tested to examine the effectiveness of

our proposed training method in solving MOPs with high-

dimensional decision variables. The numbers of FEs for these

two problems are set to 5000 and 30000, respectively. Besides,

each test instance is tested for 10 independent runs to obtain

the statistic results. In each independent run, we sample the

offspring solutions every 10 iterations for IMF4 and every 50

iterations for IMF7.

Fig. 4 presents the offspring solutions obtained on tri-

objective IMF4. It can be observed that the original GANs

tend to generate offspring solutions in a smaller region of

the objective space (e.g., near the top center in Fig. 4). By

contrast, our modified GANs have generated a set of widely

Fig. 4. The offsprings generated by the original GANs and our modified
GANs at different iterations of the evolution on IMF4 with 30 decision
variables.

spread offspring solutions with better convergence in most

iterations. Fig. 5 presents the offspring solutions obtained on

IMF7 with 200 decision variables. It can be observed that our

modified GANs have generated a set of better-converged and

spreading offspring solutions; by contrast, the original GANs

have generated offspring solutions mostly in the left corner.

It can be concluded from the three comparisons that our

proposed training method is effective in diversity maintenance

and convergence enhancement, even on MOPs with compli-

cated PSs and up to 200 decision variables.

Furthermore, we display the trajectories of generator and

discriminator’s training losses during the evolution in Fig. 6,

where GMOEA is adopted to optimize IMF1 with 30 decision

variables. In this figure, the horizontal denotes the epoch

number from the first generation to the last generation of

the evolution, where each epoch is averaged over 20 in-

dependent runs. It can be observed that the training loss

of each discriminator rises while the training loss of each

generator drops; nevertheless, the generator in our modified

GAN trends to have a lower and more stable training loss than
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Fig. 5. The offsprings generated by the original GANs and our modified
GANs at different iterations of the evolution on IMF7 with 200 decision
variables.

Fig. 6. The trajectories of generator and discriminator’s training losses of the
original GAN (with multivariate Gaussian model disabled) and our modified
GAN during the evolution, respectively.

that of the original GAN. It can be attributed to the fact that

the generator in our modified GAN generates more realistic

samples that the discriminator cannot distinguish, and thus the

generator is powerful in generating promising samples. This

is consistent with the design principle of offspring generators

(i.e. generating promising candidate solutions) in EAs.

D. General Performance

The statistical results of the IGD and HV values achieved

by the seven compared MOEAs on IMF1 to IMF10 are

summarized in Table I and Table II, respectively. Our proposed

GMOEA has performed the best on these ten problems,

followed by IM-MOEA, NSGA-II, and MOEA/D-CMA. It

can be concluded from these two tables that GMOEA shows

an overall better performance compared with the model-free

MOEAs, i.e., NSGA-II, MOEA/D-DE, GDE3, and SPEA2, on

IMF problems. Meanwhile, GMOEA has shown a competitive

performance compared with MOEA/D-CMA and IM-MOEA

on these IMF problems.

The final non-dominated solutions achieved by the com-

pared algorithms on bi-objective IMF3 and tri-objective IMF8

with 200 decision variables in the runs associated with the

median IGD value are plotted in Fig. 7 and Fig. 8, respec-

tively. It can be observed that GMOEA has achieved the best

results on these problems, where the obtained non-dominated

solutions are best converged.

The convergence profiles of the seven compared algorithms

on nine IMF problems with 200 decision variables are given

in Fig 10. It can be observed that GMOEA converges faster

than the other six compared algorithms on most problems.

The results have demonstrated the superiority of our proposed

GMOEA over the six compared algorithms on MOPs with up

to 200 decision variables in terms of convergence speed.

Since our GMOEA is implemented in Python on Py-

torch [74], while the compared ones are implemented in

Matlab on PlatEMO [67], the runtime comparison among them

could be unfair. Nevertheless, we have conducted a comparison

between GMOEA (embedded in IBEA) and the standard IBEA

both in Python. The runtime achieved by each algorithm on

three IMF problems with 30 decision variables is presented

in Fig. 9. It can be observed that the runtime of GMOEA is

about five times as much as that of IBEA, which can be further

improved by using some high-performance GPU rather than

the NVIDIA 1070 Ti as we did in this work. As an offline

optimizer, such a time cost is generally acceptable.

