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Detection
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Abstract—Internet-of-Things (IoT) has emerged as a cutting-
edge technology that is changing human life. The rapid and
widespread applications of IoT, however, make cyberspace more
vulnerable, especially to IoT-based attacks in which IoT devices
are used to launch attack on cyber-physical systems. Given a
massive number of IoT devices (in order of billions), detecting
and preventing these IoT-based attacks are critical. However, this
task is very challenging due to the limited energy and computing
capabilities of IoT devices and the continuous and fast evolving of
attackers. Among IoT-based attacks, unknown ones are far more
devastating as these attacks could surpass most of the current
security systems and it takes time to detect them and “cure”
the systems. To effectively detect new/unknown attacks, in this
paper, we propose a novel representation learning method to better
predictively “describe” unknown attacks, facilitating supervised
learning-based anomaly detection methods. Specifically, we develop
three regularized versions of AutoEncoders (AEs) to learn a latent
representation from the input data. The bottleneck layers of these
regularized AEs trained in a supervised manner using normal data
and known IoT attacks will then be used as the new input features
for classification algorithms. We carry out intensive experiments
on nine recent IoT datasets to evaluate the performance of the pro-
posed models. The experimental results demonstrate that the new
latent representation can significantly enhance the performance of
supervised learning methods in detecting unknown IoT attacks.
We also conduct experiments to investigate the characteristics of
the proposed models and the influence of hyperparameters on
its performance. The running time of these models is about 1.3
milliseconds that is pragmatic for most applications.

Index Terms—Supervised learning, IoT anomaly detection, un-
known attacks, latent representation, autoencoders.

I. INTRODUCTION

W ITH the rapid development of Internet-of-Thing (IoT)
devices, IoT networks have been providing enormous

benefits to many aspects of our life, such as healthcare, trans-
portation, and manufacturing. IoT devices in such networks
are able to transfer and collect data with minimal human-
machine interactions [1]. The data transmitted from/to these IoT
devices often contains sensitive information of users, such as
passwords, phone numbers, photos and locations, which usually
attracts hackers [2]. Moreover, the rapid growth in the number
of diverse IoT devices can lead to a dramatic increase in the
number of emerging IoT-based attacks (also referred to as IoT
anomalies) [3], [4]. Identifying IoT anomalies in networks with
a massive number of IoT devices would be a very challenging
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task, especially with the fast and continuous evolution of IoT
anomalies [2]–[8]. Among many IoT attacks, unknown ones are
the most dangerous but difficult to detect since these attacks
could surpass most of the advanced security techniques and
cause serious devastation to network systems [9], [10]. In
this paper, we develop a novel learning representation method
to better predictively “characterize” new/unknown anomalies.
The resulting representation can facilitate supervised learning-
based IoT anomaly detection methods, such as Support Vector
Machine (SVM), Perceptron (PCT), Nearest Centroid (NCT),
and Linear Regression (LR).

Amongst the most popular anomaly detection methods, ma-
chine learning-based techniques have proven their great poten-
tial in computer and IoT networks [4], [11]–[15]. Depending on
the availability of data label, machine learning-based anomaly
detection can be categorized into three main approaches: su-
pervised learning, semi-supervised learning and unsupervised
learning [16]. Supervised learning methods assume that both
labeled normal and abnormal data are available for constructing
predictive models. They attempt to model the distinction be-
tween normal behaviors and anomalous activities. The downside
of supervised learning methods is that they require a sufficient
number of normal and abnormal instances to achieve good
performance. Moreover, these methods are often ineffective to
detect unknown attacks, i.e., the attacks which are not contained
in the training data. Semi-supervised learning methods assume
that only labeled normal data is available for training models.
These methods construct generative models representing normal
behaviors and measure how well an unseen sample fits the
models. Unsupervised methods require no labeled training data
and rely on the assumption that the number of anomalous
samples is far fewer than that of the normal samples [16].
Since, unsupervised and semi-supervised approaches do not
require abnormal data to construct predictive models, they are
often more robust to unknown attacks and hence widely applied
to anomaly detection [10], [17], [18]. The limitation of semi-
supervised and unsupervised approaches is, however, that they
might not be as effective as supervised approaches in identifying
the previously known attacks. In this paper, we develop a novel
approach that performs effectively on both known and unknown
attacks.

Recently, deep learning-based anomaly detection has received
a greater attention from researchers and industry [4], [10], [18]–
[23]. Among deep learning-based techniques, AutoEncoders
(AEs) are widely used for anomaly detection [10]. An AE is
a neural network consisting of two parts, an encoder and a
decoder [24]. The encoder attempts to compress the input data
into a latent feature space at its hidden layer, while the decoder
tries to reconstruct the original input data from the latent space
at the output layer [25]. An AE is trained to minimize the
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Fig. 1: Visualization of our proposed ideas: Known and un-
known abnormal samples are separated from normal samples
in the latent representation space.

difference between the input data and its reconstruction at
the output layer, called reconstruction error (RE). When being
trained on normal data, the AE can be used for detecting
abnormal samples by observing its RE [26]. The trained AE
often produces small values of RE on the normal data and much
higher RE on the abnormal data. Alternatively, the hidden layer
of AE can be used as a new feature representation (the latent
representation or the latent feature space) for other anomaly
detection techniques [9], [10].

In this paper, we propose a novel learning approach that can
inherit the strength of supervised learning methods in detecting
known IoT attacks and the ability to identify unknown attacks of
unsupervised methods. In other words, we aim to learn a new
feature representation that enhances the ability in identifying
unknown IoT anomalies of supervised learning techniques. In
the new feature space, normal data and known IoT anomalies
will be forced into two tightly separated regions, called normal
region (green circle points in Fig. 1) and anomalous region
(red plus points in Fig. 1), respectively. We hypothesize that
unknown attacks will appear closer to the anomalous region
(yellow triangle points in Fig. 1) as they may share some
common characteristics with known ones. Hence, they can be
easily detected. In order to obtain the feature representation, we
develop two new regularized AEs, namely Multi-distribution AE
(MAE) and Multi-distribution Denoising AE (MDAE). These
AEs will learn to construct the desired feature representation
at their bottleneck layers (also called “latent feature space”).
The latent feature space will be then used for facilitating
traditional supervised learning techniques. More details of our
proposed approach will be described in Section IV. Our major
contributions are as follows:
• We introduce a new latent feature representation to en-

hance the ability in detecting unknown IoT anomalies of
supervised learning-based anomaly detection methods.

• We propose two novel regularized AEs to learn the new
latent representation. A new regularizer term is added to
the loss function of these AEs to separate normal samples
from abnormal samples in the latent space. This latent
representation is then used as the input to classifiers to
identify abnormal samples.

• We perform extensive experiments using nine latest IoT
botnet datasets to evaluate our models. The experimental

results show that our learning representation models help
simple classifiers perform much better when comparing
to learning from the original features or using latent
representations produced by other AEs.

