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Intelligent Knowledge Distribution:
Constrained-Action POMDPs for

Resource-Aware Multi-Agent Communication
Michael C. Fowler1, T. Charles Clancy2, and Ryan K. Williams3

Abstract—This paper addresses a fundamental question of
multi-agent knowledge distribution: what information should be
sent to whom and when, with the limited resources available to
each agent? Communication requirements for multi-agent sys-
tems can be rather high when an accurate picture of the environ-
ment and the state of other agents must be maintained. To reduce
the impact of multi-agent coordination on networked systems,
e.g., power and bandwidth, this paper introduces two concepts for
partially observable Markov decision processes (POMDPs): 1) ac-
tion-based constraints which yield constrained-action POMDPs
(CA-POMDPs); and 2) soft probabilistic constraint satisfaction
for the resulting infinite-horizon controllers. To enable constraint
analysis over an infinite horizon, an unconstrained policy is first
represented as a Finite State Controller (FSC) and optimized with
policy iteration. The FSC representation then allows for a combi-
nation of Markov chain Monte Carlo and discrete optimization to
improve the probabilistic constraint satisfaction of the controller
while minimizing the impact to the value function. Within the
CA-POMDP framework we then propose Intelligent Knowledge
Distribution (IKD) which yields per-agent policies for distributing
knowledge between agents subject to interaction constraints.
Finally, the CA-POMDP and IKD concepts are validated using
an asset tracking problem where multiple unmanned aerial
vehicles (UAVs) with heterogeneous sensors collaborate to localize
a ground asset to assist in avoiding unseen obstacles in a disaster
area. The IKD model was able to maintain asset tracking through
multi-agent communications while only violating soft power and
bandwidth constraints 3% of the time, while greedy and naive
approaches violated constraints more than 60% of the time.

Index Terms—Autonomous Agents, Markov Decision Pro-
cesses, Multi-agent Collaboration, Probabilistic Constraint Satis-
faction, Wireless Communications

I. INTRODUCTION

DECENTRALIZED coordination of autonomous systems
in the field requires a delicate balance between system

objectives and the burden on limited resources such as power,
bandwidth, computation, etc. The resilience of decentralized
approaches is clear, allowing agents to act independently
with varying levels of information about other agents’ states,
observations, and actions. However, decentralized systems by
their nature must intelligently consume resources to remain
feasible. In this paper, we propose a framework for Intelligent
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Knowledge Distribution (IKD) which decides on what infor-
mation is transmitted to whom and when, while constraining
the impact coordination has on the limited resources available
to each agent.

In disaster response or military operations, remote sensing
by autonomous systems provides a stream of data back to
critical personnel. Disaster recovery and other active sensing
regimes often rely on high bandwidth links that are stretched
to their limits under unpredictable channel and link qualities in
support of electrooptical, chemical sensors, electronic sensing,
etc. [1]. At the same time, the communication necessary for
multiple agents to coordinate needs to stay within constrained
allowances as to not impact the flow of critical information
in the system. Along with typical bandwidth constraints, un-
manned aerial vehicles (UAVs) for example have the additional
limitation of battery power that needs to be preserved to
maximize their flight time in support of field operations.

With the above concerns in mind, in this work we assume
each agent is executing its own decision-making in a decentral-
ized network, i.e., our underlying model is a decentralized par-
tially observable Markov decision process (Dec-POMDP) [2],
[3], [4]. In the Dec-POMDP setting, each agent has local state
observations but only indirect observations of the environment
and other agents. Thus, an agent can run independently without
the necessity of communicating or having information about
other agents’ states or rewards, but this will lead to sub-optimal
behavior. Indeed, the key problem is to determine from local
observations what information neighboring agents will need
and when they will need it, improving the overall effectiveness
of a coordination objective. We propose methods to achieve
these goals while respecting the resource constraints of fielded
systems, eliminating the common assumption that communi-
cations are instantaneous and free [5]. In particular, we aim to
abstract communication decisions away from other joint agent
policies (e.g., for motion, tasking, etc.) to construct an agnostic
“plug-and-play” capability to mitigate combinatorial explosion
and provide an approach that may utilize information from
other models similar to Concurrent MDPs [6].

In this paper, the Constrained-Action POMDP (CA-
POMDP) proposed for Intelligent Knowledge Distribution
(IKD) yields per-agent policies for distributing knowledge
with other agents based upon the value of the information
subject to interaction constraints, with a case study in disaster
recovery with a heterogeneous multi-robot team. An optimal
POMDP policy is solved through policy iteration and then
a combination of Markov chain Monte Carlo (MCMC) and
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discrete optimization are applied to alter the controller to
improve the probability it will not violate resources thresholds
over a certain horizon. Soft constraints are relevant in commu-
nication decisions compared to hard constraints for multiple
reasons. Infinite-horizon POMDPs are often represented as a
finite state controller [7] and evaluating hard constraints on
cyclic graphs is intractable due to the stochastic nature of
the environment [7], [8]. In addition, resource availability is
often not a hard constraint over short periods of time, as a
system may not utilize maximum instantaneous availability
or temporary resource over-commitment is permissible (e.g.,
using queuing protocols such as ZeroMQ). In [9], preliminary
work in the application of CA-POMDPs to solving IKD was
presented and this work expands on it by: 1) Performing a
Monte Carlo simulation comparison between intelligent, naive,
and greedy communication strategies; 2) Utilizing Kalman
filters as a state estimator to drive information relevance
and observation models for IKD; 3) A discrete optimization
algorithm that improves the edge observation transitions of
the CA-POMDP; and, 4) Adapting the CA-POMDP finite
state controller policy with Bayesian predictive estimation in
response to realized observation probabilities and resource
utilization.

To evaluate the effectiveness of our solution, we require a
model that provides a means to gauge relevance of information
for communication decisions in our disaster recovery case
study. Kalman filters provide a well established method for
state estimation of a ground asset and a means to determine the
usefulness of information and the accuracy of our disaster re-
sponse use case for CA-POMDPs and IKD. As a result of IKD,
the drones monitoring the disaster site were able to satisfy
mission objectives, which involved having the ground asset
avoid environmental hazards while searching for survivors,
while also drastically reducing the consumption of available
resources. In comparison to naive and greedy communication
models, the IKD communication model was able to maintain
accurate state estimations of the ground vehicle while utilizing
significantly less power and bandwidth.

The remainder of this paper is organized as follows. Sec-
tion II provides a perspective of our concept in relation to the
state of the art. In Section III, review the fundamental models
at the core of our architecture and evaluation case study. Our
approach for Constrained-Action POMDPs is formulated in
Section IV, which is the basis for providing Intelligent Knowl-
edge Distribution (IKD) in Section V. Section VI describes
how the CA-POMDP was validated to perform IKD, with the
results reported in Section VII. The paper wraps up with future
and continuing research in Section VIII.

II. RELATED WORK

Capitan’s paper [5] is a key comparison in analyzing the
performance of our paper in a multi-agent coordination setting.
However, [5] assumes that point-to-point communications are
instantaneous and cost-free between nodes, while applying a
collaboration policy similar to consensus. In this work, we
instead remove the assumption of instantaneous and cost-
free communication to yield multi-agent communication that

respects resource constraints. This results in knowledge distri-
bution that is more nuanced than consensus, i.e., data flooding
vs. putting data where it needs to be.

Regarding constraints in decision-making, constrained
Markov Decision Processes (MDPs) have been used histori-
cally to solve two major drawbacks of standard discrete MDPs:
Multiple objectives and limited resources [10], [11], [12], [13],
[14], [15], [16], [17]. Applying constraints to MDPs has been
well established in restricting utilization of states to prevent
collisions [12], and has been expanded to hierarchical cases to
reduce the complexity of the linear programming formulation
[13], [14]. The primary objective of the Constrained MDP
(CMDP) is to find a policy that is within a restricted state, cost,
and/or reward structure of an unconstrained MDP. Constrained
POMDPs (CPOMDPs), which provide constraints for partially
observable environments, have also been explored using mixed
integer linear programming (MILP) [16], [17]. Both [16] and
[17] solve the POMDP using value iteration, though [17]
also describes a point-based value iteration (PBVI) approach
to provide an upper bound to a heuristic search. An online
algorithm has also been proposed [17] to address drawbacks
related to the propagation of risk aversion. A finite horizon
policy is computed off-line with a “constraint-penalty-to-go”
for every step of dynamic programming value iteration as
defined in [16] for solving the MILP.

The above approaches to CMDPs and CPOMDPs apply
constraints to the state-space of the model and projection
into the value space, but our formulation requires action-
based constraints as we are limiting the utilization of resources
that an action consumes which cannot be tied to physical
constructs, such as states that represent “no-fly” or “stay-
away” zones. As many scenarios require an indefinite length of
operation and no predefined goal states (as in our case study),
our CA-POMDP approaches needs to be solved as an infinite-
horizon policy. Infinite horizon POMDPs are solved by policy
iteration with a finite state controller representation [18], and
thus in our context will require analyzing how a cyclic graph
utilizes resources with respect to soft constraints. To the best
of the authors’ knowledge, it is not possible to represent soft
resource constraints on actions of a cyclic controller in the
state or value space of state-of-the-art CMDPs and CPOMDPs.