E. Ablation Study

Here, we further investigate the performance of pure ge-

netic operators (i.e., the reproduction without GAN, termed

GMOEA∗), pure GAN operator (i.e., the reproduction without

crossover or mutation, termed GMOEA−), and the hybrid

operator (i.e., the original GMOEA) on IMF3 to IMF8 with

30, 50, 100, and 200 decision variables, respectively.

The statistics of IGD results achieved by these three com-

pared algorithms are given in Fig. 11. As indicated by the

results, the pure GAN operator and the hybrid one perform

significantly better than pure genetic operators on almost
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TABLE I
THE IGD RESULTS OBTAINED BY NSGA-II, MOEA/D-DE, MOEA/D-CMA, IM-MOEA, GDE3, SPEA2, AND GMOEA ON 40 IMF TEST

INSTANCES. THE BEST RESULT IN EACH ROW IS HIGHLIGHTED.

Problem Dim NSGA-II MOEA/D-DE MOEA/D-CMA IM-MOEA GDE3 SPEA2 GMOEA

IMF1

30 2.75e-1(3.56e-2)+ 5.12e-1(8.51e-2)− 2.92e-1(4.07e-2)+ 1.17e-1(2.86e-2)+ 9.92e-1(2.87e-1)− 2.89e-1(4.73e-2)+ 4.46e-1(3.86e-2)
50 3.13e-1(3.67e-2)+ 5.43e-1(8.84e-2)− 2.26e-1(2.74e-2)+ 1.24e-1(3.46e-2)+ 1.10e+0(2.43e-1)− 3.25e-1(3.52e-2)+ 4.67e-1(4.44e-2)

100 3.53e-1(3.20e-2)+ 1.06e+0(1.62e-1)− 3.76e-1(4.08e-2)+ 2.29e-1(3.52e-2)+ 2.08e+0(3.01e-1)− 3.85e-1(3.25e-2)+ 4.87e-1(5.10e-2)
200 3.85e-1(2.40e-2)+ 1.29e+0(1.42e-1)− 4.06e-1(3.43e-2)+ 2.61e-1(3.82e-2)+ 2.57e+0(2.23e-1)− 4.31e-1(2.63e-2)+ 5.44e-1(5.43e-2)

IMF2

30 4.69e-1(5.60e-2)+ 7.50e-1(1.67e-1)− 4.52e-1(7.56e-2)+ 2.15e-1(7.97e-2)+ 2.01e+0(6.60e-1)− 4.72e-1(4.76e-2)+ 6.10e-1(1.14e-6)
50 4.78e-1(2.95e-2)+ 7.17e-1(1.66e-1)− 3.28e-1(3.44e-2)+ 2.84e-1(9.53e-2)+ 1.92e+0(4.60e-1)− 4.78e-1(2.97e-2)+ 6.10e-1(1.14e-6)

100 5.29e-1(3.08e-2)+ 1.66e+0(3.47e-1)− 5.29e-1(5.96e-2)+ 3.96e-1(5.81e-2)+ 3.42e+0(4.70e-1)− 5.67e-1(3.80e-2)+ 6.10e-1(1.14e-6)
200 5.75e-1(3.95e-2)+ 2.28e+0(2.47e-1)− 5.93e-1(6.10e-2)≈ 4.11e-1(3.16e-2)+ 4.28e+0(3.25e-1)− 6.48e-1(5.17e-2)+ 6.81e-1(2.29e-1)

IMF3

30 3.02e-1(9.01e-2)− 6.73e-1(2.58e-1)− 4.61e-1(5.61e-2)− 1.58e-1(2.97e-2)− 2.26e+0(5.06e-1)− 3.25e-1(9.57e-2)− 1.00e-2(1.78e-8)
50 1.74e-1(4.43e-2)− 7.59e-1(2.02e-1)− 3.89e-1(2.07e-2)− 1.29e-1(3.33e-2)− 2.96e+0(5.62e-1)− 2.12e-1(5.22e-2)− 1.00e-2(1.78e-8)

100 3.26e-1(6.12e-2)− 2.03e+0(2.83e-1)− 5.41e-1(4.80e-2)− 2.42e-1(4.59e-2)− 5.78e+0(8.25e-1)− 3.57e-1(8.06e-2)− 1.00e-2(1.78e-8)
200 3.76e-1(6.04e-2)− 2.74e+0(2.63e-1)− 5.72e-1(5.99e-2)− 2.37e-1(2.83e-2)− 7.25e+0(6.55e-1)− 4.11e-1(5.90e-2)− 7.60e-2(1.60e-1)

