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A Novel Rapid-flooding Approach with Real-time
Delay Compensation for Wireless Sensor Network
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Abstract—One-way-broadcast based flooding time synchro-
nization algorithms are commonly used in wireless sensor net-
works (WSNs). However, the packet delay and clock drift pose
challenges to accuracy, as they entail serious by-hop error
accumulation problems in the WSNs. To overcome it, a rapid-
flooding multi-broadcast time synchronization with real-time
delay compensation (RDC-RMTS) is proposed in this paper. By
using a rapid-flooding protocol, flooding latency of the referenced
time information is significantly reduced in the RDC-RMTS.
In addition, a new joint clock skew-offset maximum likelihood
estimation is developed to obtain the accurate clock parameter
estimations, and the real-time packet delay estimation. Moreover,
an innovative implementation of the RDC-RMTS is designed with
an adaptive clock offset estimation. The experimental results
indicate that, the RDC-RMTS can easily reduce the variable
delay and significantly slow the growth of by-hop error accu-
mulation. Thus, the proposed RDC-RMTS can achieve accurate
time synchronization in large-scale complex WSNs.

Index Terms—Wireless Sensor Networks, Time Synchroniza-
tion, Rapid Flooding, Real-time Delay Estimation, Networked
and Distributed Control, Wireless Control Systems

I. INTRODUCTION

SYNCHRONIZATION is the typical problem in distributed
system, and it still remains a popular topic in smart

grid [1], Internet of Things (IoT) [2], [3], wireless sensor
networks (WSNs) [4], networked synchronization control [5],
[6], and so on. Specifically, the time synchronization, which
aims to correct the local time information on the distributed
nodes and drive a common time notion network-wide, is
an essential portion of some WSN/IoT applications, e.g.,
providing accurate time interval for distributed data acquisition
and processing [7], [8], and scheduling [9]; measuring time
delay in industrial wireless feedback control system [10].
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However, the large-scale wireless network application imposes
exceedingly strict requirements on time synchronization, for
instance, they require an accuracy of about ±100 µs and ±96
µs in the industrial automation standards ISA100.11a [11] and
WirelessHART [12], respectively; about 120 µs for the damage
localization in the structural health monitoring [13], [14].
Considering WSN is being used in many applications, e.g.,
industrial automation, monitoring, and is resource-constrained,
low-cost, large scale and unreliable connection, therefore its
time synchronization problem is representative.

The early researches focused on developing novel synchro-
nization structures, reducing the dependence of the algorithms
on the network topology management, and improving the
robustness of the algorithms in dynamic networks. As is
known to all, due to the requirement of additional protocol
to manage the topology of network, the RBS [15] and the
TPSN [16] are difficult to be deployed in a large-scale complex
network, which has large diameter and dynamic topology.
Many of the derived algorithms were expected to optimize the
implementation complexity, e.g., the clustered-based algorithm
[17]–[20] and low-power interested approach in [21], the
improved two-way message exchange time synchronization
approaches in [22]–[29].

In recent years, the flooding time synchronization algo-
rithms [30]–[33] and the consensus-based approaches [34]–
[37] are widely studied to meet the accurate synchronization
in the large-scale complex WSN. These time synchronization
algorithms do not require any topology management, so the
problems mentioned above are naturally avoided. Moreover,
they are robust and scalable, and can adapt quickly to the
changes in network connectivity and clock drifts. However,
there are limitations to both of the flooding and the consensus-
based methods. In other words, they are different from each
other and can be used to meet the time synchronization
requirements in different WSNs.

Considering a consensus-based time synchronization algo-
rithm, it is easy to implement and robust in dynamic networks.
However, its convergence rate is very slow due to the iteration.
For instance, the convergence time is up to 120 rounds
of synchronization intervals in ATS (5 × 7 grid network)
[35], and studies in [38]–[43] are interested in improving the
convergence rate. However, It cannot to be synchronized by
an external clock or the heterogeneous network [44]. What it
matters is not the value of the reference clock but the fact
that all clocks converge to one common virtual reference,
thus it cannot be synchronized with an external clock or the
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heterogeneous network [44].
Fortunately, flooding time synchronization algorithm can

easily avoid the problems in a consensus-based method. It em-
ploys a special node as the reference, meanwhile it distributes
the reference’s time information network-wide and aims to
synchronize all of the nodes to the reference. A number of
line networks are automatically generated while the referenced
time information is flooded. Therefore, a complex network
is simplified as lines, and the distance of line is the main
factor of network to affect the algorithm. The rapid-flooding
protocol leads the algorithms to build a stable synchronization
after a few synchronization intervals, e.g., about 3 rounds
in RMTS (5 × 5 grid network) [33]. Moreover, the rapid-
flooding is a synchronous method in which the time interval
of node transmission can be predicted, thus it is possible
and easy to meet synchronous sleep/wake scheduling for
low-duty cycle WSN [45], [46]. Hence, the flooding time
synchronization algorithm will be a very efficient solution for
the time synchronization in the large-scale WSNs.

However, distance of flooding path, flooding latency, packet
delay, and clock drift, which cause the unpredictable by-hop
error accumulation problem, pose the main challenges to a
flooding time synchronization algorithm. Such problems have
been significantly improved by the previous studies, and most
of the recent studies on flooding time synchronization focus
on improving the accuracy, e.g., PulseSync [32], [47], Glossy
[48], FCSA [31], RMTS [33]. The improvements of flooding
time synchronization are simple and effective, i.e., shorten-
ing the flooding latency and removing the delay, meanwhile
compensating the clock drift. However, there is no better way
to calculate packet delay in existing one-way broadcast-based
synchronization protocols, but using the prior constant, e.g.,
the method used in PulseSync and RMTS. Hence, before
deploying WSN, a lot of preliminary experiments are required
to calculate the prior constant; actual delay may change due
to hardware and environment changes.

In this paper, we are interested in a real-time and agile
delay estimation to improve the rapid-flooding time synchro-
nization. If the clock skew estimation is fast convergence and
independent of the clock offset estimation, meanwhile if a
two-way message exchange can be constructed in the one-way-
broadcast model, then the real-time delay compensation can
be implemented. It is worth mentioning that this strategy has
been inspired by the two-way message exchange model based
clock offset estimation in [49]–[51]. To achieve the objective,
the Maximum Likelihood Estimation (MLE) proposed in [52]
is employed to generate an accurate clock skew estimation at
the second round of synchronization; meanwhile an improved
two-way message exchange model is constructed on one-
way-broadcast model; then a joint clock skew-offset MLE is
obtained , and the real-time delay estimation is also given.
As a result, a new rapid-flooding multi-broadcast time syn-
chronization with real-time delay compensation (RDC-RMTS)
protocol is further developed. The main contributions of this
work are as follows.

1) A novel two-way message exchange model is ingeniously
designed in the one-way broadcast-based flooding time syn-
chronization, which utilizes redundant broadcasting without

any additional packet transmission.
2) The proposed joint clock skew-offset MLE provides

the real-time delay estimations and the accurate clock offset
estimation, which results in better scalability to RDC-RMTS.

3) An innovate implementation is developed for the RDC-
RMTS, in which an adaptive clock offset estimation is de-
signed to guarantee the accurate estimation over unreliable
network.

Moreover, the actual performances of flooding time syn-
chronization in a large-scale complex network are discussed.
Basically, the performance evaluation indicate that the network
mainly affect the time synchronization in a way of increasing
the flooding path.