• We conduct thorough analysis on the characteristics of
the latent representation in detecting unknown attacks,
performing on cross-dataset test, and its robustness with
various values of hyper-parameters. This analysis sheds
light on the practical applications of the proposed models.

The rest of paper is organized as follows. In the next
section, we highlight recent research on IoT anomaly detection.
Section III briefly describes the fundamental background of the
methods. The proposed models are then presented in Section IV.
Section V presents the experimental settings. Section VI dis-
cusses and analyzes results obtained from the proposed models.
Finally, in Section VII, we draw conclusions and suggest
potential future work.

II. RELATED WORK

IoT anomaly detection methods can be categorized into
signature-based and semantic-based methods [11], [27], [28].
The signature-based methods are operated by observing fre-
quently occurring strings or token sequences from anomalous
traffic [5]–[8]. The Distributed Denial of Service (DDoS) attacks
are usually mounted by IoT botnets1. Zhang et al. [5] proposed a
lightweight and low-complexity algorithm to prevent DDoS at-
tacks. This work aims to enable IoT devices (working nodes) to
intelligently detect and avoid DDoS attacks. To detect anomaly
traffic, the work in [5] analyzes the difference between a benign
and a malicious request. Then, each node carries out a deep
packet inspection to find anomaly signatures. In [6], Dietz et
al. aimed to proactively block the spreading of IoT anomalies
by automatically scanning vulnerable IoT devices and isolate
them from the system. The authors of [7] proposed a host-based
intrusion detection and mitigation (IoT-IDM) method using
Software Defined Network (SDN) with OpenFlow protocols to
address malicious behaviours and block intruders from access-
ing the IoT devices. When an attack occurs at the network-level,
IoT-TDM will generate policies to block and isolate infected
hosts. Nevertheless, this technique is not scalable as adding IoT
devices would require one to manually tailor protocols. Ceron
et al. [8] introduced a solution to handle the traffic generated by
IoT malwares. This solution uses malware’s actions to modify
the traffic at the network layer. Generally, the signature-based
approaches require a prior knowledge about the behaviours
of known IoT anomalies. Consequently, these approaches are
unable to detect unknown attacks which usually cause more
serious consequences than known attacks [10].

The semantic-based approach relies on heuristic methods
to analyze the anomalous behaviours. Specifically, features of
traffic, e.g., the range of packet lengths, inter-packet arrival
times, flow size, duration size are used to classify the benign
and attack traffic. To that end, machine learning based meth-
ods prove themselves as effective solutions for IoT anomaly
detection [4], [12]–[15]. Bahsi et al. [12] used the decision tree
and K-nearest neighbor algorithms to identify the Mirai botnet
family and the Gafgyt botnet family. Chawathe [13] applied

1The botnets manipulate through secured channels to launch attacks to
targets [5].
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a number of machine learning algorithms including ZeroR
and OneR, rule-based, and tree-based classifiers, e.g., J48 and
Random Forest (RF) to detect IoT anomalies. However, these
approaches are ineffective in detecting new types of botnets.
Nomm et al. [14] proposed a solution for identifying anomalies
from IoT datasets. First, the authors re-sample normal samples
from the IoT datasets to enlarge the normal training set. Then,
the Local Outlier Factor (LOF) and One-class Support Vector
Machine (OCSVM) are trained on the normal samples of the
training set. The trained LOF and OCSVM models can be
used for detecting malicious samples. However, the sampling
technique may change the distribution of the original data,
thereby reducing the effectiveness of LOF and OCSVM. Omar
et al. [15] proposed a framework combining feature selection
methods (feature ranking and clustering-based data partitioning
techniques) and classification for botnet intrusion detection sys-
tems. Although this framework and other previous approaches
showed a great potential in identifying known botnets, using
supervised learning classifiers makes them less effective in
detecting unknown botnets.

Recently, deep learning has attracted paramount interest in
detecting anomaly in cyber security, e.g., [4], [10], [19]–[23],
in which AEs play pivotal roles, e.g., [4], [10], [18], [27], [29].
Meidan et al. [4] proposed an AE model to train with the
normal data samples. It then sets a RE threshold to classify
an unseen data sample to be a normal or malicious one. Juliette
et al. [27] presented an online and real-time unsupervised
network anomaly detection algorithm which uses a discrete
time-sliding window to continuously update the feature space
and an incremental grid clustering. Ibidunmoye et al. [29]
estimated an underlying temporal property of the stream via
adaptive learning, and then used statistically robust control
charts to recognize deviations. However, this approach requires
frequent adjustment of the threshold value.

More recently Cao et al. [10] proposed two AE-based models,
namely Shrink AE (SAE) and Dirac Delta VAE (DVAE), to
learn a latent representation. This latent representation aims to
facilitate one-class anomaly detection methods in dealing with
high-dimension data. Specifically, the regularizer in [10] helps
SAE and DVAE learn (in a semi-supervised manner) to project
normal class in a small region at the origin. This is based on an
assumption that only normal samples are available for training.
They did not use any information of the anomalous class to
train the representation models. In many scenarios, however, a
certain type of IoT attacks can be collected and labelled. In
this case, supervised learning-based methods are usually better
than semi-supervised methods in detecting known anomalies.
Therefore, our work aims to develop a novel latent representa-
tion that facilitates supervised learning-based anomaly detection
methods in detecting unknown/new anomalies. Moreover, our
proposed regularizers in this work can also be expanded to
multiclassification problems that the models in [10] cannot do.

III. BACKGROUND

This section describes the structure and the loss func-
tions of the AutoEncoder (AE) [24], Denoising AutoEncoder
(DAE) [30] and Variational AutoEncoder (VAE) [31]. They are
the core components of the proposed models in Section IV.

(a) AutoEncoder (AE).

(b) Variational AutoEncoder (VAE).

(c) Classification algorithms are applied
on the latent representation of an AE

Fig. 2: (a) AE, (b) VAE, and (c) using latent representation of
an AE for anomaly detection.

A. AutoEncoder

An AE is a neural network trained to copy network’s input
to its output [24]. This network has two parts, i.e., encoder and
decoder (as shown in Fig. 2 (a)). Let W, W′, b, and b′ be
the weight matrices and the bias vectors of the encoder and the
decoder, respectively, and x = {x1, x2, . . . , xn} be a training
dataset. Let φ = (W,b) and θ = (W′,b′) be parameter sets
for training the encoder and the decoder, respectively. Let qφ
denote the encoder, zi be the representation of the input sample
xi. The encoder maps the input xi to the latent representation
zi (in (1)). The latent representation of the encoder is typically
referred to as a “bottleneck”. The decoder pθ attempts to map
the latent representation zi back into the input space, i.e, x̂i

(in (2)).
zi = qφ(xi) = ae(Wxi + b), (1)

x̂i = pθ(z
i) = ad(W

′zi + b′), (2)

where ae and ad are the activation functions of the encoder and
the decoder, respectively.

For a single sample xi, the loss function of an AE is the
difference between xi and the output x̂i. The loss function of
an AE for a dataset is often calculated as the mean squared
error (MSE) over all data samples [10] as in (3).