The modeling of multi-agent systems (MASs) that have
common objectives can be represented as a Decentralized
Markov decision process (Dec-POMDP). A Dec-POMDP is a
construct that allows multiple independent POMDPs running
on different agents to act independently while working towards
an objective function that is dependent on all the agents’
actions [3]. In brief, the agents only have access to their local
observations and as the objective function is dependent on
the behavior of all the agents, each agent must maintain a
belief of the other agents policies. There are many subclasses
of the Dec-POMDP that address joint and local observations,
communications, model independence, etc [3], [19]. The Dec-
POMDP-Comm is the dominant subclass related to this paper
where the agents are reasoning on when to communicate due
to delays and costs. The most commonly seen approach is to
make the decision a part of Dec-POMDP model based upon
joint state and actions [3]. There is also an approach where
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there is a centralized POMDP plan that is communicated
between the agents which triggers communications when their
individual Dec-POMDP plan differs from the centralized one.
Unlike Dec-POMDP-Comm, our CA-POMDP formulation
does not utilize communications to inform the joint policy
of multiple agents driving communications, instead the model
is an agnostic “plug-and-play” approach that separates other
collaborative tasks of an agent from communication decisions
while enforcing soft resource constraint satisfaction.

Driving communications from the value of information
similar to CA-POMDP is not unique, but has been the fo-
cus of research behind reward shaping and belief-dependent
rewards [20], [21]. These techniques use information-theoretic
measures between probability distributions, like KL-Distance,
as part of the reward function for belief-dependent rewards
[21] and for determining communication [20]. [20] focuses on
restricting communications to when they are needed but does
not provide soft constraint satisfaction to the policy controller
which is the focus of this work. The authors in [20] use the
Dec-POMDP-Comm as their basis but change the perspective
from a cost to a reward for communication to highlight an
opportunity to use a resource. They state efficient policy
generation techniques will be adapted to allow for scalability,
where they use the information-theoretic concepts from Dec-
POMDP-Value-Comm [22] as a measure of belief divergence.
Alternatively, [23] purposely restructures the action space
so they can remain in a classic POMDP problem. In this
paper, we approach the IKD problem similarly to [23] where
information rewards drive cooperative perception, but instead
of restructuring the action space we restructure the observation
model to describe belief on the value of information.

III. BACKGROUND

In this section, we review the principles behind our formu-
lation and provide a foundation of concepts, terminology, and
lexicon used in the paper. Afterwards, we explain how these
concepts are integrated into a single framework to provide
a Constrained-Action POMDP (CA-POMDP) leading to an
Intelligent Knowledge Distribution model.

A. Partially Observable Markov Decision Processes

Markov decision processes (MDPs) are a decision-theoretic
approach to determining the best actions over a time horizon
based upon the current state s of a system, the probability of
transition T (s′|s, a) to another state s′ based on action a, and
the reward R(s, a) associated taking actions in a given state
[7], [8]. This model is used to determine actions that maximize
rewards, i.e., a policy π, when the rewards are delayed or
realized at some future point in time. If the state of the agent
is not fully observable then the model becomes a Partially
Observable MDP (POMDP) where belief states, b ∈ B, are
used to represent the probability distribution of being in any
particular state based upon observations [19]. These belief
states are tied to an observation model, O, that describes
the probability of observations based on the underlying state.
Formulating a POMDP in this manner is often referred to as
a belief-state MDP. A POMDP can be described formally by

Fig. 1: A graphical representation of a Finite-state Controller for a POMDP
policy where the vertices v ∈ V represent actions and the edges e ∈ E are
transitions based upon environmental observation o ∈ O. The example has
three actions: (1) transmit message a0 to Node 1, transmit message a1 to
Node 2, or no transmission Null.

the vector < S,O,B,A,T ,R,Π >, where S is the set of
states an agent can be in, A is the set of actions the agent can
take, T is the set of transition probabilities T (s′|s, a) between
states based on an action a ∈ A, R is the set of rewards
R(s, a) for taking an action in a state, and Π is the set of
policies, π, that are feasible consisting of a set of vectors of
actions, {π0, π1, . . . , πt}. The objective is to select a policy,
π, that maximizes the expected utility (reward) over time:
π∗(s) = arg maxπ U

π(s) given a utility function Uπ(s). Since
we do not know the state we are currently in but maintain a
belief b, an immediate one-step policy would select an action
that maximizes the expected reward maxa

∑
s b(s)R(s, a). If

we let let αa represent R(·, a) as a vector, often referred to as
the alpha vector, and the current belief state as a vector b, then
an immediate one-step policy would become maxa α

T
a b. An

alpha vector thus represents a hyperplane in the belief space
that is piecewise linear and convex.

In order to represent infinite-horizon POMDP policies, we
assume the typical policy representation of a finite state
controller (FSC). In Figure 1 we show a simple policy, π,
represented as an FSC, which is a directed cyclic graph with
the vertices v ∈ V representing machine states consisting of
an action a ∈ A per vertex and edges e ∈ E representing
transitions from an action of machine state ai to an action of
machine state aj determined by the observation o ∈ O seen
after executing that action ai. An action ai of machine state
i can be the same action aj of another machine state j such
that ∃ ai = aj : i, j ∈ V(π) though they will consist of unique
alpha vectors, αi 6= αj .

The policy iteration (PI) algorithm of Hansen in [18] is
the basis for improving a FSC through transformations which
searches within the policy space until epsilon convergence is
observed [18]. In particular, a dynamic programming update
is iteratively used to generate a new set of candidate machine
states that the policy improvement loop uses to compare
the alpha vectors of existing value function V and the new
value function V ′ and modifies the FSC accordingly. The set
of alpha vectors can be run through a linear programming
(LP) formulation to prune the set of alpha vectors that are
dominated in the belief space by any combination of other
alpha vectors, which is explained in [18]. We have chosen
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Hansen’s algorithm as the starting point for CA-POMDP
for its basic implementation to validate the concept and the
availability of point-based policy iteration methods [24] for
Hansen’s approach that reduce the computational complexity.

B. Markov Chain Monte Carlo

To analyze the probabilistic constraint satisfaction of an
FSC policy from an unconstrained POMDP, the Markov chain
Monte Carlo (MCMC) sampling methodology is applied. A
MCMC is a particle-based approximate inference sampling
technique that uses a sequence of samples to iteratively ap-
proach a desired posterior distribution [25]. For CA-POMDPs,
the MCMC provides a mechanism to continuously sample an
FSC policy seeking a posterior that represents its resource
utilization. When samples are initially likely to be from the
prior distribution, the sampling of a sequence of samples
will successively approach the posterior, whereas likelihood
based approaches are unlikely to account for this fact and
place undue weighting on earlier samples. Another gain in
utilizing MCMCs in determining the posterior distributions is
the versatility in the type of distribution that can be inferred
without being bound to Gaussian distributions or Gaussian
approximations.

The Metropolis-Hastings algorithm to solving MCMC was
selected because of the difficulty of direct sampling from the
probability distribution of a cyclic controller and calculating
the normalizing factor of the distribution. The algorithm uses a
random walk approach that either accepts or denies a proposal
rather than trying to track importance weights. The acceptance
ratio reduces simply to

A =
P (x|µ)P (µ)

P (x|µ0)P (µ0)
(1)

of the proposed posterior distribution, P (x|µ)P (µ), over the
current posterior distribution, P (x|µ0)P (µ0). The most diffi-
cult part of calculating the posterior with the Bayes formula,
the evidence P (x), is common to both the proposed and
current posterior and therefore conveniently cancels out.

If a random number from [0, 1] is lower than the acceptance
ratio (1), then the proposed posterior is accepted. In cases
where the proposed distribution is larger than the current
distribution, then the acceptance ratio will be greater than one
A ≥ 1 and therefore the proposed distribution will always be
accepted. On the contrary when the acceptance ratio is less
than one A < 1, then there is a uniform probability that it
will accept the proposed distribution.

C. Graph Theory

Finally, we require a model for interactions in a decen-
tralized multi-robot system. Consider a multi-robot system
composed of n robots with indices I = {1, . . . , n}, operating
in Rd, each having position xi ∈ Rd. As an example in
determining collaboration between agents, it can be assumed
that the robots can intercommunicate in a proximity-limited
way, inducing interactions (topology) of a time varying nature.
Specifically, letting dij , ‖xij‖ , ‖xi − xj‖ denote the
distance between robots i and j, and (i, j) a link between

connected robots, the neighborhood Ni of each robot i is
defined by the interaction radius ρ(xi), which has a depen-
dence on the location of robot i. Note that such an interaction
radius encodes typical sensing and communication constraints
that vary spatially. The assumed spatial interaction model is
formalized by the directed graph, G = (I, E) with nodes
indexed by the robots, and edges E ⊆ I × I such that
(i, j) ∈ E ⇐⇒ ‖xij‖ ≤ ρ(xi) [26]. The interaction graph G
of a decentralized multi-robot system describes the neighbors
Ni that an agent i transmits information to in IKD-based
collaboration.