The rest of the paper is organized as follows. In Section
II, the challenges to the flooding time synchronization is dis-
cussed in detail, and the motivation of this paper is provided.
The system model is provided in Section III and the RDC-
RMTS is proposed in Section IV. The implementation of RDC-
RMTS is described in Section V. The RDC-RMTS is evaluated
and discussed in Section VI, where the testbed is provided,
and the experimental results in FTSP, FCSA, FloodPISync,
PulseSync, PulsePISync, and RMTS are also reported. The
discussions and simulations results in complex network are
reported in Section VII. Finally, conclusions are drawn in
Section VIII.

II. CHALLENGES AND MOTIVATION

Flooding time synchronization protocol is easy to imple-
ment, and does not require topology management. In addition,
flooding operations decompose a complex network into multi-
line networks, then the nodes on the line synchronize itself
to the reference node (root). However, the time synchroniza-
tion on a multi-hop node depends on the time information
forwarded by relay nodes, thus relay node synchronization
error will accumulate on a hop-by-hop basis, i.e., by-hop error
accumulation problem [33], which is the major challenge to
flooding time synchronization.

A by-hop error accumulation is mainly caused by flooding
latency, packet transmission delay, and clock drift. In addition,
it is proportional to the distance of reference node and multi-
hop node. Definition E is the synchronization error of the node
relative to the reference node, then the synchronization error
on the k-hop node E[k] which is derived in [33], is given by

E[k] =

k∑
h=1

D[h] +

∑k
h=1 ϕ

h−1
h × Twait[h]

106
(1)

where Twait[h], which is less than the synchronization interval
(period), is the flooding latency at the h-hop node, and ϕh−1

h is
the relative clock rate between h-hop and (h−1)-hop.Variable
D[h] is one-way broadcast packet transmission delay at the
h−hop node, which comprises variable portion Dvar and
uncertain portion Dunc [33]. Moreover, Dvar = Dfixed + d,
where constant Dfixed is the mean of Dvar, and variable
d ∼ N(0, σ2) (σ is the standard deviation of Dvar). Hence,
D = Dfixed + d + Dunc. Because relative clock rate or
clock frequency offset is usually described in parts per million
(PPM), a multiplier 106 is used in (1).
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Summaries of the existing flooding time synchronization
algorithms are shown in Table I. It should be noted that, ac-
cording to the [31], [53], although they don’t seems emphasize
the use of D̂fixed to compensate clock offset estimation, we
prefer to do this in our experiments to get better experimental
results. Moreover, D̂fixed is calculated during the experimen-
tal phase based on the previous experimental results, and it is
a constant when the algorithm is evaluated.

TABLE I
Summary of the flooding time synchronization algorithms in

comparison. Considering the pairwise timestamps Ts (created at
sender) and Tr (created at receiver), clock offset estimations

θ̂1 = Ts − Tr = θ +D, θ̂2 = θ̂1 − D̂fixed, and
θ̂3 = min{θ̂1[n]}Nn=1 − D̂fixed.

Protocol Clock Parameter Estimations
Clock Offset Clock Skew

FTSP Slow-flooding θ̂1 LR
FCSA Slow-flooding θ̂2 LR

FloodPISync Slow-flooding θ̂2 PI
PulseSync Rapid-flooding θ̂2 LR

PulsePISync Rapid-flooding θ̂2 PI
RMTS Rapid-flooding θ̂3 MLE

Lenzen et al. pointed out that, when the referenced time
information is flooded network-wide, it will lose accuracy
due to clock drift and flooding latency [47]. The PulseSync
suggests to distribute time information as fast as possible, and
is expected to adapt to fast change in clock drift. Unlike
FTSP, which uses slow-flooding, PulseSync uses a rapid-
flooding protocol. The Glossy and RMTS are also rapid-
flooding approaches.

The FCSA tries to minimize the undesired effect of flood
waiting times on the synchronization accuracy by using a clock
rate agreement algorithm, and expects to force all nodes to
agree on a common clock rate. Even so, the slight estimation
error on clock skew estimation may cause serious interference
to time synchronization accuracy. Especially, the FCSA use
linear regression (LR) to estimate the clock skew, where the
D is directly introduced in observations. By using LR, the
problem in FCSA also exists in FTSP and PulseSync. The
PISync employs a Proportion Integration (PI) control method
to optimize the clock skew estimation, however the delays in
the observations are not optimized. Unlike that, the MLE in
[33], [52] tries to minimize the delay and could obtain more
accurate clock skew estimation than LR and PI method [52].

The existing flooding time synchronization algorithms use
accurate clock parameter estimation methods and rapid-
flooding protocol, and are expected to against the by-hop
error accumulation problem. Considering the by-hop error
accumulation model in (1), the FCSA tries to minimize ϕh−1

h ,
moreover, the PulseSync and RMTS are also to minimize
Twait. As discussed in [33], the summary of the synchroniza-
tion error in flooding time synchronization algorithms is shown
in II. It is clear that, the accuracy is significantly improved in
the existing flooding time synchronization algorithms.

TABLE II
Summary of the synchronization error in flooding time

synchronization algorithms, where D = Dfixed + d+Dunc. The
synchronization error in FloodPISync and PulsePISync are similar

to FCSA and PulseSync, respectively.

Synchronization Error
Single-hop k-hop

FTSP D (1)
FCSA D ≈

∑k
h=1D[h]

PulseSync D −Dfixed ≈
∑k

h=1(D[h] −Dfixed)

RMTS d ≈
∑k

h=1 d[h]

PulseSync and RMTS use a fixed delay estimation for clock
offset estimate compensation that pose challenges to flexible
deployment, as it entails that a lot of preliminary experiments
need to be completed for the delay estimation. Testbed is
needed to collect experimental results and calculate delay
estimation, and the estimation cannot be changed after being
deployed. Thus, the synchronization accuracy of algorithm
may decrease results from the timely changes in delay.

In the light of the above discussion, the main motivation
of this paper is to obtain a timely delay estimation, and then
propose a new rapid-flooding time synchronization algorithm
with real-time delay compensation against the by-hop error
accumulation problem.

III. SYSTEM MODEL

The WSN is modeled as the graph G = (N , E), where N =
{1, 2, . . . , n} represents the nodes of the WSN and E defines
the available communications links. The set of neighbors for
vi is Ni = {j|(i, j) ∈ E , i 6= j}, where nodes vi and vj
belong to N , and j ∈ Ni. In our work, there are two time
notions defined for the time synchronization algorithm, i.e.
the hardware clock notion H(t) and logical clock notion L(t).
Hardware clock H(t) is defined as

H(t) =

∫ t

0

h(τ)dτ + θ(t0) (2)

where H(t) is the hardware clock notion. Parameter h(τ) is
the hardware frequency rate (clock speed) of the clock source,
meanwhile it is the inherent attribute of crystal oscillator and
cannot be changed or measured. Any node considers itself to
have the ideal clock frequency (i.e. nominal frequency) and
h(τ) = 1. Variable t0 is the moment that node is powered on,
and θ(t0) is the initial relative clock offset. It should be noticed
that H(t) cannot be changed either, and the timestamps on
H(t) are used to estimate the relative clock speed for the
proposed algorithm.

