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A Convex Discriminant Semantic Correlation
Analysis for Cross-View Recognition

Qing Tian, Chuang Ma, Meng Cao, Songcan Chen∗, and Hujun Yin, Senior Member, IEEE

Abstract—Canonical correlation analysis (CCA) is a typical
statistical model used to analyze the correlation components
between different view representations of the same objects. When
the label information is available with the data representations,
CCA can be extended to its discriminative counterparts by incor-
porating supervision in the analysis. Although most discrimina-
tive variants of CCA have achieved improved results, nearly all
of their objective functions are nonconvex, implying that optimal
solutions are difficult to obtain. More importantly, that cross-
view representations from the same sample should be consistent,
i.e., the cross-view semantic consistency, has however not been
modelled. To overcome these drawbacks, in this paper we propose
a Discriminant Semantic Correlation Analysis (DSCA) model by
modelling the cross-view semantic consistency for each object in
the sample space rather than in the commonly used feature space.
To boost the nonlinear discriminating capability of DSCA, we ex-
tend it from the Euclidean to the geodesic space by transforming
the metric and incorporating both the cross-view semantic and
representation correlation information and consequently obtain
our final model with convex objective, namely Convex DSCA (C-
DSCA). Finally, with extensive experiments and comparisons we
validate the effectiveness and superiority of the proposed method.

Index Terms—Canonical correlation analysis; cross-view se-
mantic consistency; cross-view representation correlation; dis-
criminant semantic correlation analysis; convex discriminant
semantic correlation analysis

I. INTRODUCTION

In pattern recognition and machine learning, canonical cor-
relation analysis (CCA) is a typical method used to analyze
correlations between two or more types of feature views of
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a given dataset [1], [2], and is widely adopted to extract
related representations from individual views and fuse them
together for pattern classification tasks [3], [4], [5], [6], [7].
Specially, given two (or more) views of feature representation
of interested data, traditional CCA aims to find corresponding
projection directions for individual views, along which the
correlations of the views are maximized. Then, with the pro-
jected and fused view representations via CCA, classification
or regression decisions can be made. In above process, CCA
works in an unsupervised manner without utilizing the data
labels, leaving a room for performance improvement.

If class labels are available with the data representations,
CCA can be extended to its discriminant counterparts by
incorporating the label information. Along this line, Sun et
al. [8] proposed the discriminative CCA (DCCA) method
by maximizing the intra-class correlations while minimizing
the inter-class relatedness. Peng et al. [9] proposed local
discriminative CCA (LDCCA) by assuming data distribution
following a low-dimensional manifold embedding. Su et al.
[10] constructed multiple metrics instead of single metric to
better measure intra-class correlations and embedded them into
the CCA objective function and thus developed the multi-
patch embedding CCA (MPECCA). Sun et al. [11] presented a
generalized CCA (GCCA) model by unifying the formulation.
Ji et al. [12] decomposed the scatter matrices into more dis-
criminative fractional-order components to replace the original
CCA objective function. Shen et al. [13] proposed to perform
multi-label prediction through cross-view search.

In addition, other researchers also proposed to incorporate
discriminative terms into the CCA objective to supervise its
learning. Along this line, Zhou et al. [14] constructed the
combined-feature-discriminability enhanced CCA (CECCA)
by incorporating the linear discriminant analysis (LDA) [15]
guided feature combination term into CCA. Zhao et al. [16]
proposed hierarchical supervised local CCA (HSL-CCA) by
penalizing the inter-class scatters within varying size of neigh-
borhood. Haghighat et al. [17] generated the discriminant
correlation analysis (DCA) by decomposing the inter-class s-
catter matrix. Recently, to extend correlation analysis to multi-
view tasks, several multi-view models have been proposed,
for instance, generalized multi-view analysis (GCA) [18],
multiset canonical correlation analysis (GbMCC-DR) [19],
multi-view uncorrelated discriminant analysis (MULDA) [20],
semi-paired discrete hashing (SPDH) [21], and local feature
based multi-view discriminant analysis (FMDA) [22]. More
recently, CCA and its variants have been extended to deep
architectures for higher discriminating capability, such as Deep
CCA [23], Deep Soft CCA [24], Deep Complete CCA [25],
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and CM-DDA [26].
Although the above CCA variants can bring accuracy im-

provement, nearly all of their objective functions are non-
convex [27], [10], [28], meaning that optimal solutions are
difficult to obtain. Specially, their objective functions are fre-
quently combined with constraints for the sake of preventing
them from trivial solutions, which limit their solution space
and render them not convex (e.g., MPECCA) that can only
be solved in a time-consuming alternating manner. To pursue
a closed-form solution, Jiang et al. [29] constructed a convex
correlation analysis model, named CDCA, by following the
scheme of geometric mean metric learning (GMML) [30],
[31]. Although the CDCA model yielded much better eval-
uation performance than the previous models, it does not
consider the semantic consistency of sample across view
representations.

To overcome the drawbacks aforementioned, in this pa-
per we first construct a discriminant semantic correlation
analysis (DSCA) by modelling the cross-view representation
correlation, discriminative metric, as well as the semantic
consistency. To generalize the discriminating ability of DSCA,
we extend it from the Euclidean space to the geodesic space
and consequently obtain our final model with convex objective
function, coined as Convex DSCA (C-DSCA). The objective
function of C-DSCA is constructed from the perspective of
geometric means, which enables our model to have a closed-
form solution. Moreover, we further extend the C-DSCA
model to the manifold represented by the nonlinear geodesic
space, which is also convex in the geodesic metric. Finally,
we conduct extensive experiments to validate the proposed
methods. To sum up, the main contributions are of three folds:

1) A discriminant semantic correlation analysis (DSCA)
model is constructed by incorporating both the cross-
view semantic and representation correlation informa-
tion in the sample representation space.

2) To enhance the discriminating ability of DSCA, it is ex-
tended with convex objective function (C-DSCA) in the
geodesic metric space, enjoying closed-form solution.

3) Effectiveness and superiority of the proposed models are
verified through extensive experimental evaluations.