IMF4

30 1.17e+0(3.48e-1)− 2.75e+0(8.05e-1)− 1.43e+0(2.53e-1)− 2.18e+0(4.68e-1)− 7.19e+0(2.53e+0)− 1.21e+0(3.11e-1)− 5.21e-1(1.23e-2)
50 1.54e+0(4.63e-1)− 3.78e+0(1.08e+0)− 1.44e+0(2.36e-1)− 2.96e+0(4.95e-1)− 1.85e+1(5.25e+0)− 1.47e+0(4.31e-1)− 5.37e-1(5.71e-3)

100 6.62e+0(1.56e+0)− 1.91e+1(3.76e+0)− 4.71e+0(8.46e-1)− 1.33e+1(2.19e+0)− 8.23e+1(1.59e+1)− 5.84e+0(9.71e-1)− 6.57e-1(5.23e-1)
200 1.95e+1(2.25e+0)− 4.65e+1(5.99e+0)− 9.62e+0(1.79e+0)− 3.21e+1(5.33e+0)− 2.14e+2(1.82e+1)− 1.52e+1(1.88e+0)− 1.01e+0(2.08e+0)

IMF5

30 9.90e-2(1.02e-2)− 1.39e-1(8.13e-3)− 1.40e-1(1.32e-2)− 7.55e-2(8.87e-3)≈ 1.10e-1(2.21e-2)− 9.70e-2(1.08e-2)− 7.55e-2(1.10e-2)
50 1.08e-1(1.28e-2)− 1.35e-1(1.15e-2)− 1.33e-1(1.42e-2)− 6.80e-2(6.16e-3)+ 1.29e-1(1.17e-2)− 1.09e-1(1.04e-2)− 8.15e-2(1.35e-2)

100 1.37e-1(8.75e-3)≈ 1.68e-1(7.68e-3)− 1.62e-1(8.13e-3)− 1.02e-1(6.16e-3)≈ 1.68e-1(8.94e-3)− 1.43e-1(7.33e-3)− 1.20e-1(3.20e-2)
200 1.60e-1(9.45e-3)− 1.85e-1(5.13e-3)− 1.66e-1(9.99e-3)− 1.13e-1(7.33e-3)≈ 1.88e-1(6.96e-3)− 1.75e-1(1.73e-2)− 1.11e-1(1.80e-2)

IMF6

30 1.77e-1(2.32e-2)− 1.93e-1(1.87e-2)− 1.92e-1(1.39e-2)− 1.01e-1(1.17e-2)+ 1.61e-1(4.18e-2)− 1.80e-1(1.84e-2)− 1.17e-1(1.53e-2)
50 1.92e-1(2.19e-2)− 1.94e-1(2.50e-2)− 1.80e-1(2.78e-2)− 9.70e-2(8.01e-3)+ 1.96e-1(2.21e-2)− 2.02e-1(1.93e-2)− 1.25e-1(1.15e-2)

100 2.70e-1(2.83e-2)− 2.37e-1(8.01e-3)− 2.23e-1(1.49e-2)− 1.41e-1(6.86e-3)≈ 2.59e-1(1.36e-2)− 2.79e-1(2.52e-2)− 1.77e-1(7.11e-2)
200 3.19e-1(2.48e-2)− 2.59e-1(5.53e-3)− 2.45e-1(1.23e-2)− 1.54e-1(6.81e-3)+ 2.80e-1(7.95e-3)− 3.32e-1(3.62e-2)− 1.90e-1(3.50e-2)

IMF7

30 1.79e-1(1.79e-2)− 2.83e-1(1.16e-2)− 2.87e-1(5.87e-3)− 2.45e-1(7.61e-3)− 3.00e-1(1.03e-2)− 1.98e-1(2.59e-2)− 6.40e-2(3.03e-2)
50 1.58e-1(1.94e-2)− 2.83e-1(6.57e-3)− 2.84e-1(5.03e-3)− 2.32e-1(1.28e-2)− 2.94e-1(8.26e-3)− 1.64e-1(2.09e-2)− 5.10e-2(5.48e-2)