`AE (x, φ, θ) =
1

n

n∑
i=0

(
xi − x̂i

)2
, (3)

n is the number of data samples in a dataset.
DAE is a regularized AE [30] that aims to reconstruct the

original input from a noised version of the input. This can
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help DAE capture the true distribution of the input instead
of learning the identity [25], [32]. There are several methods
adding noise to the input data, and the additive isotropic
Gaussian noise is the most common one. Let define an additive
isotropic Gaussian noise C(x̃|x) to be a conditional distribution
over a corrupted sample x̃, given a data sample x. Let define
xnoise to be the noise component drawn from the normal
distribution with the mean is 0 and the standard deviation is
σnoise, i.e., xnoise ∼ N (0, σnoise). The denoising criterion with
the Gaussian corruption is presented as follows:

C(x̃|x) = x + xnoise. (4)

Let define x̃i to be the corrupted version of the input data
xi obtained from C(x̃|x). Note that the corruption process is
performed stochastically on the original input each time a point
xi is considered. Based on the loss function of AE, the loss
function of DAE can be written as follows:

`DAE (x, x̃, φ, θ) =
1

n

n∑
i=0

(
xi − pθ(qφ(x̃i))

)2
, (5)

where x̃i is the corrupted version of xi drawn from C(x̃|x). qφ
and pθ are the encoder and decoder parts of DAE, respectively.
n is the number of data samples in a dataset.

B. Variational AutoEncoder

A VAE [31] is a variant of an AE that also consists of two
parts: encoder and decoder (Fig. 2 (b)). The difference between
a VAE and an AE is that the bottleneck of the VAE is a
Gaussian probability density (qφ(z|x)). We can sample from
this distribution to get noisy values of the representation z. The
decoder inputs a latent vector z and attempts to reconstruct the
input. The decoder is denoted by pθ(x|z).

The loss function of a VAE `VAE(xi, θ, φ) for a datapoint xi

includes two terms as follows:

`VAE(xi, θ, φ) =−Eqφ(zi|xi)
[
log pθ(x

i|zi)
]

+DKL(qφ(zi|xi)||p(zi)).
(6)

The first term is the expected negative log-likelihood of the
i-th data point. This term is also called the reconstruction error
(RE) of VAE since it forces the decoder to learn to reconstruct
the input data. The second term is the Kullback-Leibler (KL)
divergence between the encoder’s distribution qφ(z|x) and the
expected distribution p(z). This divergence measures how close
q is to p [31]. In the VAE, p(z) is specified as a standard
Normal distribution with mean zero and standard deviation one,
denoted as N (0, 1). If the encoder outputs representations z
that are different from those of a standard normal distribution,
it will receive a penalty in the loss. Since the gradient descent
algorithm is not suitable to train a VAE with a random variable
z sampled from p(z), the loss function of the VAE is re-
parameterized as a deterministic function as follows [19]:

`VAE(xi, θ, φ) =− 1

K

K∑
k=1

log pθ(x
i|zi,k)

+DKL(qφ(zi|xi)||p(zi)).

(7)

where zi,k = gφ(εi,k, xi). g is a deterministic function, εk

denotes N (0, 1). K is the number of samples that is used to
reparameterize zi for the sample xi.

After training, the latent layer of AEs (AE, DAE, and VAE)
can be used for a classification task (Fig. 2 (c)). The original
data is passed through the encoder part of AEs to generate the
latent representation. A classification algorithm is then applied
on the latent representation instead of the original input. In
Section IV we will present three novel models based on AEs
for learning latent representation to detect unknown IoT attacks.

IV. PROPOSED MODELS

In this section, we describe our proposed latent representation
that facilitates supervised learning-based anomaly detection
methods in identifying anomalies, especially unknown attacks.
We then present two novel regularized AEs that can learn to
construct the new latent representation of data.

In the latent representation, normal samples and known
anomalous samples are forced to distribute into two tightly
separated regions, the normal region and the anomalous region,
respectively. Unknown attacks that may share some common
attributes with known attacks can be then identified as being
closer to the anomaly region than the normal region. To achieve
the feature representation, our approach is to develop the AE-
based models that can learn to construct the new feature repre-
sentation at the bottleneck layer. We introduce new regularized
terms to the loss functions of AEs. Data labels are incorporated
into the regularizers to compress normal and known anomalous
data into two tiny separated regions associated with each class
of data in the latent representation. The latent representation is
then used as the input of binary classifiers, such as SVM and
LR. The output of these classifiers is the final score to determine
the abnormality of the input data sample.

We have done a preliminary work on learning to represent
normal data and anomalous data into two different regions
in the bottleneck layer of VAE, called Multi-distribution VAE
(MVAE) [19]. VAEs originally learn to map input data into
one region following the standard Gaussian shape N (0, 1)
in its bottleneck layer. In MVAE, we incorporated the class
labels into the loss function of VAE. This allows MVAE to
force normal data and known anomalous data to reside in two
different regions in its bottleneck layer. These regions follow
the same Gaussian distribution shape (σ = 1), but reside in
different areas determined by the mean values of the Gaussian
distributions. The mean values are associated with class labels
(normal class or anomalous class). We evaluated MVAE on
two publicly network security datasets, and achieved promising
results. However, the MVAE latent representation allows known
anomalies to “freely” distribute in a “large room”, thus MVAE
may not reveal robust features which capture the common
characteristics of known anomalies and unknown/new ones.
Due to the “long tails” of these Gaussian distributions, some
samples of normal and anomalous data in the “tails” may be
overlapped [19, see Fig. 6]. Another drawback is that we used
“large regions” to represent normal data and known anomalous
data, thus unknown anomalies can have more chance to appear
in the region of the normal class.

The new latent representation introduced in this paper aims
to overcome the limitations of MVAE [19]. In particular, the
proposed latent representation is able to force the normal and
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Fig. 3: The probability distribution of the latent data (z0) of MAE at epoch 0, 40 and 80 in the training process.

anomalous regions to be narrow (as illustrated in Fig. 3). Thus,
the new feature representation possesses some outstanding ad-
vantages: the distributions of normal class and known anomaly
class have very short tails (even no tails); large areas can be
reserved for unknown anomalies; and common attributes of
samples within each class can be better explored. As men-
tioned in Section I, known anomalies and unknown anomalies
may share some common characteristics, and thus unknown
ones should be towards the known anomalous region in this
latent feature space. As such for effective learning the latent
representation, we introduce new regularizers to a classical
AE and a DAE to form two regularized AEs. These AEs are
named as Multi-distribution AE (MAE) and Multi-distribution
DAE (MDAE). The regularized AEs are simpler and easier
to be trained than those of MVAE. Our proposed models are
also very different from the regularized AEs presented in [10].
Specifically, the regularized AEs in [10] can learn to represent
only normal class into a small region at the origin in a semi-
supervised manner.