The remainder of this paper is organized as follows. Section
II briefly reviews the principle of CCA. Section III describe the
proposed methods, and the experimental results are reported in
Section IV. Finally, Section V concludes the paper and gives
future research directions.

II. CANONICAL CORRELATION ANALYSIS

In this section, we briefly review canonical correlation anal-
ysis (CCA) [1] [2]. Given two views of feature representations
of the same sample set, CCA aims to seek two groups of
projection directions for individual views, along which the
correlations of the two views are maximized. Specially, assume
X = [x1, ..., xN ] ∈ Rp×N and Y = [y1, ..., yN ] ∈ Rq×N are
two view representations of N samples, and xi and yi are
the two representations of the ith sample, which are already
normalized. To fuse the two views together for subsequent
classification, CCA seeks two sets of projection matrices,

Wx ∈ Rp×r and Wy ∈ Rq×r, to transform the two views
into r-dimensional common space. In the projected space, the
correlation of the new view representations WT

x xi and WT
y yi

is maximized. Formally, the objective function of the CCA is
formulated as

max
{Wx,Wy}

WT
x CxyWy√

WT
x CxxWxWT

y CyyWy

, (1)

where Cxx = 1
N

∑N
i=1(xi−x)(xi−x)T , Cyy = 1

N

∑N
i=1(yi−

y)(yi − y)T , and Cxy = 1
N

∑N
i=1(xi − x)(yi − y)T , with

x = 1
N

∑N
i=1 xi and y = 1

N

∑N
i=1 yi being sample means of

the two views, respectively. The numerator terms characterize
the correlation of the two views, while the denominator terms
restrict the complexity of individual views to avoid degraded
solutions. For convenience of solving (1), it is usually trans-
formed to a generalized-eigenvalue problem as follows(

XYT

YXT

)(
Wx

Wy

)
= λ

(
XXT

YYT

)(
Wx

Wy

)
. (2)

The concatenated projections

(
Wx

Wy

)
can be obtained by cal-

culating the eigenvectors of

(
XXT

YYT

)−1(
XYT

YXT

)
corresponding to the r largest eigenvalues.

With the obtained Wx and Wy , the view representations xi
and yi of the ith sample can be fused by WT

x xi + WT
y yi =(

Wx

Wy

)T (
xi
yi

)
.

III. THE PROPOSED METHOD

In the existing multi-view correlation learning (CCA and
its variants), the models are typically constructed in Euclidean
space. However, as mentioned previously, they mainly suffer
from three aspects of drawbacks: (1) most of them were trained
in unsupervised manner without using the labels information,
limiting their discriminating ability; (2) even though the labels
information is modeled in forms of constraints, their objective
functions are induced as nonconvex and hence difficult to
solve; (3) the cross-view correlations are modeled in linear
or finite nonlinear (via kernel trick [32], [33]) Euclidean
distance space, which is not powerful enough to distinguish
the view dissimilarity or characterize the cross-view semantic
consistency. To overcome these drawbacks, in this section
we first build a cross-view discriminant semantic correlation
analysis model (DSCA) to model the correlations across
the views in the sample semantic space, rather than in the
previously-adopted feature space. In this way, not only the
correlations across views but also their semantic consistency
can be more desirably exploited. Then, to further enhance
the discriminating ability of the DSCA model, we remodel it
from the Euclidean space to the Riemannian manifold space
and generate the extended DSCA (C-DSCA) whose objective
function is convex in the geodesic metric space. Finally,
we validate the effectiveness of the proposed models with
experimental evaluations.
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Fig. 1: Overview of the cross-view semantic correlation analysis. Samples from distinct views are denoted in different colors and
different classes are denoted with diverse shapes. Through semantic discriminant correlation mapping by distinct transformations
U and V that are represented in individual sample spaces X and Y, the original distinct view spaces are transformed to a
common Riemannian manifold space, in which the similar samples (within and across the views) are pulled much nearer while
those dissimilar are pushed further away.

A. Discriminant sematic correlation learning (DSCA)

Discriminant cross-view correlation exploitation For con-
venience of presentation, we first define some notations. For
given N training samples from C classes, they are represented
in two types of view representations: X = [X1,X2, · · ·,XC ] ∈
Rp×N with the kth class set Xk = [xk1 , xk2 , · · ·, xknk

] and
Y = [Y1,Y2, · · ·,YC ] ∈ Rq×N with the kth class set
Yk = [yk1 , yk2 , ···, yknk

]. To enhance the discriminating power of
estimators in cross-view analysis, we should take into account
the supervision knowledge like the labels information from
two aspects: the representation correlation across views and the
discriminative similarities within and between data classes. To
this end, we should seek two individual projections (denoted
as U ∈ Rp×r and V ∈ Rq×r, assuming the dimension of the
projected common space is r) for the view representations of
training data. Taking into account the above considerations,
we consequently build the discriminant cross-view correlation
learning as follows,

min
{U,V}

1

N

N∑
i=1

(
UT xi − VT yi

)T (
UT xi − VT yi

)
+

1

Nw

C∑
k=1

nk∑
i=1

nk∑
j=1

(
UT xi − VT yj

)T (
UT xi − VT yj

)
− 1

Nb
λ1

C∑
k=1

C∑
c=1,c 6=k

nk∑
i=1

nc∑
j=1

(
UT xi − VT yj

)T (
UT xi − VT yj

)
(3)

where Nw =
∑C

k=1 n
2
k and Nb =

∑C
k=1 nk(N − nk), λ1 is a

tradeoff parameter controlling the balance between the three
terms. The first term characterizes the cross-view represen-
tation correlation of each sample, the second term denotes
the similarity of samples from the same class, while the
third term models the dissimilarity of between-class samples.
Obviously, the second and third terms are generated based on
the data labels, and in this way, the supervised discriminative
information is incorporated in the objective function. After

equivalent reformulation, (3) can be simplified to

min
A�0

tr (AC) + tr (AS)− λ1tr (AD) , (4)

where A = HHT with HT = [UT ,VT ], C = MMT with M
= [XT ,−YT ]T , S =

∑C
k=1 2

(
nkLkLT

k − Lk1nk
1T
nk

LT
k

)
/Nw

with Lk = [XT
k ,Y

T
k ]T and 1nk

being an nk-dimensional all-
one vector, and D =

(
2NLLT − 2L1N1TNLT − S

)
/Nb with

L = [L1, · · ·,LC ] and 1N being an N -dimensional all-one
vector. With A solved from (4), we can readily obtain U and
V by decomposing it as square root. Then, we can map the
distinct view representations respectively by U and V to the
common representation space and then concatenate them for
subsequent classifications.

