
SUBMITTED TO IEEE 1

Motion control for autonomous heterogeneous
multi-agent area search in uncertain conditions

Stefan Ivić

Abstract—Using multiple mobile robots in search missions
offers a lot of benefits, but one needs a suitable and competent
motion control algorithm which is able to consider sensors
characteristics, the uncertainty of target detection and complexity
of needed maneuvers in order to make a multi-agent search au-
tonomous. This paper provides a methodology for an autonomous
two-dimensional search using multiple unmanned search agents.
The proposed methodology relies on an accurate calculation of
target occurrence probability distribution based on the initial
estimated target distribution and continuous action of spatial
variant search agent sensors. The core of the autonomous search
process is a high-level motion control for multiple search agents
which utilizes the probabilistic model of target occurrence via
Heat Equation Driven Area Coverage (HEDAC) method. This
centralized motion control algorithm is tailored for handling a
group of search agents which are heterogeneous in both motion
and sensing characteristics. The motion of agents is directed
by the gradient of the potential field which provides near-
ergodic exploration of the search space. The proposed method is
tested on three realistic search mission simulations and compared
with three alternative methods, where HEDAC outperforms all
alternatives in all tests. Conventional search strategies need
about double the time to achieve proportionate detection rate
when compared to HEDAC controlled search. The scalability test
showed that increasing the number of HEDAC controlled search
agents, although somewhat deteriorating the search efficiency,
provides needed speed-up of the search. This study shows the
flexibility and competence of the proposed method and gives a
strong foundation for possible real-world applications.

Index Terms—area search, uncertainty search, multi-agent
control, target detection, HEDAC

I. INTRODUCTION

The task of performing an autonomous multi-agent search
in uncertain conditions is a thriving concept which has not yet
been scientifically entirely answered. Consequently, the real-
world applications are not as straightforward as one would ex-
pect given the rapid development of the associated equipment.
Possible applications of two-dimensional search are numerous:
search and rescue missions on land or sea, objects search
and detection, surveillance, monitoring in agriculture etc. Per-
forming a search with unmanned remote-controlled vehicles,
whether terrestrial, aerial, sea surface or even submerged, gives
an opportunity to organize smart and efficient motion of search
agents. The use of multiple autonomous agents in the search
raises a problem of coordination, which can potentially be
more troublesome due to differences in motion or sensing
of used search agents. The design of reliable, robust and
efficient motion control of multiple heterogeneous agents for
a search in uncertain conditions is a challenging task, solution
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of which would provide foundations for successful real-world
applications.

A general fundamental and theoretical study on the target
search in uncertainty is presented in Koopman’s "The Theory
of Search" triad [17], [18], [19]. The first paper covers the
kinematic bases of the search theory, specifically the motion
of search agents and their sensing range, and the probability
distribution of targets. The second sequel covers a target
detection under uncertainty, with established mathematical
fundamentals of spatial and temporal detection probability for
both stationary and moving search agents and targets. In the
third part the search is considered as the optimization problem
formulated as finding agent trajectories which maximize the
overall probability of detection for a given target occurrence
probability distribution.

There are many different approaches on high-level multi-
agent search control, but two rather prominent directions stand
out in the literature covering this field. These two are the
approaches based on Receding Horizon Control and Spectral
Multiscale Coverage methods.

A. Spectral Multiscale Coverage approach

Spectral Multiscale Coverage (SMC) was first introduced
in [25] as an algorithm for ensuring given coverage density.
SMC employs a gradient-based agent regulation which relies
on smoothed difference between achieved and goal coverage
fields. The smoothing is achieved using spectral techniques,
i.e. suitably adapting the Fourier transform coefficients in order
to emphasize lower modes.

The SMC idea is adopted for the 2D search in the method
called Multiscale Adaptive Search presented in [14] and
uses SMC on logarithmic prior in order to encompass the
exponential detection model. Another approach, in [34], also
employs SMC method for continuous-space uncertainty area
search. Here the Sequential Ratio Probability Test and Recur-
sive Least Squares estimation are used in order to quantify
the current uncertainty in target detection and location, re-
spectively. The papers [24] and [32] show the experimental
validation of SMC/MAS algorithm using unmanned aerial
vehicles (UAV’s). The consideration of unsteady coverage
problem, presented in [27], is a very interesting approach
and allows many useful enhancements of the method or its
applications, such as the search for moving targets. SMC
method allows relatively easy implementation of kinematic
and dynamic [25] as well as Dubins motion models [34],
[24], and it is suitable to adapt to heterogeneous multi-agent
control (although such adaptation have not been made yet,
according to the available literature). The main drawbacks of
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the SMC method are the limitation to rectangular domains and
lack of regulation mechanism between global and local search
behavior.

B. Receding Horizon Control approach

In addition to SMC based approaches, another commonly
used method in coverage problems is Receding Horizon Con-
trol (RHC), also known as Model Predictive Control (MPC).
The RHC method transforms the problem of discovering
ergodic trajectories to the optimization problem, where agent
heading directions are determined by optimizing forthcoming
trajectories according to a given objective. This brings both
benefits and detriments to the search procedure. The opti-
mization procedure can easily include additional objectives
or constraints such as motion model constraints, obstacle
avoidance, minimizing fuel consumption etc. However, the
effect of the chosen horizon, i.e. the length of trajectories
which is subjected to the optimization, is twofold. A short
horizon localizes the search and weakness the ergodicity of
achieved trajectories but facilitates the optimization. On the
other hand, long horizon enables global ergodic exploration
while hindering the optimization and the efficiency.