In this paper, we also introduce a new trade-off parameter
to the loss function of MVAE in order to make MVAE more
generalized to various anomaly detection problems. Therefore,
we first describe our previous work, i.e., MVAE with the new
trade-off parameter, in Sub-section IV-A. In Sub-sections IV-B
and IV-C, we present our proposed models, i.e., MAE and
MDAE.

A. Muti-distribution Variational AutoEncoder
Muti-distribution Variational AutoEncoder (MVAE) [19] is

a regularized version of VAE, aiming to learn the probability
distributions representing the input data. To that end, we in-
corporate the label information into the loss function of VAE
to represent data into two Gaussian distributions with different
mean values. Given a data sample xi with its associated label
yi, µyi is the distribution centroid for the class yi. The loss
function of MVAE on xi can be calculated as follows:

`MVAE(xi, yi, θ, φ) = − 1

K

K∑
k=1

log pθ(x
i|zi,k, yi)

+DKL(qφ(zi|xi, yi)||p(zi|yi)),

(8)

where zi,k is reparameterized as zi,k = µyi+σ
iεk (more details

presented in Section III) and εk ∼ N (0, 1); K and yi are the

number of samples used to reparameterize xi and the label of
the sample xi, respectively.

The loss function of MVAE consists of two terms. The first
term is RE, or the expected negative log-likelihood of the i-th
data point to reconstruct the original data at its output layer. The
second term is created by incorporating the label information
to the posterior distribution qφ(zi|xi) and the prior distribution
p(zi) of VAE in (7). Therefore, the second term is the KL
divergence between the approximate distribution qφ(zi|xi, yi)
and the conditional distribution p(zi|yi). The objective of
adding the label information to the second term is to force
the samples from each class data to reside in each Gaussian
distribution conditioned on the label yi. Moreover, p(zi|yi)
follows the normal distribution with the mean µyi and the
standard deviation 1.0, p(zi|yi) = N (µyi , 1)2. The posterior
distribution qφ(zi|xi, yi) is the multi-variate Gaussian with a
diagonal covariance structure. In other words, qφ(zi|xi, yi) =
N (µi, (σi)2), where µi and σi are the mean and standard
deviation, respectively, are sampled from the sample xi. Thus,
the Multi-KL term in (8) is rewritten as follows:

DKL(qφ(zi|xi, yi)||pθ(zi|yi))
= DKL(N (µi, (σi)2)||N (µyi , 1)).

(9)

Let D, µij and σij denote the dimension of zi, the j-th element
of µi and σi, respectively; µyij is the j-th element of µyi . Then,
applying the computation of the KL divergence in [19], the
Multi-KL term is rewritten as follows:

DKL
(
qφ(z|xi, yi)‖pθ(z|yi)

)
=

1

2

D∑
j=1

(
(σij)

2 + (µij − µyij )
2 − 1− log((σij)

2)

)
. (10)

2We have tested several small values (10−3, 10−2 and 10−1) for the
covariance of the Gaussian distributions of the two classes in order to shorten
“tails” of these distributions. At the early iterations of the MVAE training
process, the Multi-KL term of MVAE is extreme large in comparison to the
RE term, which makes MVAE difficult to reconstruct the input data. In the
later iterations, the Multi-KL term is small, but both of the two terms fluctuate
substantially [10].
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Taking Multi-KL term in (10), the loss function of MVAE in
(8) finally is rewritten as follows:

`MVAE(xi, yi, θ, φ) = − 1

K

K∑
k=1

log pθ(x
i|zi,k, yi)

+ λ
1

2

D∑
j=1

((σij)
2 + (µij − µyij )

2 − 1− log((σij)
2)),

(11)
where λ is a parameter to control the trade-off between two
terms in (11) as discussed in [10]. The trade-off parameter λ is
approximated by the ratio of two loss terms, i.e., the RE and
Multi-KL terms, in the loss function of MVAE.

The mean values for the distributions of the normal class and
anomalous class are chosen in order to make these distributions
to locate far enough from each others. In our experiments, the
mean values are 4 and 12 for the normal class and anoma-
lous class, respectively. These values are calibrated from the
experiments for the good performance of MVAE. In this paper,
the distribution centroid µyi for the class yi and the trade-off
parameter λ are determined in advance. The hyper-parameter
µyi can receive two values associated with the normal class
and the anomalous class.

B. Multi-distribution AutoEncoder

This subsection describes how to integrate a regularizer to
an AE to create Multi-distribution AutoEncoder (MAE). The
regularizer is a multi-distribution penalty, called Ω(z), on the
latent representation z. The penalty Ω(z) encourages the MAE
to construct a new latent feature space in which each class of
data is projected into a small region. Specifically, we incorporate
class labels into Ω(z) in order to restrict the data samples of
each class to lie closely together centered at a pre-determined
value. The new regularizer is presented in (12).

Ω(z) =
∣∣|z− µyi ∣∣ |2, (12)

where z is the latent data at the bottleneck layer of MAE, and
µyi is a distribution centroid of class yi in the latent space. The
label yi used in Ω(z) maps the input data into its corresponding
region defined by µyi in the latent representation. The latent
feature space is represented by multiple distributions based on
the number of classes. Thus, we name the new regularized AE
to be Multi-distribution AE.

In the MAE loss function, we also use a parameter λ to
control the trade-off between the reconstruction error (RE) and
Ω(z) terms as discussed in Sub-section IV-A. Thus, the loss
function of MAE can be defined as follows:

`MAE(θ, φ,x, z) =
1

n

n∑
i=0

(
xi − x̂i

)2
+ λ

1

n

n∑
i=1

∣∣|zi − µyi∣∣ |2,
(13)

where xi, zi and x̂i are the i-th element of the input samples, its
corresponding latent data and reconstruction data, respectively.
yi and µyi are the label of the sample xi and the centroid of
class yi, respectively. n is the number of training samples. The
first term in (13) is the RE that measures the difference between
the input data and its reconstruction. The second term is the
regularizer used to compress the input data to the separated
regions in the latent space.

To visualize the probability distribution of the latent repre-
sentation of MAE, i.e., z, we calculate the histogram of one
feature of the latent data z0. Fig. 3 presents the probability
distribution of z0 of normal class and known anomalies during
the training process of MAE on the IoT-1 dataset. After some
epochs, the latent data is constrained into two tight regions in
the latent representation of MAE.

C. Multi-distribution Denoising AutoEncoder

In this subsection, we discuss the details of the multi-
distribution Denoising AutoEncoder (MDAE). In this paper,
we employ DAE proposed in [30] to develop MDAE. For
each data sample xi, we can draw its corrupted version x̃i

using (4). MDAE learns to reconstruct the original input xi

from a corrupted data x̃i, and also penalizes the corresponding
latent vector zi to be close to µyi . The loss function of MDAE
can be presented in (14).

`MDAE(x, x̃, z, φ, θ) =
1

n

n∑
i=0

(
xi − pθ(qφ(x̃i))

)2
+ λ

1

n

n∑
i=1

∣∣|zi − µyi ∣∣ |2, (14)

where zi is the latent vector of the data sample xi. µyi is
the predefined distribution centroid of the class yi in the latent
feature space of MDAE. qφ and pθ are the encoder and decoder
parts as in DAE, respectively. n is the number of training
samples. The hyper-parameter λ controls the trade-off between
two terms in (14).