Cross-view semantic consistency exploitation We can
see from (3) that, although the cross-view correlation of
each sample is characterized by the first term, the seman-
tic consistency across view representations is not exploited.
More accurately, the cross-view semantic consistency is much
stricter than the semantic correlation characterization. We take
face images as an example. As demonstrated in Figure 2,
the semantic correlation measures the similarity degree of
face images. More specifically, face A1 is more similar to
A2/B2 in appearance than to A3/B3 within or between the
views. In contrast, semantic consistency requires the cross-
view representations of the same face image are semantically
identical. From this viewpoint, A1 and B1 are semantically
identical since they are different representations of the same
subject face.

Regretfully, the aforementioned semantic representation
consistency across view representations is not exploited in
(3) at all. Nevertheless, it is quite challenging to model such
cross-view semantic consistency since it cannot be directly
characterized through the view projections U ∈ Rp×r and
V ∈ Rq×r, as they are with mismatched dimensions. There-
fore, we need to turn to other modeling schemes. Surprisingly,
the representer theorem [34], [35] provides us a direction. Mo-
tivated by this, we propose to represent the projection matrices
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Fig. 2: Semantic correlation versus semantic consistency
across views. Ai, i = 1, 2, 3 are three face image represen-
tations in view 1, while Bi, i = 1, 2, 3 are their individual
representations in view 2. The semantic correlation measures
the similarity degree of face images, for instance, face A1 is
more similar to A2/B2 in appearance than to A3/B3 within
or between the views. In contrast, the semantic consistency
requires the cross-view representations of the same face im-
age are semantically identical, for instance, A1 and B1 are
semantically identical since they are different representations
of the same subject face.

in respective sample space of distinct views. Specifically, we
reconstruct U = Xα and V = Yβ, where α ∈ RN×r and
β ∈ RN×r denote the representation coefficient matrices. In
this way, H involved in (4) can be reconstructed as

H =

[
U
V

]
=

[
Xα

Yβ

]
=

[
X

Y

][
α

β

]
. (5)

Then, we substitute (5) into A = HHT and consequently
the discriminant cross-view correlation learning (4) can be
reformulated as

min
A�0

tr (AC) + tr (AS)− λ1tr (AD) , (6)

with C, S and D defined the same as in (4). Formally, although
(6) is completely the same as (4), there is essential difference
between them: (6) is modeled in the sample representation
space while (4) in the feature representation space. To inves-
tigate the semantic consistency in the sample representation
space and incorporate it into (6), we are surprised to find that
α and β are matched and essentially identical in the semantic
representation. Consequently, we can characterize the cross-
view semantic consistency by measuring the divergence (or
say discrepancy) between α and β. As a result, the cross-
view semantic consistency can be measured by

min ‖α− β‖22. (7)

Recall that U = Xα, we can derive α =
(
XT X

)−1
XT U. Sim-

ilarly, we can generate β =
(
YT Y

)−1
YT V from V = Yβ.

Substituting α =
(
XT X

)−1
XT U and β =

(
YT Y

)−1
YT V

into (7) yields

min
{α,β}

‖α− β‖22 ⇒ min
A�0

tr (AΓ) , (8)

where Γ =

[
2PT

1 P1 − 2PT
2 P1

−2PT
1 P2 2PT

2 P2

]
, with P1 =(

XT X
)−1

XT and P2 =
(
YT Y

)−1
YT .

Formulation of DSCA We can see from (8) that the
semantic consistency across views is formulated as a concise
term elegantly. Combining it into (6) consequently generates
the objective function of the proposed discriminant semantic
correlation analysis (DSCA) model as follows

J = min
A�0

tr (AC) + tr (AS)− λ1tr (AD) + λ2tr (AΓ)

= min
A�0

tr
(
A (C + S− λ1D + λ2Γ)

)
= min

QT Q=I
tr
(
QT (C + S− λ1D + λ2Γ) Q

)
,

(9)

where λ2 is also a tradeoff parameter to control the balance
between the semantic consistency term and other terms, and
I denotes an identity matrix of proper size. The orthogonality
constraint, QT Q = I, is guaranteed to avoid trivial solutions.
In this way, not only the cross-view representation consistency
of each sample, similarity and dissimilarity of the data classes
(discriminative supervision information), but also the semantic
consistency across individual views are modeled simultaneous-
ly in (9).

For convenience of solving (9), we introduce the Lagrangian
multipliers Λ and rewrite it as

J{Q,Λ} = tr
(
QT (C + S− λ1D + λ2Γ) Q

)
− tr

(
Λ(QT Q− I)

)
.

(10)
Calculating the partial derivative of J{Q,Λ} with regard to Q
and making it to zero yields

(C + S− λ1D + λ2Γ)Q = QΛ, (11)

which is a generalized eigen-decomposition problem and can
be solved by finding its smallest eigenvectors. Along this line,
the projection matrix Q can be obtained by calculating a
required number of smallest eigenvectors of C+S−λ1D+λ2Γ.
Finally, with obtained Q, we can recover A = QQT .

B. Convex DSCA (C-DSCA)

After analyzing the objective function (9) of DSCA, we
can see that it is a difference combination of trace terms
regarding A. Such a objective function may be nonconvex
in practice [36], [37], since its Hessian matrix with regard
to A is a difference combination of positive definite matrices
and consequently may not be positive definite. Although its
optimal solutions may be obtained via the generalized eigen-
decomposition algorithm, its optimality may be limited since
it is solved in a conditionally-convex solution space spanned
by a set of linear orthogonal eigenvectors (see (11)), whose
optimality is dominated by the convexity of (9).

