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Abstract—Data privacy and utility are two essential require-
ments in outsourced data storage. Traditional techniques for
sensitive data protection, such as data encryption, affect the
efficiency of data query and evaluation. By splitting attributes
of sensitive associations, database fragmentation techniques can
help protect data privacy and improve data utility. In this arti-
cle, a distributed memetic algorithm (DMA) is proposed for
enhancing database privacy and utility. A balanced best random
distributed framework is designed to achieve high optimization
efficiency. In order to enhance global search, a dynamic group-
ing recombination operator is proposed to aggregate and utilize
evolutionary elements; two mutation operators, namely, merge
and split, are designed to help arrange and create evolution-
ary elements; a two-dimension selection approach is designed
based on the priority of privacy and utility. Furthermore, a
splicing-driven local search strategy is embedded to introduce
rare utility elements without violating constraints. Extensive
experiments are carried out to verify the performance of the
proposed DMA. Furthermore, the effectiveness of the proposed
distributed framework and novel operators is verified.

Index Terms—Database fragmentation, database privacy and
utility, distributed memetic algorithm (DMA).
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I. INTRODUCTION

W ITH THE development of cloud computing and stor-
age, outsourced data storage has shown its commercial

advantages at low cost and high stability. For now, in the
area of outsourced data storage, the confidentiality of sen-
sitive data is still a big concern [1]–[3]. According to [4],
data privacy protection and security are two primary inhibitors
when choosing cloud data service. To tackle this challeng-
ing issue, many researchers have contributed from various
angles [5], [6]. A classical and direct solution for database
privacy issues is adopting data encryption [7]. Each value
in the original database is transferred into another version
in the encryption data. Database encryption can protect the
information in every single record from leaking. Although
encryption can help solve the concern of data privacy, data
decryption is time consuming. The efficiency of data query
and evaluation is affected accordingly [8], [9], which is also
essential in data outsourcing service. To be specific, the
time complexity of database encryption is O(nm), where n
and m represent the number of attributes and records in the
database [7]. When making queries, the time complexity of
database decryption is O(nm) [10].

Database fragmentation [11], [12] is another solution for
data outsourcing service, which can help the provider to
achieve data privacy as well as maintain query efficiency.
Database fragmentation is a technique that splits the entire
database into multiple fragments [9], [13]. Thus, the exposure
of any single fragment does not lead to a violation of privacy.
To be specific, database privacy requirements can be repre-
sented by a set of sensitive associations between attributes. In
database fragmentation, attributes of sensitive associations can
be divided into different fragments and the access to differ-
ent fragments is controlled. Database privacy is protected by
fragments that satisfy all the privacy requirements. From this
angle, various database fragmentation approaches have been
proposed [14], [15]. The time complexity of database fragmen-
tation is O(n2), where n indicates the number of attributes in
the database [16]. Privacy protection of database encryption is
based on every single record, while the granularity of database
fragmentation is each attribute. In addition, fragmentation does
not need a transformation operation when making queries
or evaluations [16]. Query processing models of database
fragmentation can be divided into two categories. In the
first category [17], collusion between fragments is forbidden,
which means fragments cannot join each other. In contrast, the
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second category of the query processing model [12] supports
the collusion between fragments, and the access authority of
each user is controlled by trusted query mediators. To main-
tain the advantage of database fragmentation in query and
evaluation efficiency, attributes of high evaluation and query
frequencies should be assigned to the same fragment [18].
Overall, the goal of database fragmentation is to identify
a solution satisfying all the given confidentiality constraints
while achieving the highest evaluation and query efficiency,
which can also be regarded as optimizing database privacy
and utility.

To tackle the database fragmentation problem, traditional
approaches can be divided into two categories, that is: 1) enu-
meration approaches and 2) greedy approaches. To achieve
database fragmentation, enumeration approaches, such as
graph search [12] and fragmentation tree search [19], were
proposed. These approaches cannot effectively solve database
fragmentation problems with a higher numbers of attributes.
To improve the efficiency in database fragmentation, greedy
strategies [16] were designed. Due to the limitation of searcha-
bility, the performance of the proposed approaches on database
fragmentation with complex privacy and utility requirements
cannot reach an ideal level.

Ciriani et al. [16] proved that the database fragmenta-
tion problem is NP-hard. When facing complex optimization
problems, traditional approaches are very likely to lose effec-
tiveness. Evolutionary algorithms (EAs) have been utilized
in solving NP-hard optimization problems and have shown
advantages of high efficiency and robustness [20]–[23]. In the
last few decades, various kinds of EAs have been proposed,
including genetic algorithms (GAs) [20], [24] and memetic
algorithms (MAs) [25]–[27]. For now, GAs [28], [29] have
been adopted in database fragmentation. In [28], a GA was
introduced to satisfy database privacy. In [29], a benefit-
driven GA was designed to help balance privacy and utility
issues in database fragmentation. These studies reveal that EAs
are effective in database fragmentation. The performance of
these approaches can be enhanced from two directions. The
performance of GAs is restricted by low exploitative abil-
ity. As one of the recently growing areas in evolutionary
computation, MAs emphasize the balance between explo-
ration and exploitation. Through combining population-based
global search and meme-based local refinement, MAs have
achieved success in various domains, such as minimum vertex
cover [30], automatic data clustering [31], and large-scale inte-
gration floor planning [32]. In addition, the efficiency of these
approaches is restricted by the serial model. The distributed
framework for EAs can effectively improve optimization
efficiency.