To be better separate the normal data and known anoma-
lies and to encourage unknown anomalies moving toward the
anomaly region, µyi of MAE and MDAE is selected in the non-
saturated area of activation. The non-saturated area is the steep
slope area of the graph of the activation function (as shown in
Fig. 4 (a)). Thus, µyi needs to be assigned to a positive value
under the ReLu activation function. In our experiments, we set
µyi = 2 for a normal class and µyi = 3 for an abnormal class3.
These values of µiy are used in all the IoT-based datasets in our
experiments.

Given the assigned values of µyi , the regularized term will
attempt to project the two classes (normal data and known
anomalies) into two tightly separated regions on the non-
saturated area. If an anomaly is different from normal data
points in the input feature space, it tends to differ greatly in
the latent representation space [10]. The unknown anomalies
are predicted to project to different regions towards the known
anomaly region on the non-saturated area of the activation
function. Fig. 4 (b) illustrates our idea of learning the latent
representation using the ReLU activation function. In this rep-
resentation, normal data and known attacks are represented in
two separated regions, and unknown attacks are predicted to
appear in regions closer to known anomalies.

3These values are calibrated from the experiments for the good performance
of the proposed model. The data points within each data class are forced to
be very close to the distribution centroid of each class. Thus, it is sufficient to
separate two normal and anomalous regions with the pair of centroids values
2 and 3. The pair of centroid values also keep almost latent vectors being not
much larger than the input and the output of MAE and MDAE resulting an
easy training process.
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(a) Description of saturating and non-saturating
areas of the ReLu activation function.
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(b) Illustration of the output of ReLU: two separated regions for
normal data and known attacks; unknown attacks are hypothesized
to appear in regions toward known attacks.

Fig. 4: Using non-saturating area of activation function to separate known and unknown attacks from normal data.

V. EXPERIMENTAL SETTINGS

This section presents the evaluation of three models MVAE,
MAE, and MDAE for learning the latent representation. Four
linear classification algorithms including Support Vector Ma-
chine (SVM) [33], Peceptron (PCT) [34], Nearest Centroid
(NCT) [35] and Linear Regression (LR) [36], are applied to
the latent representation produced from MVAE, MAE, and
MDAE. We choose these linear classifiers as they are simple
and hence can be performed very fast. Thus, these algorithms
are appropriate to using in IoTs networks where the device’s
computing resource is often constrained. The experiments were
conducted on nine IoT datasets (specified below). The source
code of all tested methods are available for download4. All
techniques were implemented in python using Tensorflow and
Scikit learn frameworks [37]. Moreover, the same computing
platform (Operating system: Ubuntu 16.04 (64 bit), Intel(R)
Core(TM) i5-5200U CPU, 2 cores and 4GB RAM memory)
was used in every experiment in this paper.

To highlight the strength of the proposed models, the perfor-
mances of the four classifiers trained on the latent representation
of MVAE, MAE, and MDAE are compared with those from:
(1) stand-alone classifiers (without using latent representation)
including a very effective and widely use for network anomaly
detection, RF [19], [38], [39]; (2) classifiers using the latent
representations of AE, DAE, VAE and Deep Belief Network
(DBN) [40]. We carried out four experiments to investigate
the properties of the latent representations obtained by MVAE,
MAE, and MDAE.
• Ability to detect unknown attacks: Evaluate the accuracy

of the four classifiers that are trained on the latent repre-
sentation of the proposed models in comparison to those
working with AE, DAE, VAE and DBN, and on the original
input data with RF.

• Cross-datasets evaluation: Investigate the influence of the
various attack types used for training models on the
accuracy classifiers in detecting unknown attacks.

• Influence of parameters
– Influence of the noise factor: Measure the influence of

the noise level on the latent representation of MDAE.

4https://github.com/vuthily/multi-distribution-representation-learning.

– Influence of the hyper-parameters of classifiers: Inves-
tigate the effects of hyper-parameters on the accuracy
of the classifiers working on different latent represen-
tations.

The experiment settings, IoT attack datasets and metrics used
for evaluating our proposed models are presented in the next
subsections.

A. IoT Attack Datasets

We used nine IoT attack-related datasets introduced by
Y. Meidan et al. [4] for evaluating our proposed models.
These data samples were collected from nine commercial IoT
devices in their lab with two most well-known IoT-based
botnet families, i.e., Mirai and BASHLITE (Gafgyt). Each of
the botnet family contains five different IoT attacks. Among
these IoT attack datasets, there are three datasets, namely
Ennio Doorbell (IoT-3), Provision PT 838 Security Camera
(IoT-6), Samsung SNH 1011 N Webcam (IoT-7) containing
only one IoT botnet family (five types of botnet attacks). The
rest of these datasets consist of both Mirai and BASHLITE (ten
types of DDoS attacks). Each data sample has 115 attributes
which are categorized into three groups: stream aggregation,
time-frame, and the statistics attributes. The details of the
datasets are presented in Table I.

We split each of these datasets into a training set and a testing
set based on the scenarios presented in Section VI. We randomly
select 10% of the training data to create validation sets for model
selection [41].

B. Parameter Settings

The configuration of AE-based models including AE, MAE,
MDAE and MVAE is as follows. The parameter for balancing
between the RE term and the regularized term λ is set at 1
for MAE and MDAE and at 1000 for MVAE5. The number
of hidden layers is 5, and the size of the bottleneck layer m
is calculated using the rule m = [1 +

√
n] in [10], where n

5The reason for setting much higher value of λ for MVAE than MAE and
MDAE is that the RE value of MVAE is often much higher than the regulazier
value of MVAE while the RE value of MAE and MDAE is mostly equal to the
their regularizer.
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TABLE I: The nine IoT datasets.

Dataset Device Name Training Attacks Training size Testing size
IoT-1 Danmini Doorbell combo, ack 239488 778810
IoT-2 Ecobee Thermostat combo, ack 59568 245406
IoT-3 Ennio Doorbell combo, tcp 174100 181400
IoT-4 Philips B120N10 Baby Monitor tcp, syn 298329 800348
IoT-5 Provision PT 737E Security Camera combo, ack 153011 675249
IoT-6 Provision PT 838 Security Camera ack, udp 265862 261989
IoT-7 Samsung SNH 1011 N Webcam combo, tcp 182527 192695
IoT-8 SimpleHome XCS7 1002 WHT Security Camera combo, ack 189055 674001
IoT-9 SimpleHome XCS7 1003 WHT Security Camera combo, ack 176349 674477

is the number of the input features. The batch size is 100,
and the learning rate is set at 10−4. The weights of these
AEs are initialized using the methods proposed by Glorot et
al. [42] to facilitate the convergence. We employ the ADAM
optimization algorithm [43] for training these networks. In these
AEs, the Identity and Sigmoid activation functions are used in
the bottleneck layers and the output layers, respectively. The
rest of layers use the ReLu activation function.