IV. CONSTRAINED-ACTION POMDP

The Constrained-Action POMDP is a formulation that seeks
to find a near optimal policy in a partially observable environ-
ment with action-based constraints that are probabilistically
guaranteed to stay within specified soft limits. The framework
first solves for an unconstrained optimal policy then improves
the probabilistic constraint satisfaction of the controller. Any
action performed by an autonomous system will have a dis-
tribution representing the utilization of resources, and thus we
aim to determine the probability that a series of actions will
respect a soft constraint through an analysis of the cumulative
distribution function (CDF) of policy resource utilization. In
the formulation of the CA-POMDP, the analysis of prob-
abilistic constraint satisfaction is performed by sampling a
policy with Markov chain Monte Carlo (Section IV-C) and
improving the constrained policy through discrete optimization
(Section IV-B).

A. CA-POMDP Model

Our goal is to adapt an infinite-horizon FSC of a POMDP
policy π from policy iteration [18] to probabilistically stay
within soft constraints over a desired period of time T , i.e.,
p(
∑T
t=0 uh(at) ≤ ch) ≥ ηh, for all constraints h ∈ H,

with resource limits ch ∈ C, where uh ∈ U is resource
utilization used by the action at. Policies π are represented
as a finite-state controller (FSC), since an FSC is a cyclic
graph that represents an infinite-horizon POMDP well [27].
The FSC representation can also accelerate the convergence
to a policy, since an infinite horizon policy in value iteration
is not guaranteed to converge [7]. The CA-POMDP can be
described formally by the tuple

< S,O,B,A,T ,R,Π,H,C,U ,E > (2)

where S, O, B, A, T , R, and Π are the same as defined
in a POMDP, H is the set of resources being used by the
agents, C is the matrix defining the constraints for each
resource, U defines the utilization of resources for an action
a ∈ A and its variation or uncertainty, and E is the matrix of
edge observation probabilities for transitioning from a machine
state i to another j in an FSC based upon action observation
histories (AOH).

The constraint model consists of a matrix of soft constraints
C (e.g., power and bandwidth), the utilization of resources
U per time epoch ∆t (a decision is made each epoch of
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1: procedure CONSTRAINTIMP(C,U ,E, π0)
2: π∗, V ∗,Ω← POMDP POLICY ITERATION(π0)
3: N0 ← CONSTRAINTEVAL(π∗,C,U ,E)
4: if N0 ≥ η then
5: return π∗, N0

6: end if
7: π̂0 ← π∗; t← 0
8: repeat
9: t← t+ 1

10: Π′ ← ALLFEASIBLEREGIONS(π̂t−1,Ω)
11: πmin ← minπ π ∈ Π′

12: g(Π′)← ‖ V ∗− POLICYEVAL(πmin) ‖
13: Q← Π′

14: repeat
15: Π′ ← arg minq∈Q g(q)
16: πmax ← maxπ π ∈ Π′

17: f(Π′)← ‖ V ∗− POLICYEVAL(πmax) ‖
18: N ← CONSTRAINTEVAL(πmax,C,U ,E)
19: R← BRANCHCONTROLLER(π′,U )
20: for R ∈ R do
21: πmin ← minπ π ∈ R
22: g(R)← ‖ V ∗− POLICYEVAL(πmin) ‖
23: end for
24: Q← Q ∪R
25: Q.Pop(Π′)
26: PRUNE(Q)
27: until Q = ∅
28: π̂i ← arg maxπ∈Q g(π)
29: until π̂i = π̂i−1

30: return π̂i, N(π̂i)
31: end procedure

Fig. 2: Algorithm for performing constraint improvement of an optimal finite
state controller.

time), and the matrix of observation probabilities E. Specif-
ically, C ∈ <|H|×2 is a matrix representing the desired soft
constraints within a specified time period T where each row
h ∈ H of C is the vector [ch, ηh], with ch the desired upper
limit for resource h, and 0 < ηh < 1 is the probabilistic
constraint satisfaction for that resource based upon opera-
tional scenarios. The resource utilization U defines for each
resource h ∈ H a matrix of Gaussian probability distribution
parameters for all actions, i.e., uh(a) ← N (µah, σ

a
h). The

matrix E ∈ <|π|×|O| consists of edge observation probabilities
p(o|ai∈π) for encountering an observation o ∈ O while at a
machine state i of the finite state controller policy π ∈ Π.
Edge observation probabilities are tied to the FSC policy
representation as a means to track the stochastic nature of the
environment causing observation transitions from one machine
state to another. Their probabilistic distribution is initially
assumed to be uniform and the true distribution is learned
online, see Section IV-D.

Our core mechanism in CA-POMDP is the FSC represent-
ing the optimal policy calculated using Hansen’s POMDP PI
algorithm [18], along with discrete optimization which acts to
constrain the policy. During the discrete optimization phase,
CA-POMDP will introduce constraint states j into an uncon-
strained controller to bring the controller within a probabilistic
constraint satisfaction η (analyzed via MCMC) while minimiz-
ing the impact on the optimal unconstrained value function
V ∗. To effectively alter the controller with constraint states,
the non-dominant alpha vectors per action, defined as set Ω,
are maintained during the dynamic programming updates for
unconstrained policy optimization. These alpha vectors are not

C1
a0

C2
a1

C3
a2

min

Feasible Constraint States

Feasible Machine States

Feasible Edges for Pair

Machine—Constraint
State Pair <i,j>Selected

Constraint
State

(Upper Bound)

UB LB

3
a2

4
a1

C1
a0

z2
z1

z1

z2

z1
1
a1

2
a2

z1

z2

z2

z1

z1

z2

Fig. 3: An example of the feasible regions for a finite state controller for
use in the Branch and Bound Discrete Optimization Algorithm.

dominant at any dynamic programming update, but may utilize
fewer resources and therefore should be considered for altering
the controller for probabilistic constraint satisfaction.

B. Constraint Improvement

Improving the constraint satisfaction of an ε-optimal un-
constrained policy is solved using a branch and bound (BnB)
algorithm variant of [28], a well-known technique for discrete
and combinatorial optimization. The underlying goal of the
BnB is to determine a set of constraint states, our previously
stored set of alpha vectors Ω, to “inject“ into the optimal
controller which utilize fewer resources than the existing
machine states in the FSC while trying to minimize the loss
in the expected value from ε-optimal.

Remark 1. By calculating the optimal policy first, we also
have an initial optimal policy to recalculate from as resource
utilization and observation edge probabilities are learned
online (Section IV-D).

The algorithm (Figure 2) initializes with the ε-optimal FSC
policy π∗ calculated from policy iteration which is immedi-
ately checked for probabilistic constraint satisfaction (Line 3
of Figure 2). If the policy is non-compliant, the root of a BnB
Tree Q (Line 10) is initialized with the feasibility space of
modifications that can be made to the unconstrained policy
π∗, i.e., an ordered combinatorial set of all of machine states,
constraint states, and edge redirection variables, see Figure 3.

The first variable in the feasibility region is the set of
existing machine states i in the policy π̂t−1, shown in the upper
gray box of Figure 3, which is initially π∗. Each machine
state’s dominant region Vibi, where bi is the region in the
belief space b that machine state i has dominance over all
other machine states, is used in creating an ordered set of
machine – constraint state pairs, marked in Figure 3.

The set of alpha vectors Ω saved from the policy iteration
algorithm define the second set of variables in the feasibility
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region. Each alpha vector becomes a potential constraint state
j, shown in the lower gray box of Figure 3, that can be
introduced into the controller and will result in a loss of
value depending on the value of the new alpha vector and
chosen edge redirection (the third feasibility region variable).
A feasible constraint state j is an alpha vector whose action
aj utilizes less resources U(aj) < U(ai) than machine state i.
The upper f(π) and lower bound g(π) of a constraint state and
machine state pair < i, j > provides the BnB maximum (UB)
and minimum (LB) value difference between the constraint
state’s alpha vector Vjbi and the machine state’s Vibi for the
machine state’s dominant region bi: ‖Vibi − Vjbi‖.