The logical clock L(t) is defined as

L(t) = ϕ(t)×H(t) (3)

where ϕ(t) is the logical relative clock rate and initialized as 1,
it can be changed to speed up or slow down L(t). With respect
to the reference node, ϕ(t) is always set as 1. The timestamps
on L(t) are used to estimate the relative clock offset for the
proposed algorithm. Variable L(t) is used to supply the global
time service for the synchronization applications.
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Considering the arbitrary nodes vi and vj , Li(t) and Lj(t)
are the logical times respectively, and ϕji is the relative logical
frequency rate which is

ϕji = 1 +
θ∆

t∆
, t∆ > 0 (4)

where, in consideration of arbitrary moments t1 and t2(t1 <
t2), t∆ = t2 − t1. The relative clock offset increment in t∆
is θ∆ = (Hj(t2) − Hi(t2)) − (Hj(t1) − Hi(t1)). Parameter
ϕji is the changing rate on the relative clock offset in t∆. It
is common estimated by any two clock offset estimations and
used to compensate the clock skew in the time synchronization
algorithms.

IV. PROPOSED RDC-RMTS ALGORITHM

Considering the one-way broadcast based time synchroniza-
tion protocols, and assuming that the clock skew is fixed in
a short time, the key idea of RDC-RMTS is that: the clock
skew estimation is independent of clock offset estimation,
and convergence fast and accurate, then; an improved two-
way message exchange can be structured for the clock offset
estimation based on the one-way broadcasts, and the delay can
be estimated and compensated timely in the RDC-RMTS.

A. Proposed Synchronization Model of RDC-RMTS

In this part, an rapid-flooding synchronization model is
proposed for the RDC-RMTS based on multiple one-way
broadcast, which is illustrated in Fig. 1. There are two impor-
tant portions in the proposed model, i.e. multi-broadcast clock
skew estimation and two-way message exchange clock offset
estimation. The main difference between the new proposed
synchronization model and the previous ones is that a novel
two-way message exchange model is structured in the one-way
broadcast synchronization model.

R

L3

L1

L2

{T2[1,n]}

{T2[2,n]}

{T2[3,n]}

{T3[2,n]}

{Tr[1,n]}

{T1[1,n]}

{T1[2,n]}

{T1[3,n]}

{T3[1,n]}

{Tr[2,n]}

Rapid Flooding

Multi-broadcast

clock skew MLE model

Two-way msg-exchange 

clock offset estimation model

U V

{T2[5,n]}

{Tr[3,n]}

{T1[4,n]}

{T3[3,n]}

Uplink

Downlink

R

j

i

k

Twait

Fig. 1. The multi-one-way broadcast model. Nodes broadcast n time
information packets in a short time, and n pairs of timestamps are
generated, e.g. Tr[1, 1] and T1[1, 1] at nodes vR and vj respectively.

Considering the arbitrary vi ∈ G periodically broadcasts a
group of N synchronization packets to neighboring nodes over
a broadcast period of Tb. Here we define {Tk[x, n]}Nn=1 as the
set of timestamps at node k(k ∈ G), its size is N , and x is
its serial number. There are N packets broadcasted in a short
time, and N pairs of timestamps are generated. When a node
broadcasts a packets, the timestamp will be created at both of
the sender and the receivers.

Clock skew MLE of the RDC-RMTS is developed based
on the multi-broadcast clock skew estimation, and uses
two groups of multi-broadcast process (e.g., U and V )
to collect observations, e.g. 〈{Tr[1, n]}Nn=1, {T1[1, n]}Nn=1〉
and 〈{Tr[2, n]}Nn=1, {T1[2, n]}Nn=1〉. Clock offset estimation
of RDC-RMTS is developed based on the two-way mes-
sage exchange model and the above clock skew estima-
tion, e.g.〈{T3[2, n], T2[3, n]}Nn=1 and 〈{T2[5, n], T3[3, n]}Nn=1.
Since that the time interval from the first broadcast to latest
broadcast (e.g., Tr[1, N ] − Tr[1, 1], when N = 5, which is
less than 12 microsecond in our experiments) is exceedingly
short, we can assume that the relative clock offset is fixed at
the phase of a multi-broadcast processing.

The RDC-RMTS is a rapid flooding time synchronization
approach: the reference node vR initializes an synchronization
period and nodes forward the newly time information to its
neighbors quickly (the message flooding latency Twait is very
short).

B. The Clock Skew Estimation

Assuming the actual delay is Gaussian distribution, the
clock skew MLE is proposed in [52].

In this paper, the proposed synchronization model in Fig.
1 provides an reasonable implementation for the MLE, i.e.
the multi-broadcast clock skew estimation model (synchro-
nization process U and V ). A group of timestamp ob-
servations is created in the multi-broadcast process, i.e.,
〈{Tr[1, n], T1[1, n]}Nn=1〉 and 〈{Tr[3, n], T1[3, n]}Nn=1〉, then
the observations P for the clock skew MLE likelihood function
are

P : p[n] = v[n]− u[n], n = 1, 2, . . . , N (5)

where u[n] = T1[1, n]− Tr[1, n], v[n] = T1[3, n]− Tr[3, n].
Accordingly, the clock skew MLE ϕ̂ri(MLE) is

ϕ̂ri(MLE) =
P̄

τ̂
=

∑N
n=1 p[n]

Nτ̂
(6)

where τ is the time interval of U and V , e.g., τ̂ = T1[3, 1]−
T1[1, 1].

It is worth mentioning that the ϕ̂ri(MLE) is independent of
clock offset estimation, and the timestamps for ϕ̂ri(MLE) is
generated at the hardware clock timer.

C. Proposed Joint Clock Skew-offset MLE

According to [16], the clock offset estimation based on
two-way message exchange model significantly optimizes the
estimation error caused by delay, and more accurate than
that of one-way broadcast model. Most of the previous clock
offset MLEs, e.g., [49]–[51], are developed based on two-way
message exchange model. However, the traditional two-way
message exchange model is implemented on a pair of nodes,
thus the reference should synchronize the neighbors one by
one, and it may fail to meet the efficient time synchroniza-
tion over a large-scale network due to the pairwise message
exchange and hierarchical management.

In this part, we employ the MLE clock skew to calculate
the clock offset estimation, which is significantly different
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from the traditional method, e.g. the FTSP in which the linear
regression is used to calculate clock skew estimations. It is
worthy to note that, the MLE clock skew is independent of
the clock offset estimation, therefore it is possible to use the
accurate clock skew estimation to compensate the clock offset
estimation.

According to the two-way message exchange clock offset
estimation model that is shown in Fig. 1, for vi and vk,
the Uplink timestamps are 〈{T3[2, n], T2[3, n]}Nn=1〉, and the
Downlink timestamps are 〈{T2[5, n], T3[3, n]}Nn=1〉. We de-
fine that {pu[n]}Nn=1 and {pd[n]}Nn=1 as

pu[n] = T2[3, n]− T3[2, n] = Du[n] + θ∆ − θd, (7)

pd[n] = T3[3, n]− T2[5, n] = Dd[n] + θd (8)

where θd is the relative clock offset in downlink, and θ∆ =
ϕik × Tb, then the two-way message exchange clock offset
estimation can be rewritten as

θ̂d[n] =
(pd[n]− pu[n])− (Dd[n]−Du[n]) + θ∆

2
, (9)

D̂d[n] =
(pd[n] + pu[n])− θ∆

2
. (10)

Considering that D is variable value with fixed portion
Dfixed and variable portion d, and using the ϕ̂ik(MLE) (i.e.,
θ̂∆ = ϕ̂ik(MLE)× τ , the clock offset estimation MLE of clock
offset θ̂ik is

θ̂ik = θ̂d[n] =
(pd[n]− pu[n])− (dd[n]− du[n]) + θ̂∆

2
. (11)

According to [49], the MLE of joint clock skew-offset
estimation is

θ̂ik(MLE) =
min{pd[n]}Nn=1 −min{pu[n]}Nn=1 + θ̂∆

2
(12)

where the Dfixed is removed from the clock offset estimation.
The D̂fixed is given by

D̂fixed =
min{pd[n]}Nn=1 + min{pu[n]}Nn=1 − θ̂∆

2
. (13)

It is worth mentioning that the timestamps for θ̂ik(MLE) are
generated at the logical clock timer.