We use the validation sets to evaluate our proposed models at
every 20 epochs for early-stopping. If the average of the Area
Under the Curve (AUC) scores (AUC metric will be described
in the next subsection) produced from the four classifiers, SVM,
PCT, NCT, and LR decreases for a certain amount consecutively
over a number of epochs, the training process will be stopped.
The hyper-parameters of these classifiers are set by default
values as in [44]. The DBN-based model has three layers as
in [40] and is implemented by [45] where the number of
neurons in each layer is similar to the AEs based models in
our experiments.

C. Evaluation Metrics

To evaluate the effectiveness the of the proposed models,
we used three performance metrics to measure the accuracy of
classifiers trained on the latent representation of AEs. The first
two metrics are False Alarm Rate (FAR) and Miss Detection
Rate (MDR). FAR is defined as the number of false alarms
of negative samples per the total number of real negative data
samples as in (15). MDR is defined as the number of miss
detection of positive samples per total of real positive samples
as in (16).

FAR =
FP

FP + TN
, (15)

MDR =
FN

FN + TP
, (16)

where TP and FP are the numbers of correct and incorrect
predicted samples for one class respectively, and TN and FN
are the numbers of corrected and incorrect predicted samples
of the rest of classes, respectively.

The last metric is Area Under the Curve (AUC). AUC [46]
is created by plotting the graph of true positive rate
TPR = TP

TP+FN against the false positive rate FPR = FP
FP+TN

at various threshold settings. The area of the region under this
graph is defined as AUC. Since, the AUC score is one of the
most important metrics for evaluating any classification model’s
performance, we use it as the main metric for comparing
between various tested models in this paper. FAR and MDR are

used to add more information about the model’s performance
in some experiments.

VI. RESULTS AND ANALYSIS

This section describes in details the main experiments and
the investigation on the proposed latent representation models.
More importantly, we try to give the explanation for the
experimental results.

A. Ability to Detect Unknown Attacks
This section presents the main experimental results of our

paper. We evaluate the proposed models based on the ability to
detect unknown attacks of the four classifiers training on the
latent representation. As mentioned above, each of the nine IoT
datasets has five or ten specific types of botnet attacks. For each
IoT dataset, we randomly select two types of IoT attacks, and
70% of normal traffic for training, and the rest of IoT attacks
and normal data are used for evaluating our models. The training
attacks in this experiment are shown in Table I. As seen in this
table, we only use two types of DDoS attacks for training, the
rest is for testing. This guarantees that there are some types of
IoT attacks used for evaluating models that have not been seen
in the training process. These types of attacks are considered as
unknown attacks. The results produced from the four classifiers
working with our proposed models are also compared with those
working with the original input space and the latent feature
space of AE, DAE, VAE, and DBN. We also compare the results
from all linear classifiers with one non-linear classifier (i.e., RF)
that is trained on the original feature. The main experimental
results (AUC scores) are shown in Table II.

In Table II, we can observe that the classifiers are unable to
detect unseen IoT attacks (the AUC scores approximates 0.5)
on the representation resulting from the VAE model. The reason
is that the VAE model aims to generate data samples from the
normal distribution instead of building a robust representation
for classification task. It can be also seen from Table II that
the performances of the four classifiers working with all latent
representation models on the IoT-9 dataset are not consistent as
those on other datasets. When observing the latent representa-
tion of AE and DAE, LR and SVM can perform very well on
the IoT-9 dataset while PCT and NCT can not. On the contrary,
LR and SVM perform less efficiently than PCT and NCT when
working on the latent representation of our proposed models.

It can be seen from Table II that, the latent representations
resulting from MVAE, MAE, and MDAE help four classifiers
achieve higher classification accuracy in comparison to those
using the original data. For example, the AUC scores of SVM,
PCT, NCT, and LR working on the latent representation of MAE
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TABLE II: AUC scores produced from the four classifiers SVM, PCT, NCT and LR when working with standalone (STA), our
models, DBN, AE, VAE, and DAE on the nine IoT datasets. In each classifier, we highlight top three highest AUC scores where
the higher AUC is highlighted by the darker gray. Particularly, RF is chosen to compare STA with a non-linear classifier and
deep learning representation with linear classifiers.

Class-
ifiers Models Datasets

IoT-1 IoT-2 IoT-3 IoT-4 IoT-5 IoT-6 IoT-7 IoT-8 IoT-9

RF STA 0.979 0.963 0.962 0.670 0.978 0.916 0.999 0.968 0.838

SVM

STA 0.839 0.793 0.842 0.831 0.809 0.934 0.999 0.787 0.799
DBN 0.775 0.798 0.950 0.941 0.977 0.822 0.960 0.772 0.757
AE 0.845 0.899 0.548 0.959 0.977 0.766 0.976 0.820 0.997

VAE 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
DAE 0.849 0.990 0.569 0.968 0.980 0.803 0.982 0.818 0.996

MVAE 0.914 0.948 0.978 0.985 0.932 0.950 0.998 0.826 0.858
MAE 0.999 0.997 0.999 0.987 0.982 0.999 0.999 0.846 0.842

MDAE 0.999 0.998 0.999 0.992 0.982 0.999 0.999 0.892 0.902

PCT

STA 0.768 0.834 0.568 0.835 0.809 0.933 0.998 0.753 0.802
DBN 0.995 0.786 0.973 0.954 0.697 0.847 0.957 0.783 0.755
AE 0.849 0.892 0.498 0.965 0.977 0.813 0.977 0.814 0.815

VAE 0.503 0.501 0.499 0.501 0.507 0.497 0.500 0.500 0.499
DAE 0.882 0.903 0.534 0.969 0.982 0.862 0.984 0.857 0.849

MVAE 0.954 0.947 0.972 0.986 0.923 0.923 0.997 0.823 0.849
MAE 0.996 0.996 0.999 0.998 0.989 0.999 0.999 0.833 0.991

MDAE 0.996 0.997 0.999 0.998 0.989 0.999 0.999 0.889 0.991

NCT

STA 0.743 0.747 0.498 0.785 0.692 0.570 0.993 0.770 0.748
DBN 0.994 0.786 0.954 0.938 0.961 0.927 0.859 0.781 0.964
AE 0.985 0.767 0.498 0.834 0.835 0.997 0.945 0.746 0.767

VAE 0.501 0.506 0.511 0.487 0.499 0.505 0.500 0.488 0.479
DAE 0.989 0.770 0.580 0.882 0.863 0.997 0.966 0.806 0.788

MVAE 0.846 0.939 0.973 0.984 0.927 0.937 0.998 0.822 0.796
MAE 0.998 0.996 0.999 0.987 0.982 0.999 0.999 0.828 0.799

MDAE 0.996 0.998 0.998 0.992 0.985 0.999 0.999 0.887 0.889

LR

STA 0.862 0.837 0.565 0.829 0.802 0.932 0.998 0.791 0.800
DBN 0.776 0.939 0.960 0.955 0.961 0.837 0.962 0.779 0.755
AE 0.850 0.894 0.498 0.958 0.987 0.743 0.996 0.795 0.998

