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Semantic-Aware Real-Time Correlation Tracking
Framework for UAV Videos

Xizhe Xue, Ying Li

Abstract—Discriminative correlation filter (DCF) has con-
tributed tremendously to address the problem of object tracking
benefitting from its high computational efficiency. However, it
has suffered from performance degradation in unmanned aerial
vehicle (UAV) tracking. This article presents a novel semantic-
aware real-time correlation tracking framework (SARCT) for
UAV videos to enhance the performance of DCF trackers without
incurring excessive computing cost. Specifically, SARCT first con-
structs an additional detection module to generate ROI proposals
and to filter any response regarding the target irrelevant area.
Then, a novel semantic segmentation module based on semantic
template generation and semantic coefficient prediction is further
introduced to capture semantic information, which can provide
precise ROI mask, thereby effectively suppressing background
interference in the ROI proposals. By sharing features and
specific network layers for object detection and semantic segmen-
tation, SARCT reduces parameter redundancy to attain sufficient
speed for real-time applications. Systematic experiments are con-
ducted on three typical aerial datasets in order to evaluate the
performance of the proposed SARCT. The results demonstrate
that SARCT is able to improve the accuracy of conventional
DCF-based trackers significantly, outperforming state-of-the-art
deep trackers.

Index Terms—Detection proposals, discriminative correlation
filter (DCF), semantic information, unmanned aerial vehicle
(UAV) tracking.
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I. INTRODUCTION

IGNIFICANT developments in unmanned aerial vehicles

(UAVs) have been witnessed recently, delivering more
diversity and flexibility for photography than common surveil-
lance cameras with fixed camera angles, scale, and view [1].
Aerial object tracking [2] has enabled many new and important
applications in computer vision [3], such as crowd mon-
itoring, target following, and aerial navigation. Aiming to
analyze the movement of a certain target, visual tracking
algorithms [4]-[6] locate their bounding boxes on the video
stream according to the given initial state in the first frame.
Although methods based on the correlation filter [4] and
Siamese network [5], [6] have achieved decent performance
in general scenes, robust and accurate aerial tracking [2], [7]
remains active research because of the particular challenging
factors, such as unpredictable weather conditions, changing
flying altitude, and shaking camera views. To be more specific,
aerial objects are usually tiny and move very fast or rotate dras-
tically, resulting in difficulties in tracking them. In addition,
apart from the interference of shadows and background intro-
duced by high incline shots, aerial videos captured at poor light
conditions are likely to lose the otherwise abundant texture
information and sharp details [1].

Real-time processing on aerial videos is a prerequisite for
practical applications. From this viewpoint, discriminative cor-
relation filter (DCF)-based trackers [4], [8] are focused on for
their strengths on both accuracy and speed. These kinds of
methods always employs the fast Fourier transform (FFT) to
convert the models from the time domain to the frequency
domain, in which the convolution operation is transformed
into multiplication, greatly reducing the computational cost
during the process of locating a target. However, targets cap-
tured in UVA videos are often obscure in shadows and fully
or partly occluded by other objects, for example, trees, roofs,
and signs [9]. Under such circumstances, traditional DCF algo-
rithms still assume that the point with the highest value in
the response map represents the target location. If a template
is contaminated with shielding, the tracker may be misled
and cannot relocate the target when it is lost for a period
and appears again. Therefore, it is necessary to introduce a
detection module [10], [11] to help the tracker recover from
common challenges in aerial videos, such as temporary or
persistent occlusions.

While tracking-by-detection methods coarsely improve the
confidence of detection proposals, how to repress no-target
object regions in a bounding box and finely locate the target
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remains a challenging question in aerial tracking. Because
DCF trackers locate a target by correlation operations, they
are easily disturbed when the appearance of the target changes
dramatically within the same background. To distinguish pix-
els belonging to the target from the background, semantic
segmentation methods that can classify images at pixel level
have been taken into consideration. Semantics has been com-
monly used as a priori information for tracking methods
that deal with a specific type of target, such as human
tracking [12] and vehicle tracking [13]. However, the cate-
gories of targets vary and are not provided in the generic
visual tracking as well as aerial tracking. Under this cir-
cumstance, semantic information [14] is difficult to apply
directly.

