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Highlight Every Step: Knowledge Distillation
via Collaborative Teaching

Haoran Zhao, Xin Sun, Junyu Dong, Changrui Chen and Zihe Dong

Abstract—High storage and computational costs obstruct deep
neural networks to be deployed on resource-constrained devices.
Knowledge distillation aims to train a compact student network
by transferring knowledge from a larger pre-trained teacher
model. However, most existing methods on knowledge distillation
ignore the valuable information among training process asso-
ciated with training results. In this paper, we provide a new
Collaborative Teaching Knowledge Distillation (CTKD) strategy
which employs two special teachers. Specifically, one teacher
trained from scratch (i.e., scratch teacher) assists the student
step by step using its temporary outputs. It forces the student to
approach the optimal path towards the final logits with high
accuracy. The other pre-trained teacher (i.e., expert teacher)
guides the student to focus on a critical region which is more
useful for the task. The combination of the knowledge from
two special teachers can significantly improve the performance
of the student network in knowledge distillation. The results
of experiments on CIFAR-10, CIFAR-100, SVHN and Tiny
ImageNet datasets verify that the proposed knowledge distillation
method is efficient and achieves state-of-the-art performance.

Index Terms—Neural Networks Compression, Knowledge Dis-
tillation, Computer Vision, Deep Learning.

I. INTRODUCTION

RECENTLY, deep neural networks achieved superior per-
formance in a variety of applications such as computer

vision [1][2][3][4] and natural language processing [5][6].
However, along with high-performance, the deep neural net-
work’s architecture becomes much deeper and wider which
requires a high cost of computation and memory in inference.
It is a great burden to deploy these models on edge-computing
systems such as embedded devices and mobile-phones. There-
fore, many methods [7][8][9][10][11] are proposed to reduce
the deep neural network’s computational complexity and high
storage. Some lightweight networks like Inception [12], Mo-
bileNet [13], ShuffleNet [14], SqueezeNet [15] and Condense-
Net [16] have been proposed to reduce the network size
as much as possible under the condition of keeping a high
recognition accuracy. All the above mentioned methods focus
on physically reducing internal redundancy of the model to
obtain a shallow and thin architecture. Nevertheless, how to
train the reduced network with high performance is yet an
unresolved issue.
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Fig. 1. Illustration of our collaborative teaching knowledge distillation
(CTKD) strategy. We illustrate the optimization process of student network
(green ball) under the collaborative guidance of scratch teacher (red ball) and
expert teacher (black ball). The red and green line represent the optimization
path of scratch teacher and student network. And the expert teacher has
already reached the local optimum. The student network starts the optimization
process with scratch teacher and expert teacher.

It is therefore critical to effectively train a compact neural
network, and this research issue attracts more and more
attention [17][18], of which knowledge distillation is con-
sidered to be able to provide a practical way. Generally
speaking, the distilling technique using the teacher-student
strategy commonly trains a compact and shallow student
network under the guidance of a complicated large teacher
network. It is an effective approach to produce a compact
neural network with performance close to the complicated
teacher network. Once trained, this compact neural network
can be directly deployed on resource-constrained devices.
Knowledge Distillation (KD) [19] uses a pre-trained teacher’s
soften outputs as dark knowledge to supervise the training
process of student network. It assumes the knowledge as a
learned mapping from inputs to outputs, and transfers the
knowledge by training the student with the teacher’s out-
puts as targets. The hint-based training approach [20] and
attention transfer [21] are devised to transfer the knowledge
of intermediate layers from the teacher network to student
network. Moreover, these approaches based on the teacher-
student strategy can be combined with any physical methods.
For example, network quantization can be combined with
knowledge distillation [22] to obtain a low-precision student
network with high performance. Despite the very promising
results, current methods only utilize different forms of knowl-
edge limited in the pre-trained teacher network which may
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ignore the valuable knowledge in the training process of the
teacher network.

In this paper, we optimize the student network with the
distilled knowledge from both a scratch teacher and an expert
teacher. As illustrated in Figure 1, the expert teacher (black
ball) has already reached the local optimum and the scratch
teacher (red ball) continuously trains with the student (green
ball) from scratch. In the process of optimization, the scratch
teacher pulls the student towards its optimal path (red arrow),
and the expert teacher guides the student to focus on the key
region which is more useful for the tasks (black arrow). In such
collaborative teaching, the student reaches the local optimum
with performance close to the teachers. Our motivation is that
the scratch teacher and expert teacher can provide different
supervisory information which can be fully utilized through
collaborative training. Namely, we use the scratch teacher to
jointly train with the student network in the whole training
process. Due to the strong ability of the scratch teacher, it can
guide the student towards the final logits with high accuracy
step by step along the optimization path. However, the scratch
teacher also wastes a large number of steps to optimize the
path where the expert teacher has gone. This is the reason that
we use the additional expert teacher to provide intermediate-
level hints for the training of the student network. As shown
in Figure 2, the scratch teacher provides temporary logits to
supervise the whole training process of the student in the pale
green rectangular frame. Meanwhile, the pre-trained teacher
provides attention maps from the middle of DNNs to constrain
lower layers of the student. In such manner, the compact
student network can produce performance close to the teacher.