D. Min function-based MLE

According to [33], it is because D in the observations u[n]
and v[n] is always a positive value , i.e., D > 0, the min
function-based MLE tries to find out the observation with
minimal value of D. For instance, the θ̂rj(MLE) given by

θ̂rj(MLE) = min
1≤n≤N

{u[n]}Nn=1 − D̂fixed (14)

where D̂fixed is the delay estimation, which can be calculated
by (13).

E. Error Analysis

According to (12) and (14), the Dunc and Dfixed could
be removed from the error link of the RDC-RMTS. Then
the single-hop synchronization error ER[1] of RDC-RMTS is
given by

ER[1] = D −Dfixed −Dunc ≈ d. (15)

By using the rapid-flood protocol and accurate clock skew
compensation, the part

∑k
h=1 ϕ

h−1
h ×Twait[h]

106 in (1) is almost
equal to 0 (Twait → 0), thus the by-hop error accumulation
ER[k] in RDC-RMTS is given by

ER[k] ≈
k∑
h=1

(D[h]− D̂fixed −Dunc[h]) ≈
k∑
h=1

d[h] (16)

which is the same as that in RMTS [33].

V. IMPLEMENTATION

The proposed RDC-RMTS removes the Dfixed from clock
offset estimation based on the improved two-way message
exchange model without any prior knowledge. It is well known
that the two-way message exchange model based synchro-
nization algorithms (e.g. TPSN) calculate the clock offset
estimation and delay separately. In this part, we demonstrate an
innovative implementation for the two-way message exchange
based joint clock skew-offset MLE proposed in (12) and (14).

A. The Structure Overview of RDC-RMTS

According to (6), it suggests larger observation interval τ
to obtain the more accurate clock skew estimation ϕ̂. Thus
a sliding window is employed in RDC-RMTS, where τ is
several times the actual synchronization period Tb.

Figure 2 indicates the structure of implementation in RDC-
RMTS. Considering vi and its neighbor vj , it is mainly com-
posed of three parts: sliding window, clock skew estimation,
and clock offset estimation.
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Fig. 2. The multi-one-way-broadcast model. Nodes broadcast n time
information packets in a short time, and n pairs of timestamps are
generated, e.g. Tr(1, 1) and T1(1, 1) at nodes vR and vj respectively.

A W -pages (W ≥ 2) timestamp FIFO (first in first out)
buffer is the key to the sliding window. It is designed to buffer
multiple groups of timestamp, and the sliding window with
specified width will be generated for ϕ̂ji(MLE) by copying
the timestamp of the corresponding position of the FIFO. The
pages (W ) of FIFO should be larger than the maximal width
of sliding window. The depth of the page is the same as the
multiple number N . If the sliding window length is set to be
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w(w ≤W ), then the ϕ̂ji(MLE) is calculated based on the latest
timestamp observations (Pg 1) and the w-th from last (i.e.,Pg
w), and the τ in (6) is (w − 1) times of the synchronization
period Tb, i.e., τ̂ = (w − 1)× Tb.

1) The clock skew estimation
As discussed above, the Dunc is inevitable in the one-

way broadcast. Moreover, it is not Gaussian distribution and
much larger than the Dvar (which is Gaussian variable).
Thus, the observations need to be preprocessed to meet the
assumption (the delay is Gaussian distribution) for ϕ̂ji(MLE)

in (6). The ϕ̂ji(MLE) is implemented in three steps: the
observation calculation in (5), outlier detector (Sort and 3σ
detector), and ϕ̂ji(MLE) calculation in (6). Since the Dunc has
extremely low probability, one can assume that the possible
Dunc samples will be moved to the end of P by the Sort.
The σ̂ can be calculated from the front observations, e.g.,
σ̂[k] =std({p[n]}k−1

n=1), N/2 < k ≤ N . Then the possible
Dunc observations will be recognized and removed from P
by outlier detector.

2) The adaptive clock offset estimation
Considering the large-scale complex WSN, the wireless

channel collision probability will increase at uplink in the
rapid-flooding. The rapid-flooding protocol requires the higher
level nodes to forward the received time information immedi-
ately, then it will be a high probability that the adjacent nodes
broadcast packets at the same moment. In other words, the
low level nodes can not receive all of the uplink messages,
and it will cause the θ̂ji(MLE) in (12) to be unachievable.

To solve this issue, an adaptive approach is developed based
on double clock offset estimations, i.e., the joint clock skew-
offset MLE, and the min function-based MLE.

Case Uplink true: the RDC-RMTS employs the joint
clock skew-offset MLE. The Downlink of two-way message
exchange model is the latest multi-broadcast process of vj ,
and the Uplink is the latest multi-broadcast process of vi,
and τ̂ = Tb. parameter θ̂ji(MLE) is calculated by (12), and the
D̂fixed) is calculated by (13).

Case Uplink false: the RDC-RMTS employs the
min function-based MLE. The observations {u[n]}Nn=1 of
Downlink are used, and θ̂ji(MLE) is calculated by (14),
D̂fixed is the average of the valid value calculated by (13).
The Downlink of two-way message exchange model is the
latest multi-broadcast process of vj .

Therefore, when the Uplink works, the D̂fixed is calcu-
lated. The RDC-RMTS does not requires any prior experi-
ments to set a fixed D̂fixed just like RMTS, but uses a timely
delay compensation. Moreover, the receiver calculates D̂fixed

separately for different nodes. Thus, the slight differences on
delay caused by the hardware differences of nodes will be
handled in RDC-RMTS, while they are directly ignored in
PulseSync and RMTS.

B. The Implementation of RDC-RMTS

In this Section, we discuss the implementation of the
proposed RDC-RMTS algorithm in details. For ease of de-
scription, considering the pair of adjacent nodes in Fig. 1,
the node that has the lower level is defined as father, and the

higher one as son, e.g. vi is the father of vk, and vj is the
father of vi. In addition, the sliding window length W is set
as 2.

The RDC-RMTS can use the specified node as the root
(reference) in WSN applications, e.g., the sink node, or the
gateway node (the interface of heterogeneous networks). The
flooding time synchronization cannot maintain the network-
wide synchronization without an active root. Hence the RDC-
RMTS employs a simple root election protocol which is used
in [30], [31], [33] to find a new root when the current root is
invalid.

According to the synchronization model (Fig. 1) and the
implementation structure (Fig. 2) of RDC-RMTS, a root
(reference) algorithm and non-root algorithm are designed for
the RDC-RMTS protocol.

1) The root algorithm: The periodic synchronization is cre-
ated at root, and the reference’s time information is embedded
into the multi-broadcast packets and flooded in the network.
Meanwhile, the root will listen for broadcast messages from
neighbors and store the timestamps for the joint clock skew-
offset estimation.

The pseudo-code of the root algorithm is presented in
Algorithm 1, where ϕR is the multiplier of LR(t); parameter
IDR is an identifier of each synchronization process; buffer
{bufR[m]}Mm=1 is employed to store the corresponding times-
tamps when root’s neighbors forward its time information; the
synchronization period is generated at root, i.e., Tb.