A general coverage problem, where uniform goal coverage
is considered in the domain with an obstacle, is presented
in [1], [2]. Ergodic multi-agent coverage using RHC method,
with a goal of achieving a more general, non-uniform, goal
coverage density is considered in [28], [3]. Receding Horizon
Control is utilized for uncertainty search in [9] and [20]
ensuring reduction of time needed for target detection. Ar-
bitrary target probability maps and sensor detection models,
as well as multi-agent coordination are built-in features of the
control method. A control method, designed for exploration
of unknown environments while minimizing tracked landmark
and agent localization uncertainty, is used for mapping plan-
ning strategy and uncertainty-aware exploration in [29]. As
presented in [37], optimal trajectories of multiple UAV’s for
target search with known target distribution are assured using
Receding Horizon Control and a Gaussian Mixture Model.
Various useful constraints such as obstacle and collision
avoidance, and the simultaneous arrival of multiple UAV’s to
a given destination are included in the proposed method. A
target search using the distributed RHC method combines a
UAV motion planning layer and a network topology control
layer, using the distributed RHC optimization, is proposed in
[7]. A more sophisticated tasks, such as surface inspection in
three dimensions with a multi-rotor platform [4], can also be
accomplished with Receding Horizon Control.

C. Other approaches and methods

Engaging a Bayesian approach into target search problems
has been investigated by several authors [5], [21], [36]. In
these papers, various features of the search are considered
such as static or mobile target search, different search vehicle
kinematics and sensor detection models. Proposed algorithms
maximize the probability of detecting a target in a fixed time
window.

A cooperative framework for managing a multi-agent search
system is proposed in [31], [8]. The algorithm relies on
communication between agents and environmental perception
using on-board sensors in order to achieve cooperation and
successful obstacles avoidance. Many real motion limitations,
such as maneuverability limitations or fuel/time constraints,
are included in the algorithm. A similar control, which also
considers the motion and sensing limitation, is presented in
[13]. In order to provide coverage and topology control, the
method uses Bayesian update of probability map, individually
for each agent. The optimal search in terms of maximal
detection rate is realized using the Mode Good Ratio heuristic
in [22]. Although the algorithm takes advantage of the target
occurrence probability estimation and produces a successful
search, it does not coordinate multiple agents.

On a more practical side, the use of UAV’s as search agents
is well recognized and probably most suitable technology for
carrying out the search task. Searching for targets from the
air allows a fast exploration of a terrain, due to absence of
physical obstacles and responsive dynamics of UAV’s. AN
optimal multi-agent target search using Ant Colony Optimiza-
tion (ACO) method is proposed in [30]. Similar to RHC,
it balances between the computational requirements and the
efficiency of found search strategy. Simple applications of
UAV’s in a search employ a single unmanned vehicle [10],
[12], [11] or performing the search using very simple agent
paths [35]. Another approach using single UAV, presented in
[6], utilizes probabilistic quadtree structures for directing aerial
search. Ground robots dynamic control and coordination for
wilderness search and rescue in [23] achieves initial and time-
optimal search agent trajectories with ability to perform path
re-planning whenever it is necessary.

D. Overview of the manuscript and contribution
Although the addressed approaches are to some extent pros-

perous in the area search problems, there are many drawbacks
and hindrances for complete and successful implementation
of autonomous search. Many of the proposed methods are
complicated, inflexible, inefficient or inaccurate in at least one
essential aspect of area search such as motion control, search
agent dynamics model or target and detection probabilistic
model. The search process proposed in this paper aims to over-
come these issues by adapting a relatively new are coverage
control algorithm and pairing it with accurate detection and
target distribution estimation model.

A multi-agent coverage control called Heat Equation Driven
Area Coverage (HEDAC) algorithm is proposed in [16]. This
ergodicity-based feedback method drives agents using gradient
of appropriately designed potential field in order to achieve
given goal coverage density. The agent trajectories are near-
ergodic as they, in infinite time, minimize the ergodicity
measure proposed in [26]. Tests showed suitability of HEDAC
method to perform control of cooperative multi-agent motion
for arbitrary given goal coverage density fields. Furthermore,
HEDAC has been successfully adopted for governing multi-
agent nonuniform spraying in [15].

In the proposed methodology for heterogeneous multi-agent
search in uncertain conditions, the HEDAC method is tailored
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and accompanied with specific target search apparatus. In
this paragraph we briefly present essential elements required
for assembling the integrated search process, which are key
contributions of this paper. The target occurrence probability
is exactly calculated considering the initial target occurrence
estimation and conducted search agents coverage. Search agent
sensors characteristics, such as spatial and temporal scope,
and motion properties are used as a basis in exact and math-
ematically rigorous establishment of actual target occurrence
probability. Search agents are directed by the calculated target
occurrence distribution appointed as a source of potential in
the HEDAC control method. This allows ergodic exploration
of target distribution and provides near-optimal search. The
method allows the use of heterogeneous agents, in motion
and sensing characteristics, for performing the search. The
proposed HEDAC heterogeneous multi-agent search control
is evaluated on three realistic search scenarios and compared
with alternative algorithms - one conventional and two state-
of-the-art methods. These methods are suitably modified for
handling multiple heterogeneous search agents with arbitrary
sensing functions. The computational efficiency of all four
methods is benchmarked on different search scenarios. Fi-
nally, the scalability of the proposed multi-agent search is
investigated showing that HEDAC can successfully control
the swarm of search agents without crucially deteriorating the
search efficiency.