We verify our proposed Collaborative Teaching Knowl-
edge Distillation (CTKD) method on CIFAR-10, CIFAR-
100, SVHN and Tiny ImageNet datasets. The experimental
results show that our method effectively improves the student’s
performance in knowledge distillation. Our contributions in
this paper are summarized as follows:

• We propose a novel teacher-student knowledge distilla-
tion strategy using two teachers; it combines both the path
knowledge towards the final logits with high accuracy
and the intermediate-level attention knowledge for lower
layers. In addition to the final outputs from the pre-trained
teacher, the proposed architecture can continuously super-
vise the student network.

• We analyze the importance of both knowledge from the
two teachers, and we investigate the effect of attention
maps distilled from a deep teacher network on the small
student network.

• We verify our method on several public datasets. Exper-
iments show that our method can significantly improve
the performance of student networks in knowledge dis-
tillation.

The rest of this paper is organized as follows. Related
work is reviewed in Part II. And we present the proposed
knowledge distillation architecture using two teachers in Part
III. Experimental results are presented in Part IV. Finally, Part
V concludes this paper.

II. RELATED WORK

Deep neural networks have demonstrated extraordinary per-
formance on various computer vision and machine learn-
ing tasks [23][24][25]. Traditional handcrafted features [26]
for computer vision tasks are replaced by deep neural
networks which have strong ability at fitting the com-
plicated feature-space distributions. Recently, deep neural
networks become predominant in the large-scale competi-
tions [27][28][29]. Researchers design much deeper and wider
networks [30][31][32] to further improve classification accu-
racy, and also tend to discover network architectures automat-
ically [33][34][35]. Powered by the powerful computational
resources of the work stations and GPU clusters, it is possible
to train and deploy such complicated deep networks. However,
the resource-constrained devices are almost impossible to
launch such complicated CNNs due to the computational
complexity and high storage. For instance, over 232MB of
memory and over 7.24 × 108 multiplications are demanded
for processing one image using AlexNet [36], which cannot
be tolerated by these devices [37]. Therefore, compact deep
models with similar accuracies are urgently expected.

Indeed, training phase of the deep neural networks is usually
performed on CPU and/or GPU clusters. The challenging we
really need to face is the deployment of trained models on in-
ference systems such as resource constrained devices. During
the past few years, many researchers have been studying how
to deploy these deep neural networks in practice [17][38][39].
The number of parameters usually represents the model com-
plexity, but not all parameters contribute to the performance
in inference stage [40][41][42]. Model compression techniques
[43][44][45][46] have emerged to obtain a small model which
retains the accuracy of a large one. In the following, we will
briefly describe the most related works on network model
compression and acceleration.

DNNs compression and acceleration are important to the
real-time applications which has gained increasing interests.
These methods can be roughly divided into parameter pruning,
low-rank decomposition and knowledge distillation. Parameter
pruning [10][47][48] removes redundant weights from the
pre-trained network model, which can keep the accuracy of
the larger model if the prune ratio is set properly. Recently,
channel pruning, which is better compatibility with off-the-
shelf computing libraries, has become increasingly popular.
Luo et al. [49] propose to use the statistics of next layer to
select the channel to be pruned. However, parameter prun-
ing approaches require many iterations to converge and we
also need to manually set the pruning threshold. Low-rank
decomposition [44][50][51] decomposes the original convo-
lution kernel in DNNs model by using matrix decomposition
technique. But such kind of methods increase the layers of the
model, and are easy to cause the vanishing gradient during
the training process. Both parameter pruning and low-rank
decomposition usually lead to large accuracy drops, thus fine-
tuning is required to alleviate those drops [52][53].

Besides, the reinforcement learning algorithm can be used
for designing networks such as Neural Architecture Search
[54] and MetaQNN [55]. The network itself could search the
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Fig. 2. Illustration of the architecture. The scratch teacher collaboratively trains with the student network from scratch. We use standard cross-entropy loss for
scratch teacher network and student network to learn the ground truth respectively. Moreover, the distillation loss supervises the training of student network
by every step. The expert teacher (pre-trained) guides the student network to focus on critical region through intermediate-level attention maps.

efficient structure without manually setting. However, these
models only focus on high performance rather than the size
of model.

Knowledge distillation methods are used to reduce the
computational cost in test stage. These approaches usually
utilize the teacher-student strategy, where a large pre-trained
teacher network supervises the training of a small student
network, for facilitating the deployment at test time. Bucilua
et al. [56] pioneer these series of methods in model com-
pression. They attempt to transfer the knowledge from an
ensemble of heterogeneous models to a small model. Ba et
al. [57] extend this method through forcing the wider and
shallower student network to mimic the teacher network’s
logits before the softmax. Hinton et al. [19] firstly provide
the concept of knowledge distillation by introducing a hyper-
parameter temperature to divide the logits before softmax. The
student network is forced to imitate the distribution of teacher
network’s soft targets which contains more information than
one-hot targets. In other words, the student’s fitting goal is no
longer the one-hot vector (ground-truth) which is too strict,
but learns towards the teacher’s soften vector which most
often with correct prediction. Besides that, researchers attempt
to get more supervised information from teacher network.
Romero et al. [20] introduces a new metric of intermediate
features between teacher and student networks. Zagoruyko et
al. [21] uses attention features from intermediate layers as
the supervised information. Yim et al. [58] proposes a new
method using gram matrix to fit the relationship between
layers and students imitate the process of solving problems
by teachers. Polino et al. [59] and Mishra et al. [22] reduce