To handle the aforementioned issues, we propose a
semantic-aware real-time aerial object tracking framework in
this article. Specifically, two additional enhancements: one
corresponding to the detection module and another to the
semantic segmentation module, are introduced to modify the
traditional DCF-based trackers. The resulting tracking frame-
work is able to cope with serious occlusion and deformation
in aerial videos while retaining their characteristic speed and
real-time capability. Furthermore, the proposed approach helps
suppress noise from the background, thereby locating the tar-
get more precisely supported by the rich semantic information
obtained from the ingenious semantic segmentation module.

The key contributions of this work are summarized as
follows.

1) To improve the tracking accuracy on videos captured
by small UAVs, a novel aerial tracking framework
capable of effectively locating targets and suppressing
interference from the background is proposed and tested
on local servers. Based on the conventional DCF tracker,
additional detection and semantic segmentation modules
using deep networks are introduced into the proposed
framework to enhance the aerial tracking performance.
Through sharing deep features and specific network lay-
ers, the number of model parameters is reduced greatly
and real-time performance for target tracking on UVA
videos is ensured.

2) The background suppression problem in aerial track-
ing is analyzed and an efficient semantic segmentation
module is designed to resolve this problem. The seman-
tic templates are generated through fully convolutional
networks (FCNs), and the semantic coefficients are com-
puted from the prediction head. Weighing the semantic
templates with their corresponding coefficients, we can
obtain the ROI masks to help locate targets on UAV
videos precisely. Different from other semantic-aware
tracking methods, which are merely trained offline, the
proposed approach is committed to initially train the
module offline and update it online.

3) Extensive experimental results with four representative
DCEF baselines on three typical aerial tracking datasets
are reported to present the advantages of the proposed
aerial tracking framework. Both handcrafted feature-
based trackers and state-of-the-art deep leaning tracking
methods have been experimentally compared with the

IEEE TRANSACTIONS ON CYBERNETICS

proposed framework, which performs favorably against
the other trackers according to systematic evaluations.
The remainder of this article is organized as follows. Some
related works are reviewed in Section II. We introduce the
proposed aerial tracking framework in Section III while exper-
imental results as well as the analyses are offered in Section IV.
Besides, some conclusions are summarized and future research
proposals are suggested in Section V.

II. RELATED WORK
A. DCF-Based Tracker

Since Bolme et al. [15] first explored a minimum output
sum of squared error (MOSSE) filter to visual tracking field,
DCEF tracking methods have been widely researched and wel-
comed for their high computational efficiency. By learning a
correlation filter, a typical DCF tracker computes the circu-
lar convolution response and generates a spatial confidence
map (also called a response map), where the position with the
maximum response indicates the location of the target.

Following this general approach, various DCF algo-
rithms have been developed rapidly over the last few
years. By introducing the cycle shift and kernel trick,
Henriques et al. [16] designed a kernelized correlation fil-
ter (KCF) with multichannel HOG features to achieve a
high-speed tracking of 172 frames per second (FPS). Except
for the traditional translation filter, the DSST tracker [17]
employs an additional scale filter in order to detect the scale
changes of targets. Fusing the HOG and color name features,
Bertinetto er al. [18] proposed a Staple algorithm with real-
time running speed so that deformations and color changes of
targets can be handled well. While a number of such meth-
ods exist, the boundary effects caused by the cycle shift still
trouble researchers. With the help of a spatial regularization
term, the SRDCF tracker [19] alleviates this problem by pun-
ishing the filter coefficients in the boundary region. Although
the handcrafted features [15]-[19] are widely utilized, the
application of deep features [20], [21] is also investigated for
more accurate and comprehensive appearance representation.
Combining the handcrafted features and deep features, the
resultant algorithms [22] are able to describe the object at dif-
ferent levels of abstraction, therefore, contributing to obtaining
better tracking performance. Indeed, even DCF trackers have
achieved the state-of-the-art performance in multiple aerial
tracking datasets [1], [9], [23], potential promotion space still
exists.