100 2.03e-1(2.20e-2)− 2.91e-1(2.24e-3)− 2.93e-1(4.89e-3)− 2.50e-1(6.49e-3)− 3.05e-1(6.07e-3)− 2.09e-1(1.59e-2)− 1.65e-2(1.46e-2)
200 2.39e-1(2.02e-2)− 2.94e-1(5.10e-3)− 2.95e-1(5.13e-3)− 2.53e-1(8.65e-3)− 3.08e-1(5.23e-3)− 2.42e-1(1.98e-2)− 7.25e-2(8.58e-2)

IMF8

30 7.37e-1(1.18e-1)− 6.44e-1(3.60e-2)− 6.12e-1(1.05e-1)− 5.59e-1(4.83e-2)− 6.92e-1(1.81e-1)− 7.44e-1(1.24e-1)− 3.41e-1(1.90e-2)
50 9.80e-1(1.20e-1)− 6.71e-1(2.85e-2)− 6.81e-1(4.24e-2)− 6.55e-1(4.56e-2)− 9.33e-1(7.64e-2)− 1.00e+0(1.48e-1)− 3.58e-1(1.15e-2)

100 1.74e+0(1.62e-1)− 7.35e-1(5.38e-2)− 7.74e-1(3.13e-2)− 1.28e+0(7.10e-2)− 1.72e+0(2.64e-1)− 2.43e+0(2.16e-1)− 4.85e-1(8.46e-2)
200 4.00e+0(6.32e-1)− 8.55e-1(1.10e-1)≈ 8.88e-1(3.26e-2)≈ 2.28e+0(2.16e-1)− 3.40e+0(4.49e-1)− 5.96e+0(4.13e-1)− 1.31e+0(1.55e+0)

IMF9

30 1.10e-1(1.49e-2)− 2.91e-1(5.01e-2)− 3.28e-1(5.37e-2)− 2.09e-1(2.20e-2)− 2.50e-1(3.63e-2)− 1.17e-1(1.38e-2)− 7.30e-2(2.64e-2)
50 1.07e-1(1.92e-2)− 2.91e-1(4.21e-2)− 3.70e-1(4.42e-2)− 1.78e-1(2.61e-2)− 2.87e-1(4.50e-2)− 1.10e-1(1.08e-2)− 8.75e-2(2.69e-2)

100 1.46e-1(9.40e-3)− 4.44e-1(4.83e-2)− 4.80e-1(3.34e-2)− 2.89e-1(2.61e-2)− 3.80e-1(4.26e-2)− 1.48e-1(8.75e-3)− 1.16e-1(3.27e-2)
200 1.73e-1(8.01e-3)− 5.50e-1(2.03e-2)− 5.26e-1(3.35e-2)− 2.95e-1(2.91e-2)− 4.96e-1(2.54e-2)− 1.71e-1(1.04e-2)− 1.41e-1(5.95e-2)

IMF10

30 6.13e+1(1.76e+1)− 6.99e+1(1.20e+1)− 7.06e+1(8.84e+0)− 3.05e+1(9.21e+0)+ 1.09e+2(1.89e+1)− 5.07e+1(1.04e+1)− 3.94e+1(4.22e+0)
50 1.06e+2(2.03e+1)− 1.18e+2(2.36e+1)− 1.46e+2(2.62e+1)− 5.26e+1(1.18e+1)+ 2.19e+2(2.22e+1)− 9.44e+1(1.51e+1)− 6.25e+1(4.97e+0)

100 3.03e+2(3.21e+1)− 3.23e+2(3.90e+1)− 4.12e+2(4.89e+1)− 1.33e+2(3.49e+1)≈ 5.11e+2(5.13e+1)− 2.89e+2(5.16e+1)− 1.23e+2(2.48e+1)
200 6.54e+2(8.88e+1)− 7.19e+2(5.55e+1)− 9.48e+2(5.80e+1)− 3.29e+2(8.25e+1)≈ 1.18e+3(9.33e+1)− 7.29e+2(9.98e+1)− 4.00e+2(2.29e+2)

+/− / ≈ 8/31/1 0/39/1 7/31/2 14/20/6 0/40/0 8/32/0

’+’, ’−’ and ’≈’ indicate that the result is significantly better, significantly worse and statistically similar to that obtained by GMOEA, respectively.

Fig. 7. The final non-dominated solutions obtained by the compared algorithms on bi-objective IMF3 with 200 decision variables in the run associated with
the median IGD value.



