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Fuzzy-Rough Cognitive Networks: Theoretical
Analysis and Simpler Models

Leonardo Concepción, Gonzalo Nápoles, Isel Grau, Witold Pedrycz

Abstract—Fuzzy-Rough Cognitive Networks (FRCNs) are re-
current neural networks intended for structured classification
purposes in which the problem is described by an explicit set of
features. The advantage of this granular neural system relies on
its transparency and simplicity while being competitive to state-
of-the-art classifiers. Despite of their relative empirical success
in terms of prediction rates, there are limited studies on FRCNs’
dynamic properties and how their building blocks contribute to
algorithm’s performance. In this paper, we theoretically study
these issues and conclude that boundary and negative neurons
always converge to a unique fixed-point attractor. Moreover, we
demonstrate that negative neurons have no impact on algorithm’s
performance and that the ranking of positive neurons is invariant.
Moved by our theoretical findings, we propose two simpler fuzzy-
rough classifiers that overcome the detected issues and maintain
the competitive prediction rates of this classifier. Toward the end,
we present a case study concerned with image classification in
which a Convolutional Neural Network is coupled with one of the
simpler models derived from the theoretical analysis of the FRCN
model. The numerical simulations suggest that, once the features
have been extracted, our granular neural system performs as
well as other recurrent neural networks.

Index Terms—rough cognitive mapping, fuzzy-rough cognitive
networks, convergence, granular computing.

I. INTRODUCTION

Granular Neural Networks (GNNs) were introduced in [1]
as the amalgamation between Neural Networks and Granular
Computing. Roughly speaking, this synergy aims at reconcil-
ing the black-box behavior and the lack of transparency of
neural networks with the aid of information granules, such as
classes, clusters, subsets, etc [2]. Through similarity among
objects and granulation [3], GNNs bypass the use of large
datasets and precise information, while building interpretable
and lighter models. Several GNN architectures have been pro-
posed over the years, varying the methods of data granulation,
the network architecture, the learning procedure to adjust the
model, among other modifications [4] [5] [6].

Rough Cognitive Networks (RCN) are a type of GNN
presented in by Nápoles et al. [7] to solve decision-making and
pattern classification problems. In this model, the information
space is granulated by using the Rough Set Theory [8] [9]
and then a recurrent neural network is built. Interestingly, no
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synaptic learning is needed since weights are prescriptively
derived. According to simulations, this network is capable
of outperforming standard classifiers while remaining akin to
rough recognition techniques [7] [10]. However, the granu-
lation process has its Achilles heel at learning the similarity
threshold for comparing objects, because this procedure de-
mands significant computational cost.

Rough Cognitive Ensembles (RCEs) attempted to overcome
the burden of tuning the similarity threshold parameter [11].
RCEs are granular multiclassifiers composed of several RCNs,
each operating at a different level of granularity. In order to
promote the diversity among the base classifiers, this granu-
lar ensemble uses instance bagging. During the exploitation
process, the base classifiers produce output vectors which are
aggregated by means of a voting procedure over all decision
classes. The RCE model outperformed most of the state-of-
the-art classifiers [11] on 140 datasets. However, the ensemble
architecture harms the system transparency although it does
suppress the similarity threshold parameter.

Fuzzy-Rough Cognitive Networks (FRCNs) [12] completely
suppressed the requirement of a similarity threshold parameter
while outperforming the RCEs’ performance. The main char-
acteristic of FRCNs is that they replace the crisp information
granules with fuzzy-rough ones [13] [14] [6]. These fuzzy-
rough information granules are deemed pivotal when activating
the input neurons for a given instance. When contrasted with
other classifiers, it results that FRCNs’ performance is equiv-
alent to the most successful black boxes, while outperforming
other instance-based learners [12].

Despite the FRCNs’ promising performance, we have little
knowledge on the network’s dynamic properties. For example,
RCN-based models use a stopping criterion based on the num-
ber of iterations, hence lightening algorithm’s computational
burden. However, abruptly stopping the inference mechanism
might cause the model to report inconsistent results. On the
other hand, the network should not converge to a unique fixed-
point attractor, otherwise the model will produce the same
decision class regardless of the input vector.

Although the above issues are indeed interesting, what have
motivated this paper are the empirical simulations conducted
by Vanloffelt et all. [15]. After testing several architectures,
they concluded that the connections among the positive regions
might not be necessary to maintain FRCNs’ performance. No
conclusion was drawn for boundary and negative neurons.
Based on these results, it seems evident that not all building-
blocks contribute equally when determining the decision class
for a given instance. Which granular neurons contribute the
most and why remain open questions.
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This paper analytically explores the above issues and brings
up three main contributions. Firstly, we prove that negative and
boundary neurons converge to a unique fixed point when the
number of iterations is large enough. Secondly, we study the
influence of each kind of neuron on FRCNs’ performance and
conclude that negative ones have no influence at all, so the
classification relies on both positive and boundary neurons.
Besides, we derive some interesting properties such as the
invariance of the ranking among all positive neurons, and the
dominance relation between two decision classes based on the
incoming boundary connections or the difference among the
related positive neurons. Based on these theoretical findings,
we propose two simpler FRCN-based classifiers that surpass
the detected issues while retaining algorithm’s performance.
Finally, we present a case study concerned with image classi-
fication that shows promising results.

The remainder of this paper is organized as follows. Section
II presents the theoretical background surrounding FRCNs,
while Section III investigates how every component in the
network contributes to the classification process. Section IV
brings up two models to overcome the investigated limitations,
while Section V compares these models against state-of-the-art
classifiers. Finally, conclusions are presented.

II. FUZZY-ROUGH COGNITIVE NETWORKS

In this section, we describe how to build an FRCN for pat-
tern classification. Let U denote the universe with all objects
in the training dataset and Xc ⊂ U as the subset containing all
instances labeled with decision class Yc. Equation (1) shows
the membership degree of x ∈ U to Xc, which is computed
in a binary way for the sake of simplicity,

µXc(x) =

{
1 , x ∈ Xc

0 , x /∈ Xc

. (1)

The membership function µP (y, x) in Equation (2) uses the
similarity between two instances x and y,

µP (y, x) = µXc(x)ϕ(x, y) = µXc(x)(1− δ(x, y)). (2)

where µP : U × U → [0, 1] is the membership degree of y
to Xc given that x belongs to the fuzzy set Xc. To achieve
this, we combine the previously described membership degree
µXc(x) with the similarity degree ϕ(x, y). Such a similarity
degree is expressed in terms of a normalized distance function
δ(x, y) for heterogeneous instances.