To overcome these shortcomings, we remodel (9) in the
geodesic space and reformulate it as a convex function with
preferable closed-form solution. Compared to the Euclidean
space, the separability of nonlinear data patterns in the
geodesic space can be significantly improved and thus benefits
their subsequent recognitions. More explanations about the
superiority of modelling in geodesic space to that in Euclidean
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space will be elaborated in Section III-C. Before presenting
the new model, we first give a proposition below

Proposition 1. Given a d-order positive definite matrix D,
for d-order matrix variable A defined in the positive definite
space, it holds that

min
A�0

tr(A−1D)⇔ max
A�0

tr(AD), (12)

whose proof is detailed in the Appendix.

Following Proposition 1, we equivalently reformulate D-
SCA in (9) as

min
A�0

tr (AC) + tr (AS) + λ1tr(A−1D) + λ2tr (AΓ) ,

(13)
in which minimizing the third term λ1tr(A−1D) is equivalent
to minimizing the third term −λ1tr (AD) of (9). For the
convexity of (13), since the first, second and last terms are
linear with regard to A and readily convex; for the third term
involved with the inverse of A, it is also convex in in the cone
space [38]. As a result, (13) is entirely convex with regard
to A. More interestingly, it also enjoys closed-form solution
[39], [40] [41], [30].

TABLE I: Properties comparison between tr(AD) and
tr(A−1D).

Term Convex Convexity Type Derivative Regarding A Monotonicity With A

tr(AD) Yes Linear D Increasing

tr(A−1D) Yes Conical -A−1DA−1 Decreasing

Formulation of C-DSCA To obviously distinguish
tr(A−1D) from tr(AD), we comparatively summarize the two
operators in Table I. We can see that tr(A•) is increasing
while tr(A−1•) gets decreasing with A. In this way, (13)
enjoys the following merits: (1) the discriminative similarity
and dissimilarity measures can be modelled ingeniously in a
unified objective function; (2) modelled with two kinds of
distance characterizations tr(A•) and tr(A−1•), the metric of
(13) is extended to a convex and more discriminative geodesic
space, beneficial to the subsequent recognitions; (3) since (13)
is modelled from the perspective of the geometric mean metric
learning [30], [31], we can readily achieve its closed-form
solutions. Along this line, we reformulate (13) as

min
A�0

γtr(A−1D) + (1− γ)(tr (AS) + tr (AC) + δtr (AΓ)),

(14)
where we set γ ∈ (0, 1) [30]. Let J(A) := γtr(A−1D) +
(1 − γ)(tr (AS) + tr (AC) + δtr (AΓ)). Setting the gradient
of J(A) with respect to A to zero yields

(1− γ)A(S + C + δΓ)A = γD, (15)

which is a Riccati Equation [42] [43] whose solution happens
to be the midpoint of the geodesic jointing ((1− γ)(S + C +
δΓ))−1 and γD, that is

A = ((1− γ)(S + C + δΓ))
−1
]1/2(γD), (16)

where (·)]1/2(·) denotes the geodesic mean (midpoint) jointing
two matrices. To generalize the discriminating ability of the
solution, we extend the geodesic mean solution (16) from the

Euclidean space to the geodesic space (i.e., Riemannian man-
ifold space) by replacing (·)]1/2(·) with (·)]t(·), 0 6 t 6 1,
as demonstrated in Figure 1, which is also convex [44].

In practice, the invertibility of (1 − γ)(S + C + δΓ) does
not always hold since its rank may be not full. To address
this issue, we regularize (14) by the symmetrized LogDet
divergence and consequently generate the proposed Convex
DSCA (coined as C-DSCA), as follows

min
A�0

γtr(A−1D) + (1− γ)(tr (AS) + tr (AC) + δtr (AΓ))

+ λDsld(A,A0),
(17)

where A0 is a prior positive definite matrix and Dsld(A,A0) =
tr(AA−10 )+ tr(A−1A0)−2(p+q) stands for the symmetrized
version of LogDet divergence [45]. Since (17) is still convex
in the geodesic space, C-DSCA enjoys closed-form solution
as follows

A = ((1− γ)(S + C + δΓ) + λA−10 )−1]t(γD + λA0). (18)

More specifically,

A = ((1− γ)(S + C + δΓ) + λA−10 )−1]t(γD + λA0)

=
(
(1− γ)(S + C + δΓ) + λA−10

)1/2( (
(1− γ)(S + C + δΓ) + λA−10

)−1/2
(γD + λA0)(

(1− γ)(S + C + δΓ) + λA−10

)−1/2 )t
(
(1− γ)(S + C + δΓ) + λA−10

)1/2
.

(19)

Without loss of generality, in this paper we set A0 to be
(p+q)-order identity matrix Ip+q . After obtaining A, we can
recover U and V from (5). Then, for a test instance with cross-
view representations x and y, we can predict its class label by
estimating on its concatenated representations UT x + VT y =
HT [xT , yT ]T .

Complexity analysis on C-DSCA Since the objec-
tive function of C-DSCA enjoys a closed-form solu-
tion, so its complexity mainly lies in (19). It is com-
posed of

(
(1− γ)(S + C + δΓ) + λA−10

)1/2
, (γD + λA0)

and
(
(1− γ)(S + C + δΓ) + λA−10

)−1/2
. Specially, the com-

plexity of both
(
(1− γ)(S + C + δΓ) + λA−10

)1/2
and(

(1− γ)(S + C + δΓ) + λA−10

)−1/2
is O((p + q)3). Conse-

quently, the total complexity of C-DSCA of (19) is O((p +
q)3).

C. Comparison between DSCA and C-DSCA

On the one hand, the convexity of C-DSCA is superior to
that of DSCA. The Hessian matrix of the DSCA objective in
(9), i.e. C + S − λ1D + λ2Γ, is a differential combination
of positive definite matrices, which may incur (9) to be
nonconvex (or say conditionally convex) in the Euclidean
distance space. By comparison, the objective of C-DSCA in
(17) is a sum of linearly convex terms and conically convex
term. As a result, (17) is entirely convex, which readily brings
it with optimal solutions.