The manuscript contains literature overview, theoretical
setup of the methodology, numerical validation on three
test cases, computational efficiency benchmark and scalabil-
ity analysis. Animated search simulations, and details about
considered search scenarios and numerical implementation of
control algorithms are given in supplementary material.

II. SEARCH IN UNCERTANT ENVIRONMENT

Search agents with sensing equipment dynamically explore
the search space with a goal to detect sought target, with a
known estimated probability distribution of target occurrence.
The detection of a target depends on both temporal and spatial
characteristics of sensors. A 2D search problem is considered,
since most of the target search problems are, or can be reduced
to, two-dimensional. In this section, a general probabilistic
model of target detection is presented, based on arbitrary
search agents paths and sensor models.

A. Target detection probability

According to [18], in the case of continuous search, γ dt
is the probability of target detection in a short time interval
of length dt, where γ ≥ 0 is called the instantaneous prob-
ability density (of detection). When the search is performed
under unchanging conditions, continuously until time t, the
probability of detection p(t) is given by

p(t) = 1− e−γt, t ≥ 0. (1)

This formulation is valid only for a single point (target)
that is continuously observed, where the detection probability
approaches to 1 as time goes by.

If γ is considered as variable in time, γ(t) ≥ 0, the
probability of detection until time t is

p(t) = 1− exp

(
−
∫ t

0

γ(τ) dτ

)
. (2)

Although the locations of targets are unknown to the search
control method, with known search agent trajectories, the
detection probability for any point x in the domain Ω ⊂ R2

can be defined. For now, trajectories and directions of mobile
agents, and their sensing actions accordingly, are considered as
known. Realized trajectories are denoted as zi : [0, t] → R2,
for i = 1, 2, . . . , N where N is the number of search agents.
Heading direction of i-th search agent is defined by the
direction angle θi(t) : [0, t]→ [0, 2π].

The instantaneous detection probability can be extended to
depend on the position of the target relative to the sensor, as it
is the case for almost any real application. A position in agent’s
relative coordinate system r ∈ R2 is used in order to define
sensor detection probability function γ = γ(r) (Figure 1).
With origin at zi, relative coordinates are easily calculated as

ri(t) = (zi(t)− x) ·R(θi(t)) (3)

where R is the rotation matrix which rotates the local coor-
dinate system according to heading direction angle θ:

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
. (4)

x zi(t)

Absolute
coordinate
system

Relative
coordinate
system

r

Detection
probability
function

γ(r)
Heading

Detection sensor

Ω

Fig. 1. Absolute and relative coordinate systems, and detection function γ.
(color figure available online)

For a given sensor detection function γ(r) one can easily
calculate the sensing intensity of the detection sensor as

I =

∫
Ωγ

γ(r) dr (5)

where Ωγ is the scope of the sensor considering its maximal
reach. The sensing intensity I combines the spatial scope
and magnitude of sensor function γ in order to provide
unambiguously measure of sensor capability.

Keeping in mind a single sensor detection function γ(r),
the probability of detecting a certain target at location x until
time t can be written as:

p(x, t) = 1− exp

(
−
∫ t

0

γ(r(τ)) dτ

)
(6)
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where r(τ) is relative position between agent and the target
at time τ .

Now, the spatial and temporal detection probability function
which considers sensory activity from multiple search agents
can be defined:

p(x, t) = 1− exp

(
−

N∑
i=1

∫ t

0

γi(ri(τ)) dτ

)
(7)

where the term γi (ri(τ)) = γi (zi(t)− x) ·R(θi(t)) gives the
instantaneous detection probability at location x affected by
the i-th agent location zi(τ) and direction θi(τ) and spatial
sensor scope γi.

For simplicity, the coverage density field is introduced
which indicates the influence of search agent sensors. The
coverage field represents the accumulation of sensor coverages
of all agents and it is defined as follows:

c(x, t) =

N∑
i=1

∫ t

0

γi(ri(τ)) dτ. (8)

Using the coverage c, the expression (7) can be written as

p(x, t) = 1− e−c(x,t). (9)

B. Target occurrence

Initial (at the start of the search, t = 0) spatial probability
density of target occurrence m0(x) is considered as known.
This is a spatial field which, for real-world applications, can
be estimated or calculated based on available information, and
should respect normalization:∫

Ω

m0(x) dx = 1. (10)

If available m0 does not conform to above criteria, it can be
simply scaled in order to achieve this.

The estimation of undetected target presence probability
depends on both initial target expectation and the search agent
exploration. This is a complement event of target not being
present at all and/or being already detected. One needs to
combine the target’s initial occurrence estimation m0(x) and
detection probability density p(x), in order to calculate the
undetected targets probability

m(x, t) = m0(x) · (1− p(x, t)) (11)

or simplified and expressed with use of coverage density

m(x, t) = m0(x) · e−c(x,t). (12)

It is rather easy to calculate the probability of target pres-
ence in the entire domain:

E(t) =

∫
Ω

m(x, t) dx. (13)

The total target presence probability E(t) is a measure of
target search success, and it is used as an error estimate for
evaluating the search methods.

III. SEARCH CONTROL WITH HEDAC

In this section, mathematical models of agent motion,
HEDAC control method and target detection mechanism are
defined. Details on the implementation of search simulations
can be found in Supplementary materials.

A. Motion models

The control of agent motion is carried out by appointing
aspired heading direction for two motion models: kinematic
and Dubins. Both assume constant velocity of search agent
which is suitable for legitimate search performance compari-
son between the two motion models.