To enhance algorithmic efficiency as well as balance global
and local search, a distributed MA (DMA) is proposed in
this article. A balanced best random distributed framework
(BBRDF) is designed to achieve better optimization efficiency.
In the global search procedure of DMA, novel recombi-
nation, mutation, and selection operators are proposed. A
dynamic grouping recombination operator is proposed, which
can help dynamically aggregate fragment information. Two
mutation operators, namely: 1) merge and 2) split operators,

are designed. With the help of these two operators, new frag-
ments are formed through the merge operator, and fragments of
constraint concerns are removed in the split operator. Besides,
a two-dimension selection operator is proposed to evaluate the
quality of each generated individual objectively. Furthermore,
to improve solution precision, a splicing-driven local search
(SDLS) is proposed to introduce rare utility fragments into the
population without violating any constraints. With the help of
extensive experiments, the proposed DMA shows significantly
better performance than state-of-the-art approaches in database
fragmentation. Moreover, the effectiveness of each proposed
framework and operator is verified.

The remainder of this article is organized as follows. In
Section II, the related work of database fragmentation is
outlined. In Section III, the problem of database fragmen-
tation is formally defined, and a relevant example is given.
Subsequently, the proposed DMA, including a distributed
framework, a dynamic recombination operator, two mutation
operators, and an SDLS, is described in detail. Extensive
experiments with discussion are given in Section V. After that,
Section VI concludes.

II. RELATED WORK

A. Approaches for Database Fragmentation

The first category of database fragmentation is based on
the consideration of privacy protection. Vertical partition of a
database for privacy was first introduced by [14], in which the
database is vertically split into two parts. Two vertical par-
titioned databases cannot fulfill complex constraints. In [15],
data fragmentation with encryption was utilized to break sensi-
tive associations between information. In [11], to preserve data
privacy, two models, that is: 1) hierarchical and 2) ring models,
were designed for integrating information from the vertically
partitioned database. The mechanism and advantages of the
corresponding models were outlined. In [33], a novel model,
called controlled query evaluation, was proposed, in which
the inference-proofness of fragmentation was proved formally
even if an attacker has prior knowledge. Gibbs et al. [34]
mentioned that the fragmentation of customer data across
multiple databases can be owned and maintained by sepa-
rate functional units within an organization. Database util-
ity is neglected in these works, which is crucial in actual
database applications. To learn the association rules from ver-
tically partitioned databases as well as preserve sensitive raw
data from disclosing, the privacy-preserving mining technique
was proposed [35]. In these approaches, database utility is
neglected.

The second category of database fragmentation is designed
for enhancing database utility. Database fragmentation for
maximizing query efficiency has been studied in the area
of distributed database [36]. In [37], an integrated method-
ology for fragmentation and allocation was proposed. Data
are distributed across multiple sites in terms of utility. The
authors have also verified the efficiency and effectiveness of
the integrated methodology. In [28], the GA was utilized
to generate fragmentation, which can satisfy the given con-
straints. In [38], to maximize the number of local accesses
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compared to accesses from remote sites, a decentralized
approach was presented. Based on the observation of the
access patterns, dynamic table fragmentation and allocation
are both achieved. Subsequently, a bond energy algorithm
with a modified similarity measure was proposed in [39] to
optimize the communication cost and storage cost. In [40], the
performance of the minimum spanning tree-based fragmen-
tation approach and K-means clustering-based fragmentation
approach were compared. To reduce the communication cost
during query processing, frequent access patterns were utilized
in [41], and multiple fragmentation strategies were proposed.
In these approaches, privacy requirements are not taken into
account.

The third category of database fragmentation focuses on
both database privacy and database utility. To satisfy confi-
dential constraints and minimize the cost of executing queries
over fragments, the association between fragments was stud-
ied. A novel algorithm based on a fragmentation tree was
proposed [19], in which pruning strategy is involved to limit
the execution time. A graph search approach was proposed
in [12], which can obtain near-optimal fragmentation when
given a set of confidentiality constraints. The publication of
data in terms of multiple loose associations between differ-
ent pairs of fragments was studied in [42]. Given a specific
level of protection for sensitive associations, the proposed
algorithm can provide satisfying fragmentation. In [16], the
problem of optimizing fragmentation regarding constraints and
affinity between attributes was defined. Also, two heuristic
algorithms that can optimize the number of fragments and the
sum of affinity values were proposed. Moreover, the authors
proved that the identified problems are NP-hard. When fac-
ing complex optimization situations, these approaches are very
likely to lose their effectiveness due to the limited search
ability. For enhancing the search efficiency in database frag-
mentation, evolutionary approaches have also been adopted.
In [29], to achieve a better balance between database privacy
and utility, a benefit-driven GA was proposed. A matching-
based reconstruction was designed to integrate individuals of
different fragmentation information. To rearrange elements in
the generated individuals, a benefit-driven mutation operator
was embedded.

Moreover, a comprehensive survey of fragmentation tech-
niques was given in [13]. Overall, the third category of
database fragmentation can outperform the other two cate-
gories since it considers both database privacy and database
utility. In addition, due to the limitation of search effi-
ciency, previous approaches cannot achieve an ideal balance
between exploration and exploitation, which directly affects
the accuracy of results. In this article, a dynamic group-
ing recombination operator and two mutation operators are
proposed to enhance the exploration search ability. An SDLS
strategy is designed to improve the exploitation search ability.

B. Memetic Algorithm

Inspired by natural evolution and the notion of meme,
MA was proposed [25]. In general, MA can be regarded as
a combination of population-based global search and local

improvement procedures [43]. Previous studies of MA have
revealed that MA is more likely to achieve the balance between
exploration and exploitation during the optimization [25], [26].
Several surveys [43], [44] have been made to explore the
promising research directions in MA.