Equations (3) and (4) denote the membership functions for
the lower and upper approximations, respectively, associated
with any fuzzy set Xc as proposed in [16]:

µP∗(Xc)(x) = min

{
µXc(x), inf

y∈U
I(µP (y, x), µXc(y))

}
,

(3)

µP∗(Xc)(x) = max

{
µXc(x), sup

y∈U
T (µP (x, y), µXc(y))

}
.

(4)

where I represents an implication function for the lower
approximations, such that I(0, 0) = I(0, 1) = I(1, 1) = 1
and I(1, 0) = 0. Similarly, for the upper approximations we
use a conjunction function T such that T (0, 0) = T (0, 1) =
T (1, 0) = 0 and T (1, 1) = 1.

Later on, we can compute the membership functions as-
sociated with the positive, negative and boundary regions as
µPOS(Xc)(x) = µP∗(Xc)(x), µNEG(Xc)(x) = 1−µP∗(Xc)(x)
and µBND(Xc)(x) = µP∗(Xc)(x) − µP∗(Xc)(x), respectively.
Such fuzzy information granules enclose the main building-
blocks of the FRCN classifier.

After computing the membership functions associated with
each decision class, we can build a causal network involving
four types of neurons. Let D = {D1, D2, . . . DM} denote
the set of decision neurons, while P = {P1, P2, . . . PM},
N = {N1, N2, . . . NM} and B = {B1, B2, . . . BM} are the
sets of positive, negative and boundary neurons, respectively.
This recurrent neural network contains |D| output neurons, be-
tween 2|D| and 3|D| input neurons and between 2|D|(1+ |D|)
and 3|D|(1 + |D|) weights, depending on the number of non-
empty boundary regions. It is worth mentioning that weights
are non-trainable as they are prescriptively determined based
on the semantics of information granules.

Let C = {C1, C2, . . . CN} be the set of neurons, which
can be obtained as the union of the disjoint sets D,P , N and
B. Algorithm 1 shows the construction steps when building
an FRCN classifier. Firstly, fuzzy-rough regions are mapped
onto input neurons, while output neurons denote decision
classes. Positive, negative and boundary neurons influence
themselves with an intensity of 1.0. This prevents the initial
activation values to vanish when performing the reasoning
process. Secondly, there is a positive causal relation between
each positive neuron and the decision neuron related to it. Such
neurons negatively affect the remaining positive and decision
neurons. Thirdly, negative neurons only affect their corre-
sponding decisions in a negative way but not the opposed ones.
This happens because rejecting a decision does not endorse
the acceptance of any specific decision, unless the problem
is binary. Finally, if two decision classes share non-empty
boundary regions, then each boundary neuron influences both
decision neurons with 0.5 intensity.

Figure 1 shows the FRCN model for a classification problem
with only two decision classes.

Network
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Fig. 1: FRCN model for binary classification.
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Algorithm 1 Network construction procedure

1: for each subset Xc do
2: Add a neuron Pc as the c-th positive region
3: Add a neuron Nc as the c-th negative region
4: Add a neuron Bc as the c-th boundary region
5: Add a neuron Dc as the c-th decision class
6: end for
7: for each neuron Ci do
8: if Ci 6= Dc then
9: wii = 1.0

10: end if
11: for each neuron Cj do
12: if Ci = Pc then
13: if Cj = Dc then
14: wij = 1.0
15: else if Cj = Dv 6=c then
16: wij = −1.0
17: else if Cj = Pv 6=c then
18: wij = −1.0
19: end if
20: end if
21: if Ci = Nc and Cj = Dc then
22: wij = −1.0
23: end if
24: if Ci = Bc and Cj = Dv and

minx∈U
{
µBND(Xc)(x), µBND(Xv)(x)

}
> 0

then
25: wij = 0.5
26: end if
27: end for
28: end for

The initial activation value A(0)
i of the neuron Ci is com-

puted based on the similarity degree between the new object y
and all x ∈ U , and the membership degree of every x to each
fuzzy-rough granular region. Moreover, for decision neurons
the initial activation value is 0. Equations (5), (6) and (7)
formalize the initial activation rules for positive, negative and
boundary neurons, respectively,

A
(0)
i =

∑
x∈U T (ϕ(x, y), µPOS(Xc)(x))∑

x∈U µPOS(Xc)(x)
, Ci = Pc (5)

A
(0)
i =

∑
x∈U T (ϕ(x, y), µNEG(Xc)(x))∑

x∈U µNEG(Xc)(x)
, Ci = Nc (6)

A
(0)
i =

∑
x∈U T (ϕ(x, y), µBND(Xc)(x))∑

x∈U µBND(Xc)(x)
, Ci = Bc. (7)

Equation (8) displays how to update neurons’ activation
values at each iteration as proposed in [17],

A
(t+1)
i = f(

N∑
j=1

wjiA
(t)
j ) (8)

where wji is the causal weight representing the influence
of Cj on Ci. The sigmoid transfer function f(x) = 1

1+e−λx

with λ = 5 is used to keep the neurons’ activation values
within the [0, 1] interval. It is worth mentioning that high λ
values cause the sigmoid function to become “more binary”,
which will translate into several decision neurons having near
maximal activation values. If this situation comes to light, then
it would be difficult to determine which decision class should
be produced based on neurons’ activation values. Conversely,
small λ values are prone to produce unique fixed-point attrac-
tors, as explained in Section III-A. Therefore, λ = 5 seems to
be a good commitment to avoid both issues.

Algorithm 2 depicts the FRCNs’ reasoning process when
determining the proper decision class for a given instance,
after having activated the input neurons using Equations (5),
(6) and (7). Notice that this update process is performed until
either the network converges to a fixed-point attractor or a
predefined number of iterations is reached. We say that a fixed-
point attractor has been found when A

(t+1)
i ≈ A

(t)
i for each

neuron in the causal network.

