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Benchmarking Continuous Dynamic Optimization:

Survey and Generalized Test Suite
Danial Yazdani, Mohammad Nabi Omidvar, Ran Cheng, Jürgen Branke, Trung Thanh Nguyen, and Xin Yao

Abstract—Dynamic changes are an important and inescapable
aspect of many real-world optimization problems. Designing
algorithms to find and track desirable solutions while facing
challenges of dynamic optimization problems is an active research
topic in the field of swarm and evolutionary computation. To
evaluate and compare the performance of algorithms, it is
imperative to use a suitable benchmark that generates problem
instances with different controllable characteristics. In this paper,
we give a comprehensive review of existing benchmarks and
investigate their shortcomings in capturing different problem
features. We then propose a highly configurable benchmark suite,
the generalized moving peaks benchmark, capable of generating
problem instances whose components have a variety of properties
such as different levels of ill-conditioning, variable interactions,
shape, and complexity. Moreover, components generated by the
proposed benchmark can be highly dynamic with respect to
the gradients, heights, optimum locations, condition numbers,
shapes, complexities, and variable interactions. Finally, several
well-known optimizers and dynamic optimization algorithms are
chosen to solve generated problems by the proposed benchmark.
The experimental results show the poor performance of the
existing methods in facing new challenges posed by the addition
of new properties.

Index Terms—Dynamic environments, Dynamic optimization
problems, Evolutionary dynamic optimization, Moving peaks
benchmark, Tracking moving optimum, Survey.

I. INTRODUCTION

S
EARCH spaces of many real-world optimization problems

are dynamic in terms of the objective function, the number

of variables, and/or constraints [1]. Optimization problems

that change over time and need to be solved online by an

optimization method are referred to as dynamic optimization

problems (DOPs) [2]. To solve DOPs, algorithms not only

need to find desirable solutions but also to react to the

environmental changes in order to quickly find a new solution

when the previous one becomes suboptimal [3].
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To comprehensively evaluate the effectiveness of algorithms

designed for DOPs, a suitable benchmark generator is crucial.

A DOP benchmark generator should have the following major

features [1], [2]:

• Easy to implement and analyze; Researchers should

have access to information about the location of the

global optimum and its fitness value, and characteris-

tics of components that form the landscape, such as

their variable interaction structure, shape, and change

intensities. Although this information should not be used

for designing/tuning algorithms and the problem must

remain a black-box for algorithms, it allows researchers

to analyze and measure the behavior and performance of

the algorithms. Additionally, a good benchmark should

not be excessively difficult to implement.

• Flexibility: the benchmark generator should be highly

configurable with respect to different aspects such as the

number of components, shape of components, dimension,

change frequency, and change severity. In addition, the

configuration of any feature should be independent of

other features. This independence allows the researchers

to investigate the effect of each single property on the

behavior of algorithms. Moreover, a good benchmark

should be capable of generating problem instances with

varying degrees of complexity. Many real-world problems

are very hard and complex [1], [2], [4].

• Variety: the benchmark generator should be capable of

generating problems instances with a variety of char-

acteristics such as modularity (fully separable, fully

non-separable, and partially separable), components with

different condition numbers (ill-conditioning), different

intensity of local and global modality (unimodal to

highly multimodal), heterogeneity, balanced to highly

imbalanced subfunctions, low to high-dimensional (large-

scale), different levels of irregularities (smooth to highly

irregular), and symmetric components to highly asym-

metric ones.

Several DOP benchmarks have been proposed in the lit-

erature for different DOP domains [2], [5] such as combi-

natorial [6], [7], continuous [4], [8], multi-objective [9]–[11],

and constrained DOPs [12]–[14]. This paper focuses on dy-

namic continuous unconstrained single-objective optimization

problems. For brevity, we use the term DOP to refer to the

considered DOPs in this paper. Commonly used and well-

known benchmark generators in this domain use the idea of

having several components that form the landscape. In most

existing DOP benchmarks, the width, height, and location of
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these components change over time [5]. One of the benchmark

generators that is designed based on this idea is the Moving

Peaks Benchmark (MPB) [8], which is the most widely

used synthetic problem in the DOP field [1], [3], [5]. Each

component in MPB is formed by usually a simple peak whose

basin of attraction is determined using a max(·) function.

MPB and its variations have been used in different classes of

DOPs such as tracking moving optimum (TMO) in which the

algorithms search for the best solution in each environment [2],

robust optimization over time (ROOT) in which the algorithms

search for solutions whose quality remain acceptable after

environmental changes [15], [16], multi-objective DOPs in

which there are multiple conflicting objectives [17], large-

scale DOPs, where algorithms faces the scalability issues due

to high-dimensionality of the problem [18], [19], and DOPs

with dynamic constraints in which there are several moving

feasible regions in the landscape [13].

Despite the popularity of the standard MPB, landscapes

generated by MPB consist of components that are smooth,

symmetric, unimodal, separable [18], and easy to optimize,

which may not be the case in many real-world problems. Note

that MPB is capable of using basic functions such as Rastrigin,

Griewank, Ackley, and Rosenbrock as its components instead

of the simple peaks. However, practically it is very challenging

to use the aforementioned basic functions due to their different

characteristics such as shape, gradient, the ratio between the

fitness value drop to the distance to the optimum, and standard

search range. In fact, many basic functions can not be used

as the components of MPB, and for each of the ones that can

be utilized, all the MPB parameters need to be specifically

tuned. On the other hand, using different basic functions in

the MPB to have components with different characteristics is

more challenging and almost impossible in many cases.

In this paper, we propose a generalized MPB (GMPB)

which is capable of generating problems with a variety of

characteristics that can range from fully non-separable to fully

separable structure, from homogeneous to highly heteroge-

neous sub-functions, from balanced to highly imbalanced sub-

functions, from unimodal to highly multimodal components,

from symmetric to highly asymmetric components, and from

smooth to highly irregular components. Therefore, GMPB is a

benchmark generator with fully controllable features that helps

researchers to analyze DOP algorithms and investigate their

efficiencies in facing a variety of different problem charac-

teristics. Although the aforementioned problem characteristics

have been vastly investigated in other fields of evolutionary

computations such as static optimization problems [20]–[22],

and large-scale optimization problems [23], [24], little related

work has been dedicated to the DOP literature.

The major contributions of this paper can be summarized

as follows:

• A comprehensive survey on continuous unconstrained

single-objective DOP benchmarks that investigates their

baselines, dynamics, characteristics, and behaviors. This

survey helps the reader to understand the shortcomings

of the existing benchmarks.

• A new benchmark with the capability of generating a

variety of problem characteristics that have not been

considered in the existing DOP benchmarks. All the char-

acteristics are mathematically formulated into a baseline

function that can be easily configured and controlled

through its parameters. GMPB is capable of generating

problems with any desired combination of characteristics

that can also change over time.

• A detailed analysis of the behavior of several well-known

algorithms on different problem characteristics.

Background information, including the definitions of dy-

namic optimization problems, variable interaction, modularity,

imbalance, heterogeneity, and ill-conditioning, are provided in

Section S-I of the supplementary document. The organization

of the rest of this paper is as follows. Section II provides

a survey of continuous unconstrained single-objective DOP

benchmarks. Section III proposes the generalized MPB. Sec-

tion S-II conducts a comprehensive empirical analysis of the

GMPB. Finally, Section IV concludes the paper and outlines

possible future directions.

II. A SURVEY ON DOP BENCHMARKS

In this section, we review the commonly used and well-

known DOP benchmarks, which are continuous, single-

objective, and unconstrained. In this paper, DOP benchmarks

are categorized as follows:

1) DOP benchmarks whose landscapes are formed by a

single component; and

2) DOP benchmarks whose landscapes are made by jointing

several components. The benchmarks belonging to this

category handle multiple components in two major ways:

a) Using the max(·) function to control the basin of

attraction among multiple components.

b) Partitioning the search space into hypercube based

components.

A. DOP benchmarks whose landscape is formed by a single

component

The AB benchmark [25] is the first in this category, which

uses two 2-dimensional landscapes called A and B, each

with different characteristics. The A landscape consists of

14 sinusoidally shaped peaks, and B consists of 20 peaks,

whose shapes are determined by a sine function, and triangular

and Gaussian probability distributions. Three types of environ-

mental changes are defined as follows: 1) linear translation

of peaks in A; 2) changing the location of the maximum

peak randomly while the rest of the search space remains

unchanged; and 3) switching between landscapes A and B.

Moving parabola (MP) [26] applies linear, circular, and

random dynamics to a simple 3-dimensional sphere function

to shift its location. Given a severity parameter φ̃, the afore-

mentioned three dynamics are formulated as follows:

φ
(t+1)
i = φ

(t)
i + φ̃, (1)

φ
(t+1)
i =











φ
(t)
i + φ̃ sin

2πt

25
i = 1, 3

φ
(t)
i + φ̃ cos

2πt

25
i = 2,

(2)
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φ
(t+1)
i = φ

(t)
i + φ̃N (0, 1), (3)

where φ
(t)
i is the offset of the ith dimension in tth environment

for i ∈ {1, 2, 3}, N (0, 1) is a random number drawn from a

Gaussian distribution with mean 0 and variance 1, and φ̃ is

the change severity.

Dynamic rotation (DR) [27] combines the landscape with

a visibility mask, which only allows the fitness of certain

regions of the landscape to be evaluated. The visibility mask

forces the remaining regions to return a predefined undesirable

fitness value. DR uses five types of dynamics: 1) rotating

the objective function around the optimum where there is

no visibility mask; 2) rotating the visibility mask around the

optimum where the objective function is stationary; 3) rotating

the objective function around its optimum while the visibility

mask is static; 4) rotating both the objective function and the

visibility mask around the optimum with the same rotation

angle; and 5) rotating both the objective function and the

visibility mask around the optimum with different rotation

angles.

Composition dynamic benchmark generator (CDBG) [28]

is extended from the static composition functions in [21],

[22]. Since the landscape of CDBG is made by composing

several single-component subfunctions, we cannot categorize

it as a benchmark with joining components. Moreover, since

it uses some standard static basic functions such as Ackley

and Rastrigin in its structure, the number of peaks cannot

be controlled by the user. CDBG uses the environmental

dynamics of the generalized dynamic benchmark generator

(GDBG) [28] for shifting each basic function, which will be

discussed later in this section.

A general framework for inducing artificial changes (IAC)

in optimization problems is proposed in [29]. The utilized

landscapes in IAC contain some basic functions such as

Rosenbrock, Griewank, Ackley, and Rastrigin. IAC contains

four groups of dynamics that can be applied to the landscapes

to generate environmental changes. These dynamics include:

1) rotation; 2) shift; 3) decision variables permutation; and

4) duplication based dynamics where a predefined number of

decision variables are randomly copied to other positions. The

aforementioned dynamics can be applied to the entire land-

scape, or to some regions of the search space. Consequently,

IAC can generate both local or global environmental changes.

B. DOP benchmarks whose landscape is formed by joining

several components

This group of DOP benchmarks is further categorized into

the ones whose landscape is divided using the max(·) function

or partitioning by hypercubes.

1) DOP benchmarks based on the max(·) function: This

group of DOP benchmarks uses a max(·) function to define

the basin of attraction of components, which are usually

single peaks. Branke’s moving peaks benchmark (MPB) [8]

is the most popular benchmark suite in DOPs [1], [5]. MPB

generates a landscape containing several components in which

each component contains a peak whose height, width, and

location change every time the environment changes. MPB is

flexible and can be used to generate scalable functions with a

(a) Landscape generated by (4) (b) Landscape generated by (5)

(c) Landscape generated by (10) (d) Landscape generated by (12)

Fig. 1. Landscapes with 10 components generated by different baselines. All
shared parameter settings, such as component centers’ locations, heights, and
widths, are equal. In Figure 1(c), β is set to zero. Note that in contrary to
the flat regions in Figure 1(c) whose gradient is zero, the gradients in the flat
looking regions in Figures 1(a) and 1(d) have positive non-zero values.

configurable number of components. Each component has the

potential to become the global optimum after an environmental

change. In the first version of MPB [8], the baseline function

was defined as follows:

f (t)(x) = max
i∈{1,...,m}

h
(t)
i

1 + w
(t)
i

∑d
j=1(xj − c

(t)
i,j )

2
, (4)

where m is the number of components (peaks), x is a solution

in the d-dimensional problem space, h
(t)
i , w

(t)
i , and c

(t)
i are

the height, width, and the center of the ith peak in the

tth environment, respectively. Later, a new scenario of MPB

was proposed (Scenario 2), which replaces the peak function

in (4) with the cone function [30] (as in the DF1 benchmark

generator [31], [32]). Scenario 2 has become the standard

configuration of MPB in many studies [33]–[41].