IEEE TRANSACTIONS ON CYBERNETICS, VOL. , NO. , MONTH YEAR 10

TABLE II
THE HV RESULTS OBTAINED BY NSGA-II, MOEA/D-DE, MOEA/D-CMA, IM-MOEA, GDE3, SPEA2, AND GMOEA ON 40 IMF TEST INSTANCES.

THE BEST RESULT IN EACH ROW IS HIGHLIGHTED.

Problem Dim NSGA-II MOEA/D-DE MOEA/D-CMA IM-MOEA GDE3 SPEA2 GMOEA

IMF1

30 5.43e-1(3.16e-2)+ 1.85e-1(6.65e-2)− 4.00e-1(4.98e-2)− 7.18e-1(1.99e-2)+ 2.45e-2(2.87e-2)− 5.19e-1(4.64e-2)≈ 5.08e-1(2.55e-2)
50 5.50e-1(3.43e-2)+ 1.69e-1(6.34e-2)− 4.99e-1(4.09e-2)≈ 7.29e-1(1.90e-2)+ 1.50e-2(4.01e-2)− 5.45e-1(1.93e-2)+ 4.87e-1(3.26e-2)

100 4.80e-1(3.68e-2)≈ 6.00e-3(1.76e-2)− 3.11e-1(3.75e-2)− 6.29e-1(2.16e-2)+ 0.00e+0(0.00e+0)− 4.46e-1(4.22e-2)≈ 4.65e-1(3.50e-2)
200 4.33e-1(2.75e-2)≈ 0.00e+0(0.00e+0)− 2.77e-1(2.98e-2)− 6.06e-1(2.39e-2)+ 0.00e+0(0.00e+0)− 3.80e-1(3.59e-2)− 4.07e-1(8.18e-2)

IMF2

30 4.65e-2(3.13e-2)− 1.70e-2(3.69e-2)− 1.00e-1(4.24e-2)≈ 2.71e-1(5.94e-2)+ 0.00e+0(0.00e+0)− 4.05e-2(3.50e-2)− 1.10e-1(2.85e-7)
50 5.90e-2(2.45e-2)− 2.15e-2(2.85e-2)− 1.92e-1(2.88e-2)+ 2.32e-1(5.86e-2)+ 0.00e+0(0.00e+0)− 5.35e-2(2.64e-2)− 1.10e-1(2.85e-7)

100 6.50e-3(7.45e-3)− 0.00e+0(0.00e+0)− 6.70e-2(2.75e-2)− 1.41e-1(2.92e-2)+ 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 1.10e-1(2.85e-7)
200 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 4.35e-2(2.30e-2)− 1.36e-1(1.39e-2)+ 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 9.35e-2(4.03e-2)

IMF3

30 1.32e-1(5.32e-2)− 2.85e-2(6.27e-2)− 4.75e-2(1.92e-2)− 2.39e-1(2.88e-2)− 0.00e+0(0.00e+0)− 1.14e-1(5.15e-2)− 4.24e-1(5.03e-3)
50 2.34e-1(4.20e-2)− 7.50e-3(1.12e-2)− 7.60e-2(1.14e-2)− 2.69e-1(3.20e-2)− 0.00e+0(0.00e+0)− 1.99e-1(4.23e-2)− 4.28e-1(4.10e-3)

100 1.19e-1(3.75e-2)− 0.00e+0(0.00e+0)− 2.50e-2(1.10e-2)− 1.71e-1(3.43e-2)− 0.00e+0(0.00e+0)− 1.01e-1(4.12e-2)− 4.24e-1(5.03e-3)
200 9.05e-2(3.03e-2)− 0.00e+0(0.00e+0)− 1.95e-2(1.23e-2)− 1.73e-1(2.15e-2)− 0.00e+0(0.00e+0)− 7.45e-2(2.72e-2)− 3.64e-1(1.26e-1)

IMF4

30 5.00e-4(2.24e-3)− 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 3.50e-3(1.18e-2)− 4.35e-1(2.26e-2)
50 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 4.54e-1(9.95e-3)

100 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 4.35e-1(1.02e-1)
200 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 4.35e-1(1.02e-1)