B. Tracking by Detection

Aerial tracking is up against some similar challenges to
long-term tracking, where tracking by detection has been
widely studied extensively. Tracking-by-detection methods
always learn initial discriminative models (e.g., a support
vector machine, SVM) to detect the targets. One of the
representative algorithms among these is TLD [24], which
decomposes the entire visual tracking task into three subtasks,
namely, tracking, learning, and detection. Each subprocess
reinforces one another. In particular, TLD utilizes the current
optical-flow information to predict the position of the target
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in the next frame. Meanwhile, the detection module generates
a great number of proposals, in which the one accepted by
most filters is taken as the final detection result. If the track-
ing module fails, the detection procedure will reinitialize the
tracker, helping it recomplete the task. This kind of discrimina-
tion is usually based on the assumption that the target’s motion
and shape change smoothly, but this assumption is often too
idealized to happen in the real world. Inspired by this obser-
vation, a multientropy minimization (MEEM) tracker [25] has
been presented to tackle the underlying problem by maintain-
ing a collection of snapshots and choosing the best prediction
from them. Also, Ma et al. [26] have proposed a DCF-based
method, where a k-nearest neighbor classifier is utilized to col-
lect training samples and an online random ferns classifier is
employed to redetect the target.

C. Semantic Segmentation

Semantic segmentation is a basic task in computer vision,
by which the specific regions of an image are labeled accord-
ing to what is being shown. Recently, the most attractive
deep architecture for semantic segmentation is FCN [27]-[31].
Combining detailed information from a shallow layer with
coarse information from the deep one, Long et al. [27] first
realized accurate segmentation by a convolutional network.
However, earlier FCN-based methods suffered from low-
resolution prediction generally. Aiming to overcome this
limitation, U-Net [28] is proposed, in which a contract-
ing and symmetric expanding path is introduced to capture
the context, achieving precise localization before learning a
successive convolution layer. Also, in SegNet [29], certain
pooling indices are saved in the max-pooling step of the
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novel encoder. Then, these indices are taken to help non-
linear upsampling, which forms the sparse upsampled maps.
Relying on them and the trainable convolutional filters, dense
and precise feature maps can be produced. Furthermore, to
enable efficient high-resolution prediction, Lin et al. [30]
proposed RefineNet, where features of different scales are
fused during the downsampling process and the rich back-
ground contexts are retained by chained residual pooling. To
handle the problem of segmenting objects at multiple scales,
Chen et al. designed Deeplabv3+ [31] by employing atrous
convolution layers with multiple atrous rates in cascade or in
parallel.

III. PROPOSED METHOD

The flowchart of the proposed aerial tracking framework is
depicted in Fig. 1, which consists of three modules: 1) DCF
tracking baseline; 2) object detection; and 3) semantic seg-
mentation. As is shown, the ROI region is first cropped
around the center of the target in the previous frame. Then,
this image block is fed into a backbone network (such as
Resnet [32]) with a feature pyramid network (FPN) [33] to
extract multiscale deep features, forming the inputs to the
three modules. Specifically, the resulting multiscale deep fea-
tures are first utilized (with any typical DCF-based tracker, for
example, KCF [16], DSST [17], Staple [18], and ECO [22]) to
generate an original response map. Next, the detection mod-
ule exploits the deep features to produce ROI proposals. The
original response map is fused with the bounding boxes of
the ROI proposals to form a reliable response map with less
background interference. Meanwhile, the semantic segmenta-
tion network processes the deep features to acquire semantic
templates and coefficients, which jointly make up the required
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TABLE I
STRUCTURE OF THE SEMANTIC TEMPLATES GENERATION BRANCH

Layer 1 2 3

4 5 6

Filter 256 X conv3 256 X conwv3

256 X conv3

upsample X 2 256 X conv3 32 X convl

semantic masks. After choosing the ROI mask from tons of the
computed semantic masks and combining the reliable response
map with it, the sematic-aware response map can be calcu-
lated, in which the position with the maximum response value
offers a hint of the target’s location.

Note that both the detection and semantic segmentation
modules in the proposed tracking framework are class agnos-
tic, that is, they are not reliant on any prior knowledge of
the target. These two modules aim to find the most similar
one with what has been given in the first frame rather than
assume a class-specific target. Even when similar and reli-
able semantics have not been mined, the proposed approach
can still perform robust aerial tracking, solely relying on the
correlation filter and detection module.