Algorithm 2 Classification process

1: for t = 0 to T do
2: converged ← True
3: for each neuron Ci do
4: Compute A(t+1)

i according to (8)
5: if A(t)

i 6= A
(t+1)
i then

6: converged ← False
7: end if
8: end for
9: if converged then

10: return argmaxc{A
(t+1)
x (Dc)}

11: end if
12: end for
13: if not converged then
14: return argmaxc{A

(T )
x (Dc)}

15: end if

In the following section, we theoretically analyze the dy-
namic behavior of FRCN models.

III. THEORETICAL ANALYSIS

When performing the classification, FRCNs should be stable
but not convergent to a unique fixed-point attractor. While the
stability provides consistent interpretation of results, unique
fixed-point attractors cause the network to produce the same
decision class despite the initial stimulus.

The following subsections are devoted to analyzing the
conditions causing some FRCN neurons to converge to unique
fixed-point attractors. Furthermore, we are interested in study-
ing the impact of each neural processing entity on algorithm’s
discriminatory capability.

A. Analyzing fixed-point attractors

In this section, we use insights reported in [18] to analyze
which λ values are not desired in the transfer function, i.e. they
lead to a unique fixed-point attractor. These findings disprove
the results in [19], thus leading to new theorems. They also
proved that a Fuzzy Cognitive Map (FCM) [17] whose weight
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matrix is comprised of non-negative values has a fixed-point
for any λ value. This result does not mean that there is a
unique fixed-point attractor or that there is always an attractor
for every initial stimulus. The actual implication is that there
is at least an activation vector which is mapped to itself after
every FCM iteration, thus leading to a fixed point.

According to Theorem 3 in [18], if the Frobenius norm of
the weight matrix of an FCM is smaller than 4/λ (with λ > 0),
then the FCM has one and only one fixed point. Therefore, for
any FRCN we have that ‖W‖F = 1

2

√
9M2 + 12M , with W

being the weight matrix and M being the number of decision
neurons. Now, if the following inequality holds, the FRCN has
one and only one fixed-point attractor:

1

2

√
9M2 + 12M <

4

λ
≡ λ <

8√
9M2 + 12M

. (9)

For example, when having two decision neurons we get
that for λ < 4√

15
≈ 1.03 the FRCN converges to a fixed-

point attractor. More generally, the bound of λ decreases with
the number of decision neurons. FRCNs use λ = 5 so that
decision neurons produce values with higher discriminatory
power, thus the result in [18] cannot ensure the existence and
uniqueness of the fixed-point attractor in such networks.

Neurons with self-feedback: FRCNs have boundary and
negative neurons which are influenced only by themselves,
so each of them has a self-feedback connection. Aiming at
analyzing the convergence of these neurons some definitions
and theorems [20] need to be unveiled.

Definition 1. A fixed point of mapping f : X → X is a point
x∗ ∈ X such that f(x∗) = x∗.

Theorem 1. Let f be continuous in
[
a, b
]

(i) If f
(
x
)
∈
[
a, b
]
∀x ∈

[
a, b
]
, then f has at least one fixed

point in
[
a, b
]
.

(ii) If, in addition, f
′(
x
)

exists on
(
a, b
)

and a positive
constant k < 1 exists with

|f
′(
x
)
| ≤ k, ∀x ∈

(
a, b
)
,

then there is exactly one fixed point in
[
a, b
]
.

Theorem 2. Let f be continuous in
[
a, b
]

such that f
(
x
)
∈[

a, b
]
∀x ∈

[
a, b
]
. Suppose in addition that f

′
exists on

(
a, b
)

and a positive constant k < 1 exists with

|f
′(
x
)
| ≤ k, ∀x ∈

(
a, b
)
,

then for any number p0 ∈
[
a, b
]

the sequence defined by

pn = f
(
pn−1

)
, n ≥ 1,

converges to the unique fixed point p in
[
a, b
]
.

Theorem 3 gives insights into the dynamic behavior of self-
connected neurons that do not have any incoming connection.
This result is one of the contributions of our research and can
be generalized to other scenarios.

Theorem 3. In an FCM, a sigmoid neuron with self-feedback
and no other incoming connection will always converge to a
unique fixed-point regardless its initial stimulus.

Corollary 1.1. In an FRCN, negative and boundary neurons
converge to a unique fixed point.

Proof. The neurons’ update rule transforms the raw activation
value at t-th iteration (x(t)) into a bounded interval by using
the sigmoid transfer function such that x(t+1) = 1

1+e−λ(x
(t))

.
Furthermore, Theorem 1 ensures that this function has at least
one fixed point in the

[
0, 1
]

interval, because it maps the
[
0, 1
]

space into itself (even though bounds of the interval are not
reached). Moreover, this function is also continuous in all its
domain. But we could make the proof simpler by taking into
account that f(x) = 1

1+e−λx
produces values into

[
0.5, 1

)
,

since the raw activation values of such neurons always lie
within the

[
0, 1
]

interval. This means that the initial stimulus
becomes irrelevant when analyzing the existence, uniqueness
and attractiveness of fixed points. The following definition and
lemmas depict the kind of points for which we need to prove
the attraction to a fixed point.

Definition 2. A secondary point of mapping f : X → X is a
point x∗ = f(x), being x an initial stimulus belonging to the
function’s domain.

Lemma 4. If mapping f : X → X has a fixed-point, then it
is a secondary point.

Lemma 5. If for any secondary point p1 ∈
[
a, b
]
, the

sequence defined by pn = f
(
pn−1

)
, n ≥ 2, converges to the

unique fixed point p in
[
a, b
]
, then for every initial stimulus

p0 such that p1 = f
(
p0
)
, the sequence also converges to p.

Now, we analyze the premises of Theorem 2 for f : [0.5, 1]
→ [0.5, 1] since secondary points for f : [0, 1]→ [0, 1] belong
to the [0.5, 1] interval. Likewise, we rely on Lemmas 4 and 5 to
complete the proof. To investigate if the fixed point is unique
and also an attractor from every secondary point, the following
inequality must hold:

|f
′
(x)| < 1. (10)

After doing some algebraic transformations and removing
the modulus operator (the derivative is always no negative
given that λ is positive) we obtain:

|f
′
(x)| = |

( 1

1 + e−λx

)′
| = λe−λx

1 + e−λx
= λf(x)

(
1− f(x)

)
.