The ϕR is a constant, i.e., ϕR = 1 (Line 2 in Algorithm 1).
While, if an external clock LER (e.g., GPS ) is used , then
the root can synchronize to LER (Algorithm 1, Lines 5 and
7), and then its logical time is LR(t + τ) = ϕR × (HR(t +
τ) − HR(t)) + LER(t), τ ≥ 0, and change the logical clock
rate by adjusting ϕR.

The root maintains a periodically-scheduled task to initialize
the synchronization period and distribute the reference time
information packets to neighbors, as Lines 10-16 in Algorithm
1. The N packets are sent to neighbors rapidly thus the clock
offset is almost a fixed value during that interval, as Lines
10-13 in Algorithm 1. After that, IDR will be increased by 1
(Line 15 in Algorithm 1).

Two groups of timestamps are created and embedded to
the corresponding packet over the phase of broadcasting, i.e.,
HR[n] (created on HR(t)) and LR[n] (created on LR(t)). The
broadcast packets comprise of five parts: HR[n], LR[n], ϕR,
IDR, and bufR (Line 12 in Algorithm 1).

The {bufR[m]}Mm=1 is set as 0 at the phase of initializa-
tion and the moment after multi-broadcast. When the multi-
broadcast is received, it will be updated by the minimum of
{LR[n]− Lj [n]}Nn=1 (Lines 8-9 in Algorithm 1).

In order to transfer and store the least bytes (energy effi-
cient), a simple neighbor table management is required for the
RDC-RMTS (both the root and non-root). When a node has
received any time synchronization packets, the node will match
the sender address in the neighbor table and allocate memories
for the new neighbor. Then node will check if the neighbor
is active during each synchronization period by counting the
broadcast of the neighbor. Thus the lost neighbor will be delete
from neighbor table and only the active neighbor’s timestamp
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Algorithm 1: The root algorithm pseudo-code for
RDC-RMTS. vR is the root, , j ∈ NR, (R, j) ∈ G. Pa-
rameter N is the maximal number of multi-broadcast.
Parameter M is maximal numbers of neighbor.

1 Initialization:
2 Set ϕR = 1; IDR = 1; n = 0
3 {bufR[m]}Mm=1 ← 0
4 Start periodic broadcast task, period of Tb
5 if (external clock is used) then
6 Set LR(t)← LER(t)
7 end

8 Upon Receiving 〈Lj [n], IDj〉:
9 Store bufR(j)← min

1<n<N
{LR[n]− Lj [n]}

10 Upon triggering of broadcast task:
11 if (n < N ) then
12 Broadcast 〈HR[n], LR[n], ϕR, IDR, bufR〉
13 Set n = n+ 1, go back to (if (n < N ))
14 else
15 IDR = IDR + 1, n = 0
16 end

will be stored and sent. For the lower message complexity, the
buffer message is embedded only in the first broadcast packet
of the multi-broadcast.

2) The non-root algorithm: The pseudo-code of the non-
root algorithm is shown in Algorithm 2.

3) The rapid-flooding protocol: It is employed to minimize
the waiting time of the flooding process. Similar as RMTS,
IDR is used to maintain the rapid-flooding protocol. Consid-
ering a complex network, there is more than one path between
root and another node, then a same time information may
be forwarded more than one time, which may results in the
communications resources and energy waste.

As discussed above, the longer the flooding waiting time is,
the more synchronization errors of multiple network there are
due to clock drift. Therefore, it is reasonable that the lower
time the flooding path costs, the higher the accuracy of the
time information is and the shorter the distances are. The first
arrived multi-broadcast packets will be handled by the receiver.
As Lines 8-12 in Algorithm 2, when a node received a group
of packets, it will set its local IDi as the received IDj .

The flooding protocol seems to change complex networks
(e.g., grid networks) into a set of simple networks (e.g.,
Lines or Spanning tree networks). Moreover, the receiver will
forward the received time information as soon as possible
against the impact of the clock drift and flood waiting time on
multi-hop nodes.

4) The relative clock skew estimation: The hardware clock
timestamps are used to calculate ϕ̂ji(MLE), i.e. 〈{u[n] =

Hi[n] −Hj [n]}nn=1〉old, 〈{v[n] = Hi[n] −Hj [n]}nn=1〉new in
(5). The details are shown at Line 21 in Algorithm 2.

According to the discussion in Section II.B, ϕh−1
h (1 < h ≤

k) is the relative clock rate between vh−1 and vh. The relative
clock rate of the k hop node vk is ϕRk , and ϕRk =

∏k
h=1 ϕ

h−1
h .

Algorithm 2: The pseudo-code for RDC-RMTS. vi is
non-root node, j ∈ Ni, (i, j) ∈ G. Parameter N is the
maximal number of multi-broadcast. Parameter M is
maximal numbers of neighbor.

1 Initialization:
2 Set ϕ̂ji(MLE) = 1; ϕi = 1

3 θ̂ji(MLE) = 0; θ̂i = 0; n = 0; IDi = 0

4 〈{Hi[n], Hj [n]}Nn=1〉old ← 0
5 〈{Hi[n], Hj [n]}Nn=1〉new ← 0; up← 0
6 〈{Li[n], Lj [n]}Nn=1〉 ← 0; down← 0
7 {bufi(m)}Mm=1 ← 0

8 Once 〈Hj [n], Lj [n], ϕj , IDj , θ̂j , bufj〉 is received:
9 if (IDj > IDi) then

10 Store ϕj ; θ̂j ; 〈Hi[n], Hj [n]〉new
11 up← bufj [i]; down← min

1<n<N
{Li[n]− Lj [n]}

12 IDi ← IDj

13 Start parameter estimation compensation task
14 else
15 Store bufi ← min

1<n<N
{Li[n]− Lj [n]}

16 end

17 Upon triggering of compensation task:
18 Calculate ϕ̂ji(MLE); ϕi ← ϕ̂ji(MLE) × ϕj
19 Calculate θ̂ji(MLE); update θ̂i ← θ̂ji(MLE) + θ̂j
20 Logical clock compensation
21 〈{Hi[n], Hj [n]}Nn=1〉old ← 〈{Hi[n], Hj [n])}Nn=1〉new
22 if (n < N ) (Rapid flooding) then
23 Broadcast 〈Hi[n], Li[n], ϕi, IDi, θ̂i, bufi〉
24 Set n = n+ 1, go back to (if (n < N ))
25 else
26 n = 0
27 end

Hence, if each node shares its ϕ̂ to the neighbors, then the ϕ̂Rk
can be calculated at vk, i.e. ϕ̂Rk =

∏k
h=1 ϕ̂

h−1
h .

Obviously, the ϕ̂h−1
h is exceedingly important to the accu-

rate ϕ̂Rk over the multiple hop network. In Algorithm 2, the
equivalent implementation for the calculation of ϕ̂Ri is the
iteration on ϕi ← ϕ̂ji(MLE) × ϕj at each hop (Algorithm 2,
line 18), i.e. ϕ̂Ri is ϕi. If the ϕ̂ji(MLE) is accurate enough, then
RDC-RMTS can establish a consistent clock speed network-
wide.

5) The relative clock offset estimation: Based on the one-
way broadcast, two-way message exchange model and joint
skew-offset estimation are used in the RDC-RMTS. In order
to structure the two-way message exchange model, the node
should collect broadcast messages from all neighbors and
store the timestamps. According to the (12), only one pair of
timestamps are required for the clock offset estimation, thus a
node only stores and sends the minimal sample (Lines 15 in
Algorithm 2), i.e., min

1<n<N
{Li[n]− Lj [n]}.