On the other hand, the solution space of C-DSCA is bigger
than that of DSCA. For DSCA, we can see that the Hessian
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matrix (i.e. C + S− λ1D + λ2Γ) regarding A of (9) is a dif-
ferential combination of positive definite matrices, resulting in
its conditional-convexity. Although the solution of DSCA can
be constructed through generalized eigen-decomposition on
its conditionally positive definite Hessian matrix, the resulting
metric A is spanned by orthogonal eigenvectors, which may be
warped by the non-positive definiteness of its Hessian matrix.
As a result, the solution space of DSCA and consequently its
solution optimality will be limited. In contrast, the objective
(17) of C-DSCA is extended from (9) by modeling in the
geodesic space instead of the Euclidean space. In this way, the
metric space is consequently transformed from the orthogonal
eigenvectors to much greater convex positive-definite cone
space. As a result, the solution space of C-DSCA is made
to be bigger than that of DSCA.

IV. EXPERIMENT

In this section, we conducted comparative experiments on
several multi-view databases to evaluate the proposed methods,
i.e., DSCA and C-DSCA.

A. Setup

For a fair comparison, several most related methods were
implemented, i.e., CCA [1], DCCA [8], MPECCA [10], DCA
[17], CECCA [14], CDCA [29]. For the tradeoff parameters
involved in the compared methods, they were tuned through
five-fold cross-validation following the related references.
For fused cross-view representations, the k-nearest-neighbors
(kNN) classifier was applied for final decision making with
k = 3. To evaluate the generalization ability of the proposed
method, we conducted experiments on both non-face datasets
and face datasets in the following subsections, for which
accuracy (%) and mean absolute error (MAE) were adopted
as performance measures, respectively.

B. Experimental results on non-face datasets

We first performed experiments on several widely used non-
face multi-view datasets, i.e., handwritten digit databases MFD
[46] and USPS [47], animal dataset AWA [48] and Alzheimer’s
Disease dataset ADNI [49]. Details about the datasets are
given in Table II. On each of these datasets, we randomly took
half of the samples for model training and rest for testing. And,
we report the averaged results over ten runs with random data
partitions in Table III.

We can reach the following observations from the results.
In nearly all cases, the proposed DSCA method yielded the
second highest recognition accuracies, only slightly lower than
the highest results of C-DSCA, demonstrating the usefulness
of our modelling schema in preserving the semantic consis-
tency in cross-view correlation learning. More importantly, the
proposed C-DSCA method achieved the highest recognition
accuracies in most cases. Specially, the average improvement
of C-DSCA method was significant, especially on AWA with
average about 10% accuracy improvement over the best of the
compared methods.

C. Experimental results on face datasets

We also conducted experiments on four challenging real-
world, large-scale face datasets, i.e., AgeDB [50], Morph
(Album I and II) [51], FERET [52], [53], and the Cross-
Age Celebrity Dataset (CACD) [54]. Specifically, the AgeDB
database contains 16,516 face images from 570 subjects and
the images are annotated with accurate age, noise-free labels
from 0 to over 100 years. As for the Morph dataset, the Album
I contains 1,690 images taken from 631 African and European
persons, aged from 15 to about 68 years, and the Album
II consists of over 55,000 face images, aged from 16 to 77
years. For the FERET dataset, it contains over 11,000 images
from over 900 subjects, from Asian, Hispanic, Caucasian,
Melanoderm and other races. For the CACD dataset, it consists
of about 163,446 face images from 2,000 celebrities aged from
0 to over 100 years. Image examples from the four databases
are illustrated in Figure 3.

In the experiments, we extracted BIF [55] and HoG [56]
features from these databases and respectively reduced their
dimensions to 200 by PCA technique as two view represen-
tations for cross-view facial attributes estimation. Specially,
we performed facial age estimation on the AgeDB and CACD
datasets, facial gender classification on AgeDB and Morph
II, and facial race recognition on the Morph I and FERET
databases, respectively. For performance measure, we adopted
the MAE on age estimation and recognition accuracy on both
gender and race recognition.

1) Age estimation: To comprehensively evaluate the age
estimation performance, we randomly chose 50, 100, 150
samples for training while the remainder for test from AgeDB,
and 500, 1000, 1500 samples for training while the rest for test
from CACD. We ran the experiments ten times with random
data partitions and report the averaged results in Tables IV and
V. From them, we can observe that with increased samples
for training, the estimation errors (MAEs) of all the methods
reduced monotonically. Moreover, the result magnitudes on
CACD are lower than that on AgeDB. These validate that
training with more adequate samples could improve the gen-
eralization ability of the age estimator. Moreover, the age
MAEs of DSCA were generally the second lowest among
all the methods. It demonstrates the rationality of preserving
the semantic consistency in cross-view learning. More impor-
tantly, we also find that in all cases our proposed method C-
DSCA yielded the lowest estimation MAEs (the lower the
better) among all the compared methods, demonstrating the
effectiveness and superiority of our proposed method in han-
dling facial age estimation task. Furthermore, the performance
improvements of C-DSCA over DSCA validate the superiority
of modelling in the geodesic space over the Euclidean space.

2) Gender classification: For gender classification, we ran-
domly chose 1000, 2000, 3000 samples for training while the
remainder for test from both the AgeDB and Morph Album II
datasets. We also ran the experiments ten times with random
data partitions and report the averaged results in Tables VI
and VII. We can observe that increased training samples
resulted in higher gender recognition accuracies for all the
compared methods. Besides, as an unsupervised model, the
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TABLE II: Profiles of the MFD, AWA, ADNI and USPS datasets.

Dataset View Representations (# Dimension) # Classes # Samples

MFD
fou(76), fac(216), kar(64),
pix(240), zer(47), mor(6)

10 20000

AWA
cq(2688), lss(2000), phog(252),

rgsift(2000), sift(2000), surf(2000)
2 879816

ADNI VBM(116), FDG(116), AV(116) 2 211160

USPS left(128), right(128) 10 11000

TABLE III: Recognition accuracy (%) of the methods on non-face datasets.