The third and final variable in the feasibility region is the set
of viable edge redirection probabilities. During the branch and
bound, the feasible constraint states for a particular machine
state pair < i, j > are injected into the controller and the edges
leading to this new constraint state from other machine states
already in the controller are selected as either maintaining their
transition to the existing machine state i or redirecting to the
new constraint state j. The edge redirections are solved for last
and until then a simple assumption is made for the calculation
of upper and lower bounds for machine–constraint state pairs.
The lower bound function assumes that none of the edges
are redirected which results in a controller that has no value
impact. The upper bound assumes all edges are redirected to
the constraint state, which causes the greatest impact on the
value function as the original machine state that dominated
has been completely substituted or replaced by the constraint
state that maximizes ‖Vibi − Vjbi‖.

The blue lines in Figure 3 indicate feasible edges that could
be redirected or maintained for the < 3, C1 > machine –
constraint pair. The constraint state inherits the outgoing edges
of the original machine state i since the outgoing edges already
transition to dominant machine states after a belief update, and
any constraint state introduced into the controller has already
been determined to be non-dominant. Optimally redirecting an
edge from another machine state to the new constraint state is
not trivial due to the combinatorial explosion of redirection
options, which drastically reduces computational efficiency.
Instead, we allow the BnB to select from a finite set of the
probabilities of redirecting an edge from an original machine
state to the new constraint state, i.e., a vector of ordered
probabilities

−→
P = [p0, p1, . . . , pn] where p0 < p1 < · · · < pn

and 0 < pi < 1. The BnB algorithm searches for the correct
probability pi ∈

−→
P of edge redirection, yielding a solution

that satisfies probabilistic constraints while minimizing the
impact to the value of the constrained controller. As the edge
redirection probability increases, more edges from an existing
machine states k in the controller to the machine state i will
be redirected to the constraint state j.

Formally, the objective of the Branch and Bound algorithm
of Figure 2, is to minimize the impact on the constrained
controller value V (π̂) compared to the optimal controller V ∗

while ensuring that the probabilistic constraint satisfaction
N(π̂) is greater than or equal to the soft constraints η ∈ C.
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Fig. 4: The constraint C1 has been injected into the controller to reduce
the resource utilization of machine state 3. The edge redirection function has
selected the 1→ 3 to be reconnected as 1→ C1 and C1 inherits the outgoing
edges of 3. Notice the loop for observation z2 at 3 becomes a transition of
C1→ 3

That is,

Objective : minπ̂ ‖V ∗ − V (π̂)‖
s.t. : N(π̂) ≥ η η ∈ C.

(3)

During each step of the algorithm, a set of feasible solutions
Π′ is removed from the tree Q based on a priority metric
(best-first search) provided by the lower bound function g(Π′)
(Line 12). The branching function (line 18) simply divides
the region of feasible solutions in half, similar to constrained
integer programming [29], creating two new nodes Π′ in the
tree Q until there is no region to divide creating a “leaf”
node. The probabilistic constraint satisfaction N of the upper
bound policy πmax of a node Π′ ∈ Q is evaluated via MCMC
(Line 17), described in the next section, since we are interested
in the best satisfaction the worst controller can provide. The
pruning function (Line 19) removes any node in the tree where:
1) the lower bound of that node is greater than the upper
bound of any other g(Π′i) < f(Π′j) ∀(i, j) ∈ Qi 6=j ; or,
2) the upper bound does not meet the constraint satisfaction
Ni < η ∀i ∈ Q, η ∈ C.

There are two loops in the constraint improvement algorithm
with the inner loop terminating when there are no further nodes
to consider in the tree Q (Line 20). The outer loop (Line
22) introduces a single constraint state during each iteration
until the desired probabilistic constraint satisfaction has been
achieved. Afterwards, a constraint state can be introduced into
the finite state machine with an objective to increase the value
function without violating the constraint. Once there are no
changes to the controller to improve constraint satisfaction or
value function, the function returns the new controller.

Figure 4 provides an example of a constraint improvement
step with the original optimal FSC shown on the left with
machine states 1 through 4. Notice that the machine states
1 and 4 have the same action, a1, which is an indicator
that the same action during policy iteration was dominant in
two different belief regions. During the constraint improve-
ment, the branch and bound is analyzing the possibility of a
constraint state C1 concurrent with machine state 3 utilizing
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action a0, which utilizes fewer resources than action a2. C1
was initially selected because C1 has the greatest value in the
same belief region as 3, since in a best-first search it minimizes
‖V3b3 − VC1b3‖ and can be seen in the red line of the right
graph of Figure 4. If C1 fails to satisfy the constraints, then
the algorithm will examine using C2 assuming C2 utilizes
fewer resources then C1.

The edge redirection function has selected to redirect the
edge (1, 3) to constraint state C1 and C1 inherits the outgoing
edges from machine state 3. It is important to note that the loop
at machine state 3 for observation z2 in the original controller
does not create a loop in C1 for z2 but is redirected to the
original machine state since 3. This occurs since machine
state 3 is the dominant machine state for the belief update
of z2, thus the BnB procedure avoids a non-optimal loop in
the constrained controller.

C. Constraint Satisfaction Evaluation
Evaluating constraint satisfaction, shown in Figure 5, is

accomplished by random sampling of the finite state controller
to estimate the resource utilization through a Markov chain
Monte Carlo (MCMC) Metropolis-Hastings algorithm. Using
the length of time or epochs over which the constraints are
being applied T , the finite state controller is sampled T/∆t
times, where an action is taken every ∆t. Starting from a
random initial machine state, this sampling process follows
the FSC edge transitions around the controller and records
the resource utilization per action by sampling from distri-
butions N (µah, σ

a
h), for each resource h ∈ H. The samples

are combined into an aggregate sample x that represents
the total mean and deviation of resource utilization for the
entire time period T . This is repeated from the same initial
machine state to gather a sequence of samples x(α) until
the chain has approached a representative posterior PT (α) of
the FSC resource utilization for that particular initial machine
state, where α represents the distribution of sample data. The
posterior has been considered “mixed” when the variational
distance is within epsilon [25] (Line 13)

D(P (T );x(α)) = max
α
|P (T )(α)− x(α)| ≤ εD. (4)

To determine when the algorithm needs to stop taking
samples from random initial machine states, the algorithm
continues until the autocovariance of the lagged MCMC
distributions, a generalization of the central limit theorem to
Markov chains, has converged [25] to within εcov

Cov
[
P (T )[m];P (T )[m+ l]

]
≈ (5)

1

M − l

M−l∑
m=1

(P (T )[m]− Ê(m))(P (T )[m+ l]− Ê(m+ l)),

where M is the set of samples collected, l the number of
samples to lag, P (T ) is the vector of P (T )(α), and Ê(·) is the
unbiased estimator 1

M

∑M
m=1 P

(T )(m).
Once the MCMC has terminated, the resource utilization

posterior distribution is used to determine the probability that
the current FSC satisfies the soft resource constraints η.

1: procedure CONSTRAINTEVAL(π∗,U ,A,C,B, l)
2: P (T ) ← ∅
3: repeat
4: b0 ← RANDOM(b ∈ B)
5: i∗ ← arg maxi∈π∗ Vi · b0
6: x← ∅
7: while True do
8: for t← 1 to T step ∆t do
9: x← x ∪ U(ai∗ ∈ A)

10: i∗ ← RANDOMEDGE(p(o|i∗), P (T )(α))
11: end for
12: x(α)← GAUSSIANFIT( x )
13: if D(P (T );x(α)) ≤ εD then . Equation (4)
14: break
15: end if
16: if RANDOM(0, 1) ≤ A then . Equation (1)
17: P (T )(α)← x(α)
18: end if
19: end while
20: P (T ) ← P (T ) ∪ P (T )(α)

21: until Cov
[
P (T )[m];P (T )[m+ l]

]
< εcov . Equation (5)

22: return
∫ η∈C
−∞ P (T )dx

23: end procedure

Fig. 5: Algorithm for Evaluating a Finite State Controller for its Probabilistic
Constraint Satisfaction.

D. Learning Edge Probabilities and Resource Utilization

When sampling the controller during the evaluation of
constraint satisfaction, an observation edge o is randomly
chosen during each of the samples with a probability p(o|ai)
depending on the action ai of machine state i. This Monte
Carlo sampling of observation edges through the controller
is initially a uniform a priori distribution, but the actual
conditional probability of an observation given an action
during operation needs to be learned so that the controller
can be updated to ensure proper constraint satisfaction as
the environment changes. Observations o given an action a
are described by a categorical distribution (aka, a generalized
Bernoulli or multinoulli distribution), which is used to repre-
sent the likelihood of some finite set of possible observations.
The conjugate prior of a multinoulli distribution is a Direchlet
distribution, which is also a Jeffrey’s Prior for an N-sided
die with biased probabilities, −→γ = (γ1, . . . , γN ). The closed
form solution for calculating the posterior distribution for the
categorical distribution and a Direchlet prior is

p(o|A) =
c(o, a) + α(o, a)∑|c(j)|

j=1 c(o, j) +
∑K
j=1 α(o, j)

, (6)

where c is the a priori count for an observation o with state
action a, α the observed occurrence of observation o, and
K the total number of occurrences seen. This method allows
a deployed system to track the relationship between actions
and observations over time and then recalculate a constrained
policy to maintain constraint satisfaction or maximize the
value of the controller if it is utilizing fewer resources than
expected.