Recent studies have been conducted on the application
of MA to solve many complex problems. A game-based
MA [30] was proposed for the minimum vector cover of
the network, in which a game-based local search was imple-
mented based on the best rule of the snowdrift game. In [45],
a mutual information-based two-phase MA was proposed for
the large-scale fuzzy cognitive map, in which MA was uti-
lized to optimize the edge weights based on observed response
sequences. In [46], a niching MA was designed for the
multisolution traveling salesman problem. To improve search
efficiency, a niche preservation technique with a selective local
search strategy was proposed. An integer-coded MA [47] con-
taining a recycling local improvement strategy was designed
for enhancing the performance on wireless-sensor network
problems. In [48], a greedy stochastic local search strategy
was designed, and the proposed MA was utilized in course
scheduling. A hybrid multiobjective MA [49] was proposed
to tackle the periodic vehicle routing problem.

These studies verified the effectiveness of MA on solving
complex optimization problems. These approaches all adopt
serial models, which limit the optimization performance in
solution accuracy and speed. In this article, a DMA containing
a BBRDF is proposed.

III. PROBLEM DEFINITION

In database fragmentation, each privacy requirement is rep-
resented by a confidentiality constraint. These confidentiality
constraints [19] are defined as follows.

Definition 1: Let A be the attributes of relation schema R,
a confidentiality constraint is a subset c ⊆ A.

Definition 2: For a set of confidentiality constraints C =
{c1, . . . , cn} ∀ci, cj ∈ C, i �= j : ci �⊂ cj, which indicates con-
fidentiality constraints C cannot contain a constraint ci that is
a subset of another constraint cj.

In the same manner, each utility requirement of database
fragmentation [12] is defined as follows.

Definition 3: Let A be the set of attributes, a utility require-
ment is a subset u ⊆ A with a weight value w(u).

Given a relation schema R, a set of constraints C over R, a
fragmentation F is legal if:

1) ∀F ∈ F ,∀c ∈ C : c � F (each individual fragment
satisfies the constraints);

2) ∀r ∈ R : ∃F ∈ F such that r ∈ F (fragments cover all
attributes);

3) ∀Fi, Fj ∈ F , i �= j : Fi ∩ Fj = ∅ (fragments do not have
attributes in common).

When tackling database fragmentation, the main objective is
to identify a legal fragmentation that can achieve the highest
utility. Suppose a legal fragmentation F is identified as an
optimal solution for the given relation schema R, constraints
C, and a weighted list of utility requirements U . It should meet
all of the following conditions.
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TABLE I
EXAMPLE OF RELATION, CONSTRAINTS, AND UTILITY REQUIREMENTS

1) ∀F ∈ F ,∀c ∈ C : c � F.
2) ∀r ∈ R : ∃F ∈ F such that r ∈ F.
3) ∀Fi, Fj ∈ F , i �= j : Fi ∩ Fj = ∅.
4) ∀F ′ satisfying the first two conditions such that

utility(F ′) ≤ utility(F)

which means the optimal fragmentation F can satisfy all
predefined constraints and provide higher utility than any other
fragmentation which can also meet all constraints.

The threat model of database fragmentation [50], [51] is set
as follows.

1) Service providers are considered as “honest but curi-
ous” [52]. The responses to queries are always accurate.
Service providers are curious and may infer and analyze
outsourced data.

2) Servers storing fragments can communicate and collude
with each other to extract knowledge about outsourced
data.

3) Queries of users are operated under the given pro-
tocol. Users are curious and may attempt to acquire
unauthorized information related to privacy [53].

4) Clients of users are assumed to be secure. Only trustful
users can access clients.

5) Architectures connecting clients and servers are assumed
to be trustworthy.

Table I illustrates an example of a medical relation to be
released. Confidentiality constraints and utility requirements
over it are also listed. To fulfill constraint C-1 and pro-
tect the medical privacy of patients, attributes “Name” and
“Disease” cannot be inserted into the same fragment. To sat-
isfy U-3, attributes “Disease” and “Race” should be assigned
into the same fragment. This way, the utility of the database
is improved since data of disease and race can be investigated
without leaking any medical privacy.

IV. DISTRIBUTED MEMETIC ALGORITHM

In this section, we first introduce the proposed BBRDF.
After that, strategies in representation and initialization are
outlined. Then, operators for enhancing global search, that
is, dynamic-grouping recombination (DGR), merge and split-
based mutation operators are introduced in detail. To improve
the precision of the solution, an SDLS strategy is designed.
Finally, the overall process of the proposed approach is
illustrated.

Fig. 1. Example of a general DEA framework.

A. Balanced Best-Random Distributed Framework

To achieve higher optimization efficiency in database frag-
mentation, BBRDF is proposed. BBRDF is implemented
according to the general framework of distributed EA (DEA).
The entire population of the algorithm is divided into multiple
subpopulations (SPs). Each SP evolves independently. To
achieve effective communication between SPs, they are con-
nected according to a predefined topology. With a given
interval, migration is performed. Before migration, elite indi-
viduals of each SP is selected. During migration, according to
the communication topology, selected individuals of each SP
are sent to its neighbor SP. After migration, the migrated indi-
viduals are inserted into the corresponding SPs. Individuals,
as well as evolution information, are exchanged through
migration.

An example of the general DEA framework is given in
Fig. 1. As shown in the example, each SP is labeled by a
unique color, and migrated individuals are marked as a cir-
cle. Four SPs communicate according to the ring topology.
With a predefined interval, the chosen migrated individuals are
shared through the network. This way, population diversity is
maintained during the entire evolution process.

At the beginning of evolution, the entire population of
BBRDF is divided into N SPs, and each SP evolves inde-
pendently. For enhancing the population quality as well as the
diversity of each SP, in each SP of BBRDF, two individuals are
chosen for migration. The first individual is the best in each
SP, and the second individual is randomly selected in each SP.
Subsequently, the best individual of each SP is migrated to
its neighbor in the clockwise direction. The migrated best
individuals can exchange evolutionary information in the tar-
get SPs and lead the search of other individuals. In contrast,
the random individuals migrated anticlockwise, which can
help maintain the population diversity in target SP. Then,
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Fig. 2. Example of the migration process.

each SP receives the best individual and a random individual
from neighbors in two directions. Migrated individuals from
different SPs can avoid the problem of redundant information.