When a node receives the time information packets, it
sets the corresponding sample in the received bufj as the
uplink observation of the two-way message exchange model,
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and calculates the sample of the corresponding downlink by
the new logical timestamps (Line 11in Algorithm 2), i.e.,
{Li[n], Lj [n]}Nn=1.

Base on the ϕ̂ji(MLE), and the samples of uplink and
downlink, the θ̂ji(MLE) is calculated, and is updated to the
clock offset compensation parameter θ̂i (Line 19 in Algorithm
2).

6) The logical clock maintenance: The RDC-RMTS uses
the ϕi and θ̂i to correct the local logical clock: Li(t + τ) =
Li(t) + θ̂i + (Hi(t+ τ)−Hi(t))× ϕi, τ > 0.

7) Root election: In the flooding synchronization protocols,
an specified node (e.g., sink node) is configured as root at
the initialization phase. However, when the root is fails, the
algorithm cannot synchronize the network unless a new root is
elected and creates a reference clock. The simple root election
is proposed in the FTSP, and employed in FCSA and RMTS.
We refer to the above method as RDC-RMTS, and choose the
node which is close to the old root as a new reference.

In conclusion, the central ideas of implementation of RDC-
RMTS are:

i) multiple one-way broadcast based MLE for clock offset
estimation and clock skew estimation, which helps RDC-
RMTS against the variable delay and establish more accurate
synchronization over large diameter network;

ii) clock skew estimation and clock offset estimation rapid
sharing, which helps RDC-RMTS to build the same logical
clock rate among network, and meets the fast convergence;

iii) rapid-flooding, which helps RDC-RMTS against the
clock drift and keep the accuracy of shared clock parameters.

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

The prototype system is built indoors with 25 Synchronous
Sensing Wireless Sensor (SSWS) nodes, which is same as that
of RMTS in [33]. The local sync-error, global sync-error, con-
vergence time, and multi-hop sync-error are discussed among
the proposed RDC-RMTS and the algorithm in comparison
(i.e., FTSP, FCSA, FloodPISync, PulseSync, PulsePISync, and
RMTS). It is worth to note that absolute values are used to
describe the synchronization error.

A. Testbed Setup

Testbed overview: the SSWS node is designed based on the
System-on-Chip (SoC) wireless transmission chip CC2530,
which uses an enhanced 8051 CPU (8 bits) as the core
processor. The clock source frequency of time synchronization
algorithm is configured as 1 MHz, which is divided by the
system clock source (an external 32 MHz crystal oscillator,
the frequency offset may be up to 50 PPM). The MAC Timer2
(which has two portions: a 16 bits timer and a 24 bits overflow
counter) of CC2530 is employed to count the clock pulse,
and the count value is the hardware clock. The logic clock
is defined by the software based on the hardware clock. The
timer is configured as up mode with an overflow period of 1
µs. The SFD interrupt handling is used to create MAC-Layer
timestamp, and the timestamp will be embedded into the MAC
payload when a packet is sending.

Sync-error measurement: similar to [30]–[33], a sink-node
(connected to a PC) is used to trigger the testbed to create
timestamps at the same moment, and it periodically broadcasts
test command packets to all of the nodes at fixed intervals. The
timestamps are the samples of the synchronization algorithms
and are used to calculate the sync-error. Assuming that the
wireless signal arrives at all of the test nodes simultaneously,
then measurement errors are mainly caused by the differences
of the latency that SFD interrupt signal triggers the processor
to create timestamps at different nodes. We have extended the
above platform and collected a lot of test data to evaluate
the measurement error, and the mean and standard deviations
of the measurement error are about 0.07 µs and 0.0033
respectively. Therefore, the sync-error measurement is credible
in our experiments.

B. Experimental Results

According to the conclusion in the previous flooding time
synchronization algorithms, its sync-error mainly depends on
the distance of nodes to the reference. Therefore, the experi-
mental results in a large diameter network can fully reflect the
performances of a flooding time synchronization algorithm.
Considering a complex network (e.g., grid), although there
are more than one flooding path to the flooding protocol, but
only one of them (the shortest or the fastest) is valid in the
flooding time synchronization algorithms. In other words, the
flooding time synchronization protocols seem to simplify the
complex network into a set of lines. Thus, the evaluation of
the flooding time synchronization algorithms is done on a line
network.

A line topology network is created in software, i.e.,
R←1· · · ←24 (diameter of 24), where nodes can only com-
municate with its neighbors and the sink-node. The specific
configurations of the comparison algorithm are as follows.

i) The prior delay D̂fixed is 3 µs in the FCSA, FloodPISync,
PulseSync, PulsePISync, and RMTS.

ii) The linear regression table size of the FTSP, FCSA, and
PulseSync is eight.

iii) The nominal drift of node’s clock frequency is ±100
PPM in the FloodPISync and PulsePISync.

iv) The multiple number N = 5 and the sliding window
length W = 2 (i.e., τ = Tb) in the RMTS and RDC-RMTS.

v) The synchronization period (interval) Tb is 30 second and
the time interval of error measurement is 10 second.

In order that the test command packet of the sink node
reaches all the test nodes almost at the same time and in order
to accurately measure the synchronization error, all the nodes
must be within each other’s communications range and they
need to use the same channel and be placed next to each
other. Therefore, the topology of the network is generated by
a software and the radio is configured as a slotted CSMA-CA
transmit mode to reduce the probability of collision.

If a candidate node fails to receive the time synchronization
broadcast for 2 consecutive synchronization rounds, it will
begin to apply as a new root immediately, where less than
7 rounds of synchronization periods are required to elect a
new root. The synchronization error will increase slightly, but
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once the new root is elected, the synchronization will recover
quickly.

1) Slow-flooding vs. rapid-flooding
If node 1 has been synchronized to R, then the best case

is that node 2 synchronizes to node 1 at the new broadcast of
node 1, and node 2 indirectly synchronizes to R. However,
the flooding time cost (or Twait) is exceedingly important
to the synchronization algorithm to meet such best cast.
The time cost may be extremely small (e.g. Twait → 0),
or approximately equal to a synchronization interval ( e.g.
Twait → Tb). In the slow-flooding approaches, any nodes
in the line are periodically and asynchronously triggered to
broadcast time information. Then, the best case for slow-
flooding is Twait → 0, and the worst case is Twait → Tb.
A time information of root may cost up to 24×Tb to forward
to the multiple-hop node 24. However, in the rapid-flooding
model, the time information of R can be quickly forwarded
to node 24 in the time of less than Tb.

2) Local synchronization error
A local sync-error is calculated based on the measurement

timestamps of pairs of adjacent nodes. Therefore, it is used to
describe the synchronization error between any adjacent nodes.
Moreover, it can be used to analyze performance of the clock
offset estimation and clock skew estimation. As shown in Fig.
3, the experimental results indicate the instantaneous average
and instantaneous maximum of local synchronization error.
The probability density of the maximal local synchronization
error is shown in upper panel of Fig. 4. The time-average and
standard deviation of maximal local sync-error are shown as
the red bars in Fig. 5. When time synchronization algorithm
has finished converging, e.g., after 30 minutes, we calculate
all of the statistical characteristics.