Dataset View Combination CCA DCA MPECCA DCCA CECCA CDCA DSCA (ours) C-DSCA (ours)

MFD

fac fou 80.22±0.9 80.00±0.2 90.64±1.3 95.15±0.9 96.46±2.4 97.27±0.4 97.33±0.3 97.54±0.2
fac kar 92.12±0.5 90.10±0.8 95.39±0.6 95.33±0.7 96.52±1.2 97.08±0.6 97.00±0.4 97.31±0.4
fac mor 78.22±0.8 63.22±4.3 72.32±2.4 95.22±0.9 94.23±1.0 97.03±0.2 95.83±0.3 96.90±0.3
fac pix 83.02±1.2 90.20±0.5 94.65±0.5 65.60±1.1 93.67±2.9 96.38±0.6 96.44±0.5 96.85±0.3
fac zer 84.00±0.6 71.50±2.2 93.79±0.7 96.00±0.6 97.04±0.6 97.25±0.2 97.25±0.3 97.56±0.3
fou kar 90.11±1.0 75.42±5.6 93.98±0.4 89.12±4.3 96.90±0.5 96.47±0.7 96.88±0.5 97.80±0.6
fou mor 70.22±0.4 55.82±4.6 60.62±1.6 82.30±0.9 78.25±0.6 82.45±0.4 80.13±0.7 79.22±0.8
fou pix 68.44±0.4 76.10±4.7 78.24±1.1 90.41±3.2 76.28±1.3 95.47±0.5 96.50±0.3 97.13±0.4
fou zer 74.10±0.9 62.80±4.1 79.38±1.2 79.53±4.5 83.16±1.4 86.02±0.8 84.17±0.6 86.85±0.5
kar mor 64.09±0.6 82.00±1.6 72.92±2.7 91.95±2.8 91.89±0.6 96.35±0.2 95.27±0.4 95.44±0.5
kar pix 88.37±0.9 88.85±0.8 95.07±0.6 92.59±2.0 95.98±0.3 93.66±0.9 95.48±0.4 95.00±0.4
kar zer 90.77±1.0 75.97±2.8 94.17±0.6 88.47±2.9 93.57±0.9 96.22±0.3 96.42±0.4 96.73±0.5
mor pix 68.66±1.5 82.01±2.1 67.21±2.3 93.04±0.7 90.08±1.0 95.72±0.4 95.70±0.3 95.99±0.5
mor zer 73.22±0.6 50.35±1.8 60.95±1.4 84.55±0.9 80.59±0.9 84.70±0.4 83.23±0.4 83.28±0.6
pix zer 82.46±0.6 71.16±2.8 82.81±1.2 91.67±2.1 91.81±1.2 95.20±0.4 95.64±0.4 95.84±0.4

AWA

cq lss 73.11±2.1 62.08±0.3 76.19±1.0 70.51±1.3 77.53±1.7 72.31±2.3 78.44±1.3 82.44±1.5
cq phog 65.21±1.4 73.10±1.2 72.42±1.6 70.15±0.9 74.51±2.1 71.22±2.4 74.31±1.3 85.44±1.6
cq rgsift 60.22±1.3 61.40±1.7 78.04±1.3 82.87±2.4 82.83±1.4 85.15±0.5 89.67±0.5 92.34±1.2
cq sift 74.33±1.3 61.28±1.9 77.85±1.4 83.19±2.1 80.05±1.7 74.55±1.6 80.42±1.5 85.22±1.4
cq surf 75.86±1.7 69.30±2.1 79.07±0.8 73.55±2.3 81.59±1.5 89.15±1.7 89.79±1.7 92.92±0.8
lss phog 69.96±1.7 59.72±0.2 68.12±1.2 64.86±2.6 71.36±1.4 66.58±2.1 71.13±1.7 83.77±0.9
lss rgsift 78.65±0.9 63.21±1.3 73.64±1.0 78.28±2.8 77.28±1.4 74.02±2.2 88.02±1.9 88.68±0.9
lss sift 73.49±1.0 65.72±2.1 73.12±1.4 66.21±1.6 76.69±1.7 65.29±2.6 74.43±1.6 79.93±1.3
lss surf 76.30±1.4 65.33±1.8 74.84±1.6 79.06±2.8 78.52±1.3 78.33±2.8 78.40±1.6 86.43±0.8

phog rgsift 68.18±1.1 48.38±1.0 69.49±2.3 77.37±1.5 74.41±1.5 63.57±1.6 78.77±1.7 83.16±1.0
phog sift 68.26±1.1 70.24±1.1 68.97±1.3 63.16±1.3 72.14±1.5 61.10±2.3 62.40±1.8 83.67±1.0
phog surf 64.57±1.4 56.94±0.5 71.55±1.4 75.68±1.9 74.43±2.1 67.05±1.7 82.17±1.7 87.16±0.7
rgsift sift 71.35±1.3 58.56±2.3 72.85±1.1 75.28±2.5 76.69±1.7 76.54±2.2 83.43±1.3 91.83±0.9
rgsift surf 75.55±1.3 67.22±1.6 76.94±2.2 84.10±2.4 80.46±1.7 84.34±3.3 86.34±2.0 91.01±0.9
sift surf 75.33±1.3 63.36±1.6 74.27±1.2 82.14±2.7 75.51±1.1 85.72±2.2 84.85±1.9 88.46±0.8

ADNI
AV FDG 65.47±1.8 73.28±2.1 75.28±2.6 76.25±2.1 76.26±2.5 74.38±6.0 75.86±4.8 81.05±2.8
AV VBM 71.02±2.4 71.02±2.8 73.24±3.1 63.47±2.1 60.67±2.7 71.22±5.3 73.42±5.1 75.58±2.5

FDG VBM 61.37±1.2 65.28±1.6 70.37±2.6 64.05±1.6 70.95±1.8 80.98±3.5 81.27±4.0 86.55±3.8

USPS left right 62.14±0.6 80.11±1.2 66.67±0.9 63.96±2.0 82.89±1.9 89.73±0.7 90.67±0.6 91.06±0.5

TABLE IV: Age estimation results (MAE±STD) on AgeDB (↓). Hereinafter, ↓ means lower is better.