For the formulation of motion models, the potential (tem-
perature) field u(x, t) is assumed as known. The procedure
for determining potential field u, by using stationary heat
equation, is explained in the next subsection. For the simpler
notation, let us introduce the (unit) vector field u(x, t) which
is equal to normalized gradient of the potential field u(x, t):

u(x, t) =
∇u(x, t)

|∇u(x, t)|
. (14)

The kinematic motion model presupposes the movement
with constant velocity but with the ability to make instanta-
neous changes of agent direction. Such motion is characteristic
of multi-rotor drones. The model is based on simple first order
differential equation:

dzi(t)

dt
= va,i · u(zi, t), i = 1, . . . N (15)

with initial conditions

zi(0) = zi,0, zi,0 ∈ Ω, i = 1, . . . N (16)

where va is (constant) agent velocity magnitude.
A Dubins model, also known as unicycle model, is also

considering planar motion with constant velocity, but with
limited turning radius. This motion is suitable for simulating
fixed-wing drones motion and it is already successfully used
with HEDAC motion control in [15]. Dubins model is defined
with system of first order differential equations:

dzi(t)

dt
=

[
va,i · cos θi(t)
va,i · sin θi(t)

]
, i = 1, . . . N

dθi(t)

dt
= sign(ωi) ·min(|ωi| , ωmax,i), i = 1, . . . N

(17)

where ωi and ωmax,i are aspired turning angular velocity and
maximal turning angular velocity, respectively. The aspired
change of the direction (aspired by the control method, but not
necessary achievable due to turning constraint) is governed as
angle of vector u(zi) relative to current direction vi and can
be easily calculated as follows:

ωi = arctan

(
vi • u(zi, t)

||vi|| · ||u(zi, t)||

)
, i = 1, . . . N (18)

where vi is i-th agent current direction vector, while vi • u
denotes dot product of vectors vi and u(zi, t). The minimal
turning radius limitation is achieved with right hand side of
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second equation in system (17). This constraint can be written
in more intuitive manner as the limitation of direction change:∣∣∣∣dθidt

∣∣∣∣ = |ωi| ≤ ωmax,i, i = 1, . . . N. (19)

For motion with constant speed va,i, there is a simple
correlation between maximal angular velocity ωmax,i and
minimal turning radius RT,i: ωmax,i =

va,i
RT,i

.
Beside the agents’ initial position, the Dubins model re-

quires initial orientation of agents. Thus we prescribe the
initial condition as θi(0) = θi,0, where θi,0 is initial heading
direction of i-th agent.

Both described motion models allow the use of heteroge-
neous agent’s dynamics, and all four motion control methods
considered in this paper are adapted to direct the motion of
multiple heterogeneous agents.

B. Obtaining potential field using heat equation

In the original formulation of HEDAC method, a difference
between normed goal and achieved coverage density is used
as a source of heat equation [16]. The negative values of the
coverage difference are trimmed in order to prevent repulsion
of over-covered regions. The gradient of resulting temperature
field leads the agents so that, indirectly, by acting with certain
coverage, the minimization of source is achieved.

Here, since we want to minimize it, the undetected target
density m(x, t) is utilized as a heat source in the stationary
heat equation for u(x, t). Since the field u is smooth, we
can employ its gradient to direct the agents in order to
accomplish the minimization of potential u which, in turn,
leads to minimization of both the spatial and total probability
of undetected targets occurrence (m and E, respectively).

At any time t, the field u is obtained as a solution to
the stationary heat equation defined as a partial differential
equation

α ·∆u(x, t) = β · u(x, t)−m(x, t) (20)

with the boundary condition

∂u

∂n
= 0, on ∂Ω. (21)

In the equation (20), ∆ is a Laplace operator, while scalars
α > 0 and β > 0 are tunable parameters of HEDAC method.
In the boundary condition n denotes the outward normal to the
domain boundary. As the presented heat equation formulation
showed good collaborative behavior without agent collision,
the agent cooling used in [16] and the collision avoidance
mechanism tested in [15] are omitted for this application.

C. Target detection mechanism

Considering there are many available sensors on the market,
each with different spatial and temporal detection behavior,
there is no unique model to describe target detection. HEDAC
high-level multi-agent motion control is able to handle ar-
bitrary sensing models, by definig sensor function γ(r), as
described in section II-A.

Analogous to theoretical considerations in section II-A, in a
short finite time interval ∆t, the probability of detecting j-th

target, by at least one agent, depends on vicinity and sensing
functions of all agents:

Pj(t, t+ ∆t) = 1−
N∏
i

(
e−γi(rij(t))∆t

)
(22)

where rij is position of j-th target relative to the i-th search
agent. If j-th target position is denoted as yj , the agent-target
relative position is rij = (zi − yj) ·R(θi).

The sensor function γi is considered as given and it allows
the definition of arbitrary sensors. The use of different sensors,
together with agent motion parameters, characterizes a fully
heterogeneous multi-agent search system.

The detected targets are recorded during a search simulation
which allows the calculation of detection rate. Detection rate
can be calculated at any time of the search as a simple ratio:
D(t) = nD(t)

n , where nD is the number of detected targets
and n is the number of all targets.