A. DCF Baseline

Considered as a classifier, DCF-based trackers are always
trained by minimizing the least-square errors between the
training samples x; and the templates y; through online training

min Y L(FOv, %), i) + Alwl? M

where f(-) and w denote the relation sought and model
parameters, respectively. L(-) is the l» normal loss function.
Notably, to prevent overfitting, a regularization parameter A is
introduced.

After being converted into the frequency domain, the trained
correlation filter on the Ah-th(h € {1,..., H}) dimension is,
thus, as follows:

. Y ©Xh
Y X OX +4
The bar represents complex conjugation and the operator ©
denotes the elementwise product. When the feature vector z

of an image patch is obtained, the response map in the next
frame can be generalized as

H
r:F—1<ZW”oﬁ> 3)
h=1

where the operator F~! denotes the inverse FFT. The target
state is then estimated by finding the peak of the response
map r.

2)

B. Object Detection

First, the target is coarsely located with high efficiency
based on a DCF-based tracker, which maintains the temporal
consistency of neighboring frames. Then, a detection mod-
ule is drawn into the proposed framework to refine the initial
position computed from the original response map. In spe-
cific, our detection approach is a novel CNN, which generates

a fixed-size collection of bounding boxes. By applying a non-
maximum suppression (NMS) operation to them, we select
ROI proposals according to the scores of class instances in
those boxes.

In the proposed semantic-aware real-time correlation
tracking (SARCT) framework, ResNet-50 with FPN is con-
sidered as the default backbone to obtain different layer
features. Specifically, the output of each stage’s last resid-
ual block in ResNet is used, and the resulting features
{conv3, conv4, conv5} are denoted as {C3, C4, C5}, which
have strides of {8, 16,32} pixels, respectively. Similar to
RetinaNet [34], feature pyramid levels P3—P7 have been
applied in this framework, in which P3-P5 are obtained from
the output of the corresponding ResNet residual stage using
top-down and lateral connections. The P6 and P7 levels are
created by simply applying stride 2 and stride 4 with max-
pooling to C5. The feature dimensionality is fixed as 256 in
this work to ensure that all levels of the pyramid are able to
share the same classifier.

In the implementation, the prediction head is constructed
with a 3 x 3 convolutional layer followed by two siblings
3 x 3 convolutions to carry out the classification and bound-
ing box regression. A head of the identical structure (3 x 3
conv and two siblings 3 x 3 convs) is attached to each
level on the generated feature pyramid. Anchors represent-
ing a group of reference boxes are defined of various scales
and aspect ratios to deal with the targets with different
shapes. Depending on them, it is convenient to perform the
object/nonobject criterion and target box regression. It is worth
mentioning that the anchors are specified to have areas of
{24, 48, 96, 192, 384} pixels on {P3, P4, PS5, P6, P7} in the
proposed framework, respectively. The anchors’ multiple ratios
are set to {1 :2,1:1,2: 1} at each level.

Having obtained the ROI proposals from the detector,
the original response map is refined to becoming a reliable
response map R,. By retaining the response in the limited
ROI proposal areas, the reliable response map suppresses the
background disturbance and improves the performance of the
resulting aerial tracking algorithm.

C. Semantic Segmentation

To achieve a more precise location on aerial videos, an adap-
tive semantic segmentation module is proposed and drawn
into our framework. It digs out the boundaries’ information
of object proposals flexibly through FCN-based semantic
templates generation and semantic coefficient prediction.
Compared with traditional semantic segmentation models that
are completely dependent on the offline training, our method
can learn abundant feature representation in offline training
and then adapt to appearance changes of the target on aerial
videos through online updating.
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TABLE 11
STRUCTURE OF THE INTEGRATED PREDICTION HEAD (N, REPRESENTS
THE NUMBER OF ANCHORS)

Layerl 256 X conv3
Box Regression  Classification Semantic coefficient
branch branch Prediction branch
Layer2

4 x Ng X convd ¢ X Ng X convd kX Ng X conv3

Semantic Template Generation: The semantic template gen-
eration branch predicts a set of k (k = 32) pixel-level semantic
templates for an input patch. Table I shows the structure of
this branch, in which conv3 and conv1 denote the convolution
kernel with size 3 x 3 and 1 x 1, respectively. It is implemented
by constructing a subnet similar to FCN [27] whose last layer
has k channels and attaching it to a backbone feature layer.
The deepest features in FPN are used and upsampled to one
fourth the dimensionality of the input image to produce more
robust masks and hence, to enhance the performance on small
objects.