bit precision of weights and activations by combining KD
and network quantization. Xu et al. [60] use a conditional
adversarial network to learn the loss function for KD. A noise-
based regularizer has been proposed for KD in [61] and Lopes
et al. [62] use the teacher model to provide metadata for data-
free KD.

Recently, researchers note that it is effective in improving
a teacher model itself by self-distillation [63] [64], namely, a
few models with the same architecture are trained one by one.
The deep networks can be optimized in many generations,
in which the next model is under the supervision of the
previous one. Moreover, knowledge distillation also has been
applied to other applications , such as object detection [65],
pedestrian re-identification [66], semantic segmentation [67].
There also exists works that unify KD with privileged infor-
mation [68][69][70] as generalized distillation where a teacher
is pre-trained by taking as input privileged information.

There are also some theoretical and systematic studies
about how and why knowledge distillation improves neural
network training. Furlanello et al. [64] analyze the success
of knowledge distillation through gradients on the soft-target
part which acts as sampling weight based on the teacher’s
confidence in its maximum value. Zhang et al. [71] investigate
knowledge distillation via the posterior entropy and prove that
soft-targets is a much more informed choice than blind entropy
regularization.

All the above methods use only one single teacher to provide
supervised information. Recently, Shan et al. [72] attempt
to combine the knowledge of multiple teacher networks in
the intermediate representations. And Shen et al. [73] aim
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at learning a compact student model capable of handing the
’super’ task from multiple teachers. Mishra et al. [22] propose
a new perspective view to combine network quantization with
knowledge distillation. They jointly train a teacher network
and a student from scratch using knowledge distillation. Zhou
et al. [74] also provide a similar scheme where the student
network and the teacher network share the lower layers and
train simultaneously. The previous study [74] differs from ours
in that their one-stage method sharing lower layers between
teacher and student network and without using additional
guidance from pre-trained teacher network, while our two-
stage architecture combine intermediate-level features from
teacher network with training process from teacher. It means
that both the path knowledge towards the final logits with
high accuracy and the intermediate-level attention knowledge
for lower layers are used in the training process.

III. METHOD

The core idea of our method is to jointly train the student
network using two teachers, i.e., one expert teacher trained
in advance provides attention maps as the intermediate-level
supervised information, the other scratch teacher with random
initialization provides optimal path knowledge which towards
final logits with high accuracy.

A. Motivation

Existing knowledge distillation methods [19] let the student
network simply mimic the final outputs of the teacher network.
However, in the case of the DNNs, there are many ways
to generate the final outputs. So the student network might
go around and close to the final targets in various ways. In
this sense, mimicking the outputs of the teacher network can
be a hard constraint for the student network. We propose
the Collaborative Teaching Knowledge Distillation (CTKD)
method to remedy such situation.

Our motivation is illustrated in Figure 1 which trains the
student network using two teachers, i.e., expert teacher (black
ball) and scratch teacher (red ball). Note that, the three balls
start training from the same point due to the same seed. The
only difference is that the black ball which represents the
expert teacher reaches the local optimum along the red curve
in advance. Then we begin to train the student network under
the two teachers’ guidance and the green curve describes its
optimization path. Let us take one point from the student’s
optimization path to explain. The green ball has been pulled by
two forces from the scratch teacher (in red arrow) and expert
teacher (in black arrow) respectively. The scratch teacher with
strong ability could pull the student towards its path. And
the expert teacher pulls the student to focus on the critical
region to achieve the final targets. Due to the scratch teacher
penalizing the student step by step, the student network goes
along the path close to the scratch teacher. As shown in
Figure 3, though the different structure of student and teacher
network, they focus on the approximate region to classify the
dog. But the deep teacher network focuses more on critical
region (the whole head of dog) for the task than the shallow
model. Thus we use the attention mechanism from expert

（a） （b） （c）

Fig. 3. Visualization of top activation attention maps of WRN-16-1 (b) and
WRN-40-1 (c). The deep model focuses on more critical region than the
shallow one due to its powerful ability.

teacher to provides the key hints which could avoid detours.
In such manner, the student gets high performance close to
the teachers.

As we can see from Figure 2, we prepare the expert
teacher using the normal training process in advance which
has been described in the blue rectangular. Then we start
to feed data (image batch) to our network and the Xt−1,
Xt, Xt+1 means three consecutive moments in our training
process. The scratch teacher and student use the standard cross
entropy loss between softmax outputs and ground truth label
respectively. Furthermore, the scratch teacher penalizes the
student using L2 loss between its temporary logits and the
student’s logits at every iteration. Note that, only the student’s
parameters have been updated during the back-propagation of
L2 loss term. Because the scratch teacher doesn’t need to
mimic the outputs of student. However, it is difficult to train
a deeper student network using knowledge distillation without
introducing the intermediate constraint. So we let the expert
teacher provide intermediate constraint using the attention loss.
It could constrain the student to focus on the critical region
where the expert teacher concentrates on. To train the student
network, we optimize the total loss function in Eq. 5. We will
detail the objective function in next section.