The Scenario 2 baseline function of MPB is as follows:

f (t)(x) = max
i∈{1,...,m}

{

h
(t)
i − w

(t)
i

∥

∥

∥x− c
(t)
i

∥

∥

∥

}

. (5)

Figures 1(a) and 1(b) illustrate MPB landscapes generated

by (4) and (5), respectively. In MPB, the height, width, and

center of all components change from one environment to the

next based on the following update rules:

h
(t+1)
i = h

(t)
i + h̃N (0, 1), (6)

w
(t+1)
i = w

(t)
i + w̃N (0, 1), (7)

c
(t+1)
i = c

(t)
i + v

(t+1)
i , (8)

v
(t+1)
i = s̃ · (1− λ) · u+ λ · v(t)

i
∥

∥

∥
(1− λ) · u+ λ · v(t)

i

∥

∥

∥

, (9)

where N (0, 1) is a random number drawn from a Gaussian

distribution with mean 0 and variance 1, h̃ is the height

severity, w̃ is the width severity, s̃ is the shift severity, u is a

vector of uniformly distributed numbers in range [−0.5, 0.5],
and λ ∈ (0, 1) is the correlation coefficient. λ = 0 implies

that the peak relocations are uncorrelated whereas they are
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Fig. 2. The movement of the peak center through a 2-dimensional subspace
over 10 environmental changes where s̃ = 1. The initial position of peak is
[0,0], and the same random seed is used for each sequence of movements.

fully correlated for λ = 1. The step size of peak movements

is constant and equal to s̃. Figure 2 shows 10 relocations

of a peak center using different values of λ where s̃ = 1.

According to (6) and (7), the default environmental dynamic

for a peak’s height and width in MPB is random change [26]

based on (3). At each environmental change, all components’

parameters change using (6), (7), and (8). Consequently, the

entire search space changes after each environmental change.

Considering this characteristic, an environmental change can

be detected by re-evaluating any solution across the search

space by comparing its current and previous fitness values.

If the values are different, an environmental change can be

detected.

In [42], a control parameter is added to MPB to determine

the percentage of changing components at each environmental

change. As a result, a predefined number of randomly chosen

components will change using (6), (7), and (8), while the

remaining ones will remain unchanged. Therefore, change

detection becomes more challenging for some methods as

only some parts of the environment change [40]. Furthermore,

in order to increase the size of the regions that remains

unchanged after environmental changes, a threshold β is used:

f (t)(x) = max

{

β, max
i∈{1,...,m}

{

h
(t)
i − w

(t)
i

∥

∥

∥
x− c

(t)
i

∥

∥

∥

}

}

,

(10)

where β determines the minimum fitness value of the problem

and creates flat regions. The fitness value of any solution

in these flat regions is equal to β. These flat regions make

the problem more challenging since the change detection

has become harder. Figure 1(c) shows a generated landscape

using (10).

In the field of robust optimization over time (ROOT) [15],

the MPB with the baseline (5) is used in many studies [16],

[43]–[47]. However, the values of h̃, w̃, and s̃ are different

for each component. The reason for having different height,

width and shift severities for each component is to create

components with different levels of robustness. Equations (3),

(14), and (18) are used as dynamics in [47] while default MPB

dynamics, i.e. (3) are used in [16], [43]–[46].

The MPB has one global optimum in each environment.

However, most multi-population methods [2] try to cover and

track multiple optima. Note that, although multiple optima are

covered by many DOP algorithms [2], most DOPs only have

single global optimum, despite that there may also exist local

optima. This is different from mutlmodal optimization where

there exist multiple global optima inside the same fitness

landscape [48], [49]. In many DOP algorithms, especially

multi-population methods, covering multiple optima is done in

order to increase and maintain overall diversity, and accelerate

the process of finding new global optimum after environmental

changes. In [50], a multimodal version of MPB with multiple

global optima is proposed. In this benchmark, a predefined

number of components are global optima whose heights are

constant over time, and only their locations and widths are time

varying. There are other local optima whose heights change

over time. However, the upper bound of height value of the

local optima is less than that of the global optima.

Pendulum MPB (PMPB) [51] is a modified version of

MPB in which the environments reappear periodically over

time. PMPB works based on a pendulum length parameter pl

and a direction parameter dir. First, using the baseline (5)

and the dynamics from (6), (7), and (8), pl environments
[

f (1), f (2), · · · , f (pl)
]

are constructed. Then, the environmen-

tal parameters of the constructed environments are stored in

an archive to be used for future reappearances. dir shows

the direction of fetching the environmental parameters from

the archive, to retrieve the next environment. The value of

dir changes every pl environmental changes by switching

between right and left. The environments are retrieved from

the archive based on their order and the value of dir. An

example of the pendulum-based environmental changes is:

[

f (1), f (2), · · · , f (pl−1), f (pl), f (pl−1), · · · , f (2), f (1), f (2), · · ·
]

.

(11)

Similar to MPB, DF1 [31], [32] generates problem instances

in which the width, height, and location of components change

over time. The baseline function of DF1 is similar to (5),

however, the dynamics are different and a logistic function is

used to generate dynamics. Another benchmark whose land-

scape consists of several components is the Gaussian peaks

benchmark (GPB) [52] which uses the following baseline:

f (t)(x) = max
i∈{1,...,m}











h
(t)
i exp






−

∥

∥

∥x− c
(t)
i

∥

∥

∥

2

2
(

w
(t)
i

)2

















. (12)

An example of a generated 2-dimensional landscape by this

benchmark is shown in Figure 1(d). In GPB, the locations

of peaks change in random directions, and the step sizes are

uniformly distributed over an interval controlled by two levels

of severity called abrupt and gradual.

In contrast to the aforementioned landscapes, Blackwell [53]

proposes a minimization benchmark generator denoted as

moving valleys benchmark (MVB). The generated landscapes

by MVB are constructed by several spheric components whose

basins of attractions are determined by a min(·) function.

MVB is constructed using the following baseline function:

f (t)(x) = min
i∈{1,...,m}







d
∑

j=1

(

xj − c
(t)
i,j

)2

+
(

h
(t)
i

)2







. (13)

As can be seen in (13), MVB does not use width parameter w

which leads to construct components with identical gradients.

Figure 3(a) illustrates a 2-dimensional landscape generated by

this benchmark.
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(a) A landscape generated by (13)

with m = 10 and m′ = 6.

(b) A landscape generated by (5)

with m = 100 and m′ = 68.

Fig. 3. Two examples in which some components are covered by larger ones.

One main property of all aforementioned benchmarks in

this part is the dynamic number of visible components m′

in the landscape. A component is visible if it is not cov-

ered by any other larger component. When components are

wider, the possibility of decreasing m′ increases. Among the

investigated benchmarks, MVB has very broad components,

such that it is probable that the smaller components become

hidden under larger ones. For example, as can be seen in

Figure 3(a), the number of components m is set to ten while

the number of visible components m′ is smaller. Furthermore,

the number of visible components drops by increasing m. In

such circumstances, the density of components is increased

such that larger components can cover several smaller close

components. Figure 3(b) shows a generated landscape by (5)

where the number of components m is set to 100. However,

almost a third of them are invisible. Changing the number of

visible components is a challenging property for algorithms

that try to cover and track multiple moving components. This

is due to the fact that the algorithm will lose its track when

a component becomes hidden under a larger component in

an environmental change. In addition to the property of the

varying number of visible component m′, a modified version

of MPB is proposed in [54] where the number of components

m is changing over time.

The generalized dynamic benchmark generator

(GDBG) [28] contains six different types of dynamics

including small step, large step, random, chaotic, recurrent,

and recurrent with noise which are formulated respectively as

follows:

∆φ = γrφ̃‖φ‖, (14)

∆φ = φ̃‖φ‖(γsign(r) + r(γmax − γ)), (15)

∆φ = φ̃N (0, 1), (16)

φ(t+1) = Aφ(t) 1− φ(t)

‖φ‖ , (17)

φ(t+1) = φmin +
‖φ‖
2

(sin(
2π

p
t+ ϕ) + 1), (18)

φ(t+1) = φmin +
‖φ‖
2

(sin(
2π

p
t+ ϕ) + 1) + ñN (0, 1), (19)

where ∆φ is a deviation from the current control parameters,

‖φ‖ is the change range of φ, φ(t) is the offset in tth environ-

ment, φ̃ ∈ (0, 1) is change severity of φ, φmin is the minimum

value of φ, ñ ∈ (0, 1) is noise severity, γ, γmax ∈ (0, 1) and

A are constant values, r ∈ (−1, 1) is a random number drawn

from a uniform distribution, p is the period number, and ϕ is

the initial phase. It is worth mentioning that the random change
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(a) max(·)-function

based basin of attraction.
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(b) Hyper-cube based

basin of attraction.

Fig. 4. Two landscapes with 3 peaks (components) whose basin of attraction is
determined based on their hypercube, or max(·) function. The peak function
is s1 = h−‖x−c‖ from [4] which is a cone function from (5) with w = 1.

in (16) is the same as the dynamic that was used in MPB in (6)

and (7), and in moving parabola in (3). Moreover, the utilized

logistic function for chaotic change in (17) is similar to the

logistic function, which is used in DF1. In [55], [56], other

dynamics are added to GDBG including change in the number

of components and dimensions. Two further DOP benchmarks

use the GDBG dynamics, including CDBG which was de-

scribed in Section II-A, and Rotation DBG (RDBG) [28].

RDBG is constructed based on the baseline of MPB in (4). The

height and width of components change using a dynamic from

GDBG. Furthermore, the location of components changes

using rotation matrices introduced in DR [27]. Since the

relocations of components by the rotation procedure are not

controllable in RDBG, it is not capable of constructing cyclic

environments. In [57], the procedure of rotation in RDGB is

modified in order to control the components’ relocation steps.

This benchmark is capable of constructing cyclic environments

with a predefined cycle length.

Although most DOP benchmarks are scalable, they cannot

produce modular problems whose components contain multi-

ple moving optima. To address this shortcoming, some studies

used composition methods to create modular problems. High-

dimensional MPB (HDMPB) [19] is the first modular DOP

benchmark with multiple component subfunctions, which is

built by the summation of several MPBs to create large-scale

DOPs. CMPB [3], [18] is another benchmark that composes

several MPBs to create modular problem instances. Unlike

HDMPB, CMPB can generate partially separable problems

that could contain fully separable dimensions. In addition,

CMPB is capable of generating modular problems that are

imbalanced and heterogeneous.

2) DOP benchmarks based on hypercube partitioning: The

first DOP benchmark of this category is dividing search space

(DSS) [58] that partitions the search space into subspaces.

Each subspace contains a simple peak function whose summit

is at the center of the subspace. For dividing the d-dimensional

search space, each dimension is equally divided into k seg-

ments resulting in kd subspaces.

Another DOP benchmark in which the idea of space parti-

tioning by hypercubes is Free Peaks (FPs) [4]. FPs is a compli-

cated benchmark generator whose search space is divided into

components using a k-d tree [59]. In each component, there is

only one component that can move inside the hypercube. In

FPs, the basin of attraction of components are determined by

the hypercubes, which is different from other benchmarks such

as MPB, DF1 and GPB. An illustrative example is provided
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Fig. 5. Five types of components that are used in FPs [4].

in Figure 4 to show the difference between the two types

of the basin of attractions. As can be seen in Figure 4(b),

the landscape generated by hypercube partitioning has sharp

ridges around components. The shape of each component in

FPs is chosen from eight different unimodal basic functions.

From these eight basic functions, three of them are similar to

the components (with w = 1) from (5), (12), and (4). The

shape of the remaining five basic functions of FPs are shown

in Figure 5.

To change the shape of each component, a random shape

function is chosen from the eight basic functions for each

environment. In FPs, contrary to MPB, DF1, and GPB, com-

ponents do not have a width parameter, and their gradients

are determined based on their basic functions. Additionally,

the sizes and locations of hypercubes change over time,

which leads to changing the size of components. Moreover,

component locations inside their respective hypercubes and

their height change over time using a random dynamic step.

In benchmarks such as FPs whose basin of attractions of

components is determined by dividing the landscape into

hypercubes, there is no invisible component (m = m′). In FPs,

a dynamic for changing the number of components/hypercubes

is used to cover problems in which the number of components

changes over time.

Several transformations are used in FPs. An important

and related to single objective DOP transformation of FPs

is ‘setup of dependencies’, which determines the variable

interactions by redefining the distance in the eight basic

functions. However, the study did not provide any analysis

to show the variable interactions when the Euclidean distance

(default distance) is used in comparison to the redefined

version. According to our analysis using DG2 [60], although it

is claimed that the redefinition of distance transformation can

determine variable interactions and produce partially separable

components, it only can generate fully separable and fully non-

separable cases. However, it should be mentioned that this

can potentially change the intensity of variable interactions

and thus affects the hardness of the problem for optimizers.

Furthermore, redefinition of distance transformation can only

affect the complexity of exploring components inside their

hypercubes and it is not capable of changing the separability of

the search space. In fact, the generated landscapes by FPs are

61%19%

11%

4%
4%

MPB

GDBG (CDBG and RDBG)

Shifting environment

DF1

Others

Fig. 6. Distribution of the DOP benchmarks utilization since 1999.

fully non-separable when there is more than one component.

Another transformation used in FPs is ‘setup of domino

convergence’ in which the contribution of each dimension

will be different from other dimensions by redefining distance

in the eight basic functions. Moreover, two transformations

from [20] are used in FPs to add smooth irregularities (without

changing modality condition) and symmetry breaking.

C. Popularity of DOP benchmarks

In this part, we investigate the popularity of DOP bench-

marks in the literature. The search has been conducted using

different engines, including Scopus, Google Scholar, Sci-

enceDirect, IEEE Xplore, ACM Digital Library, and Springer.

As the searching keywords, we used different terms such

as dynamic optimization problems, dynamic environments,

evolutionary dynamic optimization, and uncertain environ-

ments. Then, we have selected references in which DOP al-

gorithms/frameworks were tested on the unconstrained single-

objective continuous DOP benchmarks since 1999. This pro-

cess was done in August 2019, and 176 journal papers, book

chapters, and conference papers have been selected for our

investigation.