Therefore, we have to prove that:

λf(x)
(
1− f(x)

)
< 1. (11)

To solve this inequality we study the cases when λ < 4 and
λ ≥ 4. Such cases are derived from the inequality we attempt
to solve, so they will be unveiled opportunely.

Case 1 (λ < 4). Given the fact that 0 < f(x) < 1 and
using the Arithmetic Mean - Geometric Mean Inequality [21]
we can arrive at the following inequality:

f(x)(1− f(x)) ≤
(f(x) + (1− f(x))

2

)2
=

1

4
.

Now, by multiplying the whole expression by λ we have
that λf(x)(1 − f(x)

)
≤ λ

4 , which implies that if λ < 4 then
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|f ′(x)| < 1. Therefore, the fixed point is unique and it is an
attractor for every secondary point.

Case 2 (λ ≥ 4). After manipulating algebraically the
inequality in (11) we obtain:

−λf2(x) + λf(x)− 1 < 0

λf2(x)− λf(x) + 1 > 0.

This inequality holds when f(x) < 1
2 −
√

1− 4
λ

2 or f(x) >
1
2 +

√
1− 4

λ

2 . Nevertheless, as we know that f(x) will never
be smaller than 0.5, we can focus on proving that f(x) >
1
2 +

√
1− 4

λ

2 . Starting with

1

1 + e−λx
>

1

2
+

√
1− 4

λ

2
, (12)

and after some algebraic transformations we get

1−
√
1− 4

λ

1 +
√
1− 4

λ

> e−λx. (13)

When λ ≥ 4 we obtain that 1 −
√

1− 4
λ ≥ 0. Notice that

the equality holds only if λ = 4. Therefore, with λ = 4 the
inequality in (12) becomes:

1

1 + e−4x
>

1

2
.

It does not hold only when x ≤ 0 but we have x ∈ [0.5, 1],
which implies it suffices.

Assuming that 1−
√
1− 4

λ > 0 we can apply the Neperian
logarithm to both sides of inequality, thus yielding:

ln

(1−
√
1− 4

λ

1 +
√
1− 4

λ

)
> −λx

x >

(
− 1

λ

)
ln

(1−
√
1− 4

λ

1 +
√
1− 4

λ

)
.

Applying logarithmic properties we have that:

x >

(
1

λ

)
ln

(1 +
√
1− 4

λ

1−
√
1− 4

λ

)
. (14)

To lighten the algebraic work we encapsulate the right-hand
side of Equation (14) into the following expression:

r(λ) =

(
1

λ

)
ln

(1 +
√
1− 4

λ

1−
√
1− 4

λ

)
.

Since x ≥ 1
2 , we just need to prove that r(λ) < 1

2 because
it would be x ≥ 1

2 > r(λ). This can be done as follows:

(
1

λ

)
ln

(1 +
√

1− 4
λ

1−
√
1− 4

λ

)
<

1

2

then,

ln

(1 +
√
1− 4

λ

1−
√
1− 4

λ

)
<
λ

2

and finally we obtain

1 +
√

1− 4
λ

1−
√
1− 4

λ

< e
λ
2 . (15)

By using the Maclaurin series expansion [22] we have that
ex =

∑∞
n=0

xn

n! . This series converges for every real value
of x, but we have special interest in positive values of x,
for which we also have that ex >

∑k
n=0

xn

n! for any k ≥ 0.
Such inequality results immediately because the expansion is
monotonically increasing in terms of k (with x > 0) and ex

is the limit of series when k →∞.

Since λ > 0, the inequality becomes e
λ
2 >

∑k
n=0

(
λ
2

)n
n! ,

but we only need the expansion for k = 2. This gives us that
e
λ
2 > 1 + λ

2 + λ2

8 , which can be used to prove the inequality
in (15). More specifically,

1 +
λ

2
+
λ2

8
≥

1 +
√

1− 4
λ

1−
√
1− 4

λ

= 1 +
2
√
1− 4

λ

1−
√
1− 4

λ

.

Simplifying and multiplying by 8 we get:

4λ+ λ2 ≥
16
√

1− 4
λ

1−
√
1− 4

λ

.

After multiplying by 1 −
√
1− 4

λ and performing some
algebraic transformations we obtain:

4λ+ λ2 ≥
√
1− 4

λ

(
16 + 4λ+ λ2

)
.

Now, given the fact that λ > 4 we can square both sides
while loosing no solutions as follows:

λ4+8λ3+16λ2 ≥
(
λ5 + 4λ4 + 16λ3 − 64λ2 − 256λ− 1024

)
λ

which is equivalent to:

4λ4 + 64λ2 + 256λ+ 1024 ≥ 0.

This inequality always holds because λ is positive and this
fact implies that r(λ) < 1

2 is true, which proves that the
inequality in (12) holds.

Such results ensure that f(x) = 1
1+e−λx

, f : [0.5, 1] →
[0.5, 1] has a unique fixed-point (according to Theorem 1) and
also that, for any secondary stimulus p1, the sequence defined
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by pn = f
(
pn−1

)
, n ≥ 2, converges to the unique fixed point

p in
[
0.5, 1

]
(according to Theorem 2).

Similarly, according to Lemma 4, we can conclude that
f(x) = 1

1+e−λx
, f : [0, 1] → [0, 1] has the same fixed

point p that it has when changing domain and image sets
(f : [0.5, 1] → [0.5, 1]). In agreement with Lemma 5, the
sequence defined by pn = f

(
pn−1

)
, n ≥ 1, also converges to

the unique fixed point p in
[
0, 1
]
.

Therefore, a neuron with self-feedback as its only incoming
relation and with f(x) = 1

1+e−λx
, λ > 0 as transfer function,

always converges to a unique fixed-point. �

B. Influence of neurons on FRCNs’ performance

Next, we analyze the behavior of boundary, negative and
positive neurons on performance. More specifically, we are
interested in determining the contribution of each neuron to
FRCNs’ classification process.

1) Boundary and negative neurons: These neurons have
self-connections and no other neuron has influence on them.
According to Theorem 3 and Corollary 1.1, boundary and
negative neurons converge to a unique fixed point, which only
depends on the λ value. Although FRCNs use λ = 5 for every
neuron’s transfer function, Corollary 1.1 holds for any positive
λ value. This implies that the convergence of such neurons to
a unique fixed-point attractor cannot be prevented by altering
the aforementioned parameter.