An example of the BBRDF is given in Fig. 2. In the exam-
ple, each SP and its individuals are marked by a unique color.
First, in each SP, the best individual and a randomly chosen
individual are listed for migration. The best individual is repre-
sented by a circle and sent clockwise. In contrast, the random
individual is represented by a triangle and sent anticlockwise.
Each SP receives two kinds of individuals from correspond-
ing two neighbors. Population diversity and quality are both
enhanced.

B. Representation and Initialization

During the evolution, each fragmentation containing
multiple fragments is represented by an individual during the
evolution. Each fragment is represented by a vector that con-
tains the corresponding attributes. Each attribute is regarded
as an element in the further description. Constraint and utility
requirements can also be indicated by vectors containing the
corresponding elements.

For a given fragmentation, its privacy fitness and utility
fitness are calculated as follows:

fp =
NC∑

i=1

Vi (1)

Vi =
{

1, if constraint i is violated
0, otherwise

(2)

fu =
NU∑

i=1

Si × Wi (3)

Si =
{

1, if utility i is satisfied
0, otherwise

(4)

where fp is the value of privacy fitness, NC represents the
number of given constraints, Vi is a Boolean value indicates
whether the ith constraint is violated by the corresponding
fragmentation, fu is the value of utility fitness, NU is the
number of utility requirements, and Si indicates whether the

Fig. 3. Example of individual representation and fitness evaluation.

ith utility requirement is satisfied. Considering different utility
requirements are of different access frequency, a predefined
weight Wi is given for each utility requirement.

An example of fragmentation representation is given in
Fig. 3. As shown in the example, the individual contains
six elements and divided into three fragments. Fragment 1
involves elements A and C while fragment 2 and fragment 3
contain elements B and F and elements D and E, respectively.

Utility 1 can be satisfied by the given individual since ele-
ments D and E are both included in fragment 3. In contrast,
utility 2 is not satisfied. Similarly, constraint 2 is violated by
the given individual. For the given individual, its utility fitness
is the weight of utility 1, and its privacy fitness is 1.

According to the proposed distributed framework, the entire
population is initialized and divided into multiple groups at
the beginning of the overall process. To initialize the popu-
lation, a heuristic strategy is proposed. In the beginning, one
utility requirement is randomly chosen for each initial individ-
ual. In each initial individual, the first fragment is constructed
according to the chosen utility requirement. Subsequently,
unallocated elements are chosen by random. For each unal-
located element, it has the same chance to construct a new
fragment or join an existing fragment without violating given
constraints.
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Fig. 4. Example of heuristic initialization.

An example of the proposed heuristic strategy is given in
Fig. 4. In the beginning, the first utility containing two ele-
ments is randomly chosen as the base for constructing the
heuristic individual. Then, the first fragment F1 containing
these two elements, D, E, is created. Subsequently, element A
is randomly selected to construct a new fragment. Element F
is inserted into the existing fragment F2. In the same manner,
element C is inserted into a new fragment, and element B is
inserted into the same fragment.

First, the proposed heuristic initialization can guarantee
that each individual satisfies at least one utility require-
ment. Second, the generated initial individuals do not violate
any constraint. Third, since elements are randomly inserted
into existing fragments or new fragments, initial population
diversity is guaranteed.

C. Dynamic-Grouping Recombination

One primary target of the recombination operator is to
extract valuable fragmentation information from the existing
parent individuals and generate child individuals with higher
fitness. According to the problem definition, an individual
of higher fitness means it can exclude fragments contain-
ing illegal constraints and satisfy more utility requirements.
Fragments in each individual can be used in recombination to
generate better individuals.

To utilize more information in fragments, a DGR operator
is proposed. If two elements are allocated in the same frag-
ments in parent individuals, they are more likely to be assigned
in the same fragment in the child individuals. Thus, DGR is
designed as follows. First, a random order for element allot-
ment is generated. Each element is assigned according to this
random order. Second, each element creates its grouping table.
Two elements are regarded as neighbors if they appear in the
same fragments. For each element, all its neighbors are listed
in its grouping table. It is to be noted that elements in each
grouping table can duplicate, which means some elements can
appear twice in a single grouping table. If elements are allo-
cated in the same fragments in both parent individuals, they
are more likely to be allotted together. For each element, it can
randomly choose the same fragment as its neighbor in parent
individuals or construct a new fragment. Once an element is
allocated in the child individual, its fragment index is dynam-
ically updated in the grouping table. The following elements
can acquire new choices in fragment allocation.

Fig. 5. Example of DGR.

An example of DGR is given in Fig. 5. As shown in the fig-
ure, two parent individuals are chosen for recombination. Each
contains six elements. Random order is then generated. In the
first step, element C is chosen. Four neighbors of element C,
that is, A, F, A, D, are listed in the first row. In addition, “new”
represents constructing a new fragment. Since no element is
allocated, no grouping information can be given. This way, ele-
ment C is put into new fragment 1. Accordingly, the content
of element C in the second row is changed to 1, which indi-
cates the current result of recombination. Afterward, element
A is tacked in step 2. According to the grouping information,
element C acts as its neighbor in both parent individuals. In
the first row of this step, positions of element C are labeled
by 1, which represents the grouping information given by ele-
ment C. Thus, element A has (2/3) possibility to be allocated
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Fig. 6. Example of merge mutation where fragment 2 and fragment 3 are
merged in the new individual.

in the same fragment as element C (fragment 1) and (1/3) pos-
sibility to be allocated in a new fragment. After the allocation,
grouping information is updated. In step 3, since element F is
the neighbor of element A and element C in Parent 1, it also
has (2/3) chance to be put into fragment 1 but makes a differ-
ent choice from element A. Grouping information is updated
accordingly, and all the other elements are allocated accord-
ing to the predefined random order and dynamically updated
grouping information. In child individual, elements A and C
are allocated into fragment 1 and all the other elements are in
fragment 2.