Figure 6 illustrates the distribution of the DOP benchmarks

utilization. In this part, we have categorized DOP bench-

marks into five groups; 1) MPB and its modified versions,

2) GDBG [28], [55], [56] which contains all versions of CDBG

and RDBG, 3) DF1, 4) shifting environments in which shift

functions from MP [26] are utilized for moving static functions

such as Sphere, Rastrigin, Griewank, Ackley and Rosenbrock,

and 5) other DOP benchmarks. If, in a reference, more than

one of the above groups of benchmarks is used, we have

considered them in the counter of each used group. As can

be seen in Figure 6, MPB and its modified versions are the

most commonly used benchmark in continuous DOP.

D. Discussion

Table I summarizes the characteristics of problems and com-

ponents that are generated by each reviewed DOP benchmark

in this section alongside the proposed GMPB. As can be seen,

although all the previous DOP benchmarks can generate some

problem characteristics, we cannot find a benchmark generator

exhibiting different combinations of problem characteristics.

One important limitation of the previous benchmarks is that

each of their components consists of a single peak, which is

easy to optimize because they are smooth, symmetric, and

unimodal, which may not be the case of many real-world

problems.
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TABLE I
CHARACTERISTICS OF THE REVIEWED DOP BENCHMARKS IN SECTION II AND THE PROPOSED GMPB.

Characteristic
DOP benchmark

ABb MP DRc DSS MPB DF1 GPB MVB RDBG CDBGc IACc HDMPB CMPB FPs GMPB

Landscape properties

Controllable number of components ✕ ✕ ✕ ✓ ✓ ✓ ✓ ✓ ✓ ✕ ✕ ✓ ✓ ✓ ✓

Modularity ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓ ✓ ✓ ✓ ✕ ✓

Heterogeneity ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓ ✓ ✕ ✓ ✕ ✓

Imbalance ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓ ✓ ✕ ✓ ✕ ✓

Component properties

Separablea - ✓ - ✓ ✓ ✓ ✓ ✓ ✓ - - ✓ ✓ ✓ ✓

Non-separablea - ✕ - ✕ ✕ ✕ ✕ ✕ ✕ - - ✕ ✕ ✓ ✓

Ill-conditioning - ✕ - ✕ ✕ ✕ ✕ ✕ ✕ - - ✕ ✕ ✓ ✓

Smooth - ✓ - ✓ ✓ ✓ ✓ ✓ ✓ - - ✓ ✓ ✓ ✓

Irregular - ✕ - ✕ ✕ ✕ ✕ ✕ ✕ - - ✕ ✕ ✓ ✓

Unimodal - ✓ - ✓ ✓ ✓ ✓ ✓ ✓ - - ✓ ✓ ✓ ✓

Multimodal - ✕ - ✕ ✕ ✕ ✕ ✕ ✕ - - ✕ ✕ ✕ ✓

Symmetric - ✓ - ✓ ✓ ✓ ✓ ✓ ✓ - - ✓ ✓ ✓ ✓

Asymmetric - ✕ - ✕ ✕ ✕ ✕ ✕ ✕ - - ✕ ✕ ✓ ✓

Basin of attractiond - - - HC MF MF MF MFe MF - - MF MF HC MF

Change

Location of components ✓ ✓ ✕ ✕ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Size of components ✕ ✕ ✕ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✕ ✓ ✓ ✓ ✓

Shapes of components ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓ ✕ ✕ ✓ ✓

Rotation ✕ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✕
f

✓ ✓ ✕ ✕ ✕ ✓

Number of visible optima ✓ ✕ ✕ ✕ ✓ ✓ ✓ ✓ ✓ ✕ ✕ ✓ ✓ ✓ ✓

Condition number of components ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓

Complexity of components ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓ ✕ ✕ ✕ ✓

a Determined according to empirical analysis on a dimension-wise manner.
b Component formula has not been provided in [25].
c DR, CDBG, and IAC do not use distance-based component functions to produce multiple components on the landscape.
d Hypercube (HC) and max(·) function (MF) based basin of attractions.
e In MVB, a min(·) function is used to determine the basin of attractions of components.
f The rotation is used to relocate components’ centers.

According to Table I, among all previous DOP benchmarks,

the state-of-the-art FPs is capable of generating components

with a variety of problem properties by using some trans-

formations. However, it still has some considerable limita-

tions. FPs is not easy to understand and hard to implement.

Additionally, some of its transformations cannot be used

simultaneously (such as setup of dependencies and domino

convergence). Moreover, ill-conditioning, irregularities, and

symmetry breaking transformations are static. Furthermore,

components generated in FPs are unimodal because the trans-

formations do not change local modality. Finally, FPs cannot

produce modular, heterogeneous, and imbalanced problems.

In terms of modularity, CMPB [18] is the only benchmark

capable of generating modular, heterogeneous, and imbalanced

problems. In CMPB, an automated weight is assigned to each

subfunction to avoid the situations in which partially separable

subfunctions become dominated by fully-separable dimensions

in terms of contribution to overall fitness value. However, this

circumstance can happen when there are several low dimen-

sional (such as 2 and 3-dimensional) subfunctions. Therefore,

CMPB is not suitable to generate partially separable problem

instances whose number of low-dimensional subfunctions are

more than the ones with higher dimensions. In the next section,

GMPB is introduced, which addresses all the above issues.

III. GENERALIZED MOVING PEAKS BENCHMARK

In this section, the details of the GMPB are given. We start

with the baseline of the traditional MPB (5) and a series

of modifications are proposed in order to incorporate the

following features into the new design:

1) Modularity: Most DOP benchmarks whose generated

landscape contains multiple components (such as MPB, FPs,

and DF1 whose components are single local peaks) are non-

separable in nature [18]; therefore, they are not capable of

generating modular test instances. This limitation motivates the

design of a new benchmark capable of producing modular test

instances with heterogeneity and imbalance characteristics. In

GMPB, subfunctions can vary in size, shape, change intensity,

and contribution to the overall fitness value.

2) Component Complexity: Although most DOP bench-

marks have a multimodal landscape, each component is

unimodal, smooth, regular, separable, and symmetric, which

makes them easy to optimize. GMPB is capable of generating

a wide range of easy to hard to optimize components by adding

the following properties to each component with varying

degree of intensity:

a) Ill-conditioning: Ill-conditioning is an important

property of many real-world problems [20], [24], which cannot

be found in the components generated by most DOP bench-

marks due to the circular nature of the level curves of each

peak. This motivates the design of a new benchmark capable

of generating ill-conditioned peaks whose condition number

changes over time.

b) Asymmetry: In almost all DOP benchmarks, compo-

nents are symmetric which is undesirable for the following

reasons: 1) symmetry of the peaks may be in favor of some

special operators that use Gaussian distributions to generate

new solutions [20], [24]; and 2) they are easy to optimize

on a dimension-wise basis due to their symmetric nature.

The GMPB is capable of generating symmetric to highly

asymmetric components.
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c) Component separability: In addition, as shown ana-

lytically [18], an n-dimensional peak generated by MPB and

DF1 by (5) is separable which makes it easier to optimize.

As demonstrated in Table I, most other DOP benchmarks

generate components (peaks) that can be optimized in a

dimension-wise manner. These empirical observations suggest

that they are separable. Rotating a component is a way of

changing its variable interaction and making it fully non-

separable, which is more difficult to optimize [20], [24],

[61]. In GMPB, components can be rotated using rotation

matrices to have different degrees of variable interactions.

Using rotation matrices to transform problem spaces has been

used in many benchmarks for static [20], [22], [24], [62]

and dynamic [4], [27], [28], [56], [63] optimization problems.

Moreover, by rotating a component over time, the degree of

variable interactions changes dynamically. In the rest of this

section, the procedure of transforming MPB into GMPB is

described.

d) Component modality: As mentioned in Table I, gen-

erated components of all existing benchmarks are unimodal

which makes them easy to optimize. Components in GMPB

can be unimodal to highly multimodal.

A. Components with varying condition number

According to (5), the width of each component (peak) is the

same in all dimensions, which makes the shape of components

cone-like with circular contour lines (see Figure 7(a)). To

alleviate this, the width of a component is changed from a

scalar variable to a d-dimensional vector. We know that the

Euclidean distance can be shown as square root of a dot

product, i.e., ‖a‖ =
√
aTa. Therefore, MPB can be rewritten

as follows:

f (t)(x) = max
i∈{1,...,m}

{

h
(t)
i − w

(t)
i

∥

∥

∥x− c
(t)
i

∥

∥

∥

}

= max
i∈{1,...,m}

{

h
(t)
i −

√

ŵ
(t)
i

(

x− c
(t)
i

)⊤ (

x− c
(t)
i

)

}

,

(20)

where

√

ŵ
(t)
i = w

(t)
i . Instead of factoring the width we can

represent it as a diagonal matrix W
(t)
i = ŵ

(t)
i I:

f (t)(x) = max
i∈{1,...,m}

{

h
(t)
i −

√

(

x− c
(t)
i

)⊤

W
(t)
i

(

x− c
(t)
i

)

}

,

(21)

By allowing the main diagonal elements of W to be set

arbitrarily, the contour lines of the function become ellipses

which are aligned with the coordinate axes. Figure 7(b)

shows an example of the MPB made using (21) with three

components. One of the components (the one with circular

contour) has the same width in each direction which makes

it similar to the components made by (5) . The other two

components have different width values for each dimension

resulting in elliptical contour lines.

By calculating the condition number of the diagonal matrix

W, the ill-conditioning degree of each component can be

-50 -40 -30 -20 -10 0 10 20 30 40 50

x
1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(a) Standard MPB gener-

ated by (5)
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(b) Ill-conditioned MPB

generated by (21)

Fig. 7. Comparing two landscapes with and without ill-conditioning in
components.
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(a) w=[1,1] and c=1
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(b) w=[2,4] and c=2
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(c) w=[8,2] and c=4

Fig. 8. Three different 2-dimensional components with different ill-
conditioning degrees. The values of widths (w) of each peak and their
corresponding condition number (c) are shown.

determined. The condition number of a matrix is generally

calculated through singular value decomposition of the matrix

and finding the ratio between the largest and smallest diagonal

elements of its singular value matrix. Since W is a diagonal

matrix, its singular value matrix has the same diagonal values

but in a sorted order; therefore, the condition number of W

can be calculated without any singular decomposition. Since

the diagonal values of W are squared values of the width

vector, the condition number is equal to the squared condition

number of the component. Consequently, the condition number

of the generated hyper-ellipsoid by the (21) is the square root

of the condition value of W. If all the diagonal values of

W are equal, then the problem is the same as the original

MPB by (5) and the condition number of W will be 1.

This condition number shows that the component does not

have ill-conditioning. However, when the width values are

different in different dimensions, the condition number of W

grows. From a geometric perspective, the condition number

of a hyper-ellipsoid is the ratio of its largest diameter to

its smallest one. Figure 8 illustrates three components with

different ill-conditioning degrees from the geometric point

of view. As demonstrated in Figure 8, by increasing the

difference between width values, the ratio between the largest

and smallest diameters of the ellipsoid component grows.

Consequently, the level of ill-conditioning is increased.

B. Components with varying variable interaction degree

As mentioned before, components of the MPB are circular

peaks, separable, and easy to optimize. However, even after

changing the MPB baseline to (21), peaks remain separable

due to their symmetric nature. To change the principal axes

of the elliptic contour lines, an orthonormal matrix R can be

included as follows:

f (t)(x) = max
i∈{1,...,m}

{

h
(t)
i −

√

(

x− c
(t)
i

)⊤

Ri
(t)⊤W

(t)
i R

(t)
i

(

x− c
(t)
i

)

}

,

(22)
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(a) Landscape generated

by by Eq.(22)
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(b) After rotating 45 de-

grees
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(c) After rotating 90 de-

grees

Fig. 9. Clockwise rotating a landscape generated by (27) in 2-dimensional
space

where R
(t)
i is the rotation matrix of component i in tth envi-

ronment. Equation (22) is capable of generating components

with elliptic contour lines whose principal axes are defined by

the rotation matrix R. In (22), the ill-conditioning intensity

of a component can be obtained by calculating the condition

number of R⊤WR which is equal to the condition number of

W because R is an orthonormal matrix and does not change

the condition number of W after multiplication. Contrary to

the components generated by (5) and (21), each generated

component i by (22) is fully non-separable whose degree of

variable interactions depends on Ri. Figure 9(a) shows the

landscape generated by (22) with three components (same

component centroids as in Figure 7(b)).

The rotation matrix Ri is obtained by rotating the projection

of x onto all xp-xq planes by a given angle θ. The total number

of unique planes which will be rotated is
(

d
2

)

= d(d−1)
2 . For

rotating each xp-xq plane by a certain angle (θ), a Givens

rotation matrix G(p,q) must be constructed. To this end, first,

G(p,q) is initialized to an identity matrix Id×d; then, four

elements of G(p,q) are altered as:

G(p,q)(p, p) = cos
(

θ(t)
)

, (23)

G(p,q)(q, q) = cos
(

θ(t)
)

, (24)

G(p,q)(p, q) = − sin
(

θ(t)
)

, (25)

G(p,q)(q, p) = sin
(

θ(t)
)

, (26)

where G(p,q)(i, j) is the element at ith row and jth column

of G(p,q). Ri in tth environment is calculated by:

R
(t)
i =

∏

(p,q)∈P

G(p,q) ×R
(t−1)
i , (27)

where P contains all unique pairs of dimensions defining all

possible planes in a d-dimensional space. The order of the

multiplications of the Givens rotation matrices is random.