2) Positive neurons: Such neurons have self-connections,
but they are also negatively connected with each other. Thus,
each positive neuron is positively influenced by itself and neg-
atively influenced by all other positive neurons. The activation
rules for any pair of these neurons are:

P (t+1)
x =

1

1 + e−λ
(
P

(t)
x −

[∑M
i=1 P

(t)
i −P

(t)
x

]) , (16)

P (t+1)
y =

1

1 + e−λ
(
P

(t)
y −

[∑M
i=1 P

(t)
i −P

(t)
y

]) . (17)

According to (16) and (17), we have that:

P (t+1)
x = f(P (t)

x −
[ M∑
i=1

P
(t)
i − P

(t)
x

]
)

and

P (t+1)
y = f(P (t)

y −
[ M∑
i=1

P
(t)
i − P

(t)
y

]
).

To define an order relation among the activation values of
positive neurons, and taking into account that the sigmoid
function monotonically increases, we say that:

P (t+1)
x < P (t+1)

y

if and only if

P (t)
x −

[ M∑
i=1

P
(t)
i − P

(t)
x

]
< P (t)

y −
[ M∑
i=1

P
(t)
i − P

(t)
y

]
.

Consequently, 2P (t)
x < 2P

(t)
y and

P (t+1)
x < P (t+1)

y ⇐⇒ P (t)
x < P (t)

y .

Inductively, we can establish that P (t−1)
x < P

(t−1)
y and so

on, until reaching the initial activation values and P (0)
x < P

(0)
y .

This relation yields

P (t+1)
x < P (t+1)

y ⇐⇒ P (t)
x < P (t)

y

for every iteration t. Analogously,

P (t+1)
x > P (t+1)

y ⇐⇒ P (t)
x > P (t)

y

and
P (t+1)
x = P (t+1)

y ⇐⇒ P (t)
x = P (t)

y

for every iteration t. From this result we can conclude that the
order between any pair of positive neurons remains invariant
through the whole FRCN reasoning process. It also holds that
the ranking among all positive neurons also remains invariant.
This result is in line with the results in [15] and explains why
the connections among the positive regions are not necessary
to maintain FRCNs’ performance.

The ranking can be also useful for deriving further insight.
Assuming that P (t)

x is not the highest activation among the
positive neurons at the t-th iteration, it will never be the highest
at any iteration, because of the invariance of the ranking. Then,
with M ≥ 2 we can assert that:

P (t)
x −

[ M∑
i=1

P
(t)
i − P

(t)
x

]
= 2P (t)

x −
M∑
i=1

P
(t)
i ≤ 0

=⇒ P (t+1)
x =

1

1 + e−λ
(
2P

(t)
x −

∑M
i=1 P

(t)
i

) ≤ 1

2
.

Lemma 6. In an FRCN with M decisions, there will always
be M − 1 positive neurons with activation values smaller or
equal to 1

2 when t > 1.

Corollary 2.1. In an FRCN, there will be at most one neuron
with activation value higher or equal to 1

2 when t > 1.

Even though the order relation remains invariant, these neu-
rons could be stable, cyclic or chaotic. These possible states
might have direct influence on the network’s interpretation.
Ideally, we should have a stable neural system. Let us assume
then that positive neurons are stable. Then, after reaching such
a state, for every x it holds that:

P (t)
x = P (t+1)

x =
1

1 + e−λ
(
P

(t)
x −

[∑M
i=1 P

(t)
i −P

(t)
x

]) . (18)

After some algebraic transformations, we obtain

M∑
i=1

P
(t)
i =

ln

(
1−P (t)

x

P
(t)
x

)
λ

+ 2P (t)
x . (19)

This result tells us the sum of all activation values depends
on the value of P (t)

x . It must be noticed that Px could be any
positive neuron. Let us define

s(x) =
ln
(
1−x
x

)
λ

+ 2x, (20)
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as the function that calculates such a sum, where the activation
values are within the (0, 1) interval.

A close inspection to the properties of s(x) yields that it has
vertical asymptotes at x = 0 and x = 1, at which the function
tends to positive and negative infinity, respectively. On the
other hand, this function also has a relative minimum at 1

2 −√
λ−2
4λ and a relative maximum at 1

2 +
√

λ−2
4λ , when λ > 2. If

λ ≤ 2, the function is monotone-decreasing and thus injective.
Therefore, if s(x) is injective in all its domain or particularly in
a sub-domain, then a specific value can be produced by a single
input in all its domain or its sub-domain, respectively. This
means that, if the positive neurons are stable and λ <= 2, such
neurons will converge to a fixed-point attractor. As FRCNs
employ λ = 5 we can state that positive neurons converge to
three values at most for any value of s(x). This holds because
the function s(x) produces the same value for at most three
inputs in (0, 1). As such, there are at most three disjoint sets
of positive neurons such that all neurons in a set converge to
the same fixed point. Let us assume that p1, p2, p3 refer to
these fixed points, then we have that:

0 < p1 ≤
1

2
−
√
λ− 2

4λ
≤ p2 ≤

1

2
+

√
λ− 2

4λ
≤ p3 < 1.

In the case of FRCN models we have:

0 < p1 ≤ 0.1127 ≤ p2 ≤ 0.8872 ≤ p3 < 1.

3) Decision neurons: Such neurons do not influence other
neurons or themselves. Let us formalize the equations to obtain
the (t+1)-th activation values for decision neurons given the
activation values at the t-th iteration,

D(t+1)
x = f

( ∑
Bi→Dx

0.5B
(t)
i −N

(t)
x +P (t)

x −
[ M∑
i=1

P
(t)
i −P

(t)
x

])
,

(21)

D(t+1)
y = f

( ∑
Bi→Dy

0.5B
(t)
i −N

(t)
y +P (t)

y −
[ M∑
i=1

P
(t)
i −P

(t)
y

])
.