For the cropped RO, its semantic templates D are extracted
by this branch and vectorized as described above. Formally,
this can be denoted by

D= [dl, da, ""dk] e Rkx(mxn) @)

where k is the number of templates corresponding to each
channel of the branch output, and m and n represent the height
and width of the semantic templates, respectively.

Semantic Coefficient Prediction: In the proposed frame-
work, an offline-training semantic coefficient prediction branch
is added to the prediction head to predict k£ semantic
coefficients, which shares the first convolutional layer with
the detection module. The k mask coefficients are calculated
regarding each template from FCN. Thus, as demonstrated in
Table II, instead of producing 4 + ¢ coefficients per anchor in
the prediction head, 4 4+ ¢ + k are produced.

For the output semantic coefficients C, fanh is applied to
produce more stable outputs while considering no nonlinearity

C= tan([cl, cay ., CNH]) € RNaxk, 5)
Semantic masks M can, therefore, be obtained by

_ (max(C x D, 1),
~ \min(C x D, 0),

if Pix,y > 0.5

Ny Xmxn
if piy < 0.5) €R ©)

where p;yy is the value in matrix C x D, which is corre-
sponding to the semantic information in anchor i at location
(x, ).

Among all N, semantic masks, the one corresponding to the
anchor with the highest score from the classification branch is
considered as the ROI mask Rror. Fused Rror with the reliable
response map R, the final semantic-aware response map R is
constructed

R = (1 = p)R, + pRro1 (N

where p denotes the semantic weight.

From the above, the new target state can be inferred by
finding out the peak of the sematic-aware response map R. By
introducing pixel-level semantic information adaptively and

inhibiting the background noise, the result from the detec-
tion step can be further refined. A target template with a
precise mask rather than a simple bounding box contributes to
achieving a better tracking performance.

D. Model Offline Training and Templates Online Updating

Model Offline Training: In the present work, the smooth-L1
loss Ljoc and softmax cross-entropy loss L5 are utilized to
train box regression and class prediction branch, respectively.

Specifically, for object class u

Z smoothy, (P;‘ — Vi) ®)
ie{x,y,w,h}

Lioc(P", V) =

where P is the bounding box regression result and V is the
ground truth, and

smoothy (x) — 0.5x%, if jxl <1
LAY =) 1x] — 0.5, otherwise
Lcis(Score, u) = —log Score,, 9)

in which Score, denotes a discrete probability distribution
from network output.

For the semantic segmentation module, given the labeled
ground truth G, the proposed semantic templates D and
coefficients C can be optimized by minimizing the cross-
entropy loss Lge, between S labels and N, candidates from
prediction head

S Ng
Lyeg(C,D,G) = = > > Gjlog(Cy x Dy).
j=1i=1
Notably, the DCF module of the proposed SARCT does not
participate in any training process, while the object detection
and semantic segmentation modules are simultaneously trained
on the instance segmentation part of the COCO dataset [35].
The entire offline optimization process aims to minimize the
sum of the three branches’ loss functions.
Templates Online Updating: The semantic templates are
updated online with learning rate 5

(10)

D, =({1—-n)D,_;+nD, an

where ¢ and ¢t — 1 denote the #-th and (r — 1)th frame,
respectively.

IV. EXPERIMENTAL EVALUATION

In this section, the proposed SARCT framework is sys-
tematically evaluated on three UAV tracking benchmarks:
1) UAVDT [1]; 2) UAV123 [9]; and 3) DTB [23], which totally
include 243 challenging image sequences altogether involving
over 90000 frames. Following the protocol used in recently
published methods [2], [7], [22], the results in one-pass evalu-
ation (OPE) [36] are reported. The evaluation is based on two
performance metrics: 1) success plot and 2) precision plot. The
success plot illustrates the ratios of successful frames over the
range of thresholds [0, 1], where the area under the curve
(AUQ) is included. The precision plot shows the average dis-
tance precision (DP) along with a range of thresholds, and the
score of average DP at 20 pixels per tracker is given.
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Fig. 2. Success and precision plots of baselines, their SARCT and RCT counterparts on (a) UAV123, (b) UAVDT, and (c) DTB datasets, with precision and

AUC explicitly marked in plots.