The reason behind using (27) for calculating R is that we

aim to have control on the rotation matrix based on an angle

severity θ̃. Note that the initial R
(0)
i for problem instances with

rotation property is obtained by using the Gram-Schmidt or-

thogonalization method on a matrix with normally distributed

entries. Figure 9 shows an example of component rotation in

the proposed benchmark in which by changing the angle of

rotation, the degree of variable interactions changes.

C. Asymmetric components with Irregularities

Although optimizing a rotated component is harder for

many algorithms due to its nonseparable nature [61], each

component can still be considered easy to optimize since the

components generated by (22) are smooth, regular, and uni-

modal. To add irregularity and local optima to the components,

a transformation function is added to (22):

f (t)(x) = max
i∈{1,...,m}

{

h
(t)
i −

√

T

(

(

x− c
(t)
i

)⊤

R(t)⊤, i

)

W(t)T

(

R(t)
(

x− c
(t)
i

)

, i
)

}

,

(28)

where T(y, i) : Rd 7→ R
d is calculated as:

T (yj , i) =



















exp
(

log(yj) + τ
(t)
i

(

sin (η
(t)
i,1 log(yj)) + sin (η

(t)
i,2 log(yj))

))

if yj > 0

0 if yj = 0

− exp
(

log(|yj |) + τ
(t)
i

(

sin (η
(t)
i,3 log(|yj |)) + sin (η

(t)
i,4 log(|yj |))

))

if yj < 0

(29)

where yj is jth dimension of y, and τ
(t)
i and η

(t)
i,k for

k = 1, · · · , 4 are five dynamic parameters that determine the

intensity of irregularities and modality of the ith component.

Equation (28) is designed in a way that the c positions have

the best fitness values among all optima in their component

and the global optimum is still the c of the component with

the largest height. In GMPB, the term ith component means

the area containing all the points whose Euclidean distances

to the ci is less than those to all cj where i 6= j.

Figure 10 shows the effect of the different values of τ

and η1,2,3,4 on the shape of a component from Figure 10(a).

As can be seen, higher values of τ and η1,2,3,4 increase the

irregularities and number of local optima in the component.

Additionally, according to 10(b) and 10(c), when all four

values of η1,2,3,4 are equal, the component shape is symmetric.

On the other hand, according to Figure 10(d), 10(e) and 10(f),

when η1,2,3,4 are unequal, the component shape is asymmetric.

By changing τ and η1,2,3,4 over time for each component,

their intensity of irregularities, number of local optima, and

asymmetry degree change over time. Figure 11 shows an

example for how the shape of a component changes as

the values of τ and η1,2,3,4 change over time. Furthermore,

Figure 12 shows examples of landscapes with the components

from Figure 7(a) and 9(c) that are made irregular by different

values of τ and η1,2,3,4 for each peak. Equation (28) is the

baseline of GMPB.

D. Modularity, heterogeneity, and imbalance

The modularity can be obtained by composing several

GMPB:

F (t)(x) =

k
∑

i=1

f
(t)
i (x) (30)

where f
(t)
i is the ith baseline, and k is the number of

subfunctions in the composition function. Since the baseline

of GMPB is nonseparable, 1-dimensional subfunctions will

be used for generating fully separable dimensions. Each sub-

function in (30) can have a different number of components,

dimensions, and/or change intensities. Consequently, since

each subfunction can have different landscapes with different
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(a) τ = 0, η1,2,3,4 = 0
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(b) τ = 0.1, η1,2,3,4 =

5
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(c) τ = 0.1, η1,2,3,4 =

20
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(d) τ = 0.05, η1 = 0,

η2 = 5, η3 = 15, and

η4 = 25
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(e) τ = 0.1, η1 = 0,

η2 = 5, η3 = 15, and

η4 = 25
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(f) τ = 0.2, η1 = 0,

η2 = 5, η3 = 15, and

η4 = 25

Fig. 10. Illustrating the effect of different values of τ and η1,2,3,4 in Eq. (29) on a component.
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(a) 1st Environment.
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(b) 2nd Environment.
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(c) 3rd Environment.

Fig. 11. Illustrating the effect of dynamic τ and η1,2,3,4 on shape of a
component.
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(a) Transformed version

of the landscape from Fig-

ure 7(a)

-50 -40 -30 -20 -10 0 10 20 30 40 50

x
1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(b) Transformed version

of the landscape from Fig-

ure 9(c)

Fig. 12. Transforming a landscape with three components using (29) with
τ ∈ U [0, 0.2] and η1,2,3,4 ∈ U [0, 25] for each main peak.

features and challenges, the generated problems by GMPB

can possess the heterogeneity characteristic. A natural result

of composing GMPB baselines in (30) is an exponential

growth in the total number of optima in the landscape that

can turn to the global optimum after environmental changes.

To demonstrate this challenging characteristic, we provide an

illustrative example in Fig 13. In Figure 13(a) and 13(b), two

1-dimensional landscapes with 2 and 5 optima, respectively,

are shown (for simplicity, τ and η1,2,3,4 are set to zero). The 2-

dimensional modular landscape constructed by (30) results in

a total of 10 optima as shown in Figure 13(c). To be specific,

the number of optima in the modular landscapes constructed

by (30) is equal to a product of the numbers of optima in the

subfunctions.
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(a) 1D subfunction with

two optima.
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(b) 1D subfunction with

five optima.
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(c) 2D modular landscape

with ten optima by compos-

ing (a) and (b).

Fig. 13. Exponentially growing number of optima by composing subfunctions
in (30).
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(a) 1D subfunction

with ω=0.5.
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(b) 1D subfunction

with ω=3.

(c) 2D imbalanced landscape

by composing (a) and (b).

Fig. 14. Imbalanced landscape generated by composing two subfunctions
with different weights ω in (32).

According to the nature of baseline in (28), the fitness value

is independent of the dimension number, and it is dependent

on the highest h. Therefore, there is a balance between the

contribution of subfunctions f in (30), which is not common

in many real-world problems [3], [24], [64]. To address this

issue, the contribution of each MPB is normalized according

to its number of dimensions relative to the dimension of the

problem:

F (t)(x) = d−1
k

∑

i=1

dif
(t)
i (x) (31)

where d is the dimension of the problem, and di is the dimen-

sion of the subfunction fi. By using (31), the shortcoming of

CMPB [18] regarding dominating contribution of higher di-

mensional subfunctions by low-dimensional ones is addressed.

After normalizing the contribution of each subfunction, an

imbalance coefficient ω will be added to the composition,

which can be utilized to generate different imbalance patterns.

F (t)(x) = d−1
k

∑

i=1

ωidif
(t)
i (x) (32)

where ωi controls the contribution of subfunction fi for gener-

ating imbalance. In an imbalanced problem, the contributions

of subfunctions on the overall fitness value are different.

Consequently, some subfunctions become more significant for

optimizers. Figure 14(c) illustrates a 2-dimensional modular

landscape constructed by composing two 1-dimensional sub-

functions shown in Figures 14(a) and 14(b). The range of

fitness values in the subfunction from Figure 14(b) is consid-

erably larger than that of the subfunction from Figure 14(a).

Consequently, the composed problem shown in Figure 14(c) is

an imbalanced problem. According to the illustrated landscape

in Figure 14(c), the progress of optimization by moving toward

the direction of x2 axis is more important than moving in x1.
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E. Dynamics

For each subfunction fi in (32), the height, width vector,

angle, irregularity parameters in (29) and center of the jth

component change from one environment to the next according

to the following update rules:

c
(t+1)
i,j = c

(t)
i,j + s̃i

r

‖r‖ , (33)

h
(t+1)
i,j = h

(t)
i,j + h̃i N (0, 1), (34)

w
(t+1)
i,j,k = w

(t)
i,j,k + w̃i N (0, 1), (35)

θ
(t+1)
i,j = θ

(t)
i,j + θ̃i N (0, 1), (36)

η
(t+1)
i,j,l = η

(t)
i,j,l + η̃i N (0, 1), l ∈ {1, 2, 3, 4}, (37)

τ
(t+1)
i,j = τ

(t)
i,j + τ̃i N (0, 1), (38)

where N (0, 1) is a random number drawn from a Gaussian dis-

tribution with mean 0 and variance 1, r is a vector of randomly

generated numbers by N (0, 1), h̃i, w̃i, s̃i, θ̃i, η̃i and τ̃i are

height, width, shift, angle, and irregularity parameters’ change

severities of components in ih subfunction, respectively. wi,j,k

shows the width of jth component in kth dimension of the

ith subfunction. In addition, hi,j , θi,j , and ci,j show height,

angle, and position of jth component in ith subfunction f ,

respectively.

Outputs of equations (33) to (38) are bounded as follows:

hi,j ∈ [hmin, hmax], wi,j,k ∈ [wmin, wmax], ci,j ∈ [Lb, Ub]d,

τ ∈ [τmin, τmax] and η1,2,3,4 ∈ [ηmin, ηmax], and θi,j ∈
[θmin, θmax], where Lb and Ub are maximum and minimum

problem space bounds. For keeping the above mentioned

values in their bounds, a Reflect method is utilized. Assume

a(t+1) = a(t) + b represents one of the equations (34) to (38).

Then, the output based on the reflect method is

a(t+1) =











a(t) + b if a(t) + b ∈ [amin, amax]

2× amin − a(t) − b if a(t) + b < amin

2× amax − a(t) − b if a(t) + b > amax

(39)

The dynamics which are used for GMPB in (34) to (38)

are based on random step, which is also used in MPB. Any

dynamics in (14) to (19) can also be used in GMPB. For

example, researchers who are interested in periodical environ-

mental changes can use the pendulum-based environmental

changes similar to (11), or use the cyclic center relocations

from [57]. To have predictable component relocations, (33)

can be replaced with (8) and (9) (set λ = 1). To have

undetectable environmental changes, a simple noise generator

can be added to the fitness function. In addition, inspired

by (10), the β threshold can be added to the benchmark

to create vast flat regions whose fitness remain unchanged

in environmental changes. By applying the aforementioned

modifications, most change detection methods that work by

re-evaluating solutions [2] cannot work properly. However, it

should be mentioned that in most real-world DOPs, the algo-

rithm will be informed about the environmental changes, and

it is not necessary to use a change detection mechanism [1],

[16]. Moreover, having partial environmental changes can be

TABLE II
SUMMARY OF SCENARIOS’ CHARACTERISTICS INCLUDING SEPARABILITY

(FULLY NON-SEPARABLE (N) AND PARTIALLY SEPARABLE (P)),
COMPONENT MODALITY (MULTIMODAL (M) AND UNIMODAL (U)) AND

ILL-CONDITIONING PLUS ROTATION

Feature
Scenario

f1 f2 f3 f4 f5 f6 f7 f8

Separability N N N N P P P P
Component modality U U M M U U M M
Ill-conditioning and rotation ✕ ✓ ✕ ✓ ✕ ✓ ✕ ✓

obtained by assigning different change frequencies to differ-

ent subfunctions or different components. This can be done

using a simple probability based method in which when an

environmental change happens, components or subfunctions

with a predefined probability can be involved in change.

Finally, dynamic constraints can be easily added to GMPB. In

Section S-III of the supplementary document, we have provide

a discussion on the existing dynamic constrained benchmarks

that can be incorporated to the GMPB.

F. Proposed scenarios

We propose eight problem instances exhibiting different

combinations of problem characteristics using the GMPB

benchmark generator. To design these scenarios, the char-

acteristics of components and problems are categorized

into three groups: separability, local-modality, and ill-

conditioning/rotation. The first group is defined according to

the modularity of the problems based on (32). Two groups

of problems are designed according to separability, including

fully nonseparable and partially separable ones. For compo-

nent modality, problems are categorized based on the value

assigned to τ and η1,2,3,4. If the values are set to zero,

components will be smooth, regular, and unimodal. Otherwise,

the problem contains components with different shapes and

various features. Finally, if the rotation matrices are set to

the identity matrix, angle severity is set to zero, and the

width vector has the same value on all dimensions (with

the same random number for all dimensions at environmental

changes), components will have circular contour and become

fully separable. Else, components will be ill-conditioned with

dynamic condition number and variable interactions. The

properties of the eight scenarios and the categories they belong

to are summarized in Table II. The parameter settings of the

problem instances and component characteristics are shown in

Table III. To investigate the efficiency of DOP algorithms on

each scenario with different levels of difficulty, two different

parameter settings are considered for change frequency (ϑ),

shift severity (s̃), and the number of components (m), which

are shown in Table IV. The first being the default settings

while the second group generates more challenging scenarios.

G. Discussion

To study the effect of different component characteristics,

several well-known optimizers are selected and tested on

the generated components by GMPB. The results and the
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TABLE III
PARAMETER SETTINGS (PART 1) OF SCENARIOS f1 TO f8 FROM TABLE II.