#training samples
from each class

CCA DCA MPECCA DCCA CECCA CDCA DSCA (ours) C-DSCA (ours)

50 17.70±5.1 17.78±5.2 16.10±4.2 15.93±3.5 15.62±4.6 16.00±5.0 15.30±4.1 14.11±4.2
100 16.81±4.5 17.21±5.5 13.42±4.5 13.77±4.6 13.35±4.4 13.20±4.1 13.17±4.5 12.20±4.1
150 15.43±5.4 16.25±6.1 12.82±5.0 13.31±3.5 12.20±4.2 12.90±5.5 12.78±4.2 11.89±3.5

baseline CCA yielded the lowest accuracy in most cases. This
demonstrates that modelling with supervision information can

improve the discriminating ability of the gender classifiers.
More importantly, by making use of the discriminative label



IEEE TRANSACTIONS ON CYBERNETICS 8

(a) AgeDB (b) Morph 

(c) FERET (d) CACD 

Fig. 3: Face examples from the (a) AgeDB, (b) Morph, (c) FERET and (d) CACD datasets.

TABLE V: Age estimation results (MAE±STD) on CACD (↓).

#training samples
from each class

CCA DCA MPECCA DCCA CECCA CDCA DSCA (ours) C-DSCA (ours)

500 14.50±5.0 15.00±4.3 14.01±4.2 13.20±3.59 12.60±4.3 12.81±5.8 12.40±3.4 11.51±3.6
1000 13.43±4.3 14.50±5.3 13.02±4.5 12.42±4.5 12.35±4.4 11.90±4.6 11.80±3.4 11.20±3.6
1500 13.21±5.2 13.42±5.3 11.80±5.0 11.51±3.5 11.20±4.2 11.80±4.6 11.60±3.1 10.29±3.2

TABLE VI: Gender classification accuracy (Acc±STD) on AgeDB (↑). Hereinafter, ↑ indicates higher is better.

#training samples
from each class

CCA DCA MPECCA DCCA CECCA CDCA DSCA (ours) C-DSCA (ours)

1000 74.51±0.6 75.75±0.6 76.80±0.7 74.76±0.6 79.25±0.6 82.50±4.9 86.59±0.9 88.33±0.2
2000 76.98±0.6 75.95±0.6 79.51±0.8 77.18±0.5 80.31±0.6 83.84±3.6 88.12±0.7 89.45±0.2
3000 78.21±0.4 76.33±0.7 79.69±0.7 78.51±0.6 80.67±0.7 84.52±3.5 88.40±0.7 89.69±0.3

TABLE VII: Gender classification accuracy (Acc±STD) on Morph Album II (↑).

#training samples
from each class

CCA DCA MPECCA DCCA CECCA CDCA DSCA (ours) C-DSCA (ours)

1000 67.86±0.8 74.46±0.7 75.10±0.6 71.59±0.7 78.90±0.8 80.53±0.2 83.64±0.3 87.65±0.3
2000 69.54±0.8 75.32±0.7 76.39±0.7 72.86±1.0 79.12±0.6 85.16±0.3 86.43±0.2 87.97±0.4
3000 69.74±0.7 77.85±0.7 78.58±0.7 74.22±0.7 80.31±0.6 86.36±0.4 87.28±0.3 88.13±0.4

information, the cross-view correlation information, and more
importantly the cross-view semantic consistency information,
as well as modelling in the Riemannian geometry space with
closed-form solution, the proposed C-DSCA method yielded
the remarkably highest gender accuracy in all cases among all
the methods, with average about 5% accuracy improvement on
the two gender estimation datasets over the best of compared
method CDCA. It also demonstrates the effectiveness and
superiority of our modelling scheme in dealing with gender
recognition tasks.

3) Race recognition: For race recognition evaluation, we
randomly chose 100, 150, 200 samples from Caucasian and
Melanoderm races for training while the remainder of these
two races for test from Morph Album I, and 100, 200, 300
samples from Asian, Hispanic, Caucasian, Melanoderm races

for training while the rest of these four races for test from
the FERET database. Similar to the above age and gender
recognition settings, we also ran the evaluations ten times
with random data partitions and report the averaged results
in Tables VIII and IX. We can observe that for the task of
race estimation, with increased training samples for each race,
the recognition accuracy increased consistently across all the
methods, indicating that more training samples would benefit
race recognition. Moreover, similar to the above age and
gender evaluations, the baseline model CCA yielded the lowest
accuracies (the higher the better) among all the methods. It
illustrates that making use of the supervision information is
also desired to race recognition. On the other hand, among
all the methods, our proposed C-DSCA method yielded the
highest accuracies in all cases, with about 6% and 6.5% accu-
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TABLE VIII: Race recognition accuracy (Acc±STD) on Morph Album I (↑).

#training samples
from each class

CCA DCA MPECCA DCCA CECCA CDCA DSCA (ours) C-DSCA (ours)

100 63.73±2.3 66.74±0.7 68.50±0.7 68.63±0.6 72.31±0.6 77.95±0.3 80.65±0.6 86.32±0.4
150 65.18±2.6 67.28±0.8 69.89±0.6 69.75±1.0 73.05±0.7 80.92±1.4 82.13±0.6 87.41±0.5
200 66.74±2.5 67.88±0.6 71.27±0.8 70.13±0.8 76.80±0.7 83.40±1.3 82.94±0.4 87.85±0.4

TABLE IX: Race recognition accuracy (Acc±STD) on FERET (↑).

#training samples
from each class

CCA DCA MPECCA DCCA CECCA CDCA DSCA (ours) C-DSCA (ours)

100 50.99±2.0 51.22±1.8 54.02±1.3 53.89±1.9 55.16±1.6 57.66±1.8 60.39±1.2 66.77±0.1
200 51.48±2.7 52.19±1.8 54.89±1.7 54.00±1.9 56.24±1.5 62.43±1.8 64.10±1.4 68.92±0.1
300 51.84±2.4 53.82±1.5 55.34±1.3 54.12±2.0 58.62±1.6 64.91±1.4 64.73±1.2 69.21±0.1

racy improvements over the best compared method on Morph
Album I and FERET, respectively. It demonstrates again the
effectiveness and superiority of our modeling scheme. Last but
not least, we can observe that the race recognition accuracies
on FERET are much lower than that on Morph. It is because
that four races were chosen for evaluation on FERET while
only two races on the Morph dataset.