(22)
Since boundary neurons may influence or not a particular

decision neuron,
∑
Bi→Dx 0.5B

(t)
i will only involve boundary

neurons connected to Dx. When labeling new observations, we
need to define an order relation among the activation values
of decision neurons. If the decision class is determined at the
(t+1)-th iteration, the class associated with Dy is taken over
Dx if and only if D(t+1)

x < D
(t+1)
y . As the sigmoid function

monotonically increases, we can say that:

D(t+1)
x < D(t+1)

y

if and only if∑
Bi→Dx

0.5B
(t)
i −N

(t)
x + P (t)

x −
[ M∑
i=1

P
(t)
i − P

(t)
x

]
<

∑
Bi→Dy

0.5B
(t)
i −N

(t)
y + P (t)

y −
[ M∑
i=1

P
(t)
i − P

(t)
y

]
,

which implies that∑
Bi→Dx

0.5B
(t)
i −N

(t)
x +2P (t)

x <
∑

Bi→Dy

0.5B
(t)
i −N

(t)
y +2P (t)

y .

(23)
As mentioned, we should perform a large enough number of

iterations for the FRCN to converge, otherwise the reasoning
process would not be stable. Let us suppose that such an
iteration is reached, then Corollary 1.1 ensures that negative
and boundary neurons are convergent to a fixed-point attractor.
As a consequence, we state that:

N (t)
x = N (t)

y = B
(t)
i ,∀i.

Given the fact that FRCN-based models always use λ =
5, we can numerically approximate with high precision the
aforementioned fixed-point attractor, which is b ≈ 0.9930 (we
use b for clarity in formulas). Therefore, the inequality in (23)
can be further simplified:∑

Bi→Dx

0.5b+ 2P (t)
x <

∑
Bi→Dy

0.5b+ 2P (t)
y ,

0.5b
( ∑
Bi→Dx

1−
∑

Bi→Dy

1
)
< 2
(
P (t)
y − P (t)

x

)
,

b
( ∑
Bi→Dx

1−
∑

Bi→Dy

1
)
< 4
(
P (t)
y − P (t)

x

)
. (24)

This result suggests that, when discriminating between two
decision classes, the decision neuron receiving more boundary
connections will be favored. The inequality in (24) also brings
to life four special cases:
• If both decision neurons Dx and Dy receive the same

number of boundary connections, the decision neuron
with the highest activation value will be the one associ-
ated with the positive neuron having the highest activation
value. Besides, since the ranking among positive neurons
is invariant, the preferred neuron between Dx and Dy will
be Dy iff P (0)

y > P
(0)
x , or Dx iff P (0)

x > P
(0)
y , otherwise

both neurons have the same activation value. Extending
this result to the whole FRCN, if every decision neuron
receives the same number of boundary connections, the
classification goes to the decision class linked to Dx iff
P

(0)
x > P

(0)
y ,∀y. Long story short, when determining the

decision class of new instances, only the initial activation
values of positive neurons matter.

• If P (t)
x and P (t)

y are equal or close enough (|P (t)
y −P (t)

x | <
b
4 ), the decision neuron with the highest activation value
(between Dx and Dy) will be the one connected to more
boundary neurons. This would suggest that boundary re-
gions do matter when classifying new instances, however,
the contribution of each boundary neuron to the decision
values will always be the same.

• If neither P (t)
x nor P (t)

y are the positive neurons having
the maximal activation value, then |P (t)

y − P
(t)
x | < 1

2
(according to Corollary 2.1). Thus, if Dy (Dx) exceeds
by at least two the number of boundary connections of
Dx (Dy), the first one will be chosen.
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• If Dy has at least five more boundary connections than
Dx, then Dy will be the decision class to be produced.
If Dy has at least five more boundary connections than
any other neuron, then Dy will be the neuron having the
maximal activation value. Furthermore, the classification
will always be the class linked to this neuron, no matter
the initial activation values.

In summary, negative regions have no influence on FRCNs’
performance, while the ranking of positive neurons’ activation
values and the number of boundary neurons connected to each
decision neuron have high impact.

IV. THE SIMPLER, THE BETTER

In this section, we present two simple solutions to overcome
the theoretical limitations of FRCN models.

A. Using linear processing units

The first approach consists in replacing the sigmoid bound-
ary and negative neurons with linear ones. This modification
has some positive implications. Firstly, the boundary and nega-
tive neurons will contribute to FRCNs’ performance according
with their initial activation values. Secondly, linear neurons
with no incoming connection lead to fixed-point attractors as
their activation values are not altered. Such fixed points are
not unique and depend on neurons’ initial activation values,
as desired when classifying patterns.

Aiming at illustrating the power behind this simple modifi-
cation, let us consider a pattern classification problem having
three decision classes. Besides, let us assume an extreme case
in which fuzzy-rough positive regions are empty, therefore the
decision class is determined by using information coming from
negative and boundary regions. A setting for this hypothetical
scenario is P (0)

c = 0,∀c, N (0)
1 = 0.4, N (0)

2 = 0.04, N (0)
3

= 0.26, B(0)
1 = 0.6, B(0)

2 = 0.74, B(0)
3 = 0.75, while decision

neurons are inactive (i.e., D(0)
c = 0,∀c).

Fig. 3 shows the recurrent reasoning process of an FRCN
for this hypothetical classification problem. The vertical axis
represents the activation value of positive, negative, boundary
and decision neurons in each iteration, while the horizontal
axis is the iterations. The reader can notice that in the case of
the positive neurons, only P3 seems to be visualized since all
positive activation values are overlapped.

Aiming at making a decision, the FRCN relies on the bound-
ary and negative information. The latter suggests rejecting the
decision classes in the following order: D1 � D3 � D2,
therefore implying that D2 is the most suitable decision class.
Likewise, the boundary information suggests accepting D2 and
D3 with the same degree, while it rejects the hypothesis of x
to be associated with D1. Overall, the evidence extracted from
information granules advocates for the strong rejection of D1

while accepting D2 over D3.

B. Fuzzy-Rough Cognitive Regression

After the theoretical analysis conducted in Section III, the
reader might wonder whether a recurrent reasoning rule signif-
icantly contributes to FRCNs’ performance. In this section, we

put forth a simpler model referred to as Fuzzy-Rough Cognitive
Regression (FRCR) to combine the information derived from
fuzzy-rough information granules.