IV. SIMULATION RESULTS AND COMPARISONS

The evaluation of the proposed heterogeneous multi-agent
search system is performed through detailed testing and com-
parison with alternative methods on three target search cases.
Lawnmower method represents conventional approach while
SMC and RHC are state-of-the-art multi-agent search control
methods used in recent scientific publications. The implemen-
tations of SMC and RHC are closely related to algorithms
presented in [14] and [1], [2], respectively. Both methods
are modified as it was necessary so they fit into presented
search framework and to make them rightfully comparable
with HEDAC. RHC is using Particle Swarm Optimization
(PSO) as underlaying optimization method, since it showed
better results when compared to several optimization methods
considered in other papers. It should be noted that RHC imple-
mentation is stochastic since PSO relies on random variables.
All three alternative algorithms and their implementation are
described in more details in supplementary material.

The same evaluation methodology is used for all tests.
The search simulation conduction and results interpretation is
presented from two points of view: the analysis of trajectories
obtained in a single-run search simulation for each scenario
and the evaluation of the search performance based on Monte-
Carlo simulations.

The search is performed on rectangular domains discretized
with uniform orthogonal grid.In each search simulation run,
1000 targets are randomly positioned inside the search do-
main respecting the target distribution m0(x). In order to
demonstrate HEDAC’s ability to direct multiple heterogeneous
agents, different agent motion and sensing characteristics are
used (Table I) within each test case. More details about each
search scenario can be found in supplementary materials.

For trajectory comparison, agent initial positions and direc-
tions are appointed according to given values, same for each
control method, while for the search performance evaluation
they are generated randomly in each run of Monte-Carlo
simulation.

All considered methods are tested using Dubins motion
model in all three test cases. In addition to Dubins model,
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TABLE I
SUMMARY OF SEARCH AGENT MOTION AND SENSING PARAMETERS FOR ALL THREE TEST CASES. IN THE SENSING FUNCTION PLOTS, r1 POINTS LEFT, r2

POINTS UP AND AXIS TICKS PLOTS INDICATE 10 M DISTANCE. PRECISE DETECTION PROBABILITY FUNCTIONS ARE GIVEN IN SUPPLEMENTARY
MATERIAL. (COLOR TABLE AVAILABLE ONLINE)

Test Test 1 Test 2 Test 3
Number of agents 5 2 2 2 3 2
Agent velocity va [m/s] 20 16 20 31 20 34
Minimal turning radius
RM [m] 30 26 29 43 36 48

Detection probability γ

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Sensor intensity I 316.91 937.76 800.24 641.25 1096.06 1428.25

the kinematic motion model is used in the first case in order
to show possible variation of search performance due to
the movement constraint in Dubins model. Although agent
trajectories obtained with kinematic and Dubins motion mod-
els differ, search performance is not greatly influenced by
trajectory curvature constraint in Dubins model for all control
methods except RHC. Keeping this in mind and the fact that
real UAV motion is constrained by turning radius, the other
two cases are tested only with Dubins motion model.

Plots of search agents trajectories for certain cases are
presented in order to demonstrate diversity of considered
control algorithms. Additionally, for the HEDAC controlled
scenarios, the animated visualization of the search is provided
in the supplementary material.

In order to determine and compare the search performance,
20 simulations are conducted for each scenario. This enables
a Monte-Carlo method where sampling includes the stochastic
effects of target and agent initial locations and the stochasticity
of the target detection process. Considering the average E
across 20 search simulation runs, the expected search time for
ensuring 90% of detection is determined. Since 90% detection
rate corresponds to E = 0.1, the time t90% needed to reach
it is calculated, using simple root-finding method, in order to
satisfy E(t90%) = 0.1. In author’s opinion, the expected time
needed to reach certain probability of finding target reveals
intuitive measure of search success. The time is a critical
resource in the real-world search campaigns.

A. Test 1: Gaussian target distribution

When estimating the search area, a very common case is to
explore the region around a certain point, i.e. the last known lo-
cation of the target. The Gaussian function is a suitable choice
for target occurrence probability density. Similar estimation
was used in the 2009 Air France airplane wreck search [33].
In this case we consider the 1000 m x 1000 m domain with

m0(x, y) = A · exp

(
−
(

(x− xo)2

2σ2
x

+
(y − yo)2

2σ2
y

))
(23)

where the center of the Gaussian function is x0 = 500 m,
y0 = 500 m and the standard deviation σx = σy = 150 m.
The amplitude A is calculated in order to satisfy (10).

The domain is discretized using 250×250 uniform rectangu-
lar grid. In this test, the search is conducted using 5 identical

mobile agents with parameters given in Table I. The search
simulation is performed for 600 s with time integration step
∆t = 0.25 s. The HEDAC method parameters used for this
case are: α = 0.03 and β = 4.

In Figure 2, agent trajectories, accomplished with all four
considered methods for first 180 seconds of the search, are
shown. The initial positions and directions of agents are
defined as xi,0 = 500 + 70 · i · cos((i − 1)2π/5) [m], yi,0 =
500 + 70 · i · sin((i− 1)2π/5 [m] and θi,0 = (i− 1) ∗π/5 +π,
for i = 1, ..., 5. Only results for Dubins motion model are
shown for Lawnmower and SMC algorithm, since there are no
significant differences in search performance compared with
kinematic model. For RHC and HEDAC methods, trajectories
for both kinematic and Dubins motion models are presented
in order to show difference in the movement of agents due
to the turning radius constraints conditioned by the Dubins
model. Observed agent control methods achieve fundamen-
tally different motions. In contrast to geometrically regular
Lawnmower trajectories, other control methods (SMC, RHC
and HEDAC) produce chaotic behavior of search agents. RHC
accomplished trajectories are stochastic due to underlaying
PSO optimization method but SMC and HEDAC trajectories
also seem rather stochastic, even though both methods are
purely deterministic. If comparing trajectories for RHC, one
can conclude that the Dubins constraint really aggravate the
optimization problem and makes it harder to achieve suitable
paths. The minimal turning radius is perceptible in curvature
of trajectories achieved using Dubins model.