A. Implementation Details

The SARCT framework is implemented in Python 3.6 under
the Pytorch1.0 platform. The value of p in (7) is set to 0.05 and
the learning rate 7 in (11) to 0.90. In the training process, the
image is resized to 550 x 550 and the network is trained on the
COCO dataset for 8 x 107 epochs with SGD and a batch size
of 8. The learning rate of training is initialized to 1x 1073 and
divided by 10 every 2 x 103 epochs, using a weight decay of
5 x 107* and a momentum of 0.90. All experiments of each
tracker are performed on a workstation with an Intel Xeon
E5-2699 processor (2.30 GHz) and an NVIDIA 1080ti GPU.

B. Comparison With DCF Baselines

The present work is concerned with an aerial tracking
framework that can adapt to almost all correlation-based track-
ing algorithms. To reflect this generality, four representative
DCEF trackers are chosen to conduct the experimental inves-
tigation: 1) KCF [16]; 2) DSST [17]; 3) Staple [18]; and
4) ECO [22], serving as baselines of the framework to show its
efficiency and stability. Among them, KCF is the most clas-
sic kernelized correlation tracker with HOG features. DSST
learns a separate scale correlation filter for precise object-
scale prediction in tracking. Staple combines hog and color
features in the step of feature extraction to achieve better
performance. Utilizing deep features extracted by CNN, ECO
possesses excellent tracking performance on a number of pop-
ular benchmarks with the assistance of factorized convolution
operators. Furthermore, we also compare the proposed aerial
tracking framework without a semantic segmentation module
(abbreviated as RCT) to demonstrate the effect of semantic
information.

Fig. 2 shows the results of all baseline trackers and those
for their SARCT and RCT counterparts on three datasets. All

SARCT trackers improve their respective baselines to cer-
tain extents. The gains over the four DCF baselines regarding
the success and precision rates range from {1.5%, 1.3%} to
{4.4%, 9.8%} on the three datasets. In particular, SARCT
trackers significantly outperform their corresponding DCF
baselines with traditional features (e.g., DSST, Staple, and
KCF) in terms of both AUC and precision. Furthermore, the
proposed framework also attains better performance in com-
parison with the modern DCF tracking algorithm using deep
features (e.g., ECO). What cannot be ignored is that these
improvements are achieved at a much lower computational
cost, thereby potentially facilitating real-time applications for
aerial tracking.

An ablative experiment conducted demonstrates that both
detection and segmentation help improve the performance of
each algorithm (though to a different extent) with semantic
information contributing more to algorithm performance in
most cases. It indicates the precise target mask information
provided by the semantic segmentation module is more robust
to background clutter (BC).

C. Comparison With State-of-the-Art Trackers

1) Experimental Results on the DTB Dataset: As a distinct
approach, the implementation ECO_SARCT of the SARCT
framework is taken for this comparative study, against state-of-
the-art algorithms on the DTB dataset. The compared tracking
methods are ARCF [2], TADT [37], LDES [38], MCCT [39],
STRCEF [40], SiamFC-tri [41], CSRDCF [42], and BACF [43].
Among them, BACF, ARCF, CSRDCF, LDES, MCCT, and
STRCF are DCF trackers, while SiamFC-tri and TADT are
based on the end-to-end CNN.