VAE 0.500 0.499 0.500 0.500 0.500 0.500 0.500 0.500 0.500
DAE 0.871 0.902 0.587 0.966 0.982 0.801 0.996 0.810 0.988

MVAE 0.921 0.989 0.981 0.985 0.933 0.955 0.999 0.828 0.858
MAE 0.999 0.997 0.999 0.988 0.984 0.999 0.999 0.835 0.840

MDAE 0.996 0.998 0.998 0.992 0.985 0.999 0.999 0.887 0.889

are increased from 0.839, 0.768, 0.743, and 0.862 to 0.999,
0.996, 0.998, and 0.999 with those working on the original data
on the IoT-1 dataset, respectively. The increase in the classifi-
cation accuracy can be also observed from MDAE and MVAE.
Moreover, our proposed models also help the linear classifiers
achieve higher AUC scores (the fifth and sixth rows) than those
using the latent representations of the AE and DBN (the third
and fourth rows). Among the linear classifiers, PCT working
with the latent representation of MVAE, MAE and MDAE
enhance the accuracy on all the IoT datasets including IoT-9.
Finally, four classifiers trained on the latent representations of
MAE and MDAE tend to produce more consistent results than
the previous one (MVAE) in [19].

Comparing the accuracy of linear classifiers with non-linear
classifier (i.e., RF), the table shows that RF is often much better
than all linear classifiers when they are trained on the original
features. This evidences that these datasets are not linearly
separable in the original space. However, by training on the
latent representation of MVAE, MAE and MDAE, the accuracy
of all linear classifiers are considerably improved and they are
often much greater than that of RF. The exception only occurs
in IoT-8 where none of the linear classifiers can outperform RF.
This result verifies that the proposed models help to project the
non-linear datasets in the original space into a linearly separable
data in the latent space.

We also carried out an experiment to explain why our models

can support conventional classifiers to detect unknown attacks
efficiently. In this experiment, we train the AE and MAE
on normal data and TCP attacks. Moreover, the size of the
hidden layer of AE and MAE is set at 2 to facilitate for
the visualization. After training, we test these models on the
testing data containing normal samples, the TCP attacks (known
attacks) and the UDP attacks (unknown attacks). In Fig. 5, we
plot 1000 random samples of the training and the testing data in
the hidden space of AE and MAE. Fig. 5 (a) and Fig. 5 (b) show
that the representation of AE still can distinguish the normal
samples, known attack samples and unknown attack samples.
This is the main reason for the high performance of classifiers
on the AE’s representation presented in Table II. However, while
MAE can compress normal and known attack samples into two
very compact areas on both the training and testing data, AE
does not obtain this result. The normal and known attacks in the
training data of AE spread significantly wider than the samples
of MAE. More interestingly, the samples of unknown attack
in the testing data of MAE are mapped closely to the region
of known attacks, and hence they can be distinguished from
normal samples easier. By contrast, the samples of unknown
attacks in AE are very close to the normal data, and hence
they are difficult to separate from the normal samples (benign
samples). This result evidences that our proposed model, i.e.,
MAE, achieves its objective in constraining the normal data and
known attack data into two compact areas at the hidden space.



10 IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, XXXX XXXX

Moreover, the unknown attacks are also projected closely to
the region of known attacks. Subsequently, both attacks (known
and unknown) can be effectively identified using some simple
classifiers applying on the latent features of MAE.

B. Cross-datasets Evaluation
Among the two tested botnet families, the Gafgyt botnet

family is a lightweight version of Internet Relay Chat model.
Thus, the DDoS attacks in Gafgyt are often the traditional
SYN, UDP, and ACK Flooding attacks [47]. However, the Mirai
botnet is usually a more dangerous IoT malware. It can exploit
devices based on several architectures, and it is capable of
perpetrating a wide range of DDoS attacks based on different
protocols (e.g., TCP, UDP, and HTTP) [47], [48]. As described
in Section I, each botnet family, Gafgyt or Mirai, can generate
several DDoS attacks. Different botnets can create different
network traffic transmitted from bots to infected devices, which
results in different feature values of attack data.

This experiment aims to exam the stability of the latent
representation produced by MVAE, MAE and MDAE when
training on one botnet family and evaluating on the other. We
consider two scenarios: (1) training data is Mirai, and testing
data is Gafgyt, and (2) Gafgyt is chosen for training, and Mirai
is used for testing. These scenarios guarantee that the testing
attack family has not been seen in the training phase. We
use the NCT classifier for investigating our models, and the
experimental results of NCT trained on IoT-26 are shown in
Table III.

TABLE III: Results of the NCT classifier in the cross-datasets
experiment. The second column represents the models trained
on Gafgyt botnets and evaluated on Mirai botnets. In the third
column, Mirai is used for training and Gafgyt is used for testing.

Models Mirai botnet Gafgyt botnet
AUC FAR MDR AUC FAR MDR

STA 0.747 0.002 0.504 0.747 0.002 0.504
DBN 0.732 0.003 0.433 0.720 0 0.671
AE 0.717 0.004 0.562 0.628 0 0.743

MVAE 0.943 0.006 0.107 0.999 0.002 0.002
MAE 0.974 0.010 0.042 0.999 0.001 0.001

MDAE 0.988 0.010 0.006 0.999 0.001 0.001

This table shows that when the training data and testing data
come from different botnet families, it is difficult for the NCT
classifier to detect unknown botnet attacks. Both the stand-alone
NCT and NCT with the representation of AE and DBN, tend
to produce a poor performance in both scenarios. The reason
is that the AE and DBN can only capture useful information
of the input data once they gather sufficient data information.
In this case, the training attacks and testing attacks come from
totally different botnet families. The trained AE and DBN may
be unable to represent the attacks that have not been seen in
the training phase, which results in a poor performance for the
NCT classifier (as shown in the first three rows of Table III).
On the other hand, the latent representations of MVAE, MAE
and MDAE are designed to reserve some regions being close to
the anomaly region for unknown IoT attacks. Thus, these AEs
help NCT to identity unknown attacks more effectively, and

6Due to the space limitation, we only present the results of the NCT classifer
on one dataset, i.e., IoT-2. The results of the other classifiers on the rest datasets
are similar to the results in this subsection.

perform well on both scenarios (as observed in the last three
rows of Table III). For example, the AUC scores of NCT to
predict the Mirai botnet increase from 0.747 with the original
data to 0.943, 0.974 and 0.988 with representations of MVAE,
MAE and MDAE, respectively. These results confirm that our
learning representation models can enhance the ability to detect
unknown IoT attacks of simple classifiers.

C. Influence of Parameters

This subsection analyzes the impact of several important
parameters to the performance of the proposed models. The
analyzed parameters include the noise factors in MDAE, the
hyper-parameters in SVM and NCT classifiers.