Another consideration in adapting the controller for con-
straint satisfaction is validating the a priori resource utilization
models are still applicable during operation. Situations in the
field change over time and the a priori models used for
resources will not be valid during the entire operational life of



8

the autonomous system. As an example, as the battery of an
autonomous system is drained during its operation, an action
may consume more battery power than when the battery is
fully charged. To track the resource utilization, a simple Bayes
estimator with Gaussian priors and likelihood is used to track
the current resource utilization per action.

It is unrealistic to continuously update the controller with
every edge observation or resource distribution change due
to limitations in computational resources and to prevent short-
term instabilities or unpredictability in the controller. However,
we still need to adapt online to ensure constraint satisfaction
or improve the FSC value. To define an appropriate trigger
for recomputing a new controller, the information-theoretic
concept of Variation of Information is utilized. When the
variation of information

d(X,Y ) = H(X|Y ) +H(Y |X) (7)

H(X|Y ) = −
∑
i,j

p(xi, yi) log
p(xi, yi)

p(yi)
∀i ∈ X, j ∈ Y (8)

exceeds a desired threshold, the algorithm will recompute
a constrained controller from the precomputed optimal con-
troller, where X is either the a priori probability distribution
of edges E or resource utilization U and Y is the associated
probability distribution of the learned distribution. When the
learned distributions are significantly different than those pre-
viously used to compute a constrained FSC, we recompute the
controller with the new learned probability distributions.

V. INTELLIGENT KNOWLEDGE DISTRIBUTION MODEL

Intelligent Knowledge Distribution (IKD), in this paper, is
applying a Constrained-Action POMDP to control communi-
cations between multiple independent agents that must stay
within quality of service limitations. The goal of IKD is to
answer the questions: (i) What information should we send,
(ii) when should we send it, and (iii) to whom should we send
it to?

A. Action & State Model

The IKD Model builds on the CA-POMDP formulation by
extending the CA-POMDP tuple to include < Σi, I,Ni,F >,
where we assume each agent independently runs CA-POMDP.
Each agent i has a set of neighbors Ni in the environment that
can actively collaborate. Σi is the alphabet of communications
σk ∈ Σi that agent i can transmit to a neighbor j ∈ Ni. F is
a set of states s ∈ S that place mission objectives at risk of
failure, which we will use to drive information relevance. We
define the set of actions Ai for an agent i that indicate the
decision to transmit the kth element of information to agent
j ∈ Ni, denoted as action ajk related to the information σk:

Ai =
{
∪σk∈Σi,j∈Ni, ajk → {0, 1}

}
∪∅ (9)

along with the single ∅ (or Silence) action to not transmit at
all.

The states of the IKD model are defined by levels of
relevance Sr of locally observed information for each agent
i (e.g., Sr = {LOW,MEDIUM,HIGH}), and levels of

collaboration Sc for each agent i with its neighbors j ∈ Ni
(e.g., Sc = {LOW,MEDIUM,HIGH}). Relevance is
described by a set of discrete states that indicate how important
information is to global mission objectives, and is calculated
per-agent based on local observations only. The confidence of
an agent in its current collaboration with its neighbors j ∈ Ni
is a set of discrete states indicating a level of confidence that
the current level of communication will maintain the ability
for the agents to achieve global mission objectives by sharing
local observations. Formally, the set of states for an agent i in
the IKD model is:

Si = {sk=1
r , . . . , sk=|Σi|

r , sj=1
c , . . . , sj=|Ni|

c } (10)

with relevance states skr ∈ Sr for each of information element
k and a set of collaboration states sjc ∈ Sc with a neighbor
j ∈ Ni indicating whether the neighbor is “up to date” with
relevant information. The states in an agent’s state set therefore
becomes a representation of how important information is and
how timely the agent’s information is for neighboring agents.

B. Reward Model

The reward functions for IKD need to be defined specifically
by the model designer or learned online; what follows are
simply basic guidelines for reward formulation. The reward
for relevance R̂r(s, a) is a normalized reward based upon the
product of 1) the likelihood L that the next state s′ is not a
critical state f ∈ F where global mission objectives are at
risk when taking action a in state s, which is either known
a priori or learned online, and 2) the information-theoretic
metric on the maximal value of the information ρ(k) an agent
could convey to a neighbor:

R̂r(s, a) = L(s′ /∈ F |a, s) max
σk∈Σi

ρ(k). (11)

The basic concept is to increase the reward for communica-
tions when the mission objectives are at risk and the value of
the local information is high.

Remark 2. The utilization of a reward function with the
components ρ and L by its nomenclature appears similar to
belief-dependent rewards [20], however we argue here why
this is not the case. The reward functions are not tied to a
state belief but instead are calculated for each state of the
IKD model and assume a linear function between states, as
seen with any belief-state MDP [3], [19]. The reward functions
can be learned online and the FSC policy recalculated but they
will remain piecewise linear and convex within the hyperplane
of belief space and do not change as the belief does.

Collaboration is a normalized reward R̂c(a, s) based upon
the product of the proximity of a quantized state to approach-
ing the heuristic bound where collaboration will diverge and
become unbounded Q(·), as with intermittent communication
in controls with a Kalman filter’s estimation error covariance
[30], and the maximal value of information that can be shared
with a particular neighbor:

R̂c(a, s) =
1

|Ni|
∑
j∈Ni

S(Q(λj |a, s)) · max
σk∈Σi

ρ(k), (12)
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where S(·) is the sigmoid function, Q(λj |a, s) is the proba-
bility that the communication action a with neighbor j ∈ N
will approach the proximity of an unbounded heuristic λ ∈ Λ,
Λ is the limits of the upper λ̄ and lower λ bound heuristic
of a critical probability λc that is dependent on the model
(See Section VI-A), and maxσk∈Σi

ρ(k) is the best value of
information ρ(k) that an agent j ∈ N could receive from i.
Thus, as the lack of communications drives a global objective
towards an unbounded heuristic (e.g., a diverging Kalman filter
estimate due to intermittent communications) and the value of
information for neighboring agents increases, the reward for
communication increases. The final reward R(s, a) is the sum
of the collaboration and relevance rewards with one exception.
If the action is not to transmit (a = ∅), the reward is zero for
all states:

R(s, a) =

{
R̂r + R̂c if a 6= ∅
0 if a = ∅ . (13)

This at first appears counter intuitive, because the action to
not transmit will be dominated by all other actions which is
intentional. If the agent stops transmitting then it always is
going to lead to information loss and therefore provides no
benefit not to continuously transmit. It is the constraints to
preserve resources that will introduce a do not transmit action
or one that utilizes fewer resources into the controller as a
viable constraint state to satisfy soft resource constraints.

C. Transition & Observation Models

As with the rewards model, transitions and observations are
divided into relevance and collaboration components. Transi-
tion probabilities from one state s to another state s′ based
upon an action a are assumed to be independent to reduce
computational complexity and therefore are the product of the
independent transitions of the components

T (a, s, s′) =

n∏
i=1

∏
σk∈Σi

T (a, skr , s
k′

r ) ·
∏
j∈Ni

T (a, sjc, s
j′

c ) (14)

where T is the transition matrix, and sr and sc are the
relevance and collaboration state components. The component
transition functions T (a, sr, s

′
r) and T (a, sc, s

′
c) are deter-

mined by the knowledge being shared and are discussed for
our use case in Section VI-B.

The observation probabilities are similarly constructed as
the transition probabilities with relevance and collaboration
components as follows:

O(a, s, o) = O(a, sr, or) ·
∏
j∈Ni

O(a, sjc, o
j
c) (15)

where O the observation matrix, and or and oc are the
relevance and collaboration components of observations. 1

Remark 3. Though the relevance of the information and
the collaboration between agents are conditionally dependent
in reality, the formulation of the model as a decentralized

1In future work, this assumption will also be relaxed as with the transition
assumption of independence.

POMDP reduces the dependence with the focus on local ob-
servations allowing to validate the approach before addressing
a conditional dependence transition and observation model.

As discussed in related work, the observation model is key
in restructuring the POMDP to avoid belief-dependent rewards
and its associated solution methods. In the construction of
an IKD model, an observation model should be designed to
provide the ability to map observations to the appropriate
belief space for relevance and collaboration. Any mapping
υ from observations in the environment to an observation
state is the mapping of a continuous observation space to
discrete observations through cluster-based techniques, such
as K-medoids [31] or DBScan. See Section VI-B for how an
observation model was constructed to address IKD with asset
localization and Kalman Filters.