The dynamics of search agents motion, controlled by
HEDAC algorithm, can be observed in the Video 1 and Video
2 in supplementary material, for kinematic and Dubins motion
model, respectively. Although the search is somewhat greedy,
as all agents tend to go to regions of highest target probability,
the cooperation of their motion is successful.

The plot in Figure 3 shows convergence of target presence
probability E over time of the search process. The average val-
ues of E across 20 conducted simulations indicate superiority
of HEDAC over SMC and RHC, and especially Lawnmower
algorithm. A small variation of E indicates the robustness of
HEDAC guided search in contrast to the alternative algorithms.
HEDAC is able to achieve almost identical convergence of
E regardless of target positions, agent initial positions and
detection stochasticity.
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Fig. 2. Test 1: Search agent trajectories comparison after 180 seconds of the search using kinematic motion model and RHC (A) and HEDAC (B) control
method. The trajectories achieved using Dubins motion model after 180 seconds for Lawnmower (C), SMC (D), RHC (E) and HEDAC (F) search control.
Dots and crosses (in online version of the manuscript colored red and green, respectively) mark undetected and detected targets, respectively. Agent locations
at t = 180 s are denoted as black circles. (color figure available online)
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Fig. 3. Test 1: Convergence comparison of Lawnmower, SMC, RHC and HEDAC search control methods for kinematic (A) and Dubins (B) motion model.
The plot shows average value of E (thick lines) and minimum and maximum values of E (bounds of shaded areas) for each method over time, for 20 search
simulation runs. Average time to reach 90% detection rate, labeled as t90%, is shown for each scenario. (colored figure available online)

The search directed by HEDAC algorithm is clearly the
best performing, regardless of the motion model used, with
193 s and 194.6 s on average to reach 90% detection rate,
for kinematic and Dubins motion model, respectively. The
influence of Dubins motion constraint to search efficiency
is clearly evident for RHC method. Although RHC with
kinematic motion model (t90% = 204.7s) is slightly worse
when compared with HEDAC, it needs almost double the time
if Dubins constraint is used (370.3 s). The SMC algorithm
achieves the same detection rate in about 50% more time
than HEDAC (283.5 s and 284.1 s for kinematic and Dubins
motion model, respectively), which is, in real-world situations,
a significant deficiency. The search with Lawnmower is very
inefficient, with over double time needed to reach 90% detec-
tion rate (441.7 s and 478.9 s for kinematic and Dubins motion
model, respectively), when compared to HEDAC controlled
search.

B. Test 2: Regionally uniform target distribution

The multi-agent search on an island-like shape target proba-
bility distribution is demonstrated in Test 2. A simple construc-
tion, using union and subtraction of circular shapes, provides
combined shape with uniform target occurrence probability
density. Formally, the region of target distribution Ωm ∈ Ω
can be defined as follows:

Ωm =

n+⋃
k=1

Ω+
k −

n−⋃
k=1

Ω−
k (24)

where Ω+ is the region of minuend circle while Ω− is the
region of subtrahend circle. n+ and n− denote number of

minuend and subtrahend circles, respectively.
The initial target occurrence field is calculated as uniform

over Ωm region:

m0(x) =

{
1 if x ∈ Ωm

0 otherwise
(25)

and scaled to satisfy (10).
The combined shape is settled inside of a 3000 m × 3000 m

domain which is divided into 600 segments in each direction
(∆x = ∆y = 5 m). The radius and center coordinates
of constituent circles are given in supplementary material.
A heterogeneous set of 6 search agents is used: three pairs
with different both motion and detection characteristics for
each pair. In HEDAC method scenario, agents are directed
using parameters α = 0.03 and β = 2. The time integration
step used is ∆t = 0.5 s and the total time of the simulated
search is 1800 s. Initial locations and directions of agents,
for trajectories comparison, are (1000 m, 500 m, 0), (400 m,
1000 m, π/6), (1500 m, 1000 m, π/3), (1500 m, 2000 m,
π/2), (2700 m, 2000 m, 2π/3) and (2300 m, 2600 m, 5π/6).

The HEDAC drives agents within target occurrence shape
with the exception of empty zone transit only to reach the
isolated circle (Figure 4). Although the SMC also strives to
cover the region of interest, the resulting trajectories are much
broader and, consequentially, the search is not as efficient as
with HEDAC. In SMC controlled scenario, there are many
crossings between isolated regions, while HEDAC minimizes
both the number of crossings and the length of paths between
isolated regions. Animation of the search performed using
HEDAC algorithm can be found in Video 3 in supplementary
material. One can easily notice a different agents motion
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and sensor characteristics, by observing agent velocity and
turning radius, and the width and intensity of imprint in target
probability field m caused by detection sensor action.

The convergence of E for Test 2 is showed in Figure 5,
based on which one can reliably confirm the superiority of
HEDAC over other compared control algorithms.

Due to more complicated shape of target distribution, the
variation of total probability of undetected targets achieved
with HEDAC is notably greater than in the first test case. Since
the target distribution region is fragmented, it is inevitable
for agents to pass over the "empty" region. Depending on
the recurrence of such passing, the value of E varies. The
fluctuation of E over 20 search simulations is stronger for the
two alternative control algorithms, comapared with HEDAC.