IMF5

30 7.03e-1(1.39e-2)− 6.13e-1(1.14e-2)− 6.09e-1(1.85e-2)− 7.23e-1(1.42e-2)− 6.66e-1(4.81e-2)− 7.04e-1(1.23e-2)− 7.58e-1(1.69e-2)
50 7.07e-1(1.21e-2)− 6.23e-1(2.08e-2)− 6.23e-1(2.30e-2)− 7.40e-1(9.99e-3)− 6.28e-1(1.84e-2)− 7.06e-1(1.15e-2)− 7.53e-1(1.89e-2)

100 6.60e-1(1.05e-2)− 5.70e-1(1.03e-2)− 5.83e-1(9.10e-3)− 6.83e-1(1.17e-2)− 5.74e-1(1.23e-2)− 6.54e-1(9.88e-3)− 7.10e-1(3.50e-2)
200 6.32e-1(1.01e-2)− 5.46e-1(5.98e-3)− 5.78e-1(1.21e-2)− 6.68e-1(8.13e-3)− 5.46e-1(9.40e-3)− 6.14e-1(1.43e-2)− 7.13e-1(3.28e-2)

IMF6

30 2.98e-1(2.31e-2)− 3.39e-1(2.07e-2)− 3.39e-1(1.70e-2)− 4.04e-1(1.35e-2)≈ 3.72e-1(4.76e-2)− 2.95e-1(1.76e-2)− 4.08e-1(1.48e-2)
50 2.80e-1(2.24e-2)− 3.35e-1(2.52e-2)− 3.50e-1(2.64e-2)− 4.03e-1(9.67e-3)≈ 3.34e-1(2.66e-2)− 2.70e-1(2.08e-2)− 4.08e-1(1.37e-2)

100 1.97e-1(2.80e-2)− 2.95e-1(1.10e-2)− 3.08e-1(1.61e-2)≈ 3.60e-1(9.45e-3)+ 2.67e-1(1.53e-2)− 1.86e-1(2.35e-2)− 3.16e-1(7.80e-2)
200 1.57e-1(1.89e-2)− 2.73e-1(6.57e-3)− 2.83e-1(1.49e-2)≈ 3.47e-1(8.01e-3)+ 2.46e-1(8.21e-3)− 1.42e-1(3.27e-2)− 2.97e-1(3.92e-2)

IMF7

30 2.35e-1(1.54e-2)− 1.62e-1(8.34e-3)− 1.58e-1(5.23e-3)− 1.91e-1(6.41e-3)− 1.38e-1(8.51e-3)− 2.19e-1(2.16e-2)− 3.46e-1(4.31e-2)
50 2.54e-1(2.06e-2)− 1.61e-1(2.24e-3)− 1.61e-1(5.10e-3)− 2.03e-1(1.02e-2)− 1.45e-1(6.07e-3)− 2.49e-1(2.34e-2)− 3.69e-1(6.40e-2)

100 2.10e-1(2.22e-2)− 1.51e-1(3.08e-3)− 1.50e-1(6.49e-3)− 1.84e-1(6.81e-3)− 1.37e-1(4.70e-3)− 2.06e-1(1.57e-2)− 4.11e-1(2.24e-2)
200 1.78e-1(1.74e-2)− 1.49e-1(3.08e-3)− 1.48e-1(5.23e-3)− 1.80e-1(9.45e-3)− 1.40e-1(5.70e-17)− 1.77e-1(1.49e-2)− 3.46e-1(9.47e-2)

IMF8

30 3.50e-3(8.13e-3)− 1.43e-1(2.07e-2)− 1.71e-1(1.10e-1)− 8.50e-2(3.07e-2)− 1.53e-1(1.66e-1)− 3.50e-3(8.13e-3)− 3.55e-1(6.92e-2)
50 0.00e+0(0.00e+0)− 1.28e-1(1.92e-2)− 1.20e-1(1.38e-2)− 2.00e-2(2.10e-2)− 2.50e-3(1.12e-2)− 0.00e+0(0.00e+0)− 4.66e-1(4.80e-2)

100 0.00e+0(0.00e+0)− 5.15e-2(4.37e-2)− 1.40e-2(1.23e-2)− 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 3.40e-1(1.21e-1)
200 0.00e+0(0.00e+0)− 1.05e-2(1.85e-2)− 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 2.24e-1(2.20e-1)

