Abstract:
This article addresses the problem of global stabilization of continuous-time linear systems subject to control constraints using a model-free approach. We propose a gain...Show MoreMetadata
Abstract:
This article addresses the problem of global stabilization of continuous-time linear systems subject to control constraints using a model-free approach. We propose a gain-scheduled low-gain feedback scheme that prevents saturation from occurring and achieves global stabilization. The framework of parameterized algebraic Riccati equations (AREs) is employed to design the low-gain feedback control laws. An adaptive dynamic programming (ADP) method is presented to find the solution of the parameterized ARE without requiring the knowledge of the system dynamics. In particular, we present an iterative ADP algorithm that searches for an appropriate value of the low-gain parameter and iteratively solves the parameterized ADP Bellman equation. We present both state feedback and output feedback algorithms. The closed-loop stability and the convergence of the algorithm to the nominal solution of the parameterized ARE are shown. The simulation results validate the effectiveness of the proposed scheme.
Published in: IEEE Transactions on Cybernetics ( Volume: 52, Issue: 2, February 2022)