VI. EXPERIMENTAL MODEL

The use case for validating the Constrained-Action POMDP
for Intelligent Knowledge Distribution (IKD) was the aerial
monitoring of ground assets during a disaster response to
ensure they safely avoid hazards and dangerous situations they
may not be aware of from their perspective on the ground.
Though a ground vehicle could potentially have accurate
location information from GPS, we consider the asset tracking
viable, because: 1) There are situations where GPS information
in a disaster site is either unavailable or degraded due to
obstructions or other factors; 2) The actual location of the
hazards are not known and the monitoring drones need to
maintain accurate relative positioning of the ground asset;
and, 3) The ground asset needs to update its motion planning
to optimize for known hazards as they are estimated by
monitoring drones.

In this context, our IKD agents are unmanned aerial vehicles
(UAVs) performing a continuous predefined search pattern
around the disaster site while communicating across a first
responders mobile ad-hoc network (MANET) as shown in
Figure 6. In this initial study to validate the CA-POMDP and
IKD concepts, the agents are only tracking a single ground
asset and need to determine what sensor information needs to
be shared between them to ensure they maintain situational
awareness of the hazard risk. They also provide a relative
position warning to the ground asset so that it can update
the edge costs of its motion planning algorithm appropriately,
e.g., D?-Lite [32].

The IKD model, as described in Section V, is a combi-
natorial problem between the neighboring nodes, the hetero-
geneous sensor data, the relevance of the information, and
the current level of collaboration. Since an agent can only
communicate with a single node at a time due to routing
protocols with WiFi Mesh Networking, it needs to determine
the risk it believes an asset is under (relevance) and how
confident it is in the data it has received so far from other nodes
(collaboration) to ascertain the appropriate information to send
and to whom to maintain accurate situational awareness, all
while not overly consuming the limited resources of bandwidth
in the MANET and power available from the UAV battery.
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UAV 1 UAV 2

UAV 3

Fig. 6: The conceptual diagram of the situation being modeled with an
autonomous emergency vehicle traversing a disaster site with blocked views
of potential hazards (e.g. sinkholes)

A. Asset Localization & Kalman Filter

An unscented Kalman filter (UKF) was utilized in perform-
ing localization of the ground vehicle from multiple drones,
where each drone is providing a bearing and distance to
the ground vehicle with variances per the capabilities of the
sensor packages that are aboard that particular drone. Kalman
filters (KF) are a common approach to guidance, navigation,
and control of vehicles and robots [33] as a linear quadratic
estimator of the state of a system from a series of measurement
or observation samples over time. The Unscented Kalman filter
(UKF) uses a deterministic sampling technique known as an
unscented transform around a minimal set of sample points
about the mean, which performs well in highly non-linear
systems as compared to Extended Kalman Filters (EKF) [34].
A nonlinear Kalman filter was necessary due to 1) the non-
linearity of the motion model with arcs of motion depending
on the angle of the front wheel and 2) the nonlinearity of
triangulating the position of the ground vehicle from drones
with sensor bearings and distances.

The motion model f(x, u) of the ground vehicle is a
standard bicycle model with static rear wheel and variable
front wheel. The state model x maintains information on the
position and orientation of the ground vehicle as the vector
x = [x y θ]T , where (x, y) is the location of the ground
vehicle in the disaster site as measured in meters and θ is
the bearing in radians. The state transition function x̄ is a
non-linear motion model f(x, u) with Gaussian white noise
N (0, Q) defined as

x̄ = x+ f(x, u) +N (0, Q), (16)

where u is the command input [v α]T to the ground vehicle
control system and is defined by the linear velocity v and
the steering angle α of the ground vehicle. The measurement
model z

z = h(x,P ) +N (0, R) (17)

h(x,P ) =

[ √
(px − x)2 + (py − y)2

tan−1
(
y−py
x−px

)
− θ

]
(18)

involves the bearing and distance to the ground vehicle x =
[x, y] from the current observation location of drone [px, py],
in which the bearing and range measurement noise

R =

[
σ2
range 0
0 σ2

bearing

]
(19)

is assumed to be independent and may or may not have line
of sight to the target. In cases where a drone does not have a
line of sight of the ground asset nor any observation commu-
nications from another drone, this is a missing measurement.

For the UKF, the unscented transform uses a particle-based
technique, which requires the ability to calculate the mean
of the particles. Calculating the mean of the positions is a
simple mathematical average, whereas calculating the mean
of the bearing is

θ̄ = atan2

(∑n
i=1 sin θi
n

,

∑n
i=1 cos θi
n

)
. (20)

There are two occurrences that need to be addressed in the
application of Kalman Filters because of intermittent com-
munications and limited line of sight: missing measurements
and missing observations. In missing measurements, there is
no information at a discrete time step to update the state
estimate and the predicted measurement is propagated forward
as an observation [30], [35]. For missing observations, there
are observations at a given time step but not of all the state
information. In the case of geolocation through triangulation,
a bearing and distance measurement is not available to accu-
rately pinpoint the robot, but there are enough observations
to get a less accurate measurement. With UKF, the unscented
transform is performed as usual, because the model can be
constructed “on-the-fly” to replicate the variance that would
be seen with the lack of observation for a fully accurate
triangulation by adjusting the measurement noise, R [36].

If the probability of arrival λ of an observation in a
Bernoulli process is less than a critical probability λ ≤ λc
for a Kalman Filter, then the expectation of the estimation
error covariance is unbounded [30]. The lower bound λ of the
critical probability λc has a closed form solution but the upper
bound λ̄ requires solving a linear matrix inequality (LMI) [30].
Therefore, the authors used a simplified simulation involving
fixed observation points to experimentally approximate upper
λ̄ and lower λ heuristics for Λ of the IKD reward function Q
(12) as applied to Kalman filters for use in the full simulation.

B. Model Formulation
Due to size, weight, and power (SWAP) restrictions of the

UAVs, they are assumed to have heterogeneous sensors with
overlapping sensor support. Each UAV has been assigned to
carry two sensors on their platform from a total possibility of
three: 1) RF geolocation, 2) optical tracking, and 3) laser range
finder. Therefore each node has the option of sending the result
of a sensor to any one of the nodes that it’s connected to. This
creates an action space that as previously described combines
the sensors’ data on-board and the number of neighbors Ni,
including the action of not transmitting any information.

Remark 4. The combinatorial explosion caused by scaling
the number of agents in the system can be combatted with the
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use of collaboration graphs to factor the action space between
agents by clustering capabilities, location, etc.

As an example, a UAV connected to two other drones with
RF geolocation and optical tracking capabilities, there are five
total actions to choose during any time epoch:

1) Do not communicate (Silence or Null)
2) Send RF Geolocation results to Node A
3) Send Optical Tracking results to Node A
4) Send RF Geolocation results to Node B
5) Send Optical Tracking results to Node B
The state information is assumed to be a combinatorial set

of the relevance of the data, the risk to the ground asset,
and the state of collaboration based on the expected value
of information from previous communications and the quality
of the data. The rewards are also combinatorial as formulated
in IKD with the information theoretic metric ρ based upon
the information matrix of the sensor variances ρ = 1/κa. This
leads to an updated relevance of

Rr(a, s) = L(s′ /∈ F |a, s) · 1

κa
, (21)

where κa = minj∈N (σiσj), σi is the variance of the local
sensor information being transmitted, and σj is the variance
of a collaborative agent j 6= i ∈ N . This also leads to an
updated collaboration reward of

R̂c(a, s) =
1

|N |
∑
j∈N
S(Q(λj |a, s)) ·

1

κa
, (22)

where the sigmoid function S(·) has a center point x0 =
1
2 (λ̄ + λ) and k is set to create a switching function beyond
the heuristic bounds of Λ. The function Q adjusts λj based
upon the current state s of communication collaboration and
the value of information κa in the action a to improve the
covariance of the Kalman filter.

The transition probabilities for relevance are driven by the
relationship between the monitoring UAVs and the ground
asset. The ground asset is assumed to be reachable by the
UAVs through the MANET or a multi-hop network so that
it can be influenced in finding a more conservative route
by updating the edge costs between waypoints around the
relative position of the hazard. The timeliness and usefulness
of the data being transmitted and received was utilized to
calculate the collaboration transition probabilities via repeated
simulation.

Observation probabilities are defined through subject matter
expertise and repeated simulation. The Kalman filter and a
sufficient statistic of observation histories, a Bayesian esti-
mator, were processed through a belief function υ to create
the relevance and collaboration mapping to the observation
space o ∈ O. The observation states themselves are a discrete
categorization of local observations using a K-means clus-
tering algorithm learned unsupervised from numerous Monte
Carlo simulations. In particular, the mapping of observations
υr is performed solely by cluster classification of the state
estimation and its covariance, driven by sensor inaccuracies
of the ground asset’s proximity to hazards to observation
relevance states or. Whereas, the observation mapping υc for

collaboration is based on multiple observations: 1) a Bayes
estimation of the current arrival probability λ̂ij of messages
σ : j → i or σ : i→ j used to ascertain proximity to heuristic
bounds; 2) the usefulness of information σk recently received
from or sent to another agent j according to κa; and, 3) the
lagged autocovariance cov(P [m],P [m + l]) of the Kalman
filter covariances P to evaluate the impact of information
exchange over time in maintaining mission objectives involved
in asset tracking. A collaboration mapping υc is the cluster
classification of λ̂, σk, and cov(·) to the observation space
oc. The relevance or and collaboration oc observations from
the mappings υ are indexed to the observation o in the
combinatorial set, which then drives the edge transitions of
the finite state controller policy.