With the help of the dynamically updated grouping table,
elements are allocated. Elements are more likely to be assigned
to the fragments as its neighbors in previous parent individuals.
Furthermore, with a dynamic possibility, a new fragment is
constructed for the element to achieve exploration. This way,
part of grouping information in the parent individuals is kept
while new grouping is formed through random exploration.

D. Merge and Split-Based Mutation

With the help of new fragmentation introduced by the
mutation operator, population diversity can be maintained. In
general, the mutation operator is carried out by randomly
changing positions of elements. In database fragmentation,
besides the general granularity of the element, the fragment
can also be regarded as granularity, which means elements in
the fragments can be integrally managed.

During the optimization of database fragmentation, with-
out effective guidance, two kinds of situations are likely to
appear. First, some important but complex utility requirements
are difficult to satisfy. Second, some promising fragmentations
containing evolutionary outcomes are removed because of vio-
lating constraints. To tackle these two situations, two novel
mutation operators, that is, merge mutation and split mutation,
are proposed. In addition, to improve the population diversity
in a random manner, random mutation is also adopted.

1) Merge-Mutation (M-M): During the optimization of
database fragmentation, some complex utility requirements
combining many elements are difficult to satisfy. To help sat-
isfy these utility requirements as well as accelerate the search
process, the first mutation operator, called merge mutation,
is proposed. When executing merge mutation, two fragments
in the original fragmentation are randomly chosen. Then, all

Fig. 7. Example of split mutation where fragment 1 in original individual
is processed.

elements in these two fragments are combined, and two frag-
ments are merged. An example of a merge mutation is given
in Fig. 6. As shown in this example, the second fragment
and the third fragment of the original individual are chosen.
Four elements in these two fragments are combined. In the
newly generated individual, the number of fragments decreases
to two and the second fragment contains all the combined
elements, namely, element B, element C, element E, and ele-
ment G. With the help of the merge mutation, some unusual
combinations can be constructed to fulfill some complex utility
requirements.

2) Split-Mutation (S-M): Another situation is that some
promising fragmentations are removed since they violate
constraints. To keep the promising fragmentations so as to pro-
mote the search process, the second mutation operator, called
a split mutation, is proposed. During the proposed split muta-
tion, one fragment in the original fragmentation is randomly
selected. All elements in the chosen fragment are randomly
divided into two groups. Each group contains part of the ele-
ments in the original fragment. These two groups are inserted
into the new individual and act as two fragments to replace the
chosen fragment. An example of the split mutation is shown
in Fig. 7. In this example, fragment 1 is selected for the split.
Afterward, four elements in the fragment are divided into two
groups, namely, fragments A and F and fragments D and H. In
the new individual, the number of fragments increases to four.
Through executing the split mutation operator, some mislead-
ing element combinations can be removed, and the generated
individuals are more likely to satisfy more constraints.

3) Random Mutation (R-M): Other than the proposed
merge and split mutation operators, the general random muta-
tion operator is also adopted to adjust the positions of elements
by the granularity of a single element. In random mutation,
with a predefined possibility Pr, each element in the original
individual is randomly allocated to a new fragment.

E. Two-Dimension Selection

To compare different solutions of database fragmentation,
both privacy fitness and utility fitness should be considered.
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Fig. 8. Illustration of two-dimension selection.

According to the problem definition, a fragmentation is legal
only if its privacy fitness equals 0. Also, the objective of the
optimization is to find the optimal fragmentation that can sat-
isfy all predefined constraints and can provide higher utility
than any other fragmentation. Based on the definition, privacy
fitness is of higher priority. When comparing two individuals,
privacy fitness is first compared. If two individuals are of the
same privacy fitness, utility fitness is compared. To be specific,
fragmentation F1 is fitter than fragmentation F2 if:

1) fp(F1) < fp(F2);
2) fp(F1) = fp(F2) and fu(F1) > fu(F2)

where fp and fu are privacy fitness and utility fitness of the
given solution.

As an example, in Fig. 8, compared with the red newly
generated individual, existing individuals in G1 and G2 are
of higher overall fitness and individuals in G3 and G4 are of
lower overall fitness.

F. Splicing-Driven Local Search

During the optimization of database fragmentation, it is
common that part of utility requirements is satisfied by all
individuals while other utility requirements are not involved
in any fragmentation. The unbalance of satisfaction can cause
the optimization process to get trapped. Although some util-
ity requirements can be achieved by merge mutation, it is
also likely to be removed due to the involvement of illegal
fragments. To construct legal database fragmentation includ-
ing the rare utility requirement to expand the search space of
the optimization, an SDLS is proposed.

The execution of the proposed SDLS is divided into three
steps. First, for each selected individual, its unsatisfied util-
ity requirements are listed. One of the utility requirements
is randomly chosen for fragment construction. Subsequently,
positions of all elements in the selected utility requirement
are marked. Finally, all elements in the original individual are
extracted from its current fragment and combined to construct
a new fragment.

As shown in Fig. 9, an instance of SDLS is given. Three
utility requirements are listed in this example. The first two

Fig. 9. Example of SDLS.

utility requirements, which are marked as green, have been
satisfied by the original individual. On the contrary, utility 3,
which is marked as red, has not been satisfied. Based on this
situation, all the elements in utility 3 are extracted from their
original fragments and combined to construct a new fragment.
Fragment 4 is formed and inserted into the new individual. As
a result, utility 3 is satisfied by the newly generated individual.

After executing the SDLS, rare utility requirements are
introduced in the improved individuals. Grouping information
of these utility requirements can be utilized and extended in
the further optimization process. In the proposed SDLS, only
elements in the given utility requirements are extracted to con-
struct a new fragment. Considering the utility requirements do
not conflict with the given constraints, the new fragment has
no concern of violating any constraint.