The confidence value for the c-th decision class as computed
by the FRCR model is expressed as follows:

ϑc(y) = f
(∑

x∈U T (ϕ(x, y), µPOS(Xc)(x))∑
x∈U µPOS(Xc)(x)

−
∑
x∈U T (ϕ(x, y), µNEG(Xc)(x))∑

x∈U µNEG(Xc)(x)
(25)

+
γ
∑
x∈U T (ϕ(x, y), µBND(Xc)(x))∑

x∈U µBND(Xc)(x)

)
where y is the instance to be classified, f(x) is the sigmoid
transfer function, ϕ(x, y) is the similarity degree between y
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Fig. 3: Activation values of positive, negative, boundary and
decision neurons for a pattern classification problem having

three decision classes.

and x ∈ U , while T (., .) is a conjunction function. Moreover,
µPOS(Xc)(x), µNEG(Xc)(x) and µBND(Xc)(x) stand for the
membership functions attached to the positive, negative and
boundary fuzzy-rough regions, respectively. Finally, γ = 1/M
regulates the contribution of the boundary information to the
confidence value of each decision.

Therefore, given an unlabeled instance y, the classification
process consists in assigning to y the class having the highest
confidence value. The reader can notice that this model could
be seen as a type of logistic regression algorithm in which the
inputs come from the fuzzy-rough granules.

C. Computational complexity analysis

In this subsection, we compare the computational complex-
ity of the original FRCN algorithm and the proposed FRCR
model. Let V and A denote the test set and the attribute set,
respectively. The granulation process is an active component
in both models and its temporal complexity is O(|U|2 |D| |A|).
In the FRCN model, the complexity of building the network is
O(|D|2), while calculating the initial activation values for ev-
ery object in the test dataset costs O(|U| |V| |D| |A|). Also, the
complexity of the exploitation (test) phase is O(|V| |D|2 T ),
whereas T is the maximal number of iterations. On the other
hand, the complexity of the exploitation phase in the FRCR
model is O(|U| |V| |D| |A|). The reader can notice that the
computational complexity of the FRCN model is higher when
compared with the new classifiers since the step of building
the network is no longer necessary.

V. NUMERICAL SIMULATIONS

In this section, we perform some numerical simulations to
assess the discriminatory power of the two models proposed
in Section IV, which correct the theoretical limitations of the
FRCN classifier. Actually, we would only need to verify that
the new algorithms retain the prediction power of the FRCN
classifier. The reader is referred to [7], [11], [12], [10] and

[23] for further detail on the FRCNs’ prediction performance
on structured classification problems.

A. Traditional benchmark problems

In our simulations, we use 140 structured (traditional) pat-
tern classification datasets reported in [11]. In these problems,
the number of instances ranges from 14 to 12,906, the number
of decision classes ranges from 2 to 100 and the number of
attributes from 2 to 262. These benchmark problems include
13 noisy and 47 imbalanced datasets, with the imbalance ratio
fluctuating between 5:1 and 2160:1.

Numerical attributes have been normalized to avoid poten-
tial out-of-range issues when computing the distance function.
Furthermore, whenever necessary, we replaced missing values
with the mean or the mode depending on whether the attribute
was numerical or nominal, respectively.

B. State-of-the-art algorithms

Although the goal of this research is not devoted to claiming
the numerical superiority of the FRCN models, we will com-
pare them against other granular and state-of-the-art classifiers
for the sake of completeness. The granular models used in our
experiments include: k-Nearest Neighbors (kNN) with k = 3,
the K∗ classifier, Fuzzy-Rough k-Nearest Neighbors (FRNN)
and Vaguely-quantified k-Nearest Neighbors (VQNN). The
traditional classifiers include: Multilayer Perceptron (MLP),
Support Vector Machines (SVM), Naı̈ve Bayes (NB), Decision
Tree (DT) and Random Forest (RF).

No classification model performed perform hyperparameter
tuning. Instead, we used the default parameter settings as pro-
vided in the Weka v3.6.11 software tool [24]. Usually, specific
parameter settings improves the algorithms’ performance, but
it can be questioned whether a model that is quite sensitive to
its hyperparameters should be considered “better” than another
that performs simply well for a wide variety of scenarios. On
the other hand, it goes without saying that obtaining such a
degree of optimization goes at the expense of increasing the
computational burden of training the model.

In the case of our granular classifiers, the default parameter
setting is as follows. The Heterogeneous Manhattan-Overlap
Metric [25] is adopted as the dissimilarity function. This
distance function computes the normalized Euclidean distance
between numerical attributes and an overlap metric for nomi-
nal ones. Moreover, we adopted the well-known Lukasiewicz
operator T (x, y) = max{0, x+y−1} to implement the fuzzy
conjunction and implication operations. Finally, the λ value of
the function f(x) is set to 2.0.

C. Statistical analysis and discussion

Aiming at quantifying algorithms’ performance, we utilized
Cohen’s Kappa coefficient [26]. This measure computes the
inter-rater agreement for categorical items. It is deemed a more
robust measure than the standard accuracy since it takes into
account the agreement occurring by chance.

The first experiment is devoted to comparing the prediction
ability of the proposed fuzzy-rough classifiers. The Wilcoxon
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signed rank test does not reject the null hypothesis for the
95% of the confidence interval (i.e., p-value = 0.573 > 0.05),
which means that both variants perform comparably when it
comes to the number of correctly classified instances. In order
to simplify the experiments, FRCR will be adopted to perform
the remaining simulations in this section.

Fig. 4 summarizes the average Kappa value attained by each
granular classifier after performing a 10-fold cross-validation
for each dataset. The reader can observe that FRCR stands as
the best-performing algorithm when compared with the other
methods across the benchmark problems.

0.56

0.58

0.60

0.62

0.64

0.66

0.68

kNN K* FRNN FRNN-O VQNN FRCR

Fig. 4: Performance of granular classifiers.

The Friedman test suggests rejecting the H0 hypothesis (p-
value = 5.27E-10 < 0.05) for a confidence interval of 95%.
This suggests that there are significant differences between at
least two methods across benchmark.

Table I shows the p-values reported by the Wilcoxon signed
rank test, the negative (R−) and the positive (R+) ranks, and
the corrected p-values according to Holm where FRCR is the
control method. This post-hoc attempts to control for type-I
errors that might arise when performing pairwise comparisons.
The results indicate that all null hypotheses can be rejected for
a significance level of 0.05, thus confirming the superiority in
performance of the FRCR algorithm.

TABLE I: Pairwise analysis for granular classifiers where
FRCR is used as the control method.