C. Constraints on Communication
The constraints being analyzed by CA-POMDP are the

utilization of bandwidth (bytes per second) and power (Watt
per second) over one second, which is a sampling length of
10 epochs as the UAV makes a collaboration decision every
100ms. The constraints are considered soft constraints because
there is often more available bandwidth in the network than
is being allocated to multi-agent collaboration. Also, network
protocols like ZeroMQ permit queueing techniques to account
for myopic link saturation. The power utilization is considered
an average power consumption needed for the communication
system to use to ensure the UAV can maintain the required
flight time needed to maintain situational awareness of the
disaster site.

Resource utilization by the UAVs is dependent on the type
of information they are sending. It is assumed that sending
optical data requires more data and therefore higher power
requirements to achieve the SNR needed for higher bandwidth
physical layer protocols, e.g., 64QAM. The data for laser range
finding then RF geolocation are assumed to take sequentially
less data and power than optical data.

VII. EXPERIMENTAL RESULTS & ANALYSIS

The applicability of Constrained-Action POMDPs to ad-
dress resource awareness in Intelligent Knowledge Distribution
was investigated through a series of Monte Carlo simulations.
From these simulations, the probabilistic constraint satisfaction
was analyzed between intelligent (IKD), greedy, and naive
communication models while confirming their ability to main-
tain acceptable state estimations.

In our experiment, greedy communications assume a con-
stant communication of the best information observed at all
times alternating the destination between each time epoch
among collaborating neighbors. Naive communications applies
a probability of communicating depending on the relevance
of the information, the estimated proximity to a hazard. In
previous work [9], we already examined the trade off of
constraint satisfaction and optimal value, Figure 8, along with
an analysis of how the finite state controller is impacted by
constraint states, Figure 7.

The probabilistic constraint satisfaction between the three
communication models was analyzed in a Monte Carlo sim-
ulation where the simulation would randomly determine a
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(a) An unconstrained optimal FSC policy.

(b) A constrained FSC policy where a less optimal but less resource
consuming action (Transmit RF) was introduced into the controller.

Fig. 7: An example of (a) an unconstrained and (b) an constrained controller
of one of the drones (agents) performing Intelligent Communications.

Fig. 8: The impact to the value function and probabilistic constraint
satisfaction when satisfying soft limits for Bandwidth. The green line shows
the probabilistic constraint satisfaction of an Optimal FSC policy that only
satisfies 12% at 6 MBps. The blue line shows the value impact of a
Constrained Controller that is 55% of optimal at 6 MBps.

start location for the ground vehicle, a goal location for the
ground vehicle, placement of hazards in the environment, and
an initial belief state for the controller. The UAV monitoring
drones had a predefined search pattern that was consistent
between all simulations. During the IKD simulations, the CA-
POMDP model was allowed to recalculate a new constrained
policy during the execution of a simulation when the variation
of information exceeded a threshold to ensure continued
compliance to constraints.

The utilization of resources per second by each agent
during all these simulations was graphed as histograms in
Figure 9 for the two limiting resources along with their soft
constraints (dotted red line). The probabilistic constraint satis-
faction to these soft limits of both bandwidth and power were
substantially improved for intelligent knowledge distribution
compared to those of both naive and greedy communication
models. This confirms that the CA-POMDP substantiation for
Intelligent Knowledge Distribution was able to find a controller
that complied with probabilistic constraints against soft limits
and adapt the controller as needed. During execution, the
constraint state “Transmit RF to Node 2” of Figure 7b would
be taken at appropriate times to reduce resource usage.

As expected, the naive communication model with its prob-
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Fig. 9: Comparison of constraint satisfaction from three Monte Carlo
simulation scenarios involving drones performing either Greedy, Naive, or
Intelligent Communications.
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Fig. 10: Histogram of the norm of the Unscented Kalman Filter covariance
matrix showing that despite the constrained actions of IKD, the intelligent
controller was still able to maintain accurate estimates of the ground vehicle.
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abilistic approach to making communication decisions on data
relevance alone utilized less resources than the purely greedy
communication model. Despite the improvement shown with
the naive approach, our IKD approach was compliant to
the soft constraints while not negatively impacting the state
estimation, determined by the norm of the UKF covariance in
Figure 10. The two distributions in the graph are indicative of
the times when the filter has full observational data and when
the filters have missing observations and measurements.

The first two columns of Table I further validates our
results showing the probabilistic constraint satisfaction, or
CDF below soft constraints, to the bandwidth and power limits.
The accuracy of the state estimations are shown in the last
column and it is of interest to note that IKD maintained better
estimations than naive. It is hypothesized that the improvement
results from IKD sending the most relevant data to ensure
bounded performance of the Kalman filter, whereas naive does
not have that level of contextual understanding.

TABLE I: Comparison of Simulation Metrics between Greedy,
Naive, and Intelligent Communications.

Model BW Power Cov

Greedy 0% 2% 0.0132
Naive 32% 40% 0.0135
Intelligent 97% 97% 0.0133

Remark 5. It is interesting to note that during the construction
and analysis of the system that if the optimal controller meets
probabilistic constraint satisfaction less than 15% of the time,
then there was an unacceptable level of probability that the
the resulting constrained controller would not meet mission
objectives. Future work can investigate the driving mechanism
behind mission success and techniques to compensate like
adaptive soft constraints to ensure mission objectives.

VIII. FUTURE WORK & CONCLUSION

The Monte Carlo simulations indicate that the incorporation
of Intelligent Knowledge Distribution (IKD) that determines
what information is needed to whom and when under soft
constraints was successful. The approach provides an agnos-
tic “plug-and-play” framework for IKD by constraining the
actions of a POMDP to only transmit information to a collab-
orative agent when the value of that information warrants the
communication. Constrained-Action POMDPs provide a level
of guarantee of probabilistic constraint satisfaction to a desired
operational behavior while still allowing short-term bursts of
critical information. It also validates the concept of using
Markov chain Monte Carlo analysis to evaluate an infinite-
horizon policy represented as a finite state controller for its
probability of satisfying soft constraints and a combinatorial
discrete optimization for achieving desired constraint behavior
of a policy while minimizing impact on the controller’s value.

As the number of agents grow to respond to operational
needs, communication between agents grows according to
1
2n(n− 1). To reduce the number of communication channels
and improve the feasibility of solving for the IKD commu-
nication model in larger multi-agent systems, learning coor-

dination graphs seen in Network Distributed POMDPs (ND-
POMDP) implementations will be addressed in future work,
which could be different for each taxonomy of information
being tracked by the agents. For IKD in real-time operational
scenarios, the agents available to collaborate and coordinate
may not be known until they are actively in the field, there-
fore learning heterogeneous interactions and constructing a
coordination graph online is a necessary expansion. Finally,
the above approach is actively being expanded into a fully
collaborative multi-agent target tracking simulation to evaluate
its effectiveness in a Concurrent Constrained Decentralized
POMDP, where the IKD CA-POMDP is one POMDP working
concurrently with tasking, motion planning, and target tracking
MDPs.

REFERENCES

[1] G. Tuna, B. Nefzi, and G. Conte, “Unmanned aerial vehicle-aided
communications system for disaster recovery,” Journal of Network and
Computer Applications, vol. 41, pp. 27–36, 2014.

[2] S. Omidshafiei, A.-a. Agha-mohammadi, C. Amato, and J. P. How,
“Decentralized control of partially observable Markov decision pro-
cesses using belief space macro-actions,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2015, pp.
5962–5969.

[3] F. A. Oliehoek, C. Amato et al., A concise introduction to decentralized
POMDPs. Springer, 2016, vol. 1.

[4] S. Seuken and S. Zilberstein, “Improved memory-bounded dynamic pro-
gramming for decentralized POMDPs,” arXiv preprint arXiv:1206.5295,
2012.

[5] J. Capitan, M. T. Spaan, L. Merino, and A. Ollero, “Decentralized
multi-robot cooperation with auctioned POMDPs,” The International
Journal of Robotics Research, vol. 32, no. 6, pp. 650–671, 2013.
[Online]. Available: http://ijr.sagepub.com/content/32/6/650.abstract

[6] J. Girard and M. R. Emami, “Concurrent Markov decision processes for
robot team learning,” Engineering Applications of Artificial Intelligence,
vol. 39, pp. 223 – 234, 2015.

[7] O. Sigaud and O. Buffet, Markov decision processes in artificial intel-
ligence: MDPs, beyond MDPs and applications. London: John Wiley
& Sons, 2010.