D. Parameters analysis

In order to comprehensively explore the proposed model
C-DSCA, we also performed parameter analysis on the ge-
ometric weighting parameter t, the metric balance parameter
γ, the metric prior parameter λ, and the semantic consistency
parameter δ involved in (18), respectively. Without loss of
generality, we performed gender recognition on AgeDB by
randomly choosing 2000 samples per class for training while
the rest for test, race recognition on Morph Album I by
randomly choosing 150 samples per class for training while
the rest for test, and age estimation on CACD by randomly
choosing 1000 samples per class for training while the rest for
test, respectively, and repeated ten times on each dataset with
random data partitions. Consequently, the evaluation results
are demonstrated in Figures 4 to 7.

Geometric weighting parameter t of C-DSCA: For the ge-
ometric weighting parameter t, we can observe some interest-
ing rules from Figure 4. First, a generally similar performance
rule is shared by all the tasks. That is, with t increasing from 0
to 1, their performance accuracies increased (error decreased)
first and then decreased (error increased), and achieved the best
performance around t = 0.5. It means that not only the sample
similarities within the same class but also their dissimilarities
between different classes are desired to be modelled for the
geometric mean solution (as formulated in (18)).

Metric balance parameter γ of C-DSCA: From the results
shown in Figure 5, we can observe that with increasing metric
balance parameter γ, the evaluation performances on gender,
race and age estimation tasks first improved gradually and
then became worse. Furthermore, the performance was not so
sensitive around 0.3 < γ < 0.7. This observation illustrates
that the metric components regarding the cross-view correla-
tion, the intra-class similarity and inter-class dissimilarity, as

well as the cross-view semantic consistency are simultaneously
crucial to the cross-view metric learning.

Metric prior parameter λ of C-DSCA: Regarding the
metric prior parameter λ, the evaluation performances on all
the tasks kept stable when λ < 1e-4, but got worse when
λ > 1e-2. By recalling (18), we can see that λ controls the
contribution degree of the metric prior A0 to the metric to
be learned. These results in Figure 6 show that proper extent
rather than too large of metric prior is desirable, because the
desired metric is mostly guided by the training data.

Semantic consistency parameter δ of C-DSCA: For the
parameter δ (see (18)), it plays the role of controlling a
tradeoff between the cross-view semantic consistency and the
correlation and similarities across views. As the results in
Figure 7 showing, the evaluation performance got better with
increased extent of semantic consistency at first, but then
gradually became worse when δ is too large. This observation
shows that not only the cross-view semantic consistency is
desirable for metric modelling, but the cross-view correlation
and similarities are also necessary.

Metric rank of DSCA: By recalling (9), we can observe
that the solution of DSCA is composed of certain number of
singular vectors of its objective Hessian matrix. That is, the
rank of the metric matrix A is proportional to the number of
the singular vectors. Therefore, to explore the performance of
DSCA regarding the rank of the metric matrix, we conduct-
ed evaluations on the AgeDB, Morph Album I and CACD
datasets for age, gender and race estimations with the same
setup as the above parameter analysis experiments. The results
are shown in Figure 8. We can observe that with increased rank
of A), the performance of DSCA improved, demonstrating that
more dimensions (ranks) of the metric space would benefit the
subsequent cross-view recognition.

V. CONCLUSION

For cross-view recognition tasks, in this paper we proposed
a Discriminant Semantic Correlation Analysis (DSCA) method
by modelling the cross-view semantic consistency for each
object in the sample space rather than in the commonly used
feature space. Then, to enhance the nonlinearly discriminating
ability of DSCA, we further extended it from the Euclidean to
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(c) Age estimation on CACD (↓)

Fig. 4: Performance of the proposed C-DSCA method regarding the geometric weighting parameter t.
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(b) Race recognition on Morph Album I (↑)
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(c) Age estimation on CACD (↓)

Fig. 5: Performance of the proposed C-DSCA method regarding the metric balance parameter γ.
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(c) Age estimation on CACD (↓)

Fig. 6: Performance of the proposed C-DSCA method regarding the metric prior parameter λ.
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Fig. 7: Performance of the proposed C-DSCA method regarding the semantic consistency parameter δ.

the geodesic space by transforming the metric and incorporat-
ing both the cross-view semantic and representation correlation
information and consequently obtained the Convex DSCA (C-
DSCA), which enjoys closed-form solution in the geodesic
metric space. Finally, we conducted extensive experiments

to validate the effectiveness of the proposed methods and
performed parameters analysis. In the future, we will consider
to extend the models with deep network architectures [57].
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Fig. 8: Performance of the proposed DSCA method regarding the metric rank.
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APPENDIX: PROOF OF PROPOSITION 1
Proof. Let us assume

A∗ = arg max
A�0

tr(AD). (20)

Then, we have

tr(A∗D) > tr(AD) (21)

and

A∗ � A. (22)

Performing singular values decomposition (SVD) on A∗ and
A yields

A∗ = U∗Σ∗(V∗)T =

d∑
i=1

σ∗i u∗i (v∗i )T , σ∗i > 0 (23)

and

A = UΣVT =

d∑
i=1

σiuivTi , σi > 0. (24)

Based on (22)-(24), we have
d∑

i=1

σ∗i >

d∑
i=1

σi, (25)

meaning that
d∑

i=1

1

σ∗i
<

d∑
i=1

1

σi
. (26)

As a result,

(A∗)−1 =

d∑
i=1

1

σ∗i
u∗i (v∗i )T ≺ A−1 =

d∑
i=1

1

σi
uivTi , (27)

which implies that

tr((A∗)−1D) < tr(A−1D). (28)

That is,

A∗ = arg min
A�0

tr(A−1D). (29)

Combing (20) and (29) results in the desired conclusion

max
A�0

tr(AD)⇔ min
A�0

tr(A−1D). (30)
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