Overall Comparison: Fig. 3 shows the experimental results
of ECO_SARCT and the aforementioned state-of-the-art meth-
ods. The proposed tracker, employing an efficient detection
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TABLE III
AVERAGE NUMBER OF FPS OF SARCT METHODS AND DCF BASELINES ON THE DTB DATASET

Method ECO ECO_SARCT  Staple Staple_SARCT DSST DSST_SARCT KCF KCF_SARCT
Speed(FPS) 28.3 24.8 46.4 27.6 30.6 26.5 59.5 29.2
GPU Yes Yes No Yes No Yes No Yes
TABLE IV
AVERAGE NUMBER OF FPS OF STATE-OF-THE-ART METHODS ON THE DTB DATASET

Method ARCF LEDS MCCT STRCF SiamFC-tir TADT BACF CSRDCF

Speed(FPS) 8.5 72 1.1 20.3 67.1 44.6 10.8 6.4

GPU No No Yes No Yes Yes No No
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Fig. 3. Success and precision plots of ECO_SARCT and other state-of-the-art
methods on the DTB dataset.

and semantic segmentation strategy for target estimation,
achieves the best results on AUC and precision with scores
of 56.6% and 83.1%, respectively. The proposed method sig-
nificantly outperforms the second-best method SiamFC-tri or
MCCT with multiple deep features by approximately 8% in
AUC and 10% in precision on the DTB dataset. Compared
to the aerial tracking method ARCF, ECO_SARCT still gains
9.7% and 14.6% on AUC and precision, respectively.
Attribute-Based Comparison: In this experimentation,
attribute-based analyses of the SARCT framework on the DTB
dataset are performed. Apart from the aspect ratio change
(ARC) and BC, these aerial sequences also suffer from further

difficulties, such as deformation (DEF), fast camera motion
(FCM), in-plane rotation (IPR), motion blur (MB), out-of-
plane rotation (OPR), occlusion (OCC), out of view (OV),
similar object around (SOA), and scale variation (SV). Thus,
the experiments almost cover all typical challenges involved in
real-world aerial tracking problems. The success and precision
plots on 11 representative attributes are demonstrated in Figs. 4
and 5. ECO_SARCT has performed favorably against other
state-of-the-art trackers in all attributes defined, which fully
demonstrates the effectiveness of the SARCT framework.

Speed Analysis: Tables III and IV illustrate the running
speeds of SARCT methods, DCF baselines, and other state-
of-the-art algorithms. Obviously, the proposed SARCT frame-
work (which incorporates the merits of the DCF-based tracker
and efficient semantic information) operates at about 25-30
FPS on a single GPU, meeting the real-time requirement.

2) Experimental Results on UAVI23 and UAVDT Datasets:
For verifying the robustness of the SARCT framework on
aerial tracking task more comprehensively, we have performed
another group of tests on UAV123 and UAVDT datasets.
The comparing algorithms are the same as what has been
experimented on the DTB dataset. As shown in Fig. 6, the
proposed ECO_SARCT tracker has outperformed all the com-
pared trackers based on DCF or the end-to-end CNNs on the
UAV 123 dataset. More specifically, ECO_SARCT (54.1%) has
an advantage of 2.6% over the second-best tracker TADT
(51.5%) in AUC, as well as an advantage of 4.4% and
4.9% over the second (MCCT, 73.2%) and third-best tracker
(TADT, 72.7%), respectively, in terms of precision. On the
UAVDT dataset, the proposed SARCT tracker (74.1%) also
achieves the best performance on precision, followed by ARCF
(74.0%), SiamFC-tri (73.9%), and LDES (73.9%). In addi-
tion, SiamFC-tri (47.8%) is closely followed by ECO_SARCT
(45.1%) and Staple_SARCT (44.6%), in terms of AUC.

D. Qualitative Evaluations

To qualitatively compare the performance of the proposed
method, Fig. 7 shows the tracking results of two baselines
(ECO and Staple), their SARCT counterparts, and DCF-based
aerial tracker ARCF on different aerial sequences from the
typical aerial tracking datasets. Several screenshots undergoing
various challenges are shown in Fig. 7, from top-down are
from sequences BMX4, S0103, and birdl, demonstrating the
robustness of our algorithm in complex scenarios.
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Fig. 4. Attribute-based evaluation. Success plots on 11 attributes-based comparison between ECO_SARCT and state-of-the-art trackers on the DTB dataset.
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Fig. 5. Attribute-based evaluation. Precision plots on 11 attributes-based comparison between ECO_SARCT and state-of-the-art trackers on the DTB dataset.