Algorithm p-value R− R+ Holm Hypothesis
FRNN 5.73E-9 39 96 2.86E-8 Rejected
IBk 1.02E-7 34 99 4.07E-7 Rejected
K* 3.67E-5 49 85 1.10E-4 Rejected
VQNN 1.21E-3 52 83 2.41E-3 Rejected
FRNN-O 3.52E-2 57 77 3.52E-2 Rejected

Fig. 5 displays the average Kappa value computed by each
traditional classifier after performing a 10-fold cross-validation
for each benchmark problem. In this experiment, FRCR, RF
and MLP reported the highest Kappa values, while NB turned
to be the worst-performing model.

The Friedman test suggests rejecting the H0 hypothesis (p-
value = 8.47E-10 < 0.05) for a significance level of 0.05.
Table II shows the p-values reported by the Wilcoxon signed
rank test, the negative (R−) and the positive (R+) ranks, and
the corrected p-values according to Holm where FRCR is the
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0.66

0.68

MLP SVM NB DT RF FRCR

Fig. 5: Performance of traditional classifiers.

control method. The corrected p-values suggest rejecting the
null hypotheses for the following pairwise comparisons: FRCR
vs. NB, FRCR vs. SVM, FRCR vs. DT. The null hypotheses
for the pairs FRCR vs. MLP and FRCR vs. RF are not rejected
for the 95% of the confidence interval.

TABLE II: Pairwise analysis for traditional classifiers where
FRCR is used as the control method.

Algorithm p-value R− R+ Holm Hypothesis
NB 1.06E-10 36 100 5.31E-10 Rejected
SVM 4.69E-6 45 88 1.88E-5 Rejected
DT 2.49E-3 44 88 7.48E-3 Rejected
MLP 5.94E-1 58 76 1.0 Not Rejected
RF 8.46E-1 66 67 1.0 Not Rejected

Long story short, the results have shown that the proposed
models perform significantly well when compared against both
granular and traditional classifiers. Even more important is the
fact that our algorithms retain the predictive power of FRCNs
while being more simple and robust.

D. Image classification

In this subsection, we will develop a case study illustrating
how to use the proposed FRCR method to solve unstructured
classification problems such as image classification. The se-
lected dataset is the well-known Street View House Numbers
(SVHN) dataset1, which contains 73257 training images and
10 decision classes (i.e., the digits). Figure 6 shows an excerpt
of this dataset. To perform the simulations, we split the dataset
such that 80% of the instances are used to either train or build
the models while the remaining 20% are used for testing the
classifiers’ generalization capability.

This case study comes with the problem that FRCN-based
classifiers operate on structured datasets with well-defined
features (although they might contain noise, missing values,
etc.). Hence, if we want to use the FRCR model for image clas-
sification, then we would need first to extract relevant features
describing the images. This is the idea behind transfer learning
[27] in which a pre-trained model extracts the features, which
are used to feed a second classifier.

1http://ufldl.stanford.edu/housenumbers/
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Fig. 6: Excerpt of the SVHN dataset for image classification.

In short, the simulations in this subsections are oriented to
comparing the performance of the FRCR method against deep
learning models when the features are given.

In order to extract the features, we will use a Convolutional
Neural Network (CNN) [28]–[31] comprised of three blocks,
each containing two 2D convolution layers and a max pooling
layer (see Figure 7). The number of filters attached to con-
volution layers in each block is 32, 64 and 128, respectively,
while the stride size of the max pooling was set to one. To
train the model, the latter block is connected with a hidden
layer having 128 ReLU neurons, which is connected with the
output layer. These layers are not visualized in Figure 7 as they
will be removed when coupling the CNN with other classifiers
as done in transfer learning architectures.

32 32

32

32

conv1

64 64

16

16

conv2

128 128
8

8

conv3

Fig. 7: Architecture of the CNN model used to extract the
features from the SVHN dataset.

The CNN involves 551,018 learnable parameters and pro-
duces 2048 features that will feed the following deep learning
models: a Long short-term memory (LSTM) [32], [33] with 10
cells, a Bidirectional Long short-term memory (BiLSTM) [34],
[35] and a Recurrent Neural Network (RNN) [36]. These al-
gorithms used the backpropagation learning algorithm, and the
popular ADAM optimization method [37] with learning rate
equal to 0.001 and 50 learning epochs. All models (including

ours) use the features extracted by the CNN, therefore resulting
in four coupled algorithms: CNN-RNN, CNN-LSTM, CNN-
BiLSTM and CNN-FRCR. In that way, all models will operate
on the same pieces of information.

The Kappa values reported by these classification mdodels
on the test set are as follow: CNN-RNN (0.931), CNN-LSTM
(0.938), CNN-BiLSTM (0.936) and CNN-FRCR (0.941). The
results suggest that, when the features are already extracted,
the proposed FRCR method performs as well as most powerful
deep learning algorithms. However, it would not be realistic to
assume that such appealing results can easily be generalized to
other unstructured problems. Even if they were, we will need
for other algorithms to extract the features since FRCN-based
classifiers were designed to deal with classification problems
were explicit features are available.

VI. CONCLUDING REMARKS

In this paper, we conducted a theoretical analysis of FRCNs
and the contribution of their building blocks to algorithm’s
performance. FRCNs’ dynamical analysis revealed that nega-
tive and boundary neurons will always converge to a unique
fixed-point attractor, while the ranking of positive neurons will
remain invariant during the whole reasoning process. Even
more serious is the fact that negative neurons have no influence
on algorithm’s decision process. These findings motivated the
proposal of two simpler fuzzy-rough classifiers that overcome
FRCNs’ theoretical limitations.

With regard to the simulations, the Fuzzy-Rough Cognitive
Regression was capable of outperforming most granular and
traditional classifiers used for comparison. It is true that such
results might change if we optimize algorithms’ hyperparame-
ters for each dataset, but this usually comes with a significant
increase in the time and effort required to build the model.
Beyond the competitive prediction rates, what we consider
of utmost relevance is the ability of our models to elucidate
their reasoning process at a granular level by means of fuzzy-
rough inclusion degree equations. Not many machine learning
classifiers allow for such a relevant feature. The future research
will be oriented to reducing the processing time when deriving
the information granules in large datasets.
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