G. Overall Process

Algorithm 1 shows the entire process of the proposed algo-
rithm. The entire process is divided into two parts, that is, the
global controller at the master node and SP at the slave node.
At the beginning of the procedure of the global controller, the
counter of generation g is initialized as 0, and the entire pop-
ulation is randomly initialized. Afterward, privacy fitness fp
and utility fitness fu of each initialized individual are evalu-
ated. The entire population is divided into N SPs and each SP
is sent to one slave node to evolve independently. Migration
operator is carried out every MI generations. During migra-
tion, the global controller receives migrated from each SP and
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Algorithm 1 Pseudocode of the Proposed DMA
1: procedure GLOBAL CONTROLLER (AT MASTER NODE)
2: Set g = 0 (g is current generation of population)
3: Initialize the population P
4: Evaluate fp and fu for initial individuals
5: Spawn N subpopulations
6: while stopping criterion is not met do
7: if g % MI = 0 then
8: receive migrated individuals from each subpopulation
9: for each received individual do

10: send the individual to its corresponding subpopulation
11: end for
12: end if
13: g = g + 1
14: end while
15: Output convergence data
16: Output the best solution
17: end procedure
18:
19: procedure SUBPOPULATION EVOLUTION (AT SLAVE NODE)
20: while stopping criterion is not met do
21: for each pair of parent individuals do
22: Set the parent individual of less competitiveness as father

individual
23: Perform dynamic-grouping recombination
24: Execute mutation operator on offspring
25: if Offspring is better than father individual then
26: Replace the father individual by offspring
27: else
28: Put offspring into LSP
29: end if
30: end for
31: Execute local search strategy on LSP
32: for each individual in LSP do
33: Replace the corresponding father individual by it
34: end for
35: end while
36: end procedure

sends them to their corresponding SPs. At the end of evolu-
tion, the global controller outputs convergence data and the
best solution.

In each slave node, each SP evolves independently. For each
pair of parent individuals, the fitter individual is set as the
mother individual, and the other is set as the father individ-
ual. Subsequently, DGR is performed. One of the mutation
operators is selected by random with the same probability and
carried out on the generated offspring. If the mutated offspring
is better than the father individual, replace the father individ-
ual by the offspring. Otherwise, put the offspring into local
search population LSP. After finalizing the global search on
each pair of parent individuals, a local strategy is executed on
LSP. The outcome of the local search is used to replace the
corresponding father individual. Moreover, the pseudocode of
all the proposed operators in DMA is provided in Algorithm
S1 of the supplementary file.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

To evaluate the performance of the proposed DMA, 18
test cases are utilized. These test cases are generated accord-
ing to the problem definition and metadata published by the
Australian Institute of Health and Welfare.1 For each test case,

1https://www.aihw.gov.au/about-our-data/metadata-standards

a set of constraints and a list of utility requirements are given.
Also, the weight of each utility requirement is generated by
random, and its value is between 1 and 100. Table SI of
the supplementary file shows the properties of each test case,
including the number of elements NE, number of constraints
NC, size of constraints SC, number of utility requirements NU,
and the corresponding size SU.

The parameters of the proposed algorithm are set as fol-
lows. Population size NP is set as 80, number of SPs is set
as 4, migration interval MI is set as 30, random mutation
possibility Pr is set as 0.2, and the maximum number of fit-
ness evaluations MaxFEs is set as NE ×103. Furthermore, the
effectiveness of the parameter setting and the corresponding
parameter sensitivity are studied in the following part.

The proposed distributed framework is based on the mes-
sage passing interface (MPI). Each SP is assigned to a single
core and evolves in parallel. The proposed and all the com-
pared algorithms are implemented in C++ and performed on a
local cluster containing 60 compute nodes (OS: Ubuntu 16.04;
CPU: 3.40-GHz 4-Core Intel i5-7500; and Memory: 8 GB).

B. Comparisons With State-of-the-Art Algorithms

The DMA algorithm is designed to tackle database fragmen-
tation problems, which is important in the area of database
storage. To verify the performance of the proposed DMA,
experiments are carried out to compare DMA with four
state-of-the-art algorithms for database fragmentation, namely,
the benefit-driven GA [29], heuristic algorithm [16], graph
search [12], and fragmentation tree [19]. These four state-of-
the-art algorithms are listed as follows and the parameters are
set according to their original papers.

1) GA-BD [29]: This GA adopts a matching-based recom-
bination operator and a benefit-driven mutation operator
to help achieve the balance between database privacy
and utility.

2) HA [16]: This heuristic algorithm is based on the
utility matrix and greedy strategy. It has shown effi-
cient performance in handling constraints and utility in
database fragmentation.

3) GS [12]: In this approach, the fragmentation search
space is modeled as a graph, and a novel levelwise graph
expansion is utilized to reduce the search time.

4) FT [19]: In this algorithm, a fragmentation tree is built
over a given fragmentation lattice. Each fragment is rep-
resented as a node in the tree. A heuristic approach is
designed to search near-optimal solutions on this tree.

In Table II, the mean and standard deviation of the utility
fitness values over 25 independent runs are presented and the
best results are highlighted in boldface. To be noted, since all
these approaches can achieve legal solutions whose privacy
fitness values are 0, the privacy fitness values are not shown
in this table. According to the result table, the proposed DMA
can achieve the best performance on most of the test cases.
Overall, the proposed DMA acquires the best results on 15
test cases. Due to the benefit-driven strategy utilized by GA-
BD, it can outperform on these two test cases of less complex
search space. On the test cases of higher values of NE, the
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TABLE II
COMPARISONS WITH STATE-OF-THE-ART ALGORITHMS

proposed DMA can achieve better performance and show its
advantages in search ability. This is due to the proposed dis-
tributed framework, that is, BBRDF, which can help exchange
information between SPs efficiently. Besides, the global search
and local search are balanced and they both contribute to solu-
tion precision. The average ranks of mean values achieved by
DMA and the compared state-of-the-art approaches on 18 test
cases over 25 runs are calculated and plotted in Fig. S1 of the
supplementary file. The average rank of DMA is around 1.2,
which is much lower than the average ranks of other com-
pared approaches, which can also verify the advantage of its
performance.