Parameter Symbol
Scenario

f1 f2 f3 f4 f5 f6 f7 f8

Number of subfunctions k 1 6

Dimension d 10

Number of fully separable dimensions d′ 0 2

Number of Nonseparable subfunctions d′′ {10} {4, 2, 2}

Angle severities θ̃i 0 π/9 0 π/9 0 U [π/12, π/6] 0 U [π/12, π/6]

Height severities h̃i 7 U [5, 9]
Width severities w̃i 1 U [0.5, 1.5]
Irregularity parameter τ severities τ̃i 0 0.05 0 U [0.025, 0.075]
Irregularity parameter η severities η̃i 0 2 0 U [1, 3]
Weight of subfunction i ωi 1 U [0.5, 3]

Search range [Lb, Ub]d [−50, 50]d

Height range [hmin, hmax] [30, 70]

Width range [wmin, wmax]
d [1, 12]d

Angle range [θmin, θmax] - [−π, π] - [−π, π] - [−π, π] - [−π, π]
Irregularity parameter τ range [τmin, τmax] - - [0, 0.4] [0, 0.4] - - [0, 0.4] [0, 0.4]
Irregularity parameter η range [ηmin, ηmax] - - [10, 25] [10, 25] - - [10, 25] [10, 25]
Number of Environments T 100

TABLE IV
TWO GROUPS OF PARAMETER SETTINGS (PART 2) OF SCENARIOS f1-f8 .

Parameter Symbol
Default setting Challenging setting

f1−4 f5−8 f1−4 f5−8

Shift severities s̃i 2 U [1, 3] 4 U [3, 5]
Numbers of components in each subfunction i mi 10 U [5, 15] 25 U [15, 35]
Change frequency ϑ 5000 5000 2500 2500

correspondence analysis can be found in Sections S-II-C1

and S-II-C2 of the supplementary document. To investigate

the performance of existing DOP algorithms on the proposed

GMPB scenarios, a set of 11 different DOP algorithms is

chosen (see Section S-II-B of the supplementary document).

The experimental results on the eight GMPB scenarios can

be found in Sections S-II-D and S-II-E of the supplementary

document. The experimental results clearly indicate the poor

efficiencies of the existing algorithms in handling the chal-

lenges posed by GMPB.

IV. CONCLUSION

In this paper, we have presented a comprehensive review

of continuous single-objective unconstrained dynamic opti-

mization problem (DOP) benchmarks. The critical review of

the existing benchmark suites showed that the landscape of

most well-known DOP benchmarks is made up of one or

more smooth, separable, symmetric, unimodal components

with neutral condition numbers, which are easy to optimize

and not representative of many real-world problems. We also

have observed that there is no DOP benchmark in the literature

capable of generating problems with different combinations of

characteristics. To address the above mentioned shortcomings,

we have proposed a new generalized moving peaks benchmark

(GMPB). GMPB is capable of generating problems and com-

ponents with varieties of properties. GMPB is configurable and

can generate problems ranging from simple unimodal, smooth,

regular, separable, symmetric, balanced, and homogeneous

to highly multimodal, imbalanced, heterogeneous, partially

separable problems with ill-conditioned, highly asymmetric,

irregular, nonseparable components. Moreover, all the afore-

mentioned features are dynamic and change over time in

GMPB. Several well-known optimizers and DOP algorithms

have been used to investigate the performance of the existing

algorithms on the generated problem instances by GMPB. The

experimental results have indicated the poor efficiencies of

the existing algorithms in handling the challenges posed by

GMPB. In the future, some other important characteristics

can also be considered to be added to GMPB, such as

dynamic constraints or multiple conflicting objectives, which

are important classes of DOPs [10]–[12]. In addition, due

to the importance of the discrete and combinatorial DOPs,

investing existing problems and benchmark generators in this

domain is an important topic for future work [6], [7].
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S-I. BACKGROUND

This section covers basic definitions such as dynamic op-

timization problems, variable interaction, imbalance, hetero-

geneity, and ill-conditioning.

a) Dynamic optimization problems: DOPs are usually

represented as follows:

F (~x) = f
(

~x, ~α(t)
)

, (S-1)

where f is the objective function, ~x is a design vector, ~α(t)

are environmental parameters which change over time, t is

the time index with t ∈ [0, T ], and T is the problem life

cycle. In this paper, like most previous studies in the DOP

domain, we consider DOPs that change discretely over time,

i.e., t ∈ {1, . . . , T} with stationary periods between changes.

For a DOP with T environmental states, there is a sequence

of T static environments:

F (~x) =
[

f(~x, ~α(1)), f(~x, ~α(2)), . . . , f(~x, ~α(T ))
]

. (S-2)

b) Modularity and Variable Interaction: Real-world

problems often have a modular structure [1]. The modularity

is caused by the interaction structure of the decision variables

resulting in a wide range of structures from fully separable

functions to fully nonseparable ones. Variable interaction or

linkage refers to the extent to which the optimum of a variable

depends on the values taken by other decision variables.

For continuous optimization problems, variable interaction is

defined as follows [2]:

Definition 1. [2] Let f : Rn → R be a twice differentiable

function. Decision variables xi and xj interact if a candidate

solution x
⋆ exists, such that

∂2f(x⋆)

∂xi∂xj

6= 0. (S-3)

Some functions exhibit an underlying interaction structure

such that groups of decision variables can be optimized

independently. These functions, which are called partially

separable, are defined as follows:

Definition 2. [1] A function f(x) is partially separable with

m independent components iff:

arg min
x

f(x)=
(

arg min
x1

f(x1, . . . ), . . . , arg min
xm

f(. . . ,xm)
)

,

(S-4)

where x = (x1, . . . , xn)
⊤ is a decision vector of n dimensions,

x1, . . . ,xm are disjoint sub-vectors of x, and 2 ≤ m ≤ n. The

function is called fully separable when m = n.

Additive separability is a special type of partial separability,

which is defined as follows:

Definition 3. [1] A function is additively separable if it has

the following general form:

f(x) =

m
∑

i=1

fi(xi), m > 1, (S-5)

where fi(·) is a nonseparable subfunction, and m is the

number of nonseparable components of f . The definition of

x and xi is identical to what was given in Def. 2.

Definition 4. [1] A function f(x) is fully nonseparable if

every pair of its decision variables interact.
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c) Imbalance and heterogeneity: Real-world problems

often exhibit a modular structure with nonuniform imbalance

among the contribution of its constituent parts to the objective

value, commonly known as the imbalance issue [1], [3]–

[5]. A partially separable problem is heterogeneous when its

subfunctions have various characteristics and landscapes [1],

[6]. Additionally, in DOPs, heterogeneity arises when subfunc-

tions have different number of components, dimensions, and/or

change intensities [7].

The imbalance property can be caused as a by-product of

modularity or due to the heterogeneous nature of the input

variables and their domains. For example, model predictive

control (MPC) is a dynamic optimization problem with a wide

range of applications in chemical power plants, robotics, and

power systems, that exhibits modularity, heterogeneity, and

imbalance [8].

d) Ill-conditioning: If the width value of a component

is stretched in the direction of one axis more than the other

axes, it is said that the component is ill-conditioned [9].

Ill-conditioning is an important property of many real-world

problems [1], [9], [10].

S-II. EXPERIMENTAL STUDIES

In this section, we use several well-known optimizers and

DOP algorithms to solve the generated problem instances

by GMPB with various combinations of characteristics. By

investigating the behavior and performance of the algorithms

on the problems with the new properties, we can observe the

shortcomings of the existing DOP methods in facing the new

challenges posed by GMPB.

A. Evaluation metrics

To evaluate the performance and effectiveness of algorithms,

three different evaluation metrics are used in this paper. First,

the offline-error [11] (EO) which is the average error of the

best found position over all fitness evaluations:

EO =
1

Tϑ

T
∑

t=1

ϑ
∑

c=1

(

f (t)
(

x
⋆(t)

)

− f (t)
(

x
∗((t−1)ϑ+c)

))

,

(S-6)

where x
⋆(t) is the global optimum position at the tth environ-

ment, T is number of environments, ϑ is the change frequency,

c is the fitness evaluation counter for each environment, and

x
∗((t−1)ϑ+c) is the best found position at the cth fitness

evaluation in the tth environment. Second, the average error

of the best found position in each environment:

EB =
1

T

T
∑

t=1

(

f (t)
(

x
⋆(t)

)

− f (t)
(

x
∗(t)

))

, (S-7)

where x
∗(t) is the best found position in tth environment.

The aforementioned evaluation metrics are performance-based

measurements [12]. The third evaluation metric that we use in

this paper is the average distance to optimum over time [13]:

ED =
1

Tϑ

T
∑

t=1

ϑ
∑

c=1

∥

∥

∥
x
⋆(t) − x

◦((t−1)ϑ+c)
∥

∥

∥
, (S-8)

where x
◦((t−1)ϑ+c) is the closest found position to the global

optimum at the cth fitness evaluation in the tth environment.

ED is an efficiency-based evaluation metric that indicates the

global optimum tracking effectiveness. As shown in [14], ED

values are not related to EO and EB . For example, a position

may be fit, but it resides on a component whose distance to

the global optimum component is far. In addition, when the

component with the highest height is narrow, the fitness of

solutions on its basin of attraction, whose distances to the

global optimum are low, can be very poor in terms of fitness

values.

B. Benchmark Algorithms

To study the effect of different component characteristics

generated by GMPB, three well-known optimizers are se-

lected: particle swarm optimization (PSO) [15], and two ver-

sions of differential evolution (DE): jDE [16], [17] bDE [18],

[19], and covariance matrix adaptation evolution strategy

(CMA-ES) [20].

For PSO, we use the global-best neighbourhood topology

with constriction factor [21]. jDE is a well-known DE ver-

sion that uses DE/rand/1/bin strategy and self adaptive

scaling factor (F ) and crossover rate (Cr) [16]. bDE uses

DE/best/2/bin strategy and Brownian particles to improve

the exploitation ability. In addition, bDE uses uniformly ran-

domized F and Cr in each iteration. For CMA-ES, the version

provided in [22] is used.

To investigate the performance of existing DOP algo-

rithms on GMPB, a set of 11 different algorithms is chosen:

AmQSO [23], CPSO [24], DynPopDE [25], FTmPSO [26], an

improved version of DSPSO [27], mCMA-ES [3], mbDE [3],

mjDE [3], mPSO [3], mQSO [28], and RPSO [29]. These

algorithms are representative of different research approaches

from several point of views [12], [30]: 1) different optimizers

with various core procedures are used in the DOP algorithms

including PSO, jDE, bDE, and CMA-ES; 2) different popula-

tion configurations are used among them, for example mQSO

is a multi-population algorithm with constant number of sub-

populations. AmQSO, DSPSO, and CPSO are using an adap-

tive number of sub-populations, regrouping approaches, and

clustering methods respectively. RPSO is a single population

method that uses randomization after environmental changes;

and 3) FTmPSO and DynPopDE use resource allocation

methods.

For a better comparison, some parts of the algorithms are

changed as follows: 1) The procedure of change detection

is removed from all methods. It is assumed that algorithms

are informed about environmental changes like many real-

world cases [31]; 2) All PSO based algorithms use PSO with

constriction factor version [21]. For CPSO, the procedure of

updating Gbest is kept [24]; 3) All methods that use some

knowledge about the shift severity (such as AmQSO and

FTmPSO), use the shift severity calculation method from [32];

and 4) For addressing DSPSO shortcomings and improving its

performance, the velocity of particles is randomized in (-1,1)

after environmental changes. Moreover, the solo particles after

determining species form a sub-population to participate in
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the optimization process. For CPSO, if all sub-populations are

converged and deactivated, the converged sub-populations are

allowed to do more exploitation until the next environmental

change.

C. Empirical analysis

1) The effect of condition number and variable interaction:

To investigate the impact of ill-conditioning and variable inter-

actions, PSO, CMA-ES, jDE, and bDE are tested on a static

5-dimensional unimodal smooth problem (single component

with τ = η1,2,3,4 = 0) generated by (28). All tests in this

section are repeated 101 times (with different random seeds)

and algorithms stop running when the number of fitness evalu-

ations reaches 2000. In this section, we investigate the impact

of different component characteristics on the performance of

the optimizers by using EO and EB as the performance indica-

tors. In addition, since the test instances in this subsection are

static, ED is not considered for evaluating the tracking ability.

For each result, the average EO is calculated by (S-6), and the

mean error at 500th (E500), 1000th (E1000) and 2000th (E2000)

fitness evaluations are reported (standard error in parenthesis).

For each test, uniformly randomized height, width, location,

and orthogonal matrix are used. In addition, the parameter

settings of PSO, CMA-ES, jDE, and bDE are chosen according

to the provided sensitivity analysis in [7].

Table S-I shows the obtained results by algorithms on

four different problems based on various combinations of

applying rotation (R) and ill-conditioning (I). Across all tests,

the best results based on Eo are obtained by PSO because

of its high convergence speed. In fact, the problems in this

section are smooth and regular; therefore, the PSO which uses

constriction factor and global best neighbourhood topology

converges very fast towards the optimum which signifies a

good exploitation ability. bDE has better local search ability

in comparison to jDE based on E1000 and E2000. bDE uses

the best position in its mutation strategy, which improves its

local search ability in comparison to jDE which performs

better beyond 1000 fitness evaluation. However, due to the

utilized mutation strategy in bDE, its convergence speed is

lower than jDE at the first quarter of the optimization process

when the population diversity is higher. By decreasing the

population diversity, the convergence speed of bDE surpasses

that of jDE. CMA-ES ranks last according to EO due to the

nature of the performance indicator, which is calculated by

averaging the fitness of the best obtained position over time.