B. Formulation

Deep neural networks can generate features from any layers.
The knowledge distillation technology usually uses different
layer’s features or outputs as knowledge to transfer from
teacher network to student network. The high layer features
are mostly closer to the object parts for performing a specific
task. However, the lower layer features are usually the typical
generic features (i.e., edges and corners). Therefore, we can
take the features generated from the lower parts of the DNNs
as the intermediate hints. All these features contain valuable
dark knowledge which can be transferred to guide student
network’s training process.

Let us respectively denote x and y as the input of the
DNNs and one-hot labels of our architecture. We let PT be
the teacher network’s softmax output as PT = softmax(aT ).
Specifically, PT is obtained by applying softmax function on
the un-normalized log probability values aT . Similarly, the
same image fed to the student network to get the predictions
PS = softmax(aS). In the intermediate layers of the DNN,
we denote the activation tensor A ∈ RC×X×Wwith its
corresponding layer. The pairs of teacher and student attention
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maps are denoted as F (AjT ) and F (AjS) in vectorized form
respectively [21]. And the standard cross entropy is denoted
as H. Hinton et al. [19] extend previous works by training
a compact student network to mimic the output probability
distribution of teacher network. They name this informative
and representative knowledge as dark knowledge. It contains
the relative probabilities of ’incorrect’ classification results
provided by teacher networks. When we perform knowledge
distillation with a temperature parameter τ the student network
will be trained to optimize the following loss function:

LKD(Ws) = H(ytrue, PS) + λH(P τT , P τS ) (1)

Mishra et al. [22] propose a new perspective view to jointly
train a teacher network (full-precision) and a student network
(low-precision) from scratch using knowledge distillation. The
total loss function is as following:

L(x;Wt,Ws) = αH(ytrue, PT )+βH(ytrue, PS)+γH(aT , PS)
(2)

In this case, the teacher and student network both train from
scratch. Moreover, the teacher network would continuously
guide the student network not only with the final trained
logits [22]. A similar idea has been studied in [74] where the
student network and the teacher network share lower layers
and training simultaneously. However, the teacher trained from
scratch may provide incorrect guidance to student network in
the beginning of the training stage. Another fact is that it is
difficult to train a deeper student using knowledge distillation
without introducing the intermediate constraint.

To this end, we propose a new knowledge distillation
method using two teachers. We denote the expert teacher
trained in advance as T1 and the scratch teacher with random
initialization as T2. The T1 provides intermediate constraint
using attention maps [21] from lower layers using the loss
function as following:

L(x;WT1,Ws) =

NL∑
j=1

‖
F (AjS)

‖ F (AjS) ‖2
−

F (AjT1)

‖ F (AjT1) ‖2
‖2 (3)

The F means the activation-based mapping function which
inputs the above 3D tensor A and outputs a spatial attention
map, i.e., a flattened 2D tensor. More specifically, F psum(A) =∑C
i=1 | Ai |p , sum of absolute values raised to the power of

p (where p > 1). And the T2 provides the log probability
values before softmax as constraint from every step, i.e.,
λ ‖ aS − aT2 ‖22. It’s important to note that this constraint
only affects the back propagation of student network to avoid
teacher network closing to student network. When we train
the compact student, we aim to optimize the following loss
function:

L(Ws,WT1,WT2) = H(ytrue, PS) +H(ytrue, PT2) + (4)

λ ‖ aS − aT2 ‖22 +β

NL∑
j=1

‖
F (AjS)

‖ F (AjS) ‖2
−

F (AjT1)

‖ F (AjT1) ‖2
‖2

Algorithm 1 Training with Collaborative Teaching
Input: image data and label data (x, y).
Output: parameters Ws of student model.
Initialize: Ws, WT2 and training hyper-parameters.
Stage 1: Prepare the expert teacher.

1: Repeat:
2: compute H(ytrue, PT1).
3: update WT1 by gradient back-propagation.
4: Until: H(ytrue, PT1) converges.

Stage 2: Training the student collaboratively.
1: Repeat:
2: compute L(Ws,WT1,WT2) by Eq. 5.
3: update Ws,WT2 by gradient back-propagation.
4: Until: L(Ws,WT1,WT2) converges.
5: return Ws

The first part of total loss ensures T and S to train as
original manner independently. In the second part, we denote
the knowledge distillation loss [57] as L2 loss between logits
aS and aT . To optimize the above loss function, the log
probability values aS from the student network is to mimic
the softmax activation aT from the teacher network. So the
student network benefits from the supervisory information
of the teacher network during all the training process. The
complex teacher model with more learning capability can
provide the possible path towards the final target. The last part
from our architecture provides intermediate-level hints from a
pre-trained teacher network.