1) Influence of the noise factor: This experiment examines
the impact of the noise factor on the MDAE’s performance. In
this paper, the Gaussian noise function in (4) is employed to add
noise to the input of MDAE. We will analyze the characteristics
of MDAE when the standard deviation σnoise of Gaussian
function is varied in the range of [0.0, 0.1] on the IoT-1 dataset.
The value of the standard deviation σnoise presents the amount
of information of the input data which is noised.

Fig. 6 presents the influence of the noise factor on MDAE
observed by measuring the classification accuracy average of the
four classifiers. This figure shows that the mean of AUC tends to
be stable with σnoise ≤ 0.01, reaches a peak at σnoise = 0.01,
and then decreases gradually when σnoise > 0.01. At the same
time, a major part of the FAR and MDR curves go in the opposite
direction. These results imply that MDAE achieves the best
performance when the value of σnoise is 0.01.

2) Influence of the Hyper-parameters of Classifiers: This
experiment investigates the influence of the hyper-parameters
on the performance of classifiers when they are trained on the
original feature space and the latent representation of five deep
learning models including AE, DBN, MVAE, MAE and MDAE.
We conduct experiments on two well-known classification al-
gorithms, i.e., SVM and NCT7. The IoT-2 dataset is chosen for
this experiment.

The first parameter is analyzed as the hyper-parameter C
of SVM. The hyper-parameter C is a regularizer that controls
the trade-off between complexity of decision plane and the
frequency of error in the SVM algorithm [49]. This hyper-
parameter presents the generalization ability to detect unseen
anomalies of the SVM classifier. Fig. 7 (a) presents the influence
of C on the performance of SVM (AUC scores). It can be seen
that the AUC scores of SVM training on the original feature
space and the latent feature spaces of the AE and DBN vary
considerably when C is varied in the range from 10−4 to 100.
By contrast, the MVAE, MAE and MDAE models support the
SVM to produce very high and consistent AUC scores over a
wide range of C values. It suggests that the proposed models
generate more robust latent representations. It makes the SVM
training process consistent/insensitive on a wide range of hyper-
parameter settings.

The second parameter is the distance metric used in the
NCT classifier. The five distance metrics including cosine,
euclidean, manhattan, mahalanobis and chebyshev are used
to measure distances in NCT. The metric hyper-parameter is

7The performance of SVM and NCT is often strongly influenced by some
important hyper-parameters.
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(a) AE representation of training samples.
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(b) AE representation of testing samples.
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(c) MAE representation of training samples.
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(d) MAE representation of testing samples.

Fig. 5: Latent representation resulting from AE model (a,b) and MAE model (c,d).
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Fig. 6: Influence of noise factor on the performance of MDAE
measuring by the average of AUC scores, FAR scores and MDR
scores produced from SVM, PCT, NCT and LR on the IoT-1
dataset. The noise standard deviation value at σnoise = 0.01
results in the highest AUC, and lowest FAR and MDR.

used to calculate distances between data samples in a feature
array [34]. Fig. 7 (b) shows that the NCT classifier working with
MVAE, MAE and MDAE tends to yield high and stable AUC

scores over the five different values of the metric parameter.
On the other hand, the AUC scores of NCT training on the
original feature space and the feature spaces of AE and DBN
are much lower and unpredictably changed with different values
of metric.

The experiments in this subsection clearly show that our
proposed models (i.e., MVAE, MAE and MDAE) can support
classifiers to perform consistently on a wide range of hyper-
parameter settings. Perhaps, the reason for these results is that
the latent representations of our models can map normal data
and attacks into two separated regions. Thus, linear classifiers
can easily distinguish attacks from normal data, and its perfor-
mance is less sensitive to hyper-parameters.

D. Assumptions and Limitations

Although our proposed models possess many advantages to
learn a new representation of the IoTs datasets, they are subject
to few limitations. First, we assume that there is sufficient data
to train good models for learning representation. In this paper,
the number of training samples for both normal and attack data
are more than ten thousands samples. If we do not have enough
data for training (only few hundreds), it will be difficult to train
a good model for mapping input features to a new feature space.
In the future, we will study techniques to generate synthesized
data [50], [51] to train the models proposed in this paper.
Second, the advantages of representation learning models come
with the cost in running time. Since, a neural network is used to
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Fig. 7: AUC scores of (a) the SVM classifier and (b) the NCT
classifier with different parameters on the IoT-2 dataset.

Fig. 8: Average testing time for one data sample of four
classifiers with different representations on IoT-9.

project the input data into a new presentation, the executing time
of these models is often much longer than using classifiers on
the original feature spaces. Fig. 8 presents the average of time
for processing one data sample of all tested methods. It can
be seen that the processing time of all deep learning models
are roughly equal and they are much longer than that of the
standalone method.

IoT applications appear in many aspects of our life, such as
smart city, home automation, data security [52], [53]. Specif-
ically, alert systems in the data security applications require
usage and pattern analysis for all data, across all systems, in
real-time. Moreover, only stream processing is able to filter,
aggregate and analyze continuous collection of data in millisec-
onds [53]. As a result, no behaviours of IoT traffic data get
overseen or outdated. Thus, the running time of these models is
still acceptable (about 1.3 milliseconds) for most applications
in the real world.

VII. SUMMARY

In this paper, we have designed three novel AE based models
for learning a new latent representation to enhance the accuracy
in anomaly detection. As far as we known, our work is the first
research that attempts to design regularized versions of AE to
learn a latent representation in a supervised learning manner.
In our models, normal data and known attacks are projected
into two narrow separated regions in the latent feature space.
In order to obtain such a latent representation, we have added
new regularized terms to three AE versions resulting in three
regularized models namely the MVAE, MAE and MDAE. These
regularized AEs are trained on the normal data and known IoT
attacks, and the bottleneck layer of the trained AEs was then
used as the new feature space for linear classifiers.

We have carried out extensive experiments to evaluate the
strength and examine different aspects of our proposed models.
The experimental results demonstrate that our proposed models
can map the non-linear separable normal and attacks data
in the original space into linear and isolated data in their
latent feature space. Moreover, the results also showed that
unknown attacks tend to appear closely to known attacks in
the latent space. The distribution of the data in the latent
space makes the classification tasks much easier than executing
them on the original feature space. Specifically, linear classifiers
working with the latent feature produced from our models often
significantly outperform those working with the original features
and the features created by AE and DBN on the nine IoT attack
datasets. The new data representation also helps the classifiers
perform consistently when training on different datasets and
varying a wide range of hyper-parameter settings.

In the future, one can extend our current work in several
directions. First, the proposed models in this paper are only
examined on two-class classification problems. In the future, it
is interesting to extend these models and test them on multi-
class classification problems. Second, the distribution centroid
(µyi in (8)) are currently determined through trial and error. It
is desirable to find an approach to automatically select good
values for each dataset. Last but not least, the regularized AE
models are only tested on a number of IoT datasets. It is also
more comprehensive to experiment them on a wider range of
problems.
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