To show the advantage of DMA in a statistical sense, the
Wilcoxon rank-sum test with 0.05 level is adopted, and results
are also listed in Table II, in which the comparison results are
labeled as −/ ≈ /+, where “−,” “≈,” and “+” indicate that
the compared approach is significantly worse than, equivalent
to, and better than the complete version of the DMA algorithm,
respectively. It is clear that DMA can significantly outperform
in most of the test cases. To sum up, DMA can provide sig-
nificantly better results on 16, 18, 18, and 17 test cases than
the compared state-of-the-art algorithms.

Besides, Fig. S2 of the supplementary file shows the con-
vergence curves of utility fitness values achieved by five
approaches on all the test cases. Each point on the plot is
located by calculating the average values of the correspond-
ing approach in 25 independent runs. Take the convergence
curve of HA as an example. With the help of its greedy strat-
egy, HA can achieve quick convergence at the beginning stage
of the search process. In both simple test cases such as T3
and complex test cases such as T17, its converge curves are
highest at the very beginning. However, with the development
of evolution, its search is very likely to be trapped in the
local optima, and the greedy strategy is not helpful in jump-
ing out. Thus, its convergence curve is not variable afterward.

The same situation also happens in other approaches, such
as GS and FT. Due to the limitation of the search strategy,
they are very likely to be trapped during the evolution pro-
cess. For GA-BD, although it can sustainably identify better
solutions during the entire evolution process, its search speed
is limited by its population model and cannot achieve an ideal
degree. Also, fragment information is not adequately utilized.
The proposed DMA can achieve the highest convergence speed
both on simple test cases and complex test cases. Optimization
efficiency is enhanced by the proposed BBRDF. Global search
procedure can improve population diversity and explorative
ability, which is crucial in complex test cases. The proposed
local search strategy is helpful in improving solution precision.

C. Effect of the Proposed Distributed Framework

To investigate the effectiveness of the entire BBRDF and
migrated individuals, three variants of DMA are implemented
and compared with the original version. These four variants
are listed as follows.

1) DMA-No-BBRDF: DMA algorithm without the
proposed distributed framework BBRDF.

2) DMA-No-Best: DMA algorithm without the best indi-
vidual migrated in BBRDF.

3) DMA-No-Random: DMA algorithm without a random
individual migrated in BBRDF.

4) DMA-Multiobjective: Since two kinds of fitness, that
is, privacy fitness and utility fitness, are involved in
database fragmentation, it can also be solved by a
multiobjective approach. In this variant, one single pop-
ulation is employed and the NSGA-II framework [54]
is utilized to achieve the multiobjective optimization of
privacy fitness and utility fitness. Multiobjective indi-
viduals can enhance the exploration search. Except for
BBRDF, all the other operators proposed in DMA are
utilized in DMA-multiobjective.
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Table SII of the supplementary file shows the comparisons
of experimental results where the best results are highlighted
in boldface. The Wilcoxon rank-sum test at a significant
level 0.05 is executed and labeled in the table. According
to the given table, the proposed DMA can obtain the best
optimization results on 14 out of all test cases. For the test
cases of lower numbers of elements, the variant DMA-no-
BBRDF can achieve results without significant difference. This
is mainly because these test cases are of lower complexity.
This way, the advantage of population diversity in BBRDF
cannot show off. For the test cases of higher numbers of ele-
ments, BBRDF can achieve population diversity during the
optimization and obtain significantly better results. Compared
with DMA-multiobjective, DMA can achieve significantly bet-
ter performance on 18 test cases. Although the individuals
in DMA-multiobjective can continuously provide evolutionary
information for enhancing the exploration search, its conver-
gence speed is limited by the multiobjective optimization,
which makes DMA-multiobjective of lower solution accu-
racy. DMA can achieve better convergence speed due to the
enhancement of exploitation search.

In addition, Fig. S3 of the supplementary file presents the
average ranks of DMA and four variants on all test cases. We
can see a clear gap of the average rank between DMA and
other variants. The proposed BBRDF-distributed framework
is effective in enhancing the performance of DMA.

D. Effect of the Proposed Operators

The main operators of the proposed algorithm contain DGR,
M-M, M-S, and SDLS. To verify the effectiveness of these
operators, four DMA variants are implemented and compared
with the original DMA algorithm. These variants are listed as
follows.

1) DMA-no-HI: The heuristic initialization in DMA is
replaced by random initialization.

2) DMA-no-DGR: The DGR operator is removed from the
DMA algorithm.

3) DMA-no-M-M: Merge-mutation is removed from the
DMA algorithm.

4) DMA-no-M-S: Split-mutation is removed from the DMA
algorithm.

5) DMA-no-SDLS: The SDLS operator is removed from the
DMA algorithm.

Table SIII of the supplementary file shows the comparisons
of experimental results where the best results are highlighted in
boldface. According to the given table, the complete version of
the proposed DMA approach can achieve the best performance
on 12 out of all 18 test cases. To be specific, compared with
DMA-no-HI, the advantage of performance obtained by the
complete version verifies the heuristic information given in the
initial population is effective in the subsequent evolutionary
process. Compared with DMA-no-DGR, the complete version
can outperform on 17 test cases, which means the proposed
DGR operator can help improve the performance of DMA in
various optimization situations. Similarly, the proposed SDLS
can also enhance the performance of DMA by improving the
precision of solutions. Furthermore, the average ranks achieved

by DMA and the other variants are plotted in Fig. S4 of the
supplementary file. Overall, DMA can achieve the lowest aver-
age rank, which indicates DMA can outperform with the help
of all the proposed operators. The effectiveness of the proposed
operators is also verified.