The local synchronization errors of slow-flooding ap-
proaches (FTSP, FCSA, and FloodPISync) are larger than that
of the rapid-flooding time synchronization algorithms. As dis-
cussed in Section III.D, the waiting time of the slow-flooding
results in the inaccurate time synchronization information and
leads more synchronization error to the neighboring nodes.
According to the summary in Table I and considering the
FCSA and PulseSync, the difference between them is the used
of flood protocol (slow-flooding, or rapid-flooding). However,
the local synchronization error in PulseSync is less than that
in FCSA. In PulseSync, the probability density of the local
synchronization error is closer to zero, and the mean and
standard deviation are smaller.

Considering the rapid-flooding approaches, both the clock
skew estimation and clock offset estimation are different from
each other (as shown in Table I). The RMTS and RDC-RMTS
have lower and smoother instantaneous local synchronization
error, and their maximal local synchronization error proba-
bility density is tighter and closer to zero. The 95% confi-
dence interval of mean and standard deviation for maximal
local synchronization error are 4.7-4.96 µs and 1.433-1.619
in PulsePISync, 4.97-5.15 µs and 1.667-1.798 in PulseSync,
respectively, which are 4.05-4.25 µs and 0.983-1.095 in RDC-
RMTS, 3.82-4.02 µs and 1.08-1.215 in RMTS.

It is clear that, the clock skew MLE in (6) results in better
performance on local synchronization of the RDC-RMTS and

RMTS, and the joint clock skew-offset MLE in (12) leads the
local synchronization of RDC-RMTS to be smoother.
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3) Global synchronization error
A global synchronization error is calculated based on

the measurement timestamps of an arbitrary pair of nodes.
Therefore, its instantaneous value is used to describe the
synchronization error of the network. As shown in Fig. 6,
the experimental results indicate the instantaneous average
and instantaneous maximum of global synchronization error.
The probability density of the maximal local sync-error is
shown in lower panel of Fig. 4. Considering the maximal local
synchronization error, the time-average and standard deviation
are shown as the blue bars in Fig. 5, and the actual distributions
are shown in Fig. 7.

The RMTS and RDC-RMTS have lower and smoother
instantaneous global synchronization error, and their maximal
global synchronization error probability density is tighter and
closer to zero. The 95% confidence interval of mean and
standard deviation for maximal global synchronization error
are 14.04-14.65 µs and 3.329-3.756 in PulsePISync, 14.52-
14.88 µs and 3.103-3.357 in PulseSync, respectively, which
are 8.14-8.55 µs and 2.579-2.870 in RDC-RMTS, 7.70-8.11
µs and 2.344-2.636 in RMTS.

It is clear that, the instantaneous global synchronization
error in RDC-RMTS is almost the same as that in RMTS, but
much lower than those in the remaining algorithms. According
to the experimental results (both of the local and global
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synchronization error) and the summary in Table I, it can be
summarized that:

i) the rapid-flooding time synchronization algorithm is better
than the slow-flooding one;

ii) the clock skew MLE in (6) is more accurate than
the linear regression in PulseSync and the PI clock skew
estimation in PulsePISync;

iii) the proposed joint clock skew-offset MLE in RDC-
RMTS is as accurate as the fixed D̂fixed clock offset esti-
mation compensation in RMTS.
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Fig. 5. Error bars of maximal local synchronization error and maximal
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4) Convergence time
The convergence time is important to the time synchro-

nization of a large-scale network. It mainly depends on the
network diameter in flooding time synchronization algorithm.
In other words, the larger the network diameter is, the longer
the convergence time is. Moreover, the flooding protocol and

clock skew estimation will impact the convergence of the
algorithm.

In our experiments, we assume that the topology of the
network and reference node are fixed, then we randomly
power on the node within 30 seconds. More than 50 round
experimental results are used to calculate the convergence
time. The experimental results are shown in Table III.

The accurate clock skew estimation can be generated at
the second multiple-one-way-broadcast process by using MLE
in (6), meanwhile the rapid-flooding protocol may lead the
RMTS and RDC-RMTS to converge immediately, i.e., con-
verging in the second sync-period. Benefiting from the clock
skew estimation and clock offset estimation rapid sharing
mechanism, RDC-RMTS can converge with great probability
during the third synchronization period.

TABLE III
Summary of the experimental results. The convergence time of each
algorithm is calculated from more than 50 round experiments. The

maximal global synchronization error after the synchronization
algorithm converges is indicated below.

Convergence Time Max. Global Sync-error (µs)
(Sync-period) Minimal Mean Maximal

FTSP >12 51 83 116
FCSA >12 6 31 73

FloodPISync 8-11 9 55 159
PulseSync 8-10 7 15 33

PulsePISync 8-10 6 14 24
RMTS 2-6 4 8 18

RDC-RMTS 2-7 3 8 19

5) Synchronization error to root
As discussed above, the diameter of the network has a great

influence on the accuracy of the flooding time synchroniza-
tion algorithm. The synchronization error to root commonly
increases as the growth of diameter, such as the exponential
growth in FTSP, and square root growth in PulseSync, PISync
and FCSA. Obviously, the growth speed of the synchroniza-
tion error is slower, then the flooding time synchronization
algorithm may achieve better performance in a large-scale
WSN. The experimental results are shown in Fig. 8, in
which the time-average of maximal synchronization error to
the reference are reported. As the error analysis in Section
III.D, the RDC-RMTS and RMTS have significantly reduced
the possible by-hop error accumulation, and the growth of
their synchronization errors is significantly slower than other
algorithms.

C. Synchronization Error vs. Sync-period

The sync-period of time synchronization algorithm is as
important as clock skew estimation and clock offset estimation.
Assuming that clock skew is fixed, the larger the sync-
period is, the more accurate the clock skew estimation is
and the lower the energy consumption is. However, the clock
drift is always changing due to the changes in environment
(e.g., temperature or voltage), thus the assumption that the
relative clock is fixed is not always true. In other words,
the time synchronization algorithm should re-synchronize the
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Fig. 8. Time maximal sync-errors from reference are described with
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network at appropriate intervals. Clearly, the frequent re-
synchronization will lead to high hardware resources cost,
e.g. communications resource, and energy. Considering the
energy-constrained WSNs, balancing energy consumption and
synchronization accuracy is important to achieve a long life.

Therefore, the time synchronization algorithm using less
broadcasts to build more accuracy is more energy-efficient.
In this part, we evaluate the RDC-RMTS at different sync-
periods, i.e., 30 seconds, 150 seconds, 300 seconds, 500
seconds, and 800 seconds. In other words, the algorithm is
evaluated at different energy efficiencies. According to the
experimental results discussed above, we only discuss the
rapid-flooding based approaches. Figure 9 shows the mean
and standard deviation of the time-average of maximal global
synchronization error.

According to the experimental results, it is clear that the
RDC-RMTS is more accurate than PulseSync and PulsePISync
when they use the same synchronization period. Moreover,
when they use the same number of broadcasts (consistent
energy efficiency), the RDC-RMTS is still more accurate, e.g.,
for instance, the accuracy of the 30 seconds sync-period in
PulseSync and PulsePISync equals to that of 150 seconds
sync-period in RDC- RMTS and RMTS. Even with a sync-
period of 500 seconds, the accuracy in RDC-RMTS is almost
the same as that of the PulseSync and PulsePISync with a
sync-period of 30 seconds.
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Fig. 9. Time average of the absolute maximal local sync-error
and absolute maximal global sync-error at different synchronization
interval.

According to the above experimental results and discus-
sions, we can briefly summarize the improvements of the
proposed RDC-RMTS as follows:

i) using the proposed joint clock skew-offset MLE to obtain
the real-time D̂fixed, the RDC-RMTS is accurate, and it is
better scalability than the approaches using fixed D̂fixed (i.e.,
D̄ );

ii) the RDC-RMTS is a rapid-flooding time synchronization
protocol, meanwhile, the clock skew MLE and parameters
sharing mechanism guarantee fast convergence of network-
wide and slow growth of by-hop error accumulation on multi-
hop nodes.