The convergence speed of CMA-ES at the initial iterations

of the optimization process is low such that the poor results

in this part cause a poor averaged value over time. The

results obtained by CMA-ES show that it outperforms other

optimizers after 500 fitness evaluations.

According to the Table S-I, the obtained results on problems

without ill-conditioning are exactly the same, irrespective of

whether rotation is present (under the same random seed for

both problems). This indicates that components consist of cone

peaks without ill-conditioning (condition number of zero) are

invariant to rotation. The results show that ill-conditioning

alone (i.e., no rotation) can pose a challenge to optimizers.

TABLE S-I
OBTAINED RESULTS BY PSO, JDE, BDE, AND CMA-ES ON A SINGLE

COMPONENT PROBLEM UNDER DIFFERENT CONDITIONS BASED ON

ROTATION (R) AND ILL-CONDITIONING (I). IN EACH ROW, BEST RESULTS

ARE HIGHLIGHTED ACCORDING TO THE FRIEDMAN TEST WITH α− 0.05.

R I Error
Optimizer

PSO jDE bDE CMA-ES

✕ ✕

EO 14.00(1.05) 22.89(2.04) 22.31(1.89) 35.53(2.21)

E500 1.03(0.18) 12.86(2.33) 19.37(3.69) 1.04(0.10)

E1000 0.04(0.018) 6.69(2.03) 0.47(0.27) 9e-4(1e-4)

E2000 0.001(6e-04) 5.36(1.93) 0.003(3e0-4) 5e0-9(0.0)

✓ ✕

EO 14.00(1.05) 22.89(2.04) 22.31(1.89) 35.53(2.21)

E500 1.03(0.18) 12.86(2.33) 19.37(3.69) 1.04(0.10)

E1000 0.04(0.018) 6.69(2.03) 0.47(0.27) 9e-4(1e-4)

E2000 0.001(6e-04) 5.36(1.93) 0.003(3e0-4) 5e0-9(0.0)

✕ ✓

EO 12.66(0.52) 27.90(2.66) 26.44(1.94) 35.83(2.28)

E500 2.45(0.57) 15.82(2.96) 29.58(4.17) 1.20(0.13)

E1000 0.13(0.06) 9.63(2.40) 4.96(1.18) 0.001(1e-4)

E2000 0.04(0.02) 6.97(1.97) 0.39(0.28) 5e0-9(0.0)

✓ ✓

EO 17.84(1.22) 30.18(2.11) 31.39(2.22) 36.18(2.15)

E500 11.87(2.13) 21.34(2.50) 39.20(3.79) 1.18(0.14)

E1000 3.31(0.79) 13.60(2.20) 11.73(2.02) 0.001(0.002)

E2000 1.62(0.48) 10.19(1.87) 1.59(0.46) 6e0-8(0.0)

When the rotation is added to an ill-conditioned component,

the problem becomes more challenging for PSO, jDE and bDE

as a consequence of changing variable interactions from sep-

arable to nonseparable. Note that for each run, the orthogonal

matrix is generated randomly which leads to test instances with

various degrees of variable interaction. Moreover, the results

indicate that CMA-ES is invariant to rotations even when ill-

conditioning is present.

2) Effect of irregularities of components: To investigate the

effect of different levels of irregularity, a 5-dimensional single-

subfunction single-component problem (without rotation and

ill-conditioning) with various combination of τ and η1,2,3,4
values is used in this part. In addition, the component for

each test is symmetric, i.e., η1 = η2 = η3 = η4. Figure S-1

illustrates the effect of different τ and η1,2,3,4 combinations

based on EO on the performance of PSO, jDE, bDE, and

CMA-ES. According to Figures S-1(a), S-1(b), and S-1(b),

the performance of the algorithms drop when irregularity

is added to the component. According to the results, when

η1,2,3,4 ∈ (3, 5) and τ > 0.2 the problem is more challenging.

Based on our investigations, these parameter settings of τ and

η1,2,3,4 create multiple large local optima in the component,

which increases the possibility of premature convergence of

the algorithms. By increasing the value of η, the number of

local optima increases but their size become smaller, which

makes it easier for the algorithms to escape local optima.

By comparing Figures S-1(a), S-1(b), S-1(c), and S-1(d), it

is obvious that jDE performs better than the other methods in

irregular environments. The reason is that jDE has a good

exploration ability helping it to prevent trapping in local

optima. However, as shown in Section S-II-C1 and in Figure S-

1(b) (η = 0 and/or η1 = η2 = η3 = η4 = 0), due

to its inferior convergence speed and exploitation ability, it

performs worse than other methods on regular and smooth

environments. According to Figures S-1(a) and S-1(c), PSO

and bDE significantly suffer from irregularities. The reason is

that both PSO and bDE are susceptible to local optima and
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(a) PSO (b) jDE

(c) bDE (d) CMA-ES

Fig. S-1. Obtained results (EO) by PSO, jDE, bDE, and CMA-ES on a
5-dimensional single component with different τ and η1,2,3,4 combinations.

premature convergence. Comparing Figures S-1(a) and S-1(c)

indicates that PSO outperforms bDE in irregular environments,

As can be seen in Figure S-1(d), the performance of CMA-

ES deteriorates significantly on irregular problems. In fact,

CMA-ES shows the worst performance on preventing early

convergence among the tested algorithms.

3) Effect of modularity of problem: Finally, to study the

effect of modularity, the following two test problems are

proposed: 1) a fully non-separable 10-dimensional problem

with 10 components (GMPB(1010)); and 2) a partially sep-

arable problem with two fully nonseparable 5-dimensional

subfunctions with 5 components in each (GMPB(55 + 55));

components in both problems are unimodal, smooth, regular,

symmetric, separable, and with condition number of zero.

Table S-II shows the obtained results by different DOP algo-

rithms on the two cases. Each result in Table S-II is obtained

by 31 independent runs on 100 environments and until 500,000

fitness evaluations. The remaining parameters are set the same

as scenario 1 (f1) from Table III.

Both tested problems in this section are 10-dimensional

but one of them is constructed by composition of two 5-

dimensional subproblems using (31). According to [3], [7], the

number of physical peaks in composing MPBs can be up to

the product of number of peaks in all subfunctions. Therefore,

although GMPB(55 + 55) has 5 peaks in each subfunction,

its overall landscape can contain up to 25 physical peaks.

This exponentially growing number of peaks by composing

subfunctions from Eq. (29) is the main reason behind the

worse results of the algorithms on GMPB(55 + 55) compared

to the obtained results on GMPB(1010). FTmPSO outperforms

other methods in both tested problems since it uses a resource

allocation method which improves its performance, especially

when the number of peaks are higher [26].

D. Investigating the performance of the DOP algorithms on

eight GMPB scenarios

In this section, the performance of the DOP algorithms

from Section S-II-B are studied on the eight scenarios of

TABLE S-II
OBTAINED RESULTS (MEAN AND STANDARD ERROR) BY DOP

ALGORITHMS ON GMPB(1010) AND GMPB(55 + 55). THE BEST

OBTAINED RESULTS ARE IN BOLD FOR EB AND HIGHLIGHTED FOR EO

BASED ON THE FRIEDMAN TEST WITH α = 0.05.

Algorithm Error
Problem instance

GMPB(1010) GMPB(55 + 55)

AmQSO
EO 4.99(0.17) 6.81(0.21)

EB 2.78(0.15) 4.00(0.16)

CPSO
EO 10.05(0.35) 10.55(0.24)

EB 7.29(0.31) 7.05(0.19)

DynPopDE
EO 13.38(0.41)) 17.04(0.51)

EB 12.63(0.40) 15.99(0.48)

FTmPSO
EO 3.25(0.15) 4.57(0.15)

EB 1.99(0.15) 2.54(0.12)

IDSPSO
EO 6.56(0.26) 6.85(0.2)

EB 4.30(0.27) 4.90(0.19)

mCMA-ES
EO 3.63(0.21) 5.19(0.17)

EB 2.51(0.24) 3.34(0.18)

mbDE
EO 6.13(0.22) 8.07(0.22)

EB 3.60(0.21) 4.83(0.18)

mjDE
EO 9.10(0.31) 10.13(0.32)

EB 6.24(0.29) 7.21(0.27)

mPSO
EO 4.81(0.20) 6.77(0.15)

EB 2.77(0.18) 3.97(0.12)

mQSO
EO 8.11(0.21) 10.04(0.25)

EB 6.17(0.18) 7.60(0.22)

RPSO
EO 20.78(0.71) 16.14(0.43)

EB 16.62(0.72) 12.72(0.41)

GMPB from Table II. To measure the performance of the DOP

algorithms, EO and EB as two performance-based evaluation

metrics, are used in this part. The obtained results on the

scenarios with the default parameter settings from Table IV are

shown in Table S-III. According to Table S-III, the best results

are obtained for f1 which is the equivalent to the traditional

MPB and the easiest of all scenarios due to lack of modularity,

and having easy to optimize components. f2 has regular and

smooth components but they are ill-conditioned and non-

separable. As expected, mCMA-ES whose performance is

invariant to rotations, obtains the best results on f2. f3 contains

irregular and complex components but they are not rotated

and stretched from any direction. Surprisingly, mCMA-ES

obtains the best EO among the algorithms which was not

expected according to Figure 1(d). The reason behind this

improvement of mCMA-ES in comparison to CMA-ES is

benefiting from the multiple-population approach. In fact, us-

ing multiple-population and re-initializing the explorer (finder)

sub-population after convergence or stagnating, addresses

CMA-ES’s flaw of being stuck in local optima. According

to the results of Table S-III, f4 is the most challenging non-

separable problem because its components are irregular, ill-

conditioned, asymmetric, non-separable whose degrees change

over time. Although the performance of mCMA-ES dropped

considerably in f4, it outperforms all other methods. For

f1-f4, rather than CMA-ES, PSO based algorithms with an

adaptive multi-population approach – i.e., FTmPSO, AmQSO,

and mPSO – outperform other algorithms. One reason is the

superior convergence speed of PSO in comparison to DE-
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based methods. Another reason is adaptive multi-population

approach that improves the premature convergence issue.

FTmPSO outperforms AmQSO and mPSO because of its

additional mechanisms such as resource allocation [26].

Scenarios f5-f8 are partially separable problems with two

fully separable dimensions. In terms of component charac-

teristics, f5-f8 are similar to f1-f4, respectively. However,

the modularity property of f5-f8 leads to exponential growth

in the number of optima as indicated in Figure 13, which

significantly increases their difficulties. According to Table S-

III, CPSO obtains the best results in f5-f8. As stated before,

the overall landscape of these problems are usually highly mul-

timodal due to their modularity and the exponentially growing

of number of optima. Therefore, CPSO outperforms other al-

gorithms because of its clustering based multi-population and

re-diversification approaches which increase its exploration ca-

pability at the beginning of each environment. For algorithms

with adaptive sub-population generation mechanism such as

FTmPSO, AmQSO, and mPSO, the higher number of peaks in

the landscape results in simultaneous creation and running of

more sub-populations. Consequently, higher numbers of sub-

populations decrease their efficiencies due to higher fitness

evaluation consumptions in each iteration.

Tables S-IV, S-V, and S-VI, show the obtained results on the

scenarios according to the challenging parameter settings from

Table IV where the shift severities, number of components,

and change frequencies are higher. By comparing the reported

results in Tables S-III and S-IV, it can be seen that the

problems with higher shift severities are more challenging.

This performance deterioration is a consequence of larger

displacement of component centers after an environmental

change. Table S-V shows that problems with a higher number

of components are more challenging because finding and cov-

ering higher number of components consumes more computa-

tional resources, which decreases the efficiency of algorithms.

Finally, based on the results of Table S-VI, problems with

higher change frequencies are more difficult because they give

the algorithms less time and computational resource to cover

and track optima in each environment.

E. Investigating the tracking efficiency of the DOP algorithms

on eight GMPB scenarios

In this section, the tracking efficiencies of the DOP algo-

rithms from Section S-II-B are studied on the eight scenarios

of GMPB from Table II. We use ED in this part to measure

the tracking efficiencies of the DOP algorithms. The obtained

results on the scenarios with the default parameter settings

from Table IV are shown in Table S-VII. The results show

that the patterns captured by ED are different from those of

the other performance metrics, i.e., EO and EB . This is due

to the fact that the fitness values of solutions are not always

related to their distance from the global optimum.

According to Table S-VII, the results deteriorate when

the problems are modular(f5-f8). Additionally, the tracking

efficiencies of the DOP algorithms drop in ill-conditioned

and irregular problems. Overall, FTmPSO outperforms other

methods, and mjDE obtains the best results on majority of

cases on f5-f8.

S-III. A NOTE ON CONSTRAINED DOP BENCHMARKS AND

ADDING CONSTRAINTS TO GMPB

Many real-world optimization problems may involve con-

straints. By adding constraints to GMPB, another class of

optimization problems called dynamic constrained optimiza-

tion problems (DCOPs) can be covered. In DCOPs, both

or either of the objective function and/or constraints can

be time-varying. In this section, we investigate the existing

DCOP benchmark generators and analyze their adaptability

and flexibility in order to incorporate constraints into GMPB.

DCOP benchmarks can be categorized into two groups:

• DCOP benchmarks with inflexible structure which are

constructed by combining time dependent variables with

constrained static functions, and

• DCOP benchmarks with controllable structure to build

a landscape with multiple moving disjointed feasible

regions.