C. Training procedure

The learning procedure contains two stages of training.
On the first stage, we minimize the cross entropy loss
H(ytrue, PT1) to initialize the parameters of expert teacher
(T1). Then we train the student network using two teachers T1
and T2 simultaneously by optimizing the total loss function
as shown in Eq. 5. The learning procedure is explained in
Algorithm 1.

Our proposed method jointly trains the student network
using two teachers. It is crucial to combine the temporary
outputs from scratch teacher with the intermediate features
from the expert teacher in the whole training process. The
scratch teacher T2 guides the student step by step using the log
probability values before softmax. Due to the powerful learn-
ing capability of scratch teacher, it makes the student close
to the final target following the optimal path. However, only
the supervised information from one single scratch teacher is
not enough. Because the scratch teacher attempts many paths
to find the optimal one. Meanwhile, the student follows it and
pace backwards and forwards. Thus we need the expert teacher
to provide intermediate hints such as attention maps. With the
constraint imposed to intermediate layer, the student can find
the correct path not only quick but also definitely.

We will demonstrate that the student from our knowledge
distillation method gets improved performance in Section IV.
However, one might ask how the scratch teacher affect the
training process of student network? If the scratch teacher
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works, why not only use it to train student network? Or would
other knowledge from the expert teacher be better helpful than
attention knowledge? We attempt to investigate these questions
from both empirical and theoretical aspects in Section IV.

IV. EXPERIMENTS

In this section, we verify the effectiveness of our proposed
CTKD method and investigate the importance of Collaborative
Teaching. Experiments are conducted on several standard
datasets CIFAR-10, CIFAR-100, SVHN and Tiny ImageNet.
We compare our proposed CTKD method with the existing
knowledge distillation methods, including knowledge distil-
lation (KD) [19], Attention Transfer Knowledge Distillation
(ATKD) [21] and Rocket Launching Knowledge Distillation
(RLKD) [74]. We implement the networks with Pytorch and
trains on 1080Ti GPUs. Note that, there are several hyperpa-
rameters in our experiments that need to be consistent. For
the original KD method, we set the temperature factor for
softened softmax to 4 as in [19]. And the β of AT is set to 103

following [21]. Code is available at https://github.com/ouc-
ocean-group/CTKD.

A. Experimental Setup

Network architecture. For all experiments, we employ the
Wide Residual Network (WRN) [75] as our base architecture
for teacher and student network. The WRN stacks the basic
residual blocks [1] as shown in Figure 4 (a) to achieve
state-of-the-art performance. Moreover, it uses the additional
widen factor m to increase the width, which could bring
more representation ability. The wide residual network has a
standard convolutional layer (conv) followed by three groups
of residual blocks, each of size n. Furthermore, the total depth
and widen factor are served as a proxy for the size or flexibility
of the network architecture. In the following sections, the
architecture of Wide Residual Networks (WRN) is denoted
as WRN-d-m [76], where the total depth is d = 6n + 4, n
represents the number of residual blocks and m is the widen
factor used to increase the number of filters in each residual
block. Our teacher network is deep and wide WRN with large
d and m, while student network is shallow and thin WRN with
small d and m. As shown in Figure 4 (b)(c), WRN-40-1 is
our teacher network and student network uses the WRN-16-1.

Implementation Details. We firstly conduct our experi-
ments on the public datasets CIFAR-10 which has 32 × 32
small RGB images. For all experiments, we use minibatches
of size 128 for training. Moreover, we use horizontal flips and
random crops for data augmentations before each minibatch.
The learning rate starts with 0.1 and is reduced by a factor
of 0.2 on epoch 60, 120 and 160 respectively. For CIFAR
dataset, we use stochastic gradient descent with momentum
fixed at 0.9 for 200 epochs. However, we use Adam [77] with
learning rate 0.01 initially and drop the learning rate by 0.2
at epoch 20, 40, 60 for SVHN dataset which is easy to learn.
Furthermore, all networks have batch normalization.

conv

group1
6 bottlenecks

16 filters

Avg-pool

group2
6 bottlenecks

32 filters

group3
6 bottlenecks

64 filters

conv

group1
2 bottlenecks

16 filters

Avg-pool

group2
2 bottlenecks

32 filters

group3
2 bottlenecks

64 filters

(b) WRN-40-1(a) Bottleneck (c) WRN-16-1

CONV(3×3)

CONV(3×3)

BN,ReLU

BN,ReLU

Fig. 4. Structure of wide residual networks. (a) describe the basic residual
blocks which is used in our base architecture. The widen factor m determine
the network’s width and n means the number of bottlenecks in each group.
(b)(c) show a pair of teacher-student network, WRN-40-1 and WRN-16-1.

Fig. 5. (a) the testing accuracy of scratch teacher, student from our knowledge
distillation method and student trains individually. (b) Training loss and testing
accuracy of different knowledge transfer methods on CIFAR-10.