Considering detection time (Figure 5), once again the best
results are obtained using HEDAC control algorithm where, on
average, a 90% detection is achieved in 795.0 s. Comparable
to Test 1, the SMC underachieves HEDAC as measured with
over 50% longer search time (1246.2 s) to accomplish a 90%
detection rate. RHC struggles with overpassing unconnected
regions and gives t90% = 1265 s. Search inefficiency of the
Lawnmower is evident by t90% = 1709 s which is roughly a
double time needed than in HEDAC’s search.

C. Test 3: Nonuniform target distribution on a road network

In the third test, a hypothetical, but potentially realistic,
target search setting is considered. For a given arrangement
of roads in the domain, the target occurrence probability
density is determined so that presence of targets depends
on the distance from the road. The probability follows the
normal distribution law, similar to the formulation (23) used
in Test 1. Using Gaussian radial basis function φσ over all
road segments, the target occurrence density can be defined
as follows:

m0(x) = A
∑
s

∫ Ls

0

φσ(x−ws(l)) dl (26)

where ws(l) is position along road segment s at distance l,
L is the length of the segment, and A is constant adjusted
so that m0 satisfies (10). The broadness of target scattering
is controlled with the standard deviation σ of Gaussian radial
basis function φσ , which equals to 100 m.

A 4000 m× 2000 m domain, discretized with ∆x = ∆y =
5 m, is considered for this test case. The domain shape
suites to demonstrate employment of the HEDAC method
on rectangular domains, in contrast to square domain used
in Test 1 and 2. The geometry of the road network, given
with coordinates of straight road segments, is available in the
supplementary material. The search is performed for 3000 s
using 5 agents whose characteristics are given in Table I. The
time step is ∆t = 0.5 s, while the HEDAC parameters are:
α = 0.03 and β = 2.

For agent trajectories comparison, agents are initially po-
sitioned at 5 points on the road at the boundary of the
domain (where roads enter the domain). Agent initial direc-
tions correspond to inward normals of the domain boundary.
Agents directed by HEDAC control accomplish trajectories

which closely follow the region of road network and hence
achieve reliable detection of scattered targets (Figure 6). Due
to complicated shape of the target distribution, the global
coverage tendency of SMC causes a more inefficient search.
Although not under detailed investigation in this paper, the
SMC showed more problems near the boundary of the domain.
Due to limited turning in Dubins model, agents occasionally
tend to go outside of domain boundaries but that is forcibly
countered. Video 4 in the supplementary material shows the
first 1800 s of HEDAC driven search.

Figure 7 shows the convergence of E for all four compared
control methods. Although the target distribution in this case
is seemingly most complicated, due to interconnection of road
network segments HEDAC performs a robust search with
small deviation in convergence. The search success can be
recognized in the time needed to accomplish 90% detection
probability. On average, HEDAC reaches this milestone in
t90% = 865.9 s, SMC in t90% = 1334.5 s, RHC in
t90% = 1270.6 s and Lawnmower in t90% = 2102.3 s.

D. Computational efficiency

All four considered search control algorithms differ in
their approach and, consequentially, in their computational
implementation and complexity. In order to compare the
methods from the aspect of computational efficiency, a simple
benchmark is conducted using all three presented test cases.
The execution time of a single motion control step is measured
for previously presented search scenarios. Various statistical
computations, results saving and visualizations are excluded
from the measurement. Finally, a mean execution time is
calculated from first 100 search steps.

The benchmark is conducted on 64 bit PC, with 8 x Intel
Core i7-4770 CPU @ 3.40 GHz and DDR3 32 GB 1600
MT/s with openSUSE Leap 15.1 operating system on Linux
kernel 4.12.14. All four control methods are implemented
using Python 3.7.3 and NumPy 1.16.4.

The results of computational efficiency benchmark are
summarized in Figure 8. The results shows no meaningful
difference regarding used motion model for all four control
methods, which is expected due to simplicity of Dubins con-
straint. Conventional Lawnmower method requires minimal
calculation since entire path can be determined in advance
of the search. Therefore, it is the absolutely fastest of the con-
sidered methods. The execution speed of SMC and HEDAC
is comparable and with step time below one second, probably,
employable for real world applications. An exception from
the execution time vs. numerical grid size is visible for SMC
in Test 2. In the author’s opinion this is caused by fast
Fourier Transform (FFT) scalability where best performance
are reached whit highest symmetry in the calculated terms
which is when the size of input array is a power of 2. At last,
the RHC is the slowest method in all observed scenarios. Due
its underlaying optimization formulation, the RHC execution
time not only depends on the numerical grid size but also on
the number of search agents.
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Fig. 4. Test 2: Comparison of search agent trajectories after 600 s obtained using Dubins motion model with HEDAC (A) and SMC (B) search control. Dots
and crosses mark undetected and detected targets, respectively. Current agent locations are marked as black circles. (color figure available online)
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Fig. 5. Test 2: Convergence comparison of Lawnmower, SMC, RHC and HEDAC search control methods using Dubins motion model. The plot shows average
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E. HEDAC multi-agent search scalability
One of the most important characteristics of multi-agent

control is the scalability, i.e. taking the advantage of using mul-
tiple agents in order to speed-up the search. A search scenario
defined in Test 1 is utilized for the HEDAC search efficiency
analysis in which increasing number of search agents are used.
All parameters, i.e. the domain and target distribution, agent
motion and sensing characteristics and HEDAC parameters,
are the same as in Test 1 and 20 search simulations are
conducted for each N = 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 20.