As shown in the table, the results of the statistical analyses
are represented in a “−/ ≈ /+” manner. Through analyzing
the comparison results, it is clear that the full version of the
DMA algorithm can obtain significantly better results than the
other compared versions on the majority of the test cases.
In other words, all the proposed approaches are effective in
enhancing the performance of DMA.

E. Sensitivity Analysis

Migration interval MI, population size NP, and SP size NSP
are three manually defined parameters in DMA. Considering
their importance, the performance of DMA may be sensi-
tive to their values. To investigate the sensitivity of DMA on
these three parameters, we compare the performance of DMA
adopting different values of MI, NP, and NSP.

In general, if the value of MI is too low, which means evolu-
tion information is exchanged frequently, the evolution process
tends to be relatively exploitative. In the test cases of a simple
environment, DMA with low MI can help directly indicate the
optimal solution. On the contrary, DMA with high MI can help
maintain population diversity. Since evolution information is
exchanged with a lower frequency, different SPs are guided
independently. This kind of DMA can outperform on the com-
plex test cases. The average ranks achieved by DMA utilizing
seven different migration intervals are plotted in Fig. S5 of the
supplementary file. As shown in the plot, when the values of
MI is set in the defined range, different versions of DMA do
not make big differences, and the average ranks are all located
between 3.5 and 4.2.

Also, the performance of DMA may be sensitive to the val-
ues of NP and NSP. If the value of NP is set to low and the
value of NSP is set too high, the search of DMA tends to
be exploitative. Elite individuals are selected from large SPs
and evolutionary information in elite individuals is quickly
exchanged between big SPs. In contrast, the search for DMA
can be relatively explorative. Since different SPs are guided by
different elite individuals, population diversity is maintained.
To test whether DMA is so sensitive to NP and NSP, DMA
with different values of NP and NSP is carried out and the
average ranks achieved are plotted in Fig. S6 of the supplemen-
tary file. As shown in the figure, the average ranks achieved
by each variant are all between 4 and 5.5. There is no big dif-
ference between average ranks achieved by DMA with values
of NP and NSP in the predefined range.

To sum up, the performance of DMA is not so sensitive
to MI, NP, and NSP. According to the experimental results,
the parameter combination adopted in this article, namely,
MI = 30, NP = 80, and NSP = 20 could achieve the best
performance.

F. Visulization of Optimization Process

To verify the optimization process of DMA, an example of
the database fragmentation process in T1 is given in Fig. S7
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of the supplementary file, in which 12 attributes are repre-
sented by A–L and g indicates the counter of generation. As
shown in the example, different attributes are first initialized
and allocated in different fragments. Then, driven by the search
procedure, attributes in different fragments are gathered step
by step. The number of fragments decreases from 8 to 4 in the
first 80 generations. After that, attributes are migrated between
fragments and the precision of the solution is improved.

G. Speedup Ratio

The direct parallel implementation is one of the advantages
of EAs. To achieve a better performance in database fragmen-
tation, DMA is implemented in the parallel island model, and
each SP in the proposed DMA approach is assigned to an
independent computing node. Information exchange between
SPs is realized by sending and receiving messages between
computing nodes. Thus, the parallel granularity of each DMA
approach equals its number of SPs. The number of SPs can
directly affect the running speed of DMA.

Since the speedup ratio is an important metric to evalu-
ate the efficiency of parallel algorithms, it is also utilized to
investigate the performance of DMA. To calculate the speedup
ratio of DMA as well as examine its parallel efficiency, both
serial running time and parallel running time are needed. The
serial running time is obtained by running DMA with one SP.
The parallel running time of DMA with different numbers of
SPs (2, 4, 8, and 16) are also recorded. Note that the overall
size of the population in each variant is uniformly set as 80.
Running time and corresponding speedup ratios of DMA with
different parallel granularity on various test cases are listed in
Table SIV of the supplementary file. As we expect, the DMA
with a larger number of SPs can achieve higher speedup ratios
in all the test cases.

Fig. S8 of the supplementary file shows the variation curves
of the DMA approach with different numbers of SPs on all
of the test cases. It is clear that the speedup ratio of DMA
increases with the parallel granularity of approach rises. In
most of the test cases, the speedup ratio can close to the
corresponding parallel granularity, which means the parallel
efficiency of DMA is very high. Also, speedup ratios achieved
on different test cases are of differences. This is because the
ratio of computational time in the total running time varies on
different test cases of different computation requirements.

High parallel efficiency of DMA is contributed by the island
model of the island model utilized in DMA, which can help
the SPs evolve independently and contributes to the entire pop-
ulation. Also, the implementation of DMA, which is based on
the MPI parallel framework is effective in database fragmen-
tation. The MPI framework is proved to be helpful in this kind
of computation-driven optimization problem.

VI. CONCLUSION

Overall, to enhance database privacy and utility, a DMA
has been proposed in this article. A BBRDF is designed to
improve optimization efficiency. To enhance the global search,
we propose a dynamic grouping recombination operator, two
mutation operators, and a two-dimension selection approach.

Moreover, an SDLS strategy is embedded in the approach
to introduce rare utility elements without constraint concern.
With the help of experiments, the proposed DMA showed sig-
nificantly better performance than the existing approaches in
database fragmentation and the effectiveness of each proposed
framework and operators has been verified.

In the future, considering the effectiveness of the proposed
operators in DMA, we will apply them to other discrete
engineering optimization problems. Also, since the proposed
distributed framework can enhance the information exchange
between SPs as well as improve the algorithmic speed, it will
be utilized in other optimization problems of the complex or
large-scale property.
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