B. CIFAR-10

The CIFAR-10 dataset [78] contains 32 × 32 small RGB
images with 10 classes. It consists of 50K training images with
5K images per class and 10K testing images with 1K images
per class respectively. However, we use the 32 × 32 RGB
images after random crops and horizontal flips for training.
And the original 32× 32 RGB images are used for testing.

We use the deep and wide WRN (e.g. WRN-40-1 and WRN-
40-2) as the teachers network. However, the student network
uses the shallow and thin WRN (e.g. WRN-16-1, WRN-
16-2). Note that, we firstly train the expert teacher network
using the normal training procedure on CIFAR-10 dataset,
which provides 93.43% accuracy for the classification task.
The scratch teacher network and student network are random
initialized. We use the scratch and expert teacher network to
collaboratively supervise the training of student network as
described in Figure1.

From the experimental results in Table I, we can find
our proposed Collaborative Teaching Knowledge Distillation
(CTKD) method improves the generalization ability of stu-
dent network and gets notable improvement compared to the
existing methods. Note that, all the numbers are the results of

https://github.com/ouc-ocean-group/CTKD
https://github.com/ouc-ocean-group/CTKD
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TABLE I
CLASSIFICATION ACCURACY (%) ON CIFAR-10. ACC IS COMPUTED AS MEDIAN OF 5 RUNS WITH DIFFERENT SEED. WE CONDUCT TWO GROUPS OF

EXPERIMENTS, I.E. ONE (LEFT PART) IS A STUDENT (WRN-16-1) WITH PERSONAL TEACHER (WRN-40-1) AND TEACHER (WRN-40-1), ONE (RIGHT
PART) IS A STUDENT (WRN-16-2) WITH PERSONAL TEACHER (WRN-40-2) AND TEACHER (WRN-40-2). BASELINE MEANS THE WRN-16 TRAINS

INDIVIDUALLY. CTKD MEANS THE WRN-16 RESULTS IN OUR CTKD METHOD. TEACHER MEANS WRN-40 TRAINS INDIVIDUALLY IN ADVANCE.
PERSONAL TEACHER MEANS WRN-40 TRAINS FROM SCRATCH WITH STUDENT.

Type Model Params(M) Acc(%) Model Params(M) Acc(%)
Baseline WRN-16-1 0.17 91.28 WRN-16-2 0.69 93.68

KD WRN-16-1 0.17 91.60 WRN-16-2 0.69 93.93
ATKD WRN-16-1 0.17 91.77 WRN-16-2 0.69 94.11
RLKD WRN-16-1 0.17 91.96 WRN-16-2 0.69 94.23
CTKD WRN-16-1 0.17 92.50 WRN-16-2 0.69 94.42

Scratch Teacher WRN-40-1 0.56 93.43 WRN-40-2 2.20 94.70

TABLE II
CLASSIFICATION ACCURACY (%) ON CIFAR-10 (5 RUNS). THE STUDENT

(WRN-16-1) THE RESULTS WITH DIFFERENT COMBINATIONS OF
TEACHERS IN OUR KNOWLEDGE DISTILLATION ARCHITECTURE.

BASELINE MEANS THE WRN-16-1 TRAINS INDIVIDUALLY.

Model Scratch
Teacher

Expert
with AT

Expert
with KD Acc (%)

Baseline – – – 91.28%
KD – – X 91.60%

ATKD – X – 91.77%
RLKD X – – 91.96%

RLKD+KD X – X 92.30%
CTKD X X – 92.50%

our implementation. We implement KD and ATKD according
to [21]. We repeat 5 times with different seed and take the
median of classification accuracy as the final results for all
experiments. We set two pairs of teacher-student, i.e., WRN-
16-1 with WRN-40-1 teacher and WRN-16-2 with WRN-40-
2 teacher. Taking the left part of the table as an example,
we use WRN-16-1 as student network and WRN-40-1 is used
as scratch and expert teacher network. We train the expert
teacher using normal training procedure independently. And it
gets 93.43% accuracy. Furthermore, the student network using
the normal training method shows a 91.28% recognition rate.
Surprisingly, our new architecture of Collaborative Teaching
Knowledge Distillation (CTKD) gets 92.50% accuracy with
1.22% improvement than the independent student. And the
performance of student in our method is close to the teacher
network. Moreover, we compare the performance of the stu-
dent network with existing knowledge distillation method (i.e.,
KD, ATKD, RLKD). And the proposed method with distilled
knowledge clearly performs better than the existing ones.
As shown in Figure 5 (a), the student from our knowledge
distillation method gets significant improvement than it trains
individually (baseline). And we plot the testing accuracy and
training loss curves of all the experiments in Figure 5 (b). It
describes the recognition results of different knowledge trans-
fer methods compared with ours on CIFAR-10 dataset. We can
observe that our CTKD method gets a significant improvement
on final accuracy and outperforms existing methods. It can be
also noticed that our method has a fast convergence speed.
This will be further discussed in the next part with more
comparisons.

The improvement of our CTKD method is attributed to both

TABLE III
CLASSIFICATION ACCURACY(%) ON CIFAR-10 (5 RUNS) WITH

DIFFERENT FORMS OF INTERMEDIATE KNOWLEDGE. CTKD ‡MEANS THE
WRN-16-1 RESULTS INITIALIZED THROUGH TRANSFERRING WEIGHTS

FROM WRN-40-1 FOR LOWER LAYERS.