Different extents of SVs exist on these sequences. The detection and semantic segmentation modules, the proposed
proposed ECO_SARCT predicts both the scale and position Staple_SARCT keeps tracking the biker for a long time while
of the target accurately, even for the target that experi- Staple lost target very early. According to these results on
ences significant appearance and scale changes on sequences challenging sequence birdl, almost all other algorithms fail
BMX4 and bird1. Fig. 7(a) illustrates that benefiting from the to locate the target because of its deformation, fast motion,
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Fig. 6. Success and precision plots of two SARCT trackers and state-of-the-art methods on (a) UAV123 and (b) UAVDT datasets.

MB, low resolution, and out of view, expects the proposed
ECO_SARCT. It is also observed that our ECO_SARCT has
the ability to track the targets on sequences with full or partial
occlusions (S0103) consistently. Specifically, ECO_SARCT
manages to redetect the target while the other compared
methods failed, including the aberrance repressed aerial
tracker ARCEF. Taking the advantage of semantic information,
the proposed approach can locate the target even it has
suffered from serious occlusion caused by the trees, and
therefore outperform other state-of-the-art trackers. Although
Staple_SARCT is also implemented under the proposed frame-
work, it is not able to keep tracking the target throughout the
sequence S0103, which proves that the selection of baseline
affects the performance of the proposed framework to some
extent. Implementing our framework on a more robust baseline
may result in higher tracking accuracy.

E. Evaluation on Response Map Confidence

To a large extent, the peak fraction and the volatility level
of the response map reflect the confidence level of the track-
ing outputs. If the tracking output perfectly matches to the

real target location and scale, the desired response map should
only own an obvious peak and should be slippery in all other
regions. The more obvious the correlation peaks are, the better
the location precision is. Otherwise, the response map might
fluctuate violently [44]. To evaluate the performance from this
aspect, a novel criterion called average peak to correlation
energy (APCE) has been proposed in LMCF [44], defined by

|Fmax - min|2

mean(zw’h(Fw,h - Fmin)z) .

Following this work, the effect of the proposed SARCT
framework is investigated regarding the APCE difference
between the tracking performance of ECO_SARCT and that
of ECO. From Fig. 7(a), it can be observed that although
ECO and ECO_SARCT both successfully track the target
during this period, the proposed approach provides a more
accurate bounding box. Corresponding to this, the APCE
of ECO_SARCT tracker on the sequence BMX4, shown in
Fig. 8(a), has been significantly improved in comparison to the
original ECO. This indicates that the response map resulting
from the ECO_SARCT is of higher confidence.

APCE =

(12)
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Fig. 8. Response map confidence evaluation of ECO_SARCT and ECO, com-
pared on sequences (a) BMX4 and (b) S0103 taken from DTB and UAVDT
datasets.

As shown in Figs. 7(b) and 8(b), when the target exhibits
distinct appearance changes due to causes, such as sudden SV
and partial or full occlusion, the proposed approach retains
robust tracking while ECO loses target in the very beginning.

As such, the APCE of ECO may be higher than ECO_SARCT
in the first 160 frames, but it quickly drops down to a quite
low value.

V. CONCLUSION

In this article, an SARCT framework has been proposed for
UAV object tracking. SARCT is able to obtain accurate object
locations with the assistance of an object detection proce-
dure. By further introducing a semantic segmentation module
to learn class-agnostic semantic information, SARCT adap-
tively reduces the background interference and alleviates the
model drift problem suffered by the DCF baselines. Systematic
evaluations have been carried out on three popular tracking
benchmarks captured by UAVs. The results have demonstrated
that SARCT achieves a significant improvement over vari-
ous basic correlation filters while exhibiting at least equal
performance to the state-of-the-art approaches, in terms of
precision and success rate. Moreover, its speed can satisfy the
real-time requirement for practical applications.

In the proposed framework, precise pixel-level semantic
information is extracted from an image block under the consid-
eration of computational burden. If the semantic information
of an entire frame can be mined, abundant knowledge of the
scenario categories and characteristics in the aerial scene of
interest may be acquired. In so doing, instead of just comput-
ing the positions and tracks of a target, the target movement
in aerial scenes may be better understood under a multi-
task framework consisting of semantic-aware object tracking
and scene interpretation. Furthermore, the proposed SARCT
may achieve performance enhancement by introducing more
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advanced detection and segmentation techniques into its basic
framework. The experimental verification of this conjecture
remains active research.
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