[8] Q. Hu and W. Yue, Markov decision processes with their applications.
Springer Science & Business Media, 2007, vol. 14.

[9] M. Fowler, P. Tokekar, T. C. Clancy, and R. K. Williams, “Constrained-
action POMDPs for multi-agent intelligent knowledge distribution,”
in 2018 IEEE International Conference on Robotics and Automation
(ICRA), 2018 [Accepted].

[10] E. Altman, Constrained Markov decision processes. CRC Press, 1999,
vol. 7.

[11] A. Beynier and A.-I. Mouaddib, “An iterative algorithm for solving
constrained decentralized Markov decision processes,” in AAAI, vol. 6,
2006, pp. 1089–1094.

[12] M. El Chamie and B. Acikmese, “Finite-Horizon markov decision
processes with state constraints,” arXiv preprint arXiv:1507.01585, 6 Jul.
2015.

[13] S. Feyzabadi and S. Carpin, “HCMDP: A hierarchical solution to
constrained Markov decision processes,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA), May 2015, pp. 3971–
3978.

[14] ——, “Risk-aware path planning using hirerachical constrained Markov
decision processes,” in Automation Science and Engineering (CASE),
2014 IEEE International Conference on. IEEE, 2014, pp. 297–303.

[15] E. A. Hansen, “Finite-memory control of partially observable systems,”
Ph.D. dissertation, University of Massachusets Amherst, 1998.

[16] J. D. Isom, S. P. Meyn, and R. D. Braatz, “Piecewise linear dynamic
programming for constrained POMDPs,” in AAAI, 2008, pp. 291–296.

[17] A. Undurti and J. P. How, “An online algorithm for constrained
POMDPs,” in Robotics and Automation (ICRA), 2010 IEEE Interna-
tional Conference on. IEEE, 2010, pp. 3966–3973.

[18] E. A. Hansen, “Solving POMDPs by searching in policy space,” in
Proceedings of the Fourteenth conference on Uncertainty in artificial
intelligence. Morgan Kaufmann Publishers Inc., 1998, pp. 211–219.

http://ijr.sagepub.com/content/32/6/650.abstract


14

[19] M. J. Kochenderfer, C. Amato, and H. J. D. Reynolds, Decision making
under uncertainty: theory and application. MIT press, 2015.

[20] S. A. Williamson, E. H. Gerding, and N. R. Jennings, “Reward
shaping for valuing communications during multi-agent coordination,”
in Proceedings of The 8th International Conference on Autonomous
Agents and Multiagent Systems-Volume 1. International Foundation
for Autonomous Agents and Multiagent Systems, 2009, pp. 641–648.

[21] M. Araya, O. Buffet, V. Thomas, and F. Charpillet, “A pomdp extension
with belief-dependent rewards,” in Advances in neural information
processing systems, 2010, pp. 64–72.

[22] S. Williamson, E. Gerding, and N. Jennings, “A principled information
valuation for communications during multi-agent coordination,” in Proc
AAMAS Workshop on Multi-Agent Sequential Decision Making in Un-
certain Domains, 2008, pp. 137–151.

[23] M. T. Spaan, T. S. Veiga, and P. U. Lima, “Decision-theoretic planning
under uncertainty with information rewards for active cooperative per-
ception,” Autonomous Agents and Multi-Agent Systems, vol. 29, no. 6,
pp. 1157–1185, 2015.

[24] J. Pineau, G. Gordon, S. Thrun et al., “Point-based value iteration: An
anytime algorithm for POMDPs,” in IJCAI, vol. 3, 2003, pp. 1025–1032.

[25] D. Koller and N. Friedman, Probabilistic graphical models: principles
and techniques. MIT press, 2009.

[26] M. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent
networks. Princeton University Press, 2010, vol. 33.

[27] D. S. Bernstein, E. A. Hansen, and S. Zilberstein, “Bounded policy
iteration for decentralized POMDPs,” in Proceedings of the nineteenth
international joint conference on artificial intelligence (IJCAI), 2005,
pp. 52–57.

[28] J. Clausen, “Branch and bound algorithms –principles and examples,”
Department of Computer Science, University of Copenhagen, pp. 1–30,
1999.

[29] B. Taylor, “Integer programming: The branch and bound method,”
Introduction to Management Science, 2009.

[30] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan,
and S. S. Sastry, “Kalman filtering with intermittent observations,” IEEE
transactions on Automatic Control, vol. 49, no. 9, pp. 1453–1464, 2004.

Michael Fowler Michael Fowler is a research scien-
tist for the Ted and Karyn Hume Center for National
Security and Technology at Virginia Tech responsi-
ble for driving and providing thought leadership into
the centers research on autonomous systems, mission
orchestration, distributed intelligence, and security
for wireless and unmanned systems with currently
over $4M in active research programs. His research
focus is on the convergence of distributed intelli-
gence and machine learning for decision making un-
der uncertainty for embedded applications including

drones, satellites, IoT, and wireless communications. He has accumulated over
10 years of experience managing and performing research in security, wireless
systems and artificial intelligence at Harris Corporation and as faculty at
Virginia Tech. He has received a Masters in Engineering Management from
Old Dominion University and is currently a Ph.D. candidate in Computer
Engineering at Virginia Tech.

[31] K. P. Murphy, Machine learning: a probabilistic perspective. MIT
press, 2012.

[32] S. Koenig and M. Likhachev, “Dˆ* lite,” Aaai/iaai, vol. 15, 2002.
[33] H. Musoff and P. Zarchan, Fundamentals of Kalman filtering: a practical

approach. American Institute of Aeronautics and Astronautics, 2009.
[34] S. J. Julier and J. K. Uhlmann, “New extension of the kalman filter

to nonlinear systems,” in Signal processing, sensor fusion, and target
recognition VI, vol. 3068. International Society for Optics and
Photonics, 1997, pp. 182–194.

[35] D. J. Thomas, K. M. Nastasi, K. Schroeder, and J. T. Black, “Au-
tonomous multi-phenomenology space domain sensor tasking and adap-
tive estimation,” in 2018 21st International Conference on Information
Fusion (FUSION), July 2018, pp. 1331–1338.

[36] K. M. Nastasi and J. Black, “An autonomous sensor management
strategy for monitoring a dynamic space domain with diverse sensors,”
in 2018 AIAA Information Systems-AIAA Infotech@ Aerospace, 2018,
p. 0890.

T. Charles Clancy Dr. Charles Clancy is an Asso-
ciate Professor of Electrical and Computer Engineer-
ing at Virginia Tech and directs of the Hume Cen-
ter for National Security and Technology. Prior to
joining Virginia Tech in 2010, he served as a senior
researcher at the Laboratory for Telecommunications
Sciences, a defense research lab at the University
of Maryland, where he led research programs in
software-defined and cognitive radio. Dr. Clancy
received his B.S. in Computer Engineering from
the Rose-Hulman Institute of Technology, M.S. in

Electrical Engineering from the University of Illinois, and his Ph.D. in
Computer Science from the University of Maryland. He is a Senior Member of
the IEEE and has over 150 peer-reviewed technical publications. His current
research interests include cognitive communications and spectrum security.

Ryan Williams Ryan K. Williams received the B.S.
degree in computer engineering from Virginia Poly-
technic Institute and State University in 2005, and
the Ph.D. degree from the University of Southern
California in 2014. He is currently an Assistant
Professor in the Electrical and Computer Engineer-
ing Department at Virginia Polytechnic Institute
and State University where he runs the Virginia
Tech Laboratory for Coordination at Scale (CAS
Lab). His current research interests include control,
cooperation, and intelligence in distributed multi-

agent systems, topological methods in cooperative phenomena, and distributed
algorithms for optimization, estimation, inference, and learning. Williams is a
Viterbi Fellowship recipient, has been awarded the NSF CISE Research Initia-
tion Initiative grant for young investigators, is a best multi-robot paper finalist
at the 2017 IEEE International Conference on Robotics and Automation, and
has been featured by various news outlets, including the L.A. Times.


	I Introduction
	II Related Work
	III Background
	III-A Partially Observable Markov Decision Processes
	III-B Markov Chain Monte Carlo
	III-C Graph Theory

	IV Constrained-Action POMDP
	IV-A CA-POMDP Model
	IV-B Constraint Improvement
	IV-C Constraint Satisfaction Evaluation
	IV-D Learning Edge Probabilities and Resource Utilization

	V Intelligent Knowledge Distribution Model
	V-A Action & State Model
	V-B Reward Model
	V-C Transition & Observation Models

	VI Experimental Model
	VI-A Asset Localization & Kalman Filter
	VI-B Model Formulation
	VI-C Constraints on Communication

	VII Experimental Results & Analysis
	VIII Future Work & Conclusion
	References
	Biographies
	Michael Fowler
	T. Charles Clancy
	Ryan Williams