A. DCOP benchmarks with inflexible structure

In [33], a set of three DCOP benchmark problems are

conducted. Both objective function and constraint(s) are time-

varying in this set of problem instances. A commonly used

DCOP benchmark is G24 [34]. The idea is to combine existing

static constrained problems with time-dependent parameters

to construct dynamic objective functions and constraints. The

same idea is used to construct DCOPs from static constrained

problem instances in [35]. All the above mentioned DCOP

benchmarks are not suitable to be combined with GMPB since

they are not scalable and flexible. In fact, their mathematical

model is fixed, and the characteristics of their landscapes and

feasible regions cannot be controlled.

B. DCOP benchmarks with controllable structure

In [36], several moving disjointed feasible regions with

different shapes are added to the modified MPB from (10).

Each feasible region is constructed by:

g
(t)
j (x) =

∥

∥

∥
b
(t)
j x− c

′(t)
j

∥

∥

∥

p
(t)
j

− r
(t)
j ≤ 0, j = 1, 2, · · · ,m,

(S-9)

where g
(t)
j is jth constraint in tth environment that forms a

feasible region, m is the number of feasible regions, c′j is the

center of jth feasible region, rj defines the size of jth feasible

region, bj defines the relative size based on the different spatial

direction of the solution x, and ‖·‖pj
is the pj-norm function.

pj can define the shape of jth feasible region. For example,

the feasible region can be diamond like if pj = 1, or it can

be a ball shape if pj = 2. All the aforementioned parameters

can be time-dependant. Consequently, the location, size, and

shape of each feasible region can change over time. In this

benchmark, when a solution x lies inside the defined region

by any g
(t)
j , it is considered as a feasible solution. Therefore,

a solution x in tth environment is feasible if:

{∃g
(t)
j (x)|g

(t)
j (x) ≤ 0, j = 1, 2, · · · ,m}. (S-10)

This type of feasible regions can be added to GMPB to

construct a DCOP benchmark generator.
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TABLE S-III
OBTAINED RESULTS (MEAN AND STANDARD ERROR) BY DOP ALGORITHMS ON EIGHT GMPB SCENARIOS FROM TABLE II WITH THE DEFAULT SETTINGS

FROM TABLE IV. THE BEST OBTAINED RESULTS ARE IN BOLD FOR EB AND HIGHLIGHTED FOR EO BASED ON THE FRIEDMAN TEST WITH α = 0.05.

Algorithm Error
GMPB Scenario

f1 f2 f3 f4 f5 f6 f7 f8

AmQSO
EO 4.99(0.17) 7.76(0.13) 8.14(0.25) 13.07(0.21) 17.41(0.72) 21.07(0.98) 17.78(0.69) 21.34(0.92)

EB 2.78(0.15) 4.02(0.10) 5.83(0.27) 8.57(0.18) 13.73(0.63) 16.33(0.76) 14.24(0.60) 16.89(0.74)

CPSO
EO 10.05(0.35) 14.03(0.21) 10.83(0.30) 24.24(0.61) 14.76(0.63) 18.71(0.98) 15.67(0.62) 20.15(0.96)

EB 7.29(0.31) 8.61(0.19) 8.04(0.25) 18.71(0.60) 10.27(0.50) 12.74(0.65) 11.36(0.47) 15.38(0.71)

DynPopDE
EO 13.38(0.41) 19.28(0.49) 50.16(2.73) 80.07(4.19) 26.48(1.12) 31.60(1.75) 43.88(2.03) 50.42(2.42)

EB 12.63(0.40) 17.66(0.47) 46.64(2.41) 72.77(3.91) 24.05(1.06) 28.32(1.59) 41.17(1.93) 47.06(2.29)

FTmPSO
EO 3.25(0.15) 5.44(0.12) 7.15(0.29) 12.70(0.34) 15.39(0.65) 19.38(0.94) 16.76(0.59) 20.22(0.84)

EB 1.91(0.15) 1.99(0.08) 4.95(0.25) 7.11(0.26) 11.42(0.52) 14.12(0.70) 12.88(0.51) 15.21(0.62)

IDSPSO
EO 6.56(0.26) 7.81(0.21) 8.49(0.26) 13.92(0.49) 17.23(0.78) 18.61(0.92) 19.22(0.74) 22.41(1.07)

EB 4.30(0.27) 4.76(0.19) 6.67(0.24) 11.09(0.49) 15.04(0.73) 15.88(0.83) 17.17(0.70) 20.07(0.98)

mCMA-ES
EO 3.63(0.21) 4.23(0.06) 5.65(0.24) 7.59(0.24) 15.29(0.66) 17.18(0.86) 17.7(0.65) 19.74(0.88)

EB 2.01(0.24) 1.43(0.06) 3.82(0.24) 5.11(0.22) 12.85(0.59) 14.12(0.75) 15.69(0.61) 17.33(0.78)

mbDE
EO 6.13(0.22) 9.03(0.20) 10.94(0.38) 19.66(0.49) 19.07(0.73) 23.21(1.20) 21.21(0.84) 25.39(1.15)

EB 3.60(0.21) 4.85(0.17) 8.46(0.35) 14.94(0.47) 15.38(0.64) 18.46(0.96) 17.77(0.73) 21.13(0.95)

mjDE
EO 9.10(0.31) 14.97(0.42) 9.31(0.34) 19.59(1.09) 16.57(0.71) 21.58(1.26) 15.60(0.75) 21.27(1.22)

EB 6.24(0.29) 10.73(0.39) 6.55(0.33) 15.20(0.99) 12.55(0.60) 16.89(1.06) 11.39(0.68) 16.99(1.08)

mPSO
EO 4.81(0.20) 7.47(0.12) 8.20(0.27) 12.88(0.27) 17.03(0.65) 20.79(1.08) 18.02(0.67) 21.36(0.93

EB 2.77(0.18) 3.77(0.09) 5.72(0.25) 8.51(0.22) 13.37(0.57) 16.10(0.85) 14.30(0.56) 16.97(0.75)

mQSO
EO 8.11(0.21) 10.75(0.16) 11.52(0.38) 17.05(0.43) 17.43(0.75) 20.32(1.10) 18.54(0.8) 21.72(0.97)

EB 6.17(0.18) 7.45(0.15) 9.62(0.34) 13.74(0.38) 14.33(0.67) 16.20(0.91) 15.53(0.73) 17.85(0.79)

RPSO
EO 20.79(0.71) 21.26(0.75) 21.08(0.64) 24.03(0.69) 19.25(1.07) 23.45(1.49) 19.56(1.07) 22.31(1.17)

EB 16.62(0.72) 16.11(0.73) 16.33(0.62) 18.76(0.68) 14.71(0.91) 17.38(1.25) 14.97(0.94) 16.44(0.91)

TABLE S-IV
OBTAINED RESULTS (MEAN AND STANDARD ERROR) BY DOP ALGORITHMS ON EIGHT GMPB SCENARIOS FROM TABLE II WITH THE CHALLENGING

SETTINGS FROM TABLE IV FOR THE SHIFT SEVERITIES. THE BEST OBTAINED RESULTS ARE IN BOLD FOR EB AND HIGHLIGHTED FOR EO BASED ON

THE FRIEDMAN TEST WITH α = 0.05.

Algorithm Error
GMPB Scenario

f1 f2 f3 f4 f5 f6 f7 f8

AmQSO
EO 7.58(0.22) 12.08(0.13) 11.4(0.31) 19.22(0.27) 21.06(0.86) 26.61(1.32) 22.01(0.95) 27.79(1.17)

EB 4.00(0.19) 6.02(0.08) 7.78(0.24) 12.18(0.20) 15.24(0.70) 19.10(0.98) 16.14(0.72) 20.55(0.85)

CPSO
EO 13.38(0.36) 19.78(0.24) 13.84(0.49) 32.59(0.66) 17.55(0.75) 22.88(1.18) 18.63(0.90) 24.78(1.19)

EB 8.83(0.29) 11.44(0.21) 9.86(0.40) 24.45(0.61) 11.17(0.50) 14.63(0.78) 12.68(0.66) 17.57(0.85)

DynPopDE
EO 23.01(0.52) 38.37(0.62) 69.45(2.81) 111.78(2.91) 38.02(1.54) 45.93(2.46) 55.66(2.78) 65.12(3.01)

EB 21.73(0.51) 35.19(0.63) 64.80(2.53) 103.03(2.60) 34.11(1.41) 40.35(2.18) 52.23(2.61) 60.84(2.82)

FTmPSO
EO 4.82(0.22) 7.84(0.14) 9.16(0.35) 16.06(0.35) 19.26(0.89) 24.96(1.22) 20.57(0.90) 25.51(1.08)

EB 2.77(0.22) 2.74(0.10) 6.03(0.31) 8.70(0.26) 13.58(0.67) 17.23(0.87) 14.96(0.68) 18.41(0.80)

IDSPSO
EO 8.54(0.32) 10.92(0.17) 11.67(0.45) 18.18(0.52) 19.33(0.87) 23.51(1.02) 24.99(1.03) 30.3(1.39)

EB 5.11(0.30) 6.41(0.16) 9.15(0.42) 14.19(0.52) 15.71(0.78) 19.08(0.85) 21.88(0.93) 26.55(1.24)

mCMA-ES
EO 4.66(0.2) 6.18(0.08) 7.32(0.4) 11.65(0.28) 20.03(0.79) 23.86(1.25) 26.13(0.99) 30.2(1.23)

EB 2.20(0.22) 1.90(0.05) 4.66(0.43) 7.39(0.26) 15.24(0.65) 17.65(0.94) 21.81(0.84) 25.91(1.06)

mbDE
EO 8.00(0.32) 14.5(0.16) 17.32(0.40) 29.24(0.57) 24.79(0.97) 30.58(1.43) 27.5(1.20) 33.73(1.53)

EB 3.67(0.25) 6.84(0.12) 13.45(0.36) 21.42(0.55) 19.12(0.82) 23.51(1.11) 22.48(1.01) 27.20(1.25)

mjDE
EO 12.5(0.39) 22.76(0.48) 13.32(0.5) 27.44(0.69) 19.16(0.93) 26.14(1.56) 19.23(1.02) 25.43(1.32)

EB 8.12(0.32) 15.79(0.47) 8.9(0.38) 20.30(0.67) 13.28(0.77) 19.07(1.24) 13.41(0.80) 18.98(1.08)

mPSO
EO 7.16(0.22) 12.19(0.16) 11.62(0.33) 18.52(0.26) 21.03(0.83) 26.97(1.36) 22.21(0.96) 27.69(1.26)

EB 3.62(0.18) 6.05(0.11) 7.98(0.27) 11.63(0.19) 15.04(0.66) 19.43(1.01) 16.29(0.74) 20.46(0.94)

mQSO
EO 12.68(0.32) 17.59(0.19) 15.27(0.45) 24.00(0.44) 21.68(0.89) 26.18(1.39) 23.44(1.07) 27.48(1.27)

EB 9.37(0.26) 11.75(0.16) 12.35(0.42) 18.41(0.43) 16.73(0.75) 19.43(1.07) 18.65(0.92) 21.42(1.01)

RPSO
EO 23.10(0.71) 26.81(0.67) 23.3(0.63) 27.73(0.73) 19.73(1.04) 24.39(1.37) 20.18(1.14) 23.45(1.24)

EB 16.46(0.67) 18.38(0.63) 16.21(0.65) 19.47(0.69) 14.08(0.83) 15.98(1.01) 14.16(0.94) 15.54(0.95)

In [37], a DCOP benchmark with multiple disjointed mov-

ing feasible regions is proposed, where both objective function

and constraints are based on multi-component baselines. The

baseline in (4) is used as the objective function subjected to:

g(t)(x) = δ(t) − C(t)(x) ≤ 0 (S-11)

where C(·) is a multi-component function (maximization),
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TABLE S-V
OBTAINED RESULTS (MEAN AND STANDARD ERROR) BY DOP ALGORITHMS ON EIGHT GMPB SCENARIOS FROM TABLE II WITH THE CHALLENGING

SETTINGS FROM TABLE IV FOR THE NUMBERS OF COMPONENTS. THE BEST OBTAINED RESULTS ARE IN BOLD FOR EB AND HIGHLIGHTED FOR EO

BASED ON THE FRIEDMAN TEST WITH α = 0.05.