Intermediate
Knowledge

WRN-16-1
with WRN-40-1

WRN-16-2
with WRN-40-2

FitNet 91.70% 93.98%
CTKD‡ 91.89% 94.20%
CTKD 92.50% 94.42%

the supervised information from the two teachers. We compare
the accuracy of student DNN in our knowledge distillation
architecture with different combination of teacher DNNs. As
shown in Table II, for the generalization ability of student
DNN, the two teachers are equally important and complement
each other. The recognition rates of student network under
the single guidance of scratch teacher is 91.54%. It also gets
91.77% accuracy when we only use the expert teacher’s atten-
tion maps as supervised information in the training process.
Interestingly, the accuracy of student network gets 92.50%
when we collaboratively train it with scratch teacher network
and expert teacher network.

The scratch teacher could provide its temporary outputs
of logits to guide the student towards its optimization path.
To prove this, we train the student network under the simple
guidance of scratch teacher as RLKD [74]. As Figure 6 (a)
shown, the testing accuracy curve of student tightly follows the
scratch teacher’s. However, we can find that the performance
of teacher in 6 (a) has been affected due to the parameters
sharing on lower layers. The performance of teacher network
also limits the student’s results. However, our method which
introduces the expert teacher improves this in Figure 6 (b).

Why we use the attention maps as intermediate knowledge
from the expert teacher network? We expect that the student
could focus on the key region as same as the expert teacher
model in the whole training process. As shown in Figure 3,
we visualize the top-level activation attention maps of pre-
trained WRN-40-1 and WRN-16-1 on ImageNet dataset using
the visualization technique in [79]. We can observe that the
attention maps from different depth models focus on different
region. Specifically, the deeper teacher model with powerful
ability focuses on the pivotal region in order to classify the
input image, however the shallow student model focuses on a
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TABLE IV
CLASSIFICATION ACCURACY (%) ON SVHN AND CIFAR-100 DATASETS (5 RUNS). BASELINE MEANS THE WRN-16 TRAINS INDIVIDUALLY. CTKD

MEANS THE WRN-16 RESULTS IN OUR METHOD.

Dataset Model(S/T) Baseline KD ATKD RLKD CTKD Teacher

SVHN WRN-16-1(0.17M)
WRN-40-1(0.56M) 94.48 94.59 94.91 95.77 95.83 95.89

CIFAR-100 WRN-16-2(0.69M)
WRN-40-2(2.20M) 72.27 72.54 72.98 73.20 74.70 75.42

Fig. 6. (a) testing accuracy and loss of the teacher and student network in
[74]. (b) testing accuracy and loss of the scratch teacher and student network
in our method.

Fig. 7. The training loss and testing accuracy of different knowledge
distillation approaches on CIFAR-100 dataset.

wider area. Thus we make the student network to mimic the
attention maps from the expert teacher network. In the training
process, the student network learns to focus on the key region
under the guidance of expert teacher using the attention maps.

To demonstrate the effectiveness of attention mechanism in
our collaborative teaching architecture, we transfer different
forms of intermediate knowledge from the expert teacher to
student network. Fitnet [20] provides a kind of intermediate
supervised knowledge, i.e., the features maps from the middle
layers of DNNs. Another form of intermediate knowledge can
be the weights transferred from the teacher network for the
student network, due to the same architecture in both teacher
and student model. But these supervised information may be
a hard constraint for the student network. Table III shows
the accuracy of student network using different intermediate
knowledge transferred from the middle outputs of the expert

teacher network in our architecture. The first row means
the accuracy of student network when expert teacher using
the intermediate knowledge in FitNet [20]. As shown, its
performance is slightly better than the individual one’s. And
the second row shows the student network which directly
transferring weights from the expert teacher for initializing
also gets slightly improvements. The student network from
our proposed knowledge distillation method in the last row
gets best performance. Because the attention maps just hint the
student network to focus on the key region instead of imposing
hard constraint for the lower layers.

C. CIFAR-100 and SVHN

In this section, we verify the effectiveness of our proposed
method through conducting classification task on CIFAR-100
and SVHN dataset.

The CIAR-100 dataset [78] contains 50K training images
and 10K testing images. However, it contains 100 classes
which is more challenge than CIFAR-10. Due to more com-
plicated classification tasks, we set the width factor to 2 for
our WRN architecture. Thus we use WRN-40-2 as the teacher
network and WRN-16-2 is used as the student network.

The SVHN dataset [80] is similar to MNIST with small
32 × 32 RGB cropped digits in 10 class and it is obtained
from house numbers in Google Street View images. SVHN
has 73257 images for training, 26032 images in testing set
and 531131 samples additional.