VII. SIMULATIONS IN COMPLEX NETWORKS

The basic network unit in the flooding time synchronization
approaches is line, and it is expected that the flooding protocol
always simplifies a complex network to lines. Ideally, it is
assumed that the communications is reliable, and the flooding
time synchronization algorithms are most concerned with the
by-hop error accumulation problem, which is determined by
the diameter of the network, the distance between the reference
and the multi-hop nodes, and flooding latency. This is why
lines are popularly used to evaluate the performances in the
existing flooding time synchronization researches.

However, the structure and density of the networks indi-
rectly affect the performances of flooding time synchronization
algorithms. Considering an actual WSN, it is an unreliable
wireless network, in which the communications collision prob-
ability depends on the density of network and actual payload of
the channel, e.g., the calculation of send success probability
in pure ALOHA protocol. Specifically, the communications
collision probability in complex network is relative higher than
the line due to the higher density.

Therefore, the actual performances of flooding time syn-
chronization algorithms should to be further discussed in
complex networks. However, considering a large-scale WSN
with randomly deployed topology, it is almost impossible
to evaluate time synchronization algorithm by using testbed.
In most of the existing researches, they deploy all of the
nodes in a small area to ensure that they can receive the
same synchronization error measurement message at the same
moment, and model the topology in a software. Therefore the
additional interference between nodes (non-adjacent nodes in
the topology) is serious and will result in incorrect experi-
mental results. Obviously, one can only use lightweight grid
testbed (e.g., 5×5, 5×7) to model the complex network. e.g.,
FTSP, PulseSync, FCSA, RMTS, ATS, and MTS.

In view of the above discussions, the simulations in large-
scale WSN with randomly-deployed topology are employed to
evaluate the flooding time synchronization algorithms. In the
following part, the results of flooding protocol (rapid-flooding
and slow-flooding) in the reliable and unreliable communica-
tions WSNs are discussed, separately, and the actual distance
of the flooding path is discussed in detail.

A strongly connected network with 300 nodes is built, where
the communications range of nodes is 80 meter, and nodes
are randomly deployed in a rectangular area of 200 × 200
square meters. More than 10,000 observations of runs are
collected for each simulation. The synchronization interval is
30 seconds. The flooding latencies at each node are random
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variables, which are among (0.01, 0.05) seconds in rapid-
flooding, and (0.01, 30) seconds in slow-flooding. Hop number
of the shortest path between the reference and a node is the
node’s distance, then the diameter of the network is the longest
distance.

Figure 10 shows one of the flooding path structures of
the referenced time information in the randomly-deployed
network, which is a spanning tree. For the same referenced
time information, one can find only one line (valid flood-
ing path) between the reference and nodes. Considering the
complete simulation, the line of a node may be different
from others. Thus, the by-hop error accumulation problem,
the performances of the algorithm highly depend on the
longest line. Moreover, the clock skew estimation should be
recalculated when a different path is selected by algorithm,
and the observation set for clock skew estimation need to re-
load. During these periods, the global synchronization error
may increase due to the clock drift. Therefore, the stable
synchronization algorithms require the clock skew estimation
to converge fast. To the linear regression used in FTSP, FCSA,
and PulseSync, the new clock skew estimation converges after
a number of synchronization periods (depending on size of
the regression table, e.g., 8), while the clock skew MLE
algorithm in RDC-RMTS may converge during the second
synchronization period [52].
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Fig. 10. A demonstration of the flooding protocol in the randomly-
deployed network (300 nodes). The red dot is the reference, and the
diameter of the networks is 9.
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Fig. 11. The distribution of the longest flooding path in the reliable
randomly-deployed network (diameter of 9).

The distance of the longest flooding path is calculated for
every synchronization round. The simulations of the reliable
randomly-deployed network are shown in upper panel Fig. 11,

where the maximal and minimal distances in rapid-flooding are
15 and 9 hops, respectively, and in slow-flooding they are 22
and 9 hops. The results of the unreliable randomly-deployed
network (packet loss rate (PLR) of 0.1) are shown in lower
panel Fig. 11, where the maximal distances in slow-flooding
increase to 23. The summary of the results are shown in Table
IV. Obviously, the probability of the shortest flooding path
(distance of 9) is much higher in rapid-flooding.

To the large-scale complex network, the following conclu-
sions are drawn,

i) whether using rapid-flooding or slow-flooding, the actual
flooding-path is longer than the diameter of the network;

ii) the actual flooding-path will become longer results from
the increases in unreliable communications connections;

iii) the rapid-flooding is more possible to carry out the
shorter flooding path than slow-flooding.

In a way of increasing the flooding path, the large-scale
complex network poses challenge to the flooding time syn-
chronization algorithms. As a result, the by-hop error ac-
cumulation problem will become to be more serious and
outstanding. Aimed at alleviating this problem, the RDC-
RMTS focuses on minimizing the multi-hop synchronization
error caused by delay and clock drift, and uses accurate
clock parameters estimation to restrain amplification of syn-
chronization error caused by increase in flooding-path. The
experimental results indicate that the RDC-RMTS is still
accurate in a large diameter line.

TABLE IV
The probability of flooding path distance (partial). The maximal

probability of distances are at 13 hops and 11 hops in slow-flooding
and rapid-flooding, respectively.

Probability
Distance Slow-flooding Rapid-flooding

(Hop) PLR of 0 PLR of 0.1 PLR of 0 PLR of 0.1

9 <0.00002 <0.000009 0.02875 0.015655
11 0.092142 0.053217 0.47318 0.46054
13 0.28063 0.27917 0.035833 0.060601
15 0.098958 0.13517 <0.00009 0.000334
17 0.019475 0.027861 0 0
19 0.003042 0.003791 0 0

VIII. CONCLUSIONS

In this paper, the rapid-flooding multi-broadcast time syn-
chronization algorithm with real-time delay compensation
(RDC-RMTS) is proposed. The synchronization error in flood-
ing time synchronization is analyzed in detail, and the by-hop
error accumulation problem, which is determined by distance
of flooding path, flooding latency, packet delay, and clock
drift, is accused of being the major challenges. Moreover,
the main disadvantages of flooding time synchronization in
a large-scale complex network are summarized, i.e., increases
in distance of flooding path. In the light of this, the RDC-
RMTS employs rapid-flooding and accurate clock parameter
estimations against the error accumulation on the multi-hop,
where the synchronization error due to delay and clock drift
is minimized significantly.

The significant difference between the RDC-RMTS and the
existing flooding time synchronization algorithms is that, a
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joint clock skew-offset estimation is used to remove delay from
clock offset estimation; and an improved two-way message
exchange model is constructed in the one-way broadcast-
based flooding synchronization. The possible collision due to
increase in message complexity of RDC-RMTS is carefully
considered, and an innovative implementation is developed to
guarantee the reliability of RDC-RMTS, where it can subtly
compensates the clock offset estimation by using the existing
delay estimates. The RDC-RMTS is compared to the existing
flood time synchronization algorithms in a variety of ways.
The experimental results show that the local synchronization
error, global synchronization error, convergence time, and hop-
by-hop error accumulation are significantly improved. More-
over, by using the real-time delay compensation, the RDC-
RMTS may better meet the accurate time synchronization
requirements in the large-scale WSN.
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