Algorithm Error
GMPB Scenario

f1 f2 f3 f4 f5 f6 f7 f8

AmQSO
EO 5.36(0.12) 10.00(0.12) 7.80(0.21) 14.16(0.26) 16.88(0.77) 19.96(0.86) 16.63(0.69) 21.09(0.97)

EB 3.29(0.11) 5.96(0.10) 5.69(0.18) 9.80(0.21) 13.62(0.64) 15.93(0.71) 13.54(0.58) 17.06(0.81)

CPSO
EO 8.66(0.21) 15.49(0.21) 9.27(0.23) 24.40(0.42) 13.59(0.58) 17.36(0.80) 13.82(0.58) 19.86(1.00)

EB 6.39(0.19) 10.10(0.19) 7.06(0.21) 19.06(0.40) 9.56(0.45) 11.99(0.57) 10.13(0.45) 14.86(0.79)

DynPopDE
EO 11.60(0.34) 18.56(0.54) 48.10(2.08) 67.54(3.21) 24.58(1.04) 27.67(1.22) 35.11(1.60) 42.79(2.11)

EB 10.93(0.33) 16.82(0.52) 44.84(1.91) 61.03(2.89) 22.31(0.96) 24.63(1.07) 32.74(1.52) 39.73(1.97)

FTmPSO
EO 3.80(0.13) 7.42(0.09) 6.53(0.15) 13.48(0.21) 15.64(0.70) 18.59(0.78) 15.88(0.62) 20.73(0.88)

EB 2.41(0.12) 3.25(0.06) 4.43(0.13) 7.99(0.16) 12.04(0.56) 13.96(0.60) 12.41(0.52) 16.09(0.69)

IDSPSO
EO 6.06(0.18) 8.79(0.20) 8.73(0.24) 14.36(0.47) 17.43(0.82) 19.04(0.79) 18.88(0.85) 22.83(1.01)

EB 4.10(0.16) 6.02(0.19) 7.06(0.24) 11.62(0.45) 15.49(0.80) 16.80(0.72) 17.15(0.82) 20.66(0.95)

mCMA-ES
EO 4.41(0.15) 6.06(0.06) 5.11(0.13) 8.49(0.16) 15.27(0.68) 16.82(0.66) 16.98(0.76) 19.56(0.89)

EB 2.56(0.15) 3.31(0.06) 3.42(0.12) 6.14(0.15) 12.96(0.6) 14.13(0.58) 15.19(0.69) 17.28(0.82)

mbDE
EO 5.91(0.14) 10.71(0.24) 10.99(0.30) 18.94(0.32) 19.09(0.84) 21.87(0.94) 19.28(0.82) 24.85(1.16)

EB 3.54(0.11) 6.32(0.20) 8.74(0.29) 14.16(0.31) 15.76(0.72) 17.86(0.77) 16.36(0.72) 20.83(0.97)

mjDE
EO 9.11(0.19) 16.66(0.34) 9.55(0.24) 20.95(0.49) 15.66(0.83) 21.00(1.23) 14.49(0.71) 21.93(1.11)

EB 6.82(0.18) 12.65(0.33) 7.15(0.22) 16.58(0.46) 12.25(0.75) 17.11(1.09) 11.26(0.62) 18.07(0.97)

mPSO
EO 5.25(0.12) 9.78(0.11) 7.60(0.20) 13.86(0.21) 16.77(0.68) 19.80(0.86) 16.89(0.68) 21.31(0.97)

EB 3.27(0.10) 5.81(0.08) 5.46(0.16) 9.58(0.17) 13.53(0.58) 15.81(0.70) 13.81(0.58) 17.25(0.82)

mQSO
EO 8.15(0.21) 11.97(0.17) 10.53(0.33) 17.32(0.31) 16.34(0.69) 18.92(0.87) 16.70(0.76) 21.28(1.00)

EB 6.53(0.20) 8.75(0.17) 8.92(0.32) 14.15(0.29) 13.45(0.61) 15.22(0.72) 14.01(0.68) 17.71(0.86)

RPSO
EO 22.75(0.81) 24.07(0.79) 22.36(0.90) 25.10(0.71) 17.05(0.99) 20.05(1.11) 16.15(0.90) 21.18(1.12)

EB 18.60(0.73) 18.97(0.77) 18.45(0.88) 19.84(0.71) 12.76(0.87) 14.38(0.92) 11.99(0.76) 14.28(0.90)

TABLE S-VI
OBTAINED RESULTS (MEAN AND STANDARD ERROR) BY DOP ALGORITHMS ON EIGHT GMPB SCENARIOS FROM TABLE II WITH THE CHALLENGING

SETTINGS FROM TABLE IV FOR THE CHANGE FREQUENCIES. THE BEST OBTAINED RESULTS ARE IN BOLD FOR EB AND HIGHLIGHTED FOR EO BASED

ON THE FRIEDMAN TEST WITH α = 0.05.

Algorithm Error
GMPB Scenario

f1 f2 f3 f4 f5 f6 f7 f8

AmQSO
EO 7.30(0.29) 11.46(0.20) 9.58(0.35) 17.62(0.31) 20.92(0.91) 25.36(1.27) 22.25(0.91) 26.37(1.29)

EB 4.73(0.27) 6.96(0.15) 7.78(0.29) 12.54(0.27) 17.55(0.81) 21.03(1.10) 18.70(0.80) 22.05(1.10)

CPSO
EO 12.58(0.50) 22.50(0.27) 13.50(0.40) 33.86(0.58) 18.47(0.78) 25.19(1.34) 19.67(0.86) 26.26(1.29)

EB 10.71(0.48) 16.83(0.26) 10.98(0.36) 27.61(0.52) 13.52(0.58) 18.40(0.98) 14.56(0.66) 20.06(1.01)

DynPopDE
EO 23.01(0.52) 38.37(0.62) 69.45(2.81) 111.78(2.91) 38.02(1.54) 45.93(2.46) 55.66(2.78) 65.12(3.01)

EB 21.73(0.51) 35.19(0.63) 64.80(2.53) 103.03(2.60) 34.11(1.41) 40.35(2.18) 52.23(2.61) 60.84(2.82)

FTmPSO
EO 4.93(0.25) 9.33(0.16) 9.41(0.23) 18.04(0.39) 18.58(0.79) 23.24(1.14) 20.81(0.83) 24.46(1.06)

EB 2.98(0.26) 4.24(0.10) 6.64(0.20) 11.57(0.32) 14.30(0.63) 17.66(0.89) 16.54(0.70) 19.03(0.80)

IDSPSO
EO 8.94(0.28) 11.98(0.27) 10.93(0.39) 17.06(0.53) 19.10(0.97) 21.39(1.02) 21.42(0.95) 24.61(1.22)

EB 6.27(0.25) 7.99(0.25) 8.46(0.36) 13.10(0.47) 16.11(0.88) 17.79(0.88) 18.65(0.88) 21.53(1.10)

mCMA-ES
EO 5.65(0.22) 6.53(0.07) 7.08(0.26) 11.06(0.33) 18.75(0.7) 20.23(1.01) 21.39(0.91) 24.06(1.08)

EB 3.43(0.23) 3.46(0.06) 5.25(0.25) 8.56(0.31) 15.95(0.63) 16.77(0.87) 19.27(0.86) 21.54(0.99)

mbDE
EO 8.33(0.30) 13.59(0.24) 14.50(0.44) 24.97(0.56) 23.01(1.01) 27.85(1.53) 25.33(1.14) 30.14(1.37)

EB 5.38(0.25) 8.47(0.21) 11.86(0.42) 19.74(0.50) 19.64(0.89) 23.67(1.34) 21.92(10.00) 25.94(1.20)

mjDE
EO 12.02(0.30) 23.64(0.97) 13.00(0.33) 30.58(1.62) 18.94(0.86) 27.18(1.72) 19.78(0.89) 27.23(1.33)

EB 9.57(0.27) 19.15(0.92) 10.41(0.31) 25.54(1.53) 15.47(0.78) 22.95(1.54) 16.45(0.82) 23.00(1.15)

mPSO
EO 6.70(0.23) 11.50(0.19) 10.12(0.30) 17.67(0.34) 20.30(0.89) 25.31(1.33) 21.74(0.89) 25.85(1.27)

EB 4.20(0.21) 7.00(0.14) 7.51(0.24) 12.68(0.27) 16.96(0.81) 20.81(1.11) 18.22(0.78) 21.65(1.08)

mQSO
EO 10.84(0.33) 15.60(0.23) 13.94(0.40) 22.48(0.68) 19.88(0.76) 24.30(1.23) 21.92(1.00) 25.42(1.23)

EB 8.63(0.27) 11.87(0.22) 11.90(0.38) 18.57(0.64) 17.00(0.69) 20.38(1.08) 19.14(0.93) 21.77(1.07)

RPSO
EO 23.67(0.85) 28.38(0.70) 26.06(0.92) 29.50(0.78) 23.72(1.26) 28.66(1.67) 23.84(1.15) 28.19(1.38)

EB 18.63(0.73) 20.90(0.65) 20.72(0.77) 21.72(0.76) 17.12(0.99) 20.39(1.34) 17.35(0.90) 20.12(1.08)

and δ controls the size of feasible regions. (4) is used as

C(·) in [37]. In fact, feasible regions are defined using the

constructed components by C(·) whose sizes are defined ac-

cording to the values of δ and the gradients of each component.

Therefore, for a component i in C(·) whose height is larger

than δ, all solutions around its summit whose calculated fitness

values by C(·) are larger than δ, form a feasible region.

Depending on the chosen multi-component function as C(·),



8

TABLE S-VII
OBTAINED RESULTS (MEAN AND STANDARD ERROR BY USING ED ) BY DOP ALGORITHM ON EIGHT GMPB SCENARIOS FROM TABLE II WITH THE

DEFAULT SETTINGS FROM TABLE IV. THE BEST OBTAINED RESULTS ARE HIGHLIGHTED BASED ON THE FRIEDMAN TEST WITH α = 0.05.

Algorithm
GMPB Scenario

f1 f2 f3 f4 f5 f6 f7 f8

AmQSO 19.85(1.33) 21.69(1.35) 25.37(2.04) 28.39(1.80) 49.51(0.67) 49.40(0.80) 52.60(0.82) 54.28(0.91)

CPSO 36.91(1.02) 34.39(1.86) 38.90(1.16) 39.43(0.93) 52.32(0.54) 54.25(0.63) 55.67(0.61) 56.75(0.57)

DynPopDE 31.95(1.36) 35.11(1.56) 49.55(1.13) 48.05(1.43) 53.77(0.91) 54.47(0.76) 58.26(0.62) 58.37(0.53)

FTmPSO 18.02(1.53) 19.80(1.30) 22.77(1.24) 24.07(0.98) 46.03(0.81) 45.88(0.84) 48.28(0.69) 49.79(0.84)

IDSPSO 22.66(1.09) 25.47(1.40) 37.61(1.94) 41.08(1.68) 69.01(1.34) 69.93(1.42) 76.06(1.54) 79.58(0.83)

mCMA-ES 20.43(1.24) 20.74(1.73) 25.78(1.60) 25.95(1.60) 55.71(0.98) 56.29(0.91) 59.81(0.86) 59.42(0.73)

mbDE 19.69(1.34) 20.83(1.60) 31.01(1.19) 32.56(0.58) 48.28(0.92) 49.11(0.72) 52.21(0.67) 54.04(0.78)

mjDE 28.92(1.48) 29.95(1.07) 33.62(1.30) 35.04(1.67) 44.14(0.70) 46.05(0.72) 48.02(0.71) 49.07(0.93)

mPSO 19.16(1.20) 22.50(1.35) 24.62(1.79) 26.31(1.39) 49.83(0.81) 49.31(0.76) 53.64(0.98) 55.60(0.66)

mQSO 20.29(1.40) 24.25(1.58) 28.88(1.19) 30.92(1.74) 57.56(0.96) 58.43(1.20) 60.53(0.71) 63.60(1.10)

RPSO 57.35(0.96) 62.28(1.90) 59.67(0.78) 60.52(1.72) 60.30(0.79) 60.63(0.74) 61.65(0.63) 60.13(0.68)

the size, location and shape of feasible regions change over

time. In addition, if the value of δ is set to the range of

[hmin, hmax] of the components of C(·), the number of feasible

regions can change over time. GMPB can be embedded in

the proposed benchmark framework in [37] as the objective

function and C(·) in (S-11).

In [38], another multi-component DCOP benchmark gen-

erator is proposed. In this benchmark generator, the baseline

from (4) is used as the objective function subjected to:

g
(t)
j (x) =

d
∑

k=1

(

xk − c
(t)
aj ,k

)2

− r
(t)
j

2
≤ 0, j = 1, 2, · · · ,m,

(S-12)

where m is the number of feasible regions, rj is the radius

of jth feasible region, d is the dimension of the problem,

and caj
is a center of a component in the objective function

which is used as the center of the feasible region as well.

Consequently, the feasible regions are located around the

components’ summits of the objective function. Therefore,

their locations change by relocating components’ centers.

Moreover, the feasible regions can switch their locations to

other components’ summits in the landscape after environ-

mental changes. In addition, the radius of feasible regions,

which are hyper-balls, can change over time. Similar to the

proposed benchmark in [36], the feasibility of a solution is

determined by (S-10) in this benchmark. This type of feasible

regions around the optima can be easily added to GMPB.

In [39], a DCOP benchmark framework based on modified

multi-component functions is proposed. The embedded multi-

component function needs to be modified based on the ‘field

of components on a zero plane’. To this end, the function f(·)
is modified to max(0, f(·)). This modification is done in order

to avoid any circumstance where there is no feasible solution.

Note that this idea is inspired by (10) with β = 0. In this

benchmark, the problem is defined as:

h
(t)
j (x) = f

(t)
j (x)− g

(t)
j (x), (S-13)

where f(·) and g(·) are two multi-component based functions

that are modified to the field of components on a zero

plane. A solution x is feasible in the tth environment if

h
(t)
j (x) ≥ 0. By controlling the parameters of the f(·) and

g(·), the feasible regions can be controlled. Therefore, there

are multiple feasible regions whose sizes, shapes, and locations

change over time due to the environmental changes in f(·) and

g(·). GMPB can be used in this framework to build DCOP

benchmark problems.
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[39] G. Pamparà and A. P. Engelbrecht, “A generator for dynamically con-
strained optimization problems,” in Genetic and Evolutionary Compu-

tation Conference Companion. Association for Computing Machinery,
2019, p. 1441–1448.