IMF9

30 6.77e-1(2.08e-2)− 4.43e-1(5.79e-2)− 3.92e-1(6.29e-2)− 5.32e-1(3.54e-2)− 4.86e-1(4.84e-2)− 6.63e-1(2.03e-2)− 7.78e-1(3.24e-2)
50 6.87e-1(3.10e-2)− 4.41e-1(4.96e-2)− 3.46e-1(4.49e-2)− 5.82e-1(3.93e-2)− 4.38e-1(5.59e-2)− 6.81e-1(1.81e-2)− 7.60e-1(2.75e-2)

100 6.28e-1(1.28e-2)− 2.78e-1(4.39e-2)− 2.41e-1(2.70e-2)− 4.25e-1(3.17e-2)− 3.32e-1(4.29e-2)− 6.23e-1(1.26e-2)− 7.37e-1(2.23e-2)
200 5.89e-1(1.12e-2)− 1.88e-1(1.54e-2)− 2.07e-1(2.64e-2)− 4.20e-1(3.51e-2)− 2.26e-1(1.79e-2)− 5.90e-1(1.61e-2)− 7.01e-1(5.72e-2)

IMF10

30 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)
50 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)

100 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)
200 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)

+/− / ≈ 2/32/6 0/36/4 1/31/8 10/24/6 0/36/4 1/33/6

’+’, ’−’ and ’≈’ indicate that the result is significantly better, significantly worse and statistically similar to that obtained by GMOEA, respectively.

Fig. 8. The final non-dominated solutions obtained by the compared algorithms on bi-objective IMF8 with 200 decision variables in the run associated with
the median IGD value.
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Fig. 9. The statistics of the runtime results achieved by the original IBEA
and GMOEA.

all the test instances, and GMOEA outperforms GMOEA−
on most test instances. Hence, the proposed GAN operator

coupled with the hybrid strategy is effective in handling MOPs.

V. CONCLUSION

In this work, we have proposed an MOEA driven by the

GANs, termed GMOEA, for solving MOPs with up to 200

decision variables. Due to the learning and generative abilities

of the GANs, GMOEA is effective in solving these problems.

The GANs in GMOEA are adopted for generating promis-

ing offspring solutions under the framework of MBEAs. In

GMOEA, we first classify candidate solutions in the current

population into two different datasets, where some high-

quality candidate solutions are labeled as real samples and

the rest are labeled as fake samples. Since the GANs mimic

the distribution of target data, the distribution of real samples

should consider two issues. The first issue is the diversity of

training data, which ensures that the data could represent the

general distribution of the expected solutions. The second issue

is the convergence of training data, which ensures that the

generated samples could satisfy the target of minimizing all

the objectives.

A novel training method is proposed in GMOEA to take full

advantage of the two datasets. During the training, both the

real and fake datasets, as well as the data generated by the gen-

erator, are used to train the discriminator. It is highlighted that

the proposed training method is demonstrated to be powerful

and effective. Only a relatively small amount of training data

is used for training the GANs (a total number of 100 samples

for an MOP with 2 objectives and 105 samples for MOPs

with 3 objectives). Besides, we also introduce an offspring

reproduction strategy to further improve the performance of

our proposed GMOEA. By hybridizing the classic stochastic

reproduction and generating sampling based reproduction, the

exploitation and exploration can be balanced.

To assess the performance of our proposed GMOEA, some

empirical comparisons have been conducted on a set of MOPs

with up to 200 decision variables. The general performance

of our proposed GMOEA is compared with six represen-

tative MOEAs, namely, NSGA-II, MOEA/D-DE, MOEA/D-

CMA, IM-MOEA, GDE3, and SPEA2. The statistical results

demonstrate the superiority of GMOEA in solving MOPs with

relatively high-dimensional decision variables.

This work demonstrates that the MOEA driven by the GAN

is promising in solving MOPs. Therefore, it deserves further

efforts to introduce more efficient generative models. Besides,

the extension of our proposed GMOEA to MOPs with more

than three objectives (many-objective optimization problems)

is highly desirable. Moreover, its applications to real-world

optimization problems are also meaningful.
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Fig. 10. The convergence profiles of the seven compared algorithms on IMF1 to IMF9 with 200 decision variables, respectively.
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Fig. 11. The statistics of IGD results achieved by GMOEA∗ (the reproduction with pure genetic operators), GMOEA− (the reproduction with pure GAN
operator), and GMOEA (the reproduction with the hybrid strategy) on seven IMF problems with a number of 30, 50, 100, and 200 decision variables,
respectively.
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