The convergence of average E is, as expected, much faster
when more agents are used as indicated by steeper curves
in Figure 9A as number of agents N increases. Similarly to
previous test cases, the search efficiency can be evaluated by
t90% - a time needed to achieve 90% target detection rate.
However, in order to provide a trustworthy and measurable
evaluation of the search scalability, one needs to consider
cumulative time spent by all agents which is needed to
achieve the targeted 90% detection rate. This scalability grade
can be defined as T90%(N) = t90%(N) · N . Finally, the

search efficiency is defined relatively to single agent search
as η(N) = T90%(1)/T90%(N).

The search efficiency gradually drops as number of used
search agents increases (Figure 9B). The effect of "over-
searching", i.e. repeated passing over the area where sensing
has already been conducted, is much more evident when
larger number of search agents are used. Still, employing more
agents with HEDAC control brings crucial advantage in terms
of faster search without significantly deteriorating the search
efficiency.

V. CONCLUSION

A success of the proposed methodology for multi-agent
search relies on two important underlying presumptions. The
first one is the precise estimation of target occurrence prob-
ability and the second is the ability of HEDAC multi-agent
control algorithm to perform successful search according to
estimated target distribution.

In order to ensure trustworthy target occurrence distribution,
a probabilistic model is presented which incorporates the
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Fig. 6. Search agent trajectories comparison for Test 3 after 600 s for HEDAC
(A) and RHC (B) controlled search, both using Dubins motion model. Current
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initial target distribution and search agent sensing action.
This formulation includes the uncertainty of target detection
based on search agent trajectories, and spatial and temporal
characteristics of the sensor model. Described theory has a
rigorous mathematical foundation and it can be potentially
adjusted for various sensor models.

Heat Equation Driven Area Coverage (HEDAC) is adapted
so that it guides agents according to the calculated probability
(of undetected targets occurrence) density. A potential field
is obtained with suitably designed stationary heat equation,
where the source of the heat is distributed equivalently to the
undetected targets probability field. Following the gradient of
the potential, agents move to regions of undetected targets
which maximizes the detection rate. The proposed algorithm
allows the use of heterogeneous search agents, considering
both sensing/detection and motion characteristics.

In order to test and validate the proposed methodology,
the simulations of the search with Lawnmower, SMC, RHC
and HEDAC control algorithms are performed on three hy-
pothetical target search scenarios. The results show signifi-
cant advantage of HEDAC when compared with considered
alternative methods. Use of simple search agent path genera-
tion, such as Lawnmower algorithm, can result in more than
twice longer search for achieving the same success as with
HEDAC. SMC offers interesting spectral smoothing approach,
but results indicate that HEDAC performs noticeably better
for uncertainty target search. Although it can be tuned in
order to achieve better search efficiency, the RHC method
has severe drawbacks due to its optimization based approach.

Satisfactory global search can be achieved with RHC only
by setting up high-dimensional optimization problem which
makes it unusable for real-world applications. Expected time
t90% needed to realize 90% detection rate is used as a measure
to assess the search efficiency. Obtained results confirm the
relation in search efficiency (t90%) between compared methods
is roughly: HEDAC / SMC / Lawnmower = 1 / 1.5 / 2, while
RHC achieves result in between other methods depending
on given optimization/computational resources. In terms of
computational efficiency, only RHC fails to attain real-time
search control.

Analysis of HEDAC scalability showed that the proposed
multi-agent motion control can be successfully used with large
number of search agents. The decline in the search efficiency
is easily compensated by the benefit of faster exploration when
more agents are employed.

The proposed heterogeneous multi-agent control algorithm
for target search in uncertain conditions offers a great flexibil-
ity and robustness. Beside initial target occurrence estimation,
no further preprocessing and preparation is needed. The al-
gorithm can handle any distribution of target occurrence and
any number of search agents with different motion and sensor
properties.

Many improvements of the proposed search methodology
are possible and here we briefly provide some ideas for
future research on this topic. Although the proposed method
relies on centralized control, possibly it can be extended to
fully autonomous decentralized multi-agent control. Further
improvements are possible if more complex and comprehen-
sive agent movement models are considered, for example a
realistic multi-rotor UAV motion model. It should be noted
that any agent motion model which can be controlled by a
heading vector should be able to cooperate with proposed
search system. Adding and removing agents from the search
as it goes by is another possible enhancement of proposed
framework. One of the most exciting enrichments of the
method is the application in uncertainty search in unsteady
conditions such as search for debris/people drifting at sea. The
utilized target detection model is very simple and one should
use a more accurate and detailed detection model, customized
both temporally and spatially for used sensing equipment and
image processing algorithms, in order to maximize the search
success. A real experiment with adequately equipped UAV’s
for real-world search would be a further strong confirmation
of the proposed methodology. Even though the search con-
vergence of HEDAC multi-agent control method is shown in
computational experiments, it still lacks rigorous mathematical
proof of such convergence which requires a deeper theoretical
study of the proposed feedback control model.

Author believes the presented work serves as a significant
advancement in a multi-agent search in uncertain conditions,
which can potentially bring efficient real-world applications
closer to reality.
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[15] Stefan Ivić, Aleksandr Andrejčuk, and Siniša Družeta. Autonomous
control for multi-agent non-uniform spraying. Applied Soft Computing,
80:742 – 760, 2019.
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