As shown in Table III, the student network (WRN-16-
2) from our CTKD method achieves 74.70% classification
accuracy on CIFAR-100 dataset and gets 2.43% improvement
compared with the student network trained individually. We
also compare our proposed CTKD method with some of the
most recent state-of-the-art knowledge distillation methods.
We can see that the student collaboratively trained from our
proposed method outperforms all of them. Figure 7 shows the
accuracy change curves over time among different knowledge
distillation methods on CIFAR-100. Interestingly, we observe
that our method has a significant improvement than used
on CIFAR-10 dataset through comparing the Figure 7 and
Figure 5 (b). Considering that the CIFAR-100 dataset and
WRN(wide factor as 2) is more complicated than CIFAR-
10, we believe that our method is an effective technique for
transferring the knowledge to compact network. We use the
Adam with learning rate 0.01 initially for SVHN dataset as
implementation details described and train the network 100
epochs. Furthermore, the student (WRN-16-1) also achieves
1.35% improvement compared with the baseline.
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TABLE V
CLASSIFICATION ACCURACY (%) ON TINY IMAGENET (5 RUNS).

BASELINE MEANS THE WRN-16-1 TRAINS INDIVIDUALLY. CTKD MEANS
THE WRN-16-1 RESULTS IN OUR METHOD.

Type Model Params(M) Acc (%)
Baseline WRN-16-1 0.17 50.65

KD WRN-16-1 0.17 51.26
ATKD WRN-16-1 0.17 52.11
RLKD WRN-16-1 0.17 52.54
CTKD WRN-16-1 0.17 53.59
Teacher WRN-40-1 0.56 56.51

D. Tiny ImageNet

We also validate the proposed method through conducting
image classification task on a much more challenging dataset,
Tiny ImageNet dataset [81], which is a popular subset of the
ImageNet database [27]. Tiny Imagenet contains 64×64 sized
images with 200 classes. Each class has 500 training images,
50 validation images, and 50 test images.

In our Tiny ImageNet classification experiments, we apply
random rotation and horizontal flipping for data augmentation.
We optimize the model using stochastic gradient descent(SGD)
with mini-batch 128 and momentum 0.9. The learning rate
starts from 0.1 and is multiplied by 0.2 at 60, 120, 160, 200,
250 epochs. We totally train the network for 300 epochs and
adopt the deep and wide WRN (WRN-40-1) for a teacher
model and WRN-16-1 as a student model.

Table V shows the classification results on Tiny ImageNet.
The student network (WRN-16-1) from our CTKD method
achieves 53.59% classification accuracy and gets 2.94% im-
provement compared with the student network trained indi-
vidually. The overall results show that the proposed CTKD
method outperforms the recent state-of-the-art knowledge dis-
tillation methods.

E. Analysis of the proposed method

Most existing well-performed knowledge distillation meth-
ods force the compact student to mimic the pre-trained
teacher’s outputs. However there is a gap between the shallow
student network and the deep teacher network due to their
different network structure. It could be a hard constraint
to learn the pre-trained teacher’s knowledge for the student
network. Thus we use a scratch teacher to supervise the
training of student using every step’s temporary outputs. The
scratch teacher provides optimal path information to the stu-
dent network as in Figure 6 (a). Moreover, the expert teacher
only provides the key hints using attention maps for lower
layers which close to the common features. This indicates
that the student network will be trained under collaboratively
supervising from two teachers. As shown in Figure 6 (b), the
student and teacher network both get a higher performance
than the method [74] as shown in Figure 6 (a).

Why does our collaborative teaching approach work?
Firstly, the scratch teacher could transfer its path information
to the student on every step as shown in Figure. 6 (a). Though
it could make mistakes in its training process, at least it
provides a path to higher performance than student. Secondly,

the expert teacher could also provide additional supervising
information to the student network. However, which kind
of knowledge from the expert teacher is most effective and
suitable in our collaborative teaching approach? We inves-
tigate the effects of different knowledge which the expert
teacher provides in our structure. The attention mechanism
achieves excellent results. The expert teacher only provides
the information about where it looks to the student network
in the training process. Despite the student’s weaker ability,
the expert teacher’s information makes it possible to catch up
with the scratch teacher. We verify the effectiveness of our
method with most existing knowledge distillation approaches
on CIFAR-10, CIFAR-100, SVHN and Tiny ImageNet datasets
in section IV-B, IV-C, IV-D.

V. CONCLUSION

In this paper, we propose a novel and efficient knowledge
distillation method to train a compact student neural network,
which can be directly deployed on the resource-constrained
devices. We show that the scratch teacher and expert teacher
could provide different knowledge from training process and
results. To fully utilize both of these knowledge, we propose
the Collaborative Teaching Knowledge Distillation (CTKD)
method for transferring knowledge from teachers to student
network. In detail, we use the scratch teacher to supervise
every step of the student’s training process. It can guide the
student towards the final logits with high accuracy step by
step along the optimization path. And the expert teacher only
constrains the student to focus on the critical region in the
whole training process. In such manner, the compact student
network can produce performance closely to the teacher. We
compare our proposed CTKD method with the state-of-the-
art knowledge distillation methods. Experimental results show
that our method has a significant improvement for student
network’s classification recognition on CIFAR-10, CIFAR-
100, SVHN and Tiny ImageNet datasets. We believe our
method is a valuable complement to the state